Ohkubo, Yu; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Nakagawa, Akiko; Kawahara, Masahiro; Abe, Takanori; Kiyohara, Hiroki; Wakatsuki, Masaru; Nakano, Takashi
2013-01-01
The purpose of this study was to evaluate interfractional changes of the minimum dose delivered to 90% of the high-risk clinical target volume (HR-CTV D90) and D2cc of the bladder and rectum during brachytherapy for uterine cervical cancer patients. A total of 52 patients received external beam radiotherapy and high-dose-rate intracavitary brachytherapy (ICBT). For each of four ICBT applications, a pelvic CT scan was performed and the HR-CTV was delineated. Retrospectively, these patients were divided into two groups: (i) the standard dose group with 6 Gy to point A in each ICBT, and (ii) the adaptive dose group with a modified dose to point A to cover the HR-CTV with the 6-Gy isodose line as much as possible. The HR-CTV D90 was assessed in every session, and analyzed as interfractional changes. In the standard dose group, the interfractional changes of the HR-CTV D90 showed a linear increase from the first to the third of the four ICBT (average 6.1, 6.6, 7.0 and 7.1 Gy, respectively). In contrast, those of the adaptive dose group remained almost constant (average 7.2, 7.2, 7.3 and 7.4 Gy, respectively). Especially, in the case of a large HR-CTV volume (≥35 cm3) at first ICBT, the total HR-CTV D90 of the adaptive dose group with brachytherapy was significantly higher than that of the standard dose group. There were no significant differences in total D2cc in bladder and rectum between the two groups. Image-guided adaptive brachytherapy based on interfractional tumor volume change improves the dose to the HR-CTV while keeping rectal and bladder doses within acceptable levels. PMID:23732770
Ohkubo, Yu; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Nakagawa, Akiko; Kawahara, Masahiro; Abe, Takanori; Kiyohara, Hiroki; Wakatsuki, Masaru; Nakano, Takashi
2013-11-01
The purpose of this study was to evaluate interfractional changes of the minimum dose delivered to 90% of the high-risk clinical target volume (HR-CTV D90) and D2cc of the bladder and rectum during brachytherapy for uterine cervical cancer patients. A total of 52 patients received external beam radiotherapy and high-dose-rate intracavitary brachytherapy (ICBT). For each of four ICBT applications, a pelvic CT scan was performed and the HR-CTV was delineated. Retrospectively, these patients were divided into two groups: (i) the standard dose group with 6 Gy to point A in each ICBT, and (ii) the adaptive dose group with a modified dose to point A to cover the HR-CTV with the 6-Gy isodose line as much as possible. The HR-CTV D90 was assessed in every session, and analyzed as interfractional changes. In the standard dose group, the interfractional changes of the HR-CTV D90 showed a linear increase from the first to the third of the four ICBT (average 6.1, 6.6, 7.0 and 7.1 Gy, respectively). In contrast, those of the adaptive dose group remained almost constant (average 7.2, 7.2, 7.3 and 7.4 Gy, respectively). Especially, in the case of a large HR-CTV volume (≥35 cm(3)) at first ICBT, the total HR-CTV D90 of the adaptive dose group with brachytherapy was significantly higher than that of the standard dose group. There were no significant differences in total D2cc in bladder and rectum between the two groups. Image-guided adaptive brachytherapy based on interfractional tumor volume change improves the dose to the HR-CTV while keeping rectal and bladder doses within acceptable levels. PMID:23732770
Anderson, James W.; Xia, Junyi; Flynn, Ryan T.; Modrick, Joseph M.; Bhatia, Sudershan K.; Jacobson, Geraldine M.
2013-01-01
Purpose To evaluate conventional brachytherapy (BT) plans using dose-volume parameters and high resolution (3 Tesla) MRI datasets, and to quantify dosimetric benefits and limitations when MRI-guided, conformal BT (MRIG-CBT) plans are generated. Material and methods Fifty-five clinical high-dose-rate BT plans from 14 cervical cancer patients were retrospectively studied. All conventional plans were created using MRI with titanium tandem-and-ovoid applicator (T&O) for delivery. For each conventional plan, a MRIG-CBT plan was retrospectively generated using hybrid inverse optimization. Three categories of high risk (HR)-CTV were considered based on volume: non-bulky (< 20 cc), low-bulky (> 20 cc and < 40 cc) and bulky (≥ 40 cc). Dose-volume metrics of D90 of HR-CTV and D2cc and D0.1cc of rectum, bladder, and sigmoid colon were analyzed. Results Tumor coverage (HR-CTV D90) of the conventional plans was considerably affected by the HR-CTV size. Sixteen percent of the plans covered HR-CTV D90 with the prescription dose within 5%. At least one OAR had D2cc values over the GEC-ESTRO recommended limits in 52.7% of the conventional plans. MRIG-CBT plans showed improved target coverage for HR-CTV D90 of 98 and 97% of the prescribed dose for non-bulky and low-bulky tumors, respectively. No MRIG-CBT plans surpassed the D2cc limits of any OAR. Only small improvements (D90 of 80%) were found for large targets (> 40 cc) when using T&O applicator approach. Conclusions MRIG-CBT plans displayed considerable improvement for tumor coverage and OAR sparing over conventional treatment. When the HR-CTV volume exceeded 40 cc, its improvements were diminished when using a conventional intracavitary applicator. PMID:23878555
{sup 125}I Monotherapy Using D90 Implant Doses of 180 Gy or Greater
Kao, Johnny; Stone, Nelson N.; Lavaf, Amir Dumane, Vishruta; Cesaretti, Jamie A.; Stock, Richard G.
2008-01-01
Purpose: The purpose of this study was to characterize the oncologic results and toxicity profile of patients treated with {sup 125}I implants using the dose delivered to 90% of the gland from the dose-volume histogram (D90) of greater than 144 Gy. Methods and Materials: From June 1995 to Feb 2005, a total of 643 patients were treated with {sup 125}I monotherapy for T1-T2 prostate cancer with a D90 of 180 Gy or greater (median, 197 Gy; range, 180-267 Gy). Implantations were performed using a real-time ultrasound-guided seed-placement method and intraoperative dosimetry to optimize target coverage and homogeneity by using modified peripheral loading. We analyzed biochemical disease-free survival (bDFS) of 435 patients who had a minimum 2-year prostate-specific antigen follow-up (median follow-up, 6.7 years; range, 2.0-11.1 years). Results: Five-year bDFS rates for the entire cohort using the American Society for Therapeutic Radiology and Oncology and Phoenix definitions were 96.9% and 96.5%, respectively. Using the Phoenix definition, 5-year bDFS rates were 97.3% for low-risk patients and 92.8% for intermediate/high-risk patients. The positive biopsy rate was 4.1%. The freedom rate from Grade 2 or higher rectal bleeding at 5 years was 88.5%. Acute urinary retention occurred in 10.7%, more commonly in patients with high pretreatment International Prostate Symptom Scores (p < 0.01). In patients who were potent before treatment, 73.4% remained potent at 5 years after implantation. Conclusions: Patients with a minimum D90 of 180 Gy had outstanding local control based on prostate-specific antigen control and biopsy data. Toxicity profiles, particularly for long-term urinary and sexual function, were excellent and showed that D90 doses of 180 Gy or greater performed using the technique described were feasible and tolerable.
Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET.
Turner, M R; Hammers, A; Al-Chalabi, A; Shaw, C E; Andersen, P M; Brooks, D J; Leigh, P N
2005-06-01
Five to ten percent of amyotrophic lateral sclerosis (ALS) cases are associated with mutations of the superoxide dismutase-1 (SOD1) gene, and the 'D90A' mutation is associated with a unique phenotype and markedly slower disease progression (mean survival time 14 years). Relative sparing of inhibitory cortical neuronal circuits might be one mechanism contributing to the slower progression in patients homozygous for the D90A mutation (homD90A). The GABA(A) receptor PET ligand [11C]flumazenil has demonstrated motor and extra-motor cortical changes in sporadic ALS. In this study, we used [11C]flumazenil PET to explore differences in the pattern of cortical involvement between sporadic and genetically homogeneous ALS groups. Twenty-four sporadic ALS (sALS) and 10 homD90A patients underwent [11C]flumazenil PET of the brain. In addition, two subjects homozygous for the D90A mutation, but without symptoms or signs ('pre-symptomatic', psD90A), also underwent imaging. Results for each group were compared with those for 24 healthy controls of similar age. Decreases in the binding of [11C]flumazenil in the sALS group were found within premotor regions, motor cortex and posterior motor association areas. In the homD90A group of ALS patients, however, decreases were concentrated in the left fronto-temporal junction and anterior cingulate gyrus. In the two psD90A subjects, a small focus of reduced [11C]flumazenil binding at the left fronto-temporal junction was seen, similar to the pattern seen in the clinically affected patients. Within the sALS group, there was no statistically significant association between decreases in cortical [11C]flumazenil binding and revised ALS functional rating scale (ALSFRS-R score), whereas the upper motor neuron (UMN) score correlated with widespread and marked cortical decreases over the dominant hemisphere. In the homD90A group, there was a stronger statistical association between reduced cortical [11C]flumazenil binding and the ALSFRS-R, rather
Dempsey, Claire; Govindarajulu, Geetha; Sridharan, Swetha; Capp, Anne; O'Brien, Peter
2014-12-01
To evaluate cervix brachytherapy dosimetry with the introduction of magnetic resonance (MR) based treatment planning and volumetric prescriptions and propose a method for plan evaluation in the transition period. The treatment records of 69 patients were reviewed retrospectively. Forty one patients were treated using computed tomography (CT)-based, Point A-based prescriptions and 28 patients were treated using magnetic resonance (MR)-based, volumetric prescriptions. Plans were assessed for dose to Point A and organs at risk (OAR) with additional high-risk clinical target volume (HR-CTV) dose assessment for MR-based brachytherapy plans. ICRU-38 point doses and GEC-ESTRO recommended volumetric doses (D2cc for OAR and D100, D98 and D90 for HR-CTV) were also considered. For patients with small HR-CTV sizes, introduction of MR-based volumetric brachytherapy produced a change in dose delivered to Point A and OAR. Point A doses fell by 4.8 Gy (p = 0.0002) and ICRU and D2cc doses for OAR also reduced (p < 0.01). Mean Point A doses for MR-based brachytherapy treatment plans were closer to those of HR-CTV D100 for volumes less than 20 cm(3) and HR-CTV D98 for volumes between 20 and 35 cm(3), with a significant difference (p < 0.0001) between Point A and HR-CTV D90 doses in these ranges. In order to maintain brachytherapy dose consistency across varying HR-CTV sizes there must be a relationship between the volume of the HR-CTV and the prescription dose. Rather than adopting a 'one size fits all' approach during the transition to volume-based prescriptions, this audit has shown that separating prescription volumes into HR-CTV size categories of less than 20 cm(3), between 20 and 35 cm(3), and more than 35 cm(3) the HR-CTV can provide dose uniformity across all volumes and can be directly linked to traditional Point A prescriptions. PMID:25344886
Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-ichi; Nakano, Takashi
2014-01-01
We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I–II cervical cancer (≤4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I–II cervical cancer (≤4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint (‘point A dose-reduced plan’) instead of the 6-Gy plan at point A (‘tentative 6-Gy plan’). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control. PMID:24566721
Lupo, Vincenzo; Pascual-Pascual, Samuel I; Sancho, Paula; Calpena, Eduardo; Gutiérrez-Molina, Manuel; Mateo-Martínez, Gonzalo; Espinós, Carmen; Arriola-Pereda, Gema
2015-10-01
Early-onset hereditary motor and sensory neuropathies are rare diseases representing a broad clinical and genetic spectrum. Without a notable familial history, the clinical diagnosis is complicated because acquired causes of peripheral neuropathy, such as inflammatory neuropathies, neuropathies with toxic causes, and nutritional deficiencies, must be considered. We examined the clinical, electrophysiological, and pathologic manifestations of a boy with an initial diagnosis of chronic inflammatory demyelinating polyneuropathy. The progression of the disease despite treatment led to a suspicion of hereditary motor and sensory neuropathy. Genetic testing revealed the presence of the MPZ p.D90E mutation in heterozygosis. To clarify the pathogenicity of this mutation and achieve a conclusive diagnosis, we investigated the MPZ p.D90E mutation through in silico and cellular approaches. This study broadens the clinical phenotype of hereditary motor and sensory neuropathy due to MPZ mutation and emphasises the difficulty of achieving an accurate genetic diagnosis in a sporadic patient to provide an appropriate pharmacologic treatment. PMID:25694466
2014-01-01
Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757
Yoshida, Ken; Yamazaki, Hideya; Takenaka, Tadashi; Kotsuma, Tadayuki; Yoshida, Mineo; Furuya, Seiichi; Tanaka, Eiichi; Uegaki, Tadaaki; Kuriyama, Keiko; Matsumoto, Hisanobu; Yamada, Shigetoshi; Ban, Chiaki
2010-07-01
Purpose: To investigate the feasibility of our novel image-based high-dose-rate interstitial brachytherapy (HDR-ISBT) for uterine cervical cancer, we evaluated the dose-volume histogram (DVH) according to the recommendations of the Gynecological GEC-ESTRO Working Group for image-based intracavitary brachytherapy (ICBT). Methods and Materials: Between June 2005 and June 2007, 18 previously untreated cervical cancer patients were enrolled. We implanted magnetic resonance imaging (MRI)-available plastic applicators by our unique ambulatory technique. Total treatment doses were 30-36 Gy (6 Gy per fraction) combined with external beam radiotherapy (EBRT). Treatment plans were created based on planning computed tomography with MRI as a reference. DVHs of the high-risk clinical target volume (HR CTV), intermediate-risk CTV (IR CTV), and the bladder and rectum were calculated. Dose values were biologically normalized to equivalent doses in 2-Gy fractions (EQD{sub 2}). Results: The median D90 (HR CTV) and D90 (IR CTV) per fraction were 6.8 Gy (range, 5.5-7.5) and 5.4 Gy (range, 4.2-6.3), respectively. The median V100 (HR CTV) and V100 (IR CTV) were 98.4% (range, 83-100) and 81.8% (range, 64-93.8), respectively. When the dose of EBRT was added, the median D90 and D100 of HR CTV were 80.6 Gy (range, 65.5-96.6) and 62.4 Gy (range, 49-83.2). The D{sub 2cc} of the bladder was 62 Gy (range, 51.4-89) and of the rectum was 65.9 Gy (range, 48.9-76). Conclusions: Although the targets were advanced and difficult to treat effectively by ICBT, MRI-aided image-based ISBT showed favorable results for CTV and organs at risk compared with previously reported image-based ICBT results.
Rotating-shield brachytherapy for cervical cancer
NASA Astrophysics Data System (ADS)
Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.
2013-06-01
In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.
NASA Astrophysics Data System (ADS)
Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul
2016-03-01
This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.
Sharma, M; Todor, D; Fields, E
2014-06-01
Purpose: To present a novel method allowing fast, true volumetric optimization of T and O HDR treatments and to quantify its benefits. Materials and Methods: 27 CT planning datasets and treatment plans from six consecutive cervical cancer patients treated with 4–5 intracavitary T and O insertions were used. Initial treatment plans were created with a goal of covering high risk (HR)-CTV with D90 > 90% and minimizing D2cc to rectum, bladder and sigmoid with manual optimization, approved and delivered. For the second step, each case was re-planned adding a new structure, created from the 100% prescription isodose line of the manually optimized plan to the existent physician delineated HR-CTV, rectum, bladder and sigmoid. New, more rigorous DVH constraints for the critical OARs were used for the optimization. D90 for the HR-CTV and D2cc for OARs were evaluated in both plans. Results: Two-step optimized plans had consistently smaller D2cc's for all three OARs while preserving good D90s for HR-CTV. On plans with “excellent” CTV coverage, average D90 of 96% (range 91–102), sigmoid D2cc was reduced on average by 37% (range 16–73), bladder by 28% (range 20–47) and rectum by 27% (range 15–45). Similar reductions were obtained on plans with “good” coverage, with an average D90 of 93% (range 90–99). For plans with inferior coverage, average D90 of 81%, an increase in coverage to 87% was achieved concurrently with D2cc reductions of 31%, 18% and 11% for sigmoid, bladder and rectum. Conclusions: A two-step DVH-based optimization can be added with minimal planning time increase, but with the potential of dramatic and systematic reductions of D2cc for OARs and in some cases with concurrent increases in target dose coverage. These single-fraction modifications would be magnified over the course of 4–5 intracavitary insertions and may have real clinical implications in terms of decreasing both acute and late toxicity.
Ren, Jiyun; Menon, Geetha; Sloboda, Ron
2013-04-01
Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning--Nelder-Mead simplex (NMS) and simulated annealing (SA)--for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method. PMID:23459004
NASA Astrophysics Data System (ADS)
Ren, Jiyun; Menon, Geetha; Sloboda, Ron
2013-04-01
Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.
Sherertz, T; Ellis, R; Colussi, V; Mislmani, M; Traughber, B; Herrmann, K; Podder, T
2014-06-15
Purpose: To evaluate volumetric coverage of a Mick Radionuclear titanium Split-Ring applicator (SRA) with/without interstitial needle compared to an intracavitary Vienna applicator (VA), interstitial-intracavitary VA, and intracavitary ring and tandem applicator (RTA). Methods: A 57 year-old female with FIGO stage IIB cervical carcinoma was treated following chemoradiotherapy (45Gy pelvic and 5.4Gy parametrial boost) with highdose- rate (HDR) brachytherapy to 30Gy in 5 fractions using a SRA. A single interstitial needle was placed using the Ellis Interstitial Cap for the final three fractions to increase coverage of left-sided gross residual disease identified on 3T-MRI. High-risk (HR) clinical target volume (CTV) and intermediate-risk (IR) CTV were defined using axial T2-weighted 2D and 3D MRI sequences (Philips PET/MRI unit). Organs-at-risks (OARs) were delineated on CT. Oncentra planning system was used for treatment optimization satisfying GEC-ESTRO guidelines for target coverage and OAR constraints. Retrospectively, treatment plans (additional 20 plans) were simulated using intracavitary SRA (without needle), intracavitary VA (without needle), interstitial-intracavitary VA, and intracavitary RTA with this same patient case. Plans were optimized for each fraction to maintain coverage to HR-CTV. Results: Interstitial-intracavitary SRA achieved the following combined coverage for external radiation and brachytherapy (EQD2): D90 HR-CTV =94.6Gy; Bladder-2cc =88.9Gy; Rectum-2cc =65.1Gy; Sigmoid-2cc =48.9Gy; Left vaginal wall (VW) =103Gy, Right VW =99.2Gy. Interstitial-intracavitary VA was able to achieve identical D90 HR-CTV =94.6Gy, yet Bladder-2cc =91.9Gy (exceeding GEC-ESTRO recommendations of 2cc<90Gy) and Left VW =120.8Gy and Right VW =115.5Gy. Neither the SRA nor VA without interstitial needle could cover HR-CTV adequately without exceeding dose to Bladder-2cc. Conventional RTA was unable to achieve target coverage for the HR-CTV >80Gy without severely
Paton, A M; Chalmers, K E; Coomber, H; Cameron, A L
2012-01-01
Objective The aim of this study was to assess the impact of dose escalation on the proportion of patients requiring MR image-guided optimisation rather than standard Manchester-based CT-guided planning, and the level of escalation achievable. Methods 30 patients with cervical cancer treated with external beam radiotherapy and image-guided brachytherapy (IGBT) had MR images acquired at the first fraction of IGBT. Gross tumour volume and high-risk clinical target volume (HR CTV) were contoured and treatment plans retrospectively produced for a range of total 2-Gy equivalent (EQD2) prescription doses from 66 Gyα/β=10 to 90 Gyα/β=10 (HR CTV D90). Standard Manchester system-style plans were produced, prescribed to point A and then optimised where necessary with the aim of delivering at least the prescription dose to the HR CTV D90 while respecting organ-at-risk (OAR) tolerances. Results Increasing the total EQD2 from 66 Gyα/β=10 to 90 Gyα/β=10 increased the number of plans requiring optimisation from 13.3% to 90%. After optimisation, the number of plans achieving the prescription dose ranged from 93.3% (66 Gyα/β=10) to 63.3% (90 Gyα/β=10) with the mean±standard deviation for HR CTV D90 EQD2 from 78.4±12.4 Gyα/β=10 (66 Gyα/β=10) to 94.1±19.9 Gyα/β=10 (90 Gyα/β=10). Conclusion As doses are escalated, the need for non-standard optimised planning increases, while benefits in terms of increased target doses actually achieved diminish. The maximum achievable target dose is ultimately limited by proximity of OARs. Advances in knowledge This work represents a guide for other centres in determining the highest practicable prescription doses while considering patient throughput and maintaining acceptable OAR doses. PMID:23175490
Badkul, R; McClinton, C; Kumar, P; Mitchell, M
2014-06-01
Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2016-07-01
I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.
Redefining solubility parameters: the partial solvation parameters.
Panayiotou, Costas
2012-03-21
The present work reconsiders a classical and universally accepted concept of physical chemistry, the solubility parameter. Based on the insight derived from modern quantum chemical calculations, a new definition of solubility parameter is proposed, which overcomes some of the inherent restrictions of the original definition and expands its range of applications. The original single solubility parameter is replaced by four partial solvation parameters reflecting the dispersion, the polar, the acidic and the basic character of the chemical compounds as expressed either in their pure state or in mixtures. Simple rules are adopted for the definition and calculation of these four parameters and their values are tabulated for a variety of common substances. In contrast, however, to the well known Hansen solubility parameters, their design and evaluation does not rely exclusively on the basic rule of "similarity matching" for solubility but it makes also use of the other basic rule of compatibility, namely, the rule of "complementarity matching". This complementarity matching becomes particularly operational with the sound definition of the acidic and basic components of the solvation parameter based on the third σ-moments of the screening charge distributions of the quantum mechanics-based COSMO-RS theory. The new definitions are made in a simple and straightforward manner, thus, preserving the strength and appeal of solubility parameter stemming from its simplicity. The new predictive method has been applied to a variety of solubility data for systems of pharmaceuticals and polymers. The results from quantum mechanics calculations are critically compared with the results from Abraham's acid/base descriptors. PMID:22327537
Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz
2014-01-01
Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559
Galalae, Razvan; Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn
2015-02-01
Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned
Tharavichitkul, Ekkasit; Wanwilairat, Somsak; Chitapanarux, Imjai; Kimmig, Bernhard; Dunst, Jürgen; Lorvidhaya, Vicharn
2015-01-01
Starting in 1999, the University Cooperation Platform (UCP) implemented an exchange program of researchers and clinicians/physicists between the Christian-Albrechts-University Kiel in Germany and Chiang Mai University in Thailand, to initiate a sustainable base for long-term development of image-guided brachytherapy and in general for high-technology radiotherapy in Chiang Mai. A series of UCP protocols, based constructively on each other, were performed and evaluated at intermediate term follow-up. The first protocol, addressing computed tomography (CT)-optimized brachytherapy for advanced cervical cancer (n = 17), showed a significant reduction of D2cc for the bladder and sigmoid (p < 0.001) while maintaining a very high dose in D90 high-risk clinical target volume (HR-CTV) in comparison with standard point-based planning. In addition, after a follow-up of 19 months no tumor relapse was observed. The second UCP protocol, testing the impact of magnetic resonance imaging (MRI) guidance (n = 15) in patients with cervical cancer, proved significantly smaller D2cc doses for the bladder, rectum, and sigmoid (p = 0.003, p = 0.015, and p = 0.012), and secured highly curative mean doses in D90 HR-CTV of 99.2 Gy. The acute and late toxicity was excellent without any observed grade 3 or higher morbidity. In the third protocol, the combination of image-guided brachytherapy (IGBT) and whole pelvis intensity-modulated external beam radiotherapy (WP-IMRT) (n = 15) reaffirmed the significant reduction of D2cc doses for the bladder, rectum, and sigmoid (p = 0.001 or p < 0.001) along with high equivalent dose at 2 Gy (EQD2) in the HR-CTV, and demonstrated very low acute therapy-related toxicity in absence of grade 3 morbidity. The implementation of transabdominal ultrasound (TAUS) was the focus of the fourth UCP project aiming a more generous potential use of image-guidance on long-term, and enhancing the quality of soft tissue assessment complementary to conventionally planned
Hanada, Takashi; Yorozu, Atsunori; Ohashi, Toshio; Shigematsu, Naoyuki; Maruyama, Koichi
2010-01-01
In the present study, the prostate medium determined from the CT images of 149 patients was developed. The dosimetric parameters such as Λ, g(L)(r) and F(r, θ) used in TG-43U1-based calculation for an iodine-125 ((125)I) brachytherapy-source were examined using Monte Carlo code Geant4. Clinical dosimetry parameters such as the D(90) were evaluated among a subgroup of 50 randomly selected patients who had been treated with permanent brachytherapy between January 2008 and December 2008 at the Tokyo Medical Center. The results show a slight difference in the dose rate constant Λ (within 1.0%). The radial dose function g(L)(r) exhibits a prominent difference in the region over 3 cm, and this difference is maintained within 2.9% in the region close to the source. The calculated values of F(r, θ) for the prostate medium were similar to values for water (within 1%), except in the longitudinal axis. A comparison of D(90) values shows a systematic dose overestimation of 2.8 ± 0.7 Gy in water, where the distribution of the differences can be seen with a spread of 1.8 ± 0.3% compared to that in prostate medium. It was concluded that the introduction of any kind of tissue correction for the TG-43U1-based calculation was not necessary to allow for the differences in elemental compositions and densities between water and prostate medium. PACS number: 87.00.00; 87.55.dk; 87.55.K-; 87.56.B-. PMID:20921822
Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.
Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna
2016-01-01
Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB. PMID:26235549
Parameter estimating state reconstruction
NASA Technical Reports Server (NTRS)
George, E. B.
1976-01-01
Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.
RESRAD parameter sensitivity analysis
Cheng, J.J.; Yu, C.; Zielen, A.J.
1991-08-01
Three methods were used to perform a sensitivity analysis of RESRAD code input parameters -- enhancement of RESRAD by the Gradient Enhanced Software System (GRESS) package, direct parameter perturbation, and graphic comparison. Evaluation of these methods indicated that (1) the enhancement of RESRAD by GRESS has limitations and should be used cautiously, (2) direct parameter perturbation is tedious to implement, and (3) the graphics capability of RESRAD 4.0 is the most direct and convenient method for performing sensitivity analyses. This report describes procedures for implementing these methods and presents a comparison of results. 3 refs., 9 figs., 8 tabs.
Reassessment of safeguards parameters
Hakkila, E.A.; Richter, J.L.; Mullen, M.F.
1994-07-01
The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.
Parameter estimation through ignorance.
Du, Hailiang; Smith, Leonard A
2012-07-01
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced. PMID:23005513
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.
1987-01-01
The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.
NASA Technical Reports Server (NTRS)
Hocking, W. K.
1989-01-01
The objective of any radar experiment is to determine as much as possible about the entities which scatter the radiation. This review discusses many of the various parameters which can be deduced in a radar experiment, and also critically examines the procedures used to deduce them. Methods for determining the mean wind velocity, the RMS fluctuating velocities, turbulence parameters, and the shapes of the scatterers are considered. Complications with these determinations are discussed. It is seen throughout that a detailed understanding of the shape and cause of the scatterers is important in order to make better determinations of these various quantities. Finally, some other parameters, which are less easily acquired, are considered. For example, it is noted that momentum fluxes due to buoyancy waves and turbulence can be determined, and on occasions radars can be used to determine stratospheric diffusion coefficients and even temperature profiles in the atmosphere.
Phenological Parameters Estimation Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.
2010-01-01
The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE
Atmospheric Science Data Center
2013-03-26
MISR Parameter Definitions Stereo Height BestWinds: Stereoscopic height determined using the Best ... wind was not available (Feature-referenced). Stereo Height WithoutWinds: Stereoscopic height calculated without a wind correction (Feature-referenced). Stereo Height prelimER_BestWinds: Preliminary stereoscopic height derived ...
NASA Astrophysics Data System (ADS)
de Bruijne, J. H. J.; Lammers, U.; Perryman, M. A. C.
2005-01-01
The parallel development of many aspects of a complex mission like Gaia, which includes numerous participants in ESA, industrial companies, and a large and active scientific collaboration throughout Europe, makes keeping track of the many design changes, instrument and operational complexities, and numerical values for the data analysis a very challenging problem. A comprehensive, easily-accessible, up-to-date, and definitive compilation of a large range of numerical quantities is required, and the Gaia parameter database has been established to satisfy these needs. The database is a centralised repository containing, besides mathematical, physical, and astronomical constants, many satellite and subsystem design parameters. At the end of 2004, more than 1600 parameters had been included. Version control has been implemented, providing, next to a `live' version with the most recent parameters, well-defined reference versions of the full database contents. The database can be queried or browsed using a regular Web browser (http://www.rssd.esa.int/Gaia/paramdb). Query results are formated by default in HTML. Data can also be retrieved as Fortran-77, Fortran-90, Java, ANSIC, C++, or XML structures for direct inclusion into software codes in these languages. The idea is that all collaborating scientists can use the database parameters and values, once retrieved, directly linked to computational routines. An off-line access mode is also available, enabling users to automatically download the contents of the database. The database will be maintained actively, and significant extensions of the contents are planned. Consistent use in the future of the database by the Gaia community at large, including all industrial teams, will ensure correct numerical values throughout the complex software systems being built up as details of the Gaia design develop. The database is already being used for the telemetry simulation chain in ESTEC, and in the data simulations for GDAAS2.
Military display performance parameters
NASA Astrophysics Data System (ADS)
Desjardins, Daniel D.; Meyer, Frederick
2012-06-01
The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.
Prediction of psychoacoustic parameters
NASA Astrophysics Data System (ADS)
Genuit, Klaus; Fiebig, Andre
2005-09-01
Noise is defined as an audible sound which either disturbs the silence, or an intentional sound that listening to leads to annoyance. Thus, it is clearly defined that the assignment of noise cannot be reduced to simple determining objective parameters like the A-weighted SPL. The question whether a sound is judged as noise can only be answered after the transformation from the sound event into an hearing event has been accomplished. The evaluation of noise depends on the physical characteristics of the sound event, on the psychoacoustical features of the human ear as well as on the psychological aspects of men. The subjectively felt noise quality depends not only on the A-weighted sound-pressure level, but also on other psychoacoustical parameters such as loudness, roughness, sharpness, etc. The known methods for the prediction of the spatial A-weighted SPL distribution in dependence on the propagation are not suitable to predict psychoacoustic parameters in an adequate way. Especially, the roughness provoked by modulation or the sharpness generated by an accumulation of high, frequent sound energy cannot offhandedly be predicted as distance dependent.
NASA Astrophysics Data System (ADS)
Dashevsky, Ilana
2007-07-01
This proposal tests the new NICMOS non-nominal focus positions, which are implemented in the front-end systems and are specified in the Phase II using the CAMERA-FOCUS=DEFOCUS Optional Parameter. The targets from Proposals 9832 and 11063 are used in this Proposal. The GO Proposal 9832 is an example of how GOs may use the new non-nominal focus implementation for detector 3. Proposal 11063 is the NICMOS focus monitor, which will be used to verify the non-nominal focus for all 3 detectors.
Infrared Drying Parameter Optimization
NASA Astrophysics Data System (ADS)
Jackson, Matthew R.
In recent years, much research has been done to explore direct printing methods, such as screen and inkjet printing, as alternatives to the traditional lithographic process. The primary motivation is reduction of the material costs associated with producing common electronic devices. Much of this research has focused on developing inkjet or screen paste formulations that can be printed on a variety of substrates, and which have similar conductivity performance to the materials currently used in the manufacturing of circuit boards and other electronic devices. Very little research has been done to develop a process that would use direct printing methods to manufacture electronic devices in high volumes. This study focuses on developing and optimizing a drying process for conductive copper ink in a high volume manufacturing setting. Using an infrared (IR) dryer, it was determined that conductive copper prints could be dried in seconds or minutes as opposed to tens of minutes or hours that it would take with other drying devices, such as a vacuum oven. In addition, this study also identifies significant parameters that can affect the conductivity of IR dried prints. Using designed experiments and statistical analysis; the dryer parameters were optimized to produce the best conductivity performance for a specific ink formulation and substrate combination. It was determined that for an ethylene glycol, butanol, 1-methoxy 2- propanol ink formulation printed on Kapton, the optimal drying parameters consisted of a dryer height of 4 inches, a temperature setting between 190 - 200°C, and a dry time of 50-65 seconds depending on the printed film thickness as determined by the number of print passes. It is important to note that these parameters are optimized specifically for the ink formulation and substrate used in this study. There is still much research that needs to be done into optimizing the IR dryer for different ink substrate combinations, as well as developing a
NASA Technical Reports Server (NTRS)
Drysdale, Alan; Sager, John; Wheeler, Ray; Fortson, Russ; Chetirkin, Peter
1993-01-01
The most important Controlled Ecological Life Support System (CELSS) engineering parameters are, in order of decreasing importance, manpower, mass, and energy. The plant component is a significant contributor to the total system equivalent mass. In this report, a generic plant component is described and the relative equivalent mass and productivity are derived for a number of instances taken from the KSC CELSS Breadboard Project data and literature. Typical specific productivities (edible biomass produced over 10 years divided by system equivalent mass) for closed systems are of the order of 0.2.
Calculation of shielding parameters
NASA Astrophysics Data System (ADS)
Montoya, Zeferino Jorge
Within the nuclear reaction exists three types of energy producing reactions: (1) radioactive disintegration; (2) fission; and (3) fusion. Besides the radiation produced in these reactions there are radioactive emissions of a different type, and in some of these cases they are of great penetration power and scope. The radiation produces great damage when interacted with materials, in particular the most dangerous are neutrons and gamma photons. For this reason it is necessary to protect people who work in places which operate with radioactive sources from the radiation, in addition to reducing the radiation doses to the most reasonably possible, considering the circumstances of the installations. The three determining factors in the proposition of reducing exposure to radiation are: (1) to maintain control over the reduced exposure in the time of the permanence in the irradiated areas; (2) to increase the distance between the source and the operating personnel as much as possible; and (3) to place an armor-plate between the source and the receptor. The work described in this paper has its objective a calculation of the parameters of an armor-plate in radioactive sources, with the goal of estimating the doses of radiation in protecting people and other biological systems from exposure to radiation produced during the nuclear reactions. The parameters to be principally considered are: (1) characteristics of the source; (2) geometry of the source at the point of exposure; and (3) material and thickness of the armor-plate.
Parameters for burst detection
Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu
2014-01-01
Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714
Orio, Peter; Wallner, Kent . E-mail: kent.Wallner@med.va.gov; Merrick, Gregory; Herstein, Andrew; Mitsuyama, Paul; Thornton, Ken; Butler, Wayne; Sutlief, Steven
2007-02-01
Purpose: To analyze the role of dosimetric quality parameters in maximizing cancer eradication in higher risk prostate cancer patients treated with palladium (Pd)-103 and supplemental beam radiation. Methods: One-hundred-seventy-nine patients treated with Pd-103 and supplemental beam radiation, with minimum 2 years follow-up prostate-specific antigen (PSA) values and posttreatment computed tomography scans were analyzed. Dosimetric parameters included the V100 (percent of the postimplant volume covered by the prescription dose), the D90 (the minimum dose that covered 90% of the post implant volume), and the treatment margins (the radial distance between the prostatic edge and the prescription isodose). Treatment margins (TMs) were calculated using premarket software. Results: Freedom from biochemical failure was 79% at 3 years, with 92 of the 179 patients (51%) followed beyond 3 years. In comparing patients who did or did not achieve biochemical control, the most striking differences were in biologic factors of pretreatment PSA and Gleason score. The V100, D90, and average TM all showed nonsignificant trends to higher values in patients with biochemical control. In multivariate analysis of each of the three dosimetric parameters against PSA and Gleason score, TM showed the strongest correlation with biochemical control (p = 0.19). Conclusions: For patients with intermediate and high-risk prostate cancer treated with Pd-103 brachytherapy and external beam radiation, biologic factors (PSA and Gleason score) were the most important determinants of cancer eradication. However, there is a trend to better outcomes among patients with higher quality implant parameters, suggesting that attention to implant quality will maximize the likelihood of cure.
NASA Astrophysics Data System (ADS)
Turner, Sam
2011-12-01
The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.
PARAMETERS FOR QUANTIFYING BEAM HALO
C.K. ALLEN; T.P. WANGLER
2001-06-01
Two different parameters for the quantitative description of beam halo are introduced, both based on moments of the particle distribution. One parameter is a measure of spatial halo formation and has been defined previously by Wangler and Crandall [3], termed the profile parameter. The second parameter relies on kinematic invariants to quantify halo formation in phase space; we call it the halo parameter. The profile parameter can be computed from experimental beam profile data. The halo parameter provides a theoretically more complete description of halo in phase space, but is difficult to obtain experimentally.
Oliveira, Susana Maria; Teixeira, Nuno José; Fernandes, Lisete; Teles, Pedro; Vieira, Guy; Vaz, Pedro
2014-11-01
The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with (125)I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were -2.6% for prostate V100, -13.0% for V150, and -5.8% for D90; -2.0% for rectum V100, and -5.1% for D0.1; -5.0% for urethra D10, and -5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction. PMID:25239870
Robust underwater visibility parameter.
Zaneveld, J Ronald; Pegau, W
2003-11-17
We review theoretical models to show that contrast reduction at a specific wavelength in the horizontal direction depends directly on the beam attenuation coefficient at that wavelength. If a black target is used, the inherent contrast is always negative unity, so that the visibility of a black target in the horizontal direction depends on a single parameter only. That is not the case for any other target or viewing arrangement. We thus propose the horizontal visibility of a black target to be the standard for underwater visibility. We show that the appropriate attenuation coefficient can readily be measured with existing simple instrumentation. Diver visibility depends on the photopic beam attenuation coefficient, which is the attenuation of the natural light spectrum convolved with the spectral responsivity of the human eye (photopic response function). In practice, it is more common to measure the beam attenuation coefficient at one or more wavelength bands. We show that the relationship: visibility is equal to 4.8 divided by the photopic beam attenuation coefficient; originally derived by Davies-Colley [1], is accurate with an average error of less than 10% in a wide variety of coastal and inland waters and for a wide variety of viewing conditions. We also show that the beam attenuation coefficient measured at 532 nm, or attenuation measured by a WET Labs commercial 20 nm FWHM transmissometer with a peak at 528nm are adequate substitutes for the photopic beam attenuation coefficient, with minor adjustments. PMID:19471421
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
Solar astrophysical fundamental parameters
NASA Astrophysics Data System (ADS)
Meftah, M.; Irbah, A.; Hauchecorne, A.
2014-08-01
The accurate determination of the solar photospheric radius has been an important problem in astronomy for many centuries. From the measurements made by the PICARD spacecraft during the transit of Venus in 2012, we obtained a solar radius of 696,156±145 kilometres. This value is consistent with recent measurements carried out atmosphere. This observation leads us to propose a change of the canonical value obtained by Arthur Auwers in 1891. An accurate value for total solar irradiance (TSI) is crucial for the Sun-Earth connection, and represents another solar astrophysical fundamental parameter. Based on measurements collected from different space instruments over the past 35 years, the absolute value of the TSI, representative of a quiet Sun, has gradually decreased from 1,371W.m-2 in 1978 to around 1,362W.m-2 in 2013, mainly due to the radiometers calibration differences. Based on the PICARD data and in agreement with Total Irradiance Monitor measurements, we predicted the TSI input at the top of the Earth's atmosphere at a distance of one astronomical unit (149,597,870 kilometres) from the Sun to be 1,362±2.4W.m-2, which may be proposed as a reference value. To conclude, from the measurements made by the PICARD spacecraft, we obtained a solar photospheric equator-to-pole radius difference value of 5.9±0.5 kilometres. This value is consistent with measurements made by different space instruments, and can be given as a reference value.
Subsurface Geotechnical Parameters Report
D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson
2003-12-17
The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce
Parameter Sensitivity in Multivariate Methods
ERIC Educational Resources Information Center
Green, Bert F., Jr.
1977-01-01
Interpretation of multivariate models requires knowing how much the fit of the model is impaired by changes in the parameters. The relation of parameter change to loss of goodness of fit can be called parameter sensitivity. Formulas are presented for assessing the sensitivity of multiple regression and principal component weights. (Author/JKS)
Bibliography for aircraft parameter estimation
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Maine, Richard E.
1986-01-01
An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.
Identified Parameters, Parameters of Interest and Their Relationships
ERIC Educational Resources Information Center
San Martin, Ernesto; Gonzalez, Jorge; Tuerlinckx, Francis
2009-01-01
The goal of this commentary is to provide some additional results to the interesting and provocative paper of Maris and Bechger ("On Interpreting the Model Parameters for the Three Parameter Logistic Model," this issue). In this article, the authors have three aims. First, the authors distinguish between three fundamental concepts that are…
MODFLOW-Style parameters in underdetermined parameter estimation.
D'Oria, Marco; Fienen, Michael N
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes. PMID:21352210
MODFLOW-style parameters in underdetermined parameter estimation
D'Oria, Marco D.; Fienen, Michael J.
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW_2005 and MODFLOW_2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes.
MODFLOW-style parameters in underdetermined parameter estimation
D'Oria, M.; Fienen, M.N.
2012-01-01
In this article, we discuss the use of MODFLOW-Style parameters in the numerical codes MODFLOW-2005 and MODFLOW-2005-Adjoint for the definition of variables in the Layer Property Flow package. Parameters are a useful tool to represent aquifer properties in both codes and are the only option available in the adjoint version. Moreover, for overdetermined parameter estimation problems, the parameter approach for model input can make data input easier. We found that if each estimable parameter is defined by one parameter, the codes require a large computational effort and substantial gains in efficiency are achieved by removing logical comparison of character strings that represent the names and types of the parameters. An alternative formulation already available in the current implementation of the code can also alleviate the efficiency degradation due to character comparisons in the special case of distributed parameters defined through multiplication matrices. The authors also hope that lessons learned in analyzing the performance of the MODFLOW family codes will be enlightening to developers of other Fortran implementations of numerical codes. ?? 2011, National Ground Water Association.
Parameter estimation in food science.
Dolan, Kirk D; Mishra, Dharmendra K
2013-01-01
Modeling includes two distinct parts, the forward problem and the inverse problem. The forward problem-computing y(t) given known parameters-has received much attention, especially with the explosion of commercial simulation software. What is rarely made clear is that the forward results can be no better than the accuracy of the parameters. Therefore, the inverse problem-estimation of parameters given measured y(t)-is at least as important as the forward problem. However, in the food science literature there has been little attention paid to the accuracy of parameters. The purpose of this article is to summarize the state of the art of parameter estimation in food science, to review some of the common food science models used for parameter estimation (for microbial inactivation and growth, thermal properties, and kinetics), and to suggest a generic method to standardize parameter estimation, thereby making research results more useful. Scaled sensitivity coefficients are introduced and shown to be important in parameter identifiability. Sequential estimation and optimal experimental design are also reviewed as powerful parameter estimation methods that are beginning to be used in the food science literature. PMID:23297775
Parameter estimation of qubit states with unknown phase parameter
NASA Astrophysics Data System (ADS)
Suzuki, Jun
2015-02-01
We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.
2015-05-27
ParFit is a flexible and extendable framework and library of classes for fitting force-field parameters to data from high-level ab-initio calculations on the basis of deterministic and stochastic algorithms. Currently, the code is fitting MM3 and Merck force-field parameters but could easily extend to other force-field types.
Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy
Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Wu, Xiaodong
2014-11-01
Purpose: It is important to reduce fluence map complexity in rotating-shield brachytherapy (RSBT) inverse planning to improve delivery efficiency while maintaining plan quality. This study proposes an efficient and effective RSBT dose optimization method which enables to produce smooth fluence maps. Methods: Five cervical cancer patients each with a high-risk clinical-target-volume (HR-CTV) larger than 40 cm{sup 3} were considered as the test cases. The RSBT source was a partially shielded electronic brachytherapy source (Xoft Axxent™). The anchor RSBT plans generated by the asymmetric dose–volume optimization with smoothness control (ADOS) method were compared against those produced by the dose–surface optimization (DSO) method and inverse-planning with simulated annealing (IPSA). Either L{sub 1}-norm or L{sub 2}-norm was used to measure the smoothness of a fluence map in the proposed ADOS method as one weighted term of the objective function. Uniform dwell-time scaling was applied to all plans such that HR-CTV D{sub 90} was maximized without violating the D{sub 2cc} tolerances of the rectum, bladder, and sigmoid colon. The quality of the anchor plans was measured with HR-CTV D{sub 90} of the anchor plans. Single-shielded RSBT [(S-RSBT), RSBT with single, fix sized delivery window] and dynamic-sheilded RSBT [(D-RSBT), RSBT with dynamically varying sized delivery window] delivery plans generated based on the anchor plans were also measured, with delivery time constraints of 10, 20, and 30 min/fraction (fx). Results: The average HR-CTV D{sub 90} values of the anchor plans achieved by the ADOS, DSO, and IPSA methods were 111.5, 94.2, and 107.4 Gy, respectively, where the weighting parameter β used in ADOS with L{sub 2}-norm was set to be 100. By using S-RSBT sequencing and 20 min/fx delivery time, the corresponding D{sub 90} values were 88.8, 81.9, and 83.4 Gy; while using D-RSBT sequencing with 20 min/fx delivery time, the corresponding D{sub 90} values were
Parameter estimation for distributed parameter models of complex, flexible structures
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.
1991-01-01
Distributed parameter modeling of structural dynamics has been limited to simple spacecraft configurations because of the difficulty of handling several distributed parameter systems linked at their boundaries. Although there is other computer software able to generate such models or complex, flexible spacecraft, unfortunately, neither is suitable for parameter estimation. Because of this limitation the computer software PDEMOD is being developed for the express purposes of modeling, control system analysis, parameter estimation and structure optimization. PDEMOD is capable of modeling complex, flexible spacecraft which consist of a three-dimensional network of flexible beams and rigid bodies. Each beam has bending (Bernoulli-Euler or Timoshenko) in two directions, torsion, and elongation degrees of freedom. The rigid bodies can be attached to the beam ends at any angle or body location. PDEMOD is also capable of performing parameter estimation based on matching experimental modal frequencies and static deflection test data. The underlying formulation and the results of using this approach for test data of the Mini-MAST truss will be discussed. The resulting accuracy of the parameter estimates when using such limited data can impact significantly the instrumentation requirements for on-orbit tests.
Parameter justification report for DRSPALL.
Pfeifle, Thomas W.; Hansen, Francis D.; Lord, David L.
2003-10-01
A new conceptual model has been developed for drilling intrusion into the Waste Isolation Pilot Plant. The model is implemented in a new code, DRSPALL, which captures the physics of the spallings release phenomena. The new conceptual model and code required parallel development of a family of parameters that adequately describe the properties of the system. This report introduces the various parameters implemented in the new spallings model, and provides justification for values and ranges of new parameters not currently in the performance assessment database.
Radial and azimuthal beam parameters.
Lumer, Yaakov; Moshe, Inon
2009-02-01
Global invariant parameters are introduced to characterize the radial and azimuthal content of totally polarized beams. Such parameters are written in terms of the second moments of the optical beam and are invariant in propagation through symmetric first-order optical systems described by the ABCD matrix. Since it was proven in the past that the usual definition for radial polarization is not invariant, such invariance is novel in characterizing the radial and azimuthal polarizations content of optical beams. The possibility of obtaining a pure mode from a given beam using the proposed parameters is discussed. PMID:19183626
Linking Item Response Model Parameters.
van der Linden, Wim J; Barrett, Michelle D
2016-09-01
With a few exceptions, the problem of linking item response model parameters from different item calibrations has been conceptualized as an instance of the problem of test equating scores on different test forms. This paper argues, however, that the use of item response models does not require any test score equating. Instead, it involves the necessity of parameter linking due to a fundamental problem inherent in the formal nature of these models-their general lack of identifiability. More specifically, item response model parameters need to be linked to adjust for the different effects of the identifiability restrictions used in separate item calibrations. Our main theorems characterize the formal nature of these linking functions for monotone, continuous response models, derive their specific shapes for different parameterizations of the 3PL model, and show how to identify them from the parameter values of the common items or persons in different linking designs. PMID:26155754
PREDICTING CHEMICAL PARAMETERS WITH PROLOG
Work is described that seeks to develop novel methods for the computer estimation of fundamental reactivity parameters strictly from molecular structure. Although the prototype system SPARC (Sparc Performs Automated Reasoning in Chemistry) deals only with the prediction of sunlig...
Method for estimating solubility parameter
NASA Technical Reports Server (NTRS)
Lawson, D. D.; Ingham, J. D.
1973-01-01
Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.
Parameter Estimation Using VLA Data
NASA Astrophysics Data System (ADS)
Venter, Willem C.
The main objective of this dissertation is to extract parameters from multiple wavelength images, on a pixel-to-pixel basis, when the images are corrupted with noise and a point spread function. The data used are from the field of radio astronomy. The very large array (VLA) at Socorro in New Mexico was used to observe planetary nebula NGC 7027 at three different wavelengths, 2 cm, 6 cm and 20 cm. A temperature model, describing the temperature variation in the nebula as a function of optical depth, is postulated. Mathematical expressions for the brightness distribution (flux density) of the nebula, at the three observed wavelengths, are obtained. Using these three equations and the three data values available, one from the observed flux density map at each wavelength, it is possible to solve for two temperature parameters and one optical depth parameter at each pixel location. Due to the fact that the number of unknowns equal the number of equations available, estimation theory cannot be used to smooth any noise present in the data values. It was found that a direct solution of the three highly nonlinear flux density equations is very sensitive to noise in the data. Results obtained from solving for the three unknown parameters directly, as discussed above, were not physical realizable. This was partly due to the effect of incomplete sampling at the time when the data were gathered and to noise in the system. The application of rigorous digital parameter estimation techniques result in estimated parameters that are also not physically realizable. The estimated values for the temperature parameters are for example either too high or negative, which is not physically possible. Simulation studies have shown that a "double smoothing" technique improves the results by a large margin. This technique consists of two parts: in the first part the original observed data are smoothed using a running window and in the second part a similar smoothing of the estimated parameters
Parameter estimation by genetic algorithms
Reese, G.M.
1993-11-01
Test/Analysis correlation, or structural identification, is a process of reconciling differences in the structural dynamic models constructed analytically (using the finite element (FE) method) and experimentally (from modal test). This is a methodology for assessing the reliability of the computational model, and is very important in building models of high integrity, which may be used as predictive tools in design. Both the analytic and experimental models evaluate the same quantities: the natural frequencies (or eigenvalues, ({omega}{sub i}), and the mode shapes (or eigenvectors, {var_phi}). In this paper, selected frequencies are reconciled in the two models by modifying physical parameters in the FE model. A variety of parameters may be modified such as the stiffness of a joint member or the thickness of a plate. Engineering judgement is required to identify important frequencies, and to characterize the uncertainty of the model design parameters.
Catalogue of HI PArameters (CHIPA)
NASA Astrophysics Data System (ADS)
Saponara, J.; Benaglia, P.; Koribalski, B.; Andruchow, I.
2015-08-01
The catalogue of HI parameters of galaxies HI (CHIPA) is the natural continuation of the compilation by M.C. Martin in 1998. CHIPA provides the most important parameters of nearby galaxies derived from observations of the neutral Hydrogen line. The catalogue contains information of 1400 galaxies across the sky and different morphological types. Parameters like the optical diameter of the galaxy, the blue magnitude, the distance, morphological type, HI extension are listed among others. Maps of the HI distribution, velocity and velocity dispersion can also be display for some cases. The main objective of this catalogue is to facilitate the bibliographic queries, through searching in a database accessible from the internet that will be available in 2015 (the website is under construction). The database was built using the open source `` mysql (SQL, Structured Query Language, management system relational database) '', while the website was built with ''HTML (Hypertext Markup Language)'' and ''PHP (Hypertext Preprocessor)''.
Parameter extraction and transistor models
NASA Technical Reports Server (NTRS)
Rykken, Charles; Meiser, Verena; Turner, Greg; Wang, QI
1985-01-01
Using specified mathematical models of the MOSFET device, the optimal values of the model-dependent parameters were extracted from data provided by the Jet Propulsion Laboratory (JPL). Three MOSFET models, all one-dimensional were used. One of the models took into account diffusion (as well as convection) currents. The sensitivity of the models was assessed for variations of the parameters from their optimal values. Lines of future inquiry are suggested on the basis of the behavior of the devices, of the limitations of the proposed models, and of the complexity of the required numerical investigations.
Statistical parameters for gloss evaluation
Peiponen, Kai-Erik; Juuti, Mikko
2006-02-13
The measurement of minute changes in local gloss has not been presented in international standards due to a lack of suitable glossmeters. The development of a diffractive-element-based glossmeter (DOG) made it possible to detect local variation of gloss from planar and complex-shaped surfaces. Hence, a demand for proper statistical gloss parameters for classifying surface quality by gloss, similar to the standardized surface roughness classification, has become necessary. In this letter, we define statistical gloss parameters and utilize them as an example in the characterization of gloss from metal surface roughness standards by the DOG.
Reconstruction of fundamental SUSY parameters
P. M. Zerwas et al.
2003-09-25
We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e{sup +}e{sup -} linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.
Parameter identification in continuum models
NASA Technical Reports Server (NTRS)
Banks, H. T.; Crowley, J. M.
1983-01-01
Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented.
Breach parameter and simulation comparisons
Technology Transfer Automated Retrieval System (TEKTRAN)
Our ability to predict the rate of breach development and the associated outflow from an overtopped embankment or dam is crucial to characterizing and evaluating the risk due to potential dam failures. Historical databases of dam failures have been used to develop breach parameter prediction equati...
Estimation of pharmacokinetic model parameters.
Timcenko, A; Reich, D L; Trunfio, G
1995-01-01
This paper addresses the problem of estimating the depth of anesthesia in clinical practice where many drugs are used in combination. The aim of the project is to use pharmacokinetically-derived data to predict episodes of light anesthesia. The weighted linear combination of anesthetic drug concentrations was computed using a stochastic pharmacokinetic model. The clinical definition of light anesthesia was based on the hemodynamic consequences of autonomic nervous system responses to surgical stimuli. A rule-based expert system was used to review anesthesia records to determine instances of light anesthesia using hemodynamic criteria. It was assumed that light anesthesia was a direct consequence of the weighted linear combination of drug concentrations in the patient's body that decreased below a certain threshold. We augmented traditional two-compartment models with a stochastic component of anesthetics' concentrations to compensate for interpatient pharmacokinetic and pharmacodynamic variability. A cohort of 532 clinical anesthesia cases was examined and parameters of two compartment pharmacokinetic models for 6 intravenously administered anesthetic drugs (fentanyl, thiopenthal, morphine, propofol, midazolam, ketamine) were estimated, as well as the parameters for 2 inhalational anesthetics (N2O and isoflurane). These parameters were then prospectively applied to 22 cases that were not used for parameter estimation, and the predictive ability of the pharmacokinetic model was determined. The goal of the study is the development of a pharmacokinetic model that will be useful in predicting light anesthesia in the clinically relevant circumstance where many drugs are used concurrently. PMID:8563327
Parameter identification of chaos system based on unknown parameter observer
NASA Astrophysics Data System (ADS)
Wang, Shaoming; Luo, Haigeng; Yue, Chaoyuan; Liao, Xiaoxin
2008-04-01
Parameter identification of chaos system based on unknown parameter observer is discussed generally. Based on the work of Guan et al. [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26], the design of unknown parameter observer is improved. The application of the improved approach is extended greatly. The works in some literatures [X.P. Guan, H.P. Peng, L.X. Li, et al., Acta Phys. Sinica 50 (2001) 26; J.H. Lü, S.C. Zhang, Phys. Lett. A 286 (2001) 148; X.Q. Wu, J.A. Lu, Chaos Solitons Fractals 18 (2003) 721; J. Liu, S.H. Chen, J. Xie, Chaos Solitons Fractals 19 (2004) 533] are only the special cases of our Corollaries 1 and 2. Some observers for Lü system and a new chaos system are designed to test our improved method, and simulations results demonstrate the effectiveness and feasibility of the improved approach.
Mashouf, S; Ravi, A; Morton, G; Song, W
2015-06-15
Purpose: There is a strong evidence relating post-implant dosimetry for permanent seed prostate brachytherpy to local control rates. The delineation of the prostate on CT images, however, represents a challenge as it is difficult to confidently identify the prostate borders from soft tissue surrounding it. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to prostate contouring uncertainty. Methods: The post-implant CT images and plans for a cohort of 43 patients, who have received I–125 permanent prostate seed implant in our centre, were exported to MIM Symphony LDR brachytherapy treatment planning system (MIM Software Inc., Cleveland, OH). The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00mm, ±2.00mm, ±3.00mm, ±4.00mm and ±5.00mm (±0.01mm). The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: The mean value of V100 and D90 was obtained as 92.3±8.4% and 108.4±12.3% respectively (Rx=145Gy). V100 was reduced by −3.2±1.5%, −7.2±3.0%, −12.8±4.0%, −19.0±4.8%, − 25.5±5.4% for expanded contours of prostate with margins of +1mm, +2mm, +3mm, +4mm, and +5mm, respectively, while it was increased by 1.6±1.2%, 2.4±2.4%, 2.7±3.2%, 2.9±4.2%, 2.9±5.1% for the contracted contours. D90 was reduced by −6.9±3.5%, −14.5±6.1%, −23.8±7.1%, − 33.6±8.5%, −40.6±8.7% and increased by 4.1±2.6%, 6.1±5.0%, 7.2±5.7%, 8.1±7.3% and 8.1±7.3% for the same set of contours. Conclusion: Systematic expansion errors of more than 1mm may likely render a plan sub-optimal. Conversely contraction errors may Result in labeling a plan likely as optimal. The use of MRI images to contour the prostate should results in better delineation of prostate organ which increases the predictive value of post-op plans. Since observers tend to overestimate the prostate volume on CT, compared with MRI, the impact of the
Parameter-exploring policy gradients.
Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen
2010-05-01
We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step. PMID:20061118
Comment on Modified Stokes Parameters
NASA Technical Reports Server (NTRS)
Le Vine, D.M.; Utku, C.
2009-01-01
It is common practice in passive microwave remote sensing (microwave radiometry) to express observables as temperatures and in the case of polarimetric radiometry to use what are called "Modified Stokes Parameters in Brightness Temperature" to describe the scene. However, definitions with slightly different normalization (with and without division by bandwidth) have appeared in the literature. The purpose of this manuscript is to present an analysis to clarify the meaning of terms in the definition and resolve the question of the proper normalization.
Delayed recombination and cosmic parameters
NASA Astrophysics Data System (ADS)
Galli, Silvia; Bean, Rachel; Melchiorri, Alessandro; Silk, Joseph
2008-09-01
Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, ns, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z*=1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: γα<0.39 and γi<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.
GRCop-84 Rolling Parameter Study
NASA Technical Reports Server (NTRS)
Loewenthal, William S.; Ellis, David L.
2008-01-01
This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.
Delayed recombination and cosmic parameters
Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph
2008-09-15
Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.
Embedding parameters for Quantum Annealing
NASA Astrophysics Data System (ADS)
Venturelli, Davide
Many optimization problems are defined on highly connected graphs and many interesting physical spin-glass systems are featuring long-range interactions. One method to solve for the optimum/ground state is quantum annealing (QA). Most architectures for QA devices, manufactured or proposed, are based on optimizing Hamiltonians having spins connected in a non-complete graph, with nodes with a small maximum degree, compared to the requirements. To overcome this limitation 'embedding' is employed: the native graph is 'tiled' with ferromagnetic chains of spins that now are meant to represent the logical binary variables. While it is known how the strength of the ferromagnetic bonds can ensure that the classical Ising ground state of the embedded system can be univocally mapped to the ground state of the original system, there is very little study on the impact of these parameters on QA. Programmers have taken conservative choices for the parameters and the common practices can be improved. Starting from the physics of connected ferromagnetic Ising chains, we will review several parameter choices and discuss previous and new results obtained on the D-Wave 2X machine, on carefully designed problems that allow to isolate and evaluate the role of connectivity in embedded systems.
Parameter extraction with neural networks
NASA Astrophysics Data System (ADS)
Cazzanti, Luca; Khan, Mumit; Cerrina, Franco
1998-06-01
In semiconductor processing, the modeling of the process is becoming more and more important. While the ultimate goal is that of developing a set of tools for designing a complete process (Technology CAD), it is also necessary to have modules to simulate the various technologies and, in particular, to optimize specific steps. This need is particularly acute in lithography, where the continuous decrease in CD forces the technologies to operate near their limits. In the development of a 'model' for a physical process, we face several levels of challenges. First, it is necessary to develop a 'physical model,' i.e. a rational description of the process itself on the basis of know physical laws. Second, we need an 'algorithmic model' to represent in a virtual environment the behavior of the 'physical model.' After a 'complete' model has been developed and verified, it becomes possible to do performance analysis. In many cases the input parameters are poorly known or not accessible directly to experiment. It would be extremely useful to obtain the values of these 'hidden' parameters from experimental results by comparing model to data. This is particularly severe, because the complexity and costs associated with semiconductor processing make a simple 'trial-and-error' approach infeasible and cost- inefficient. Even when computer models of the process already exists, obtaining data through simulations may be time consuming. Neural networks (NN) are powerful computational tools to predict the behavior of a system from an existing data set. They are able to adaptively 'learn' input/output mappings and to act as universal function approximators. In this paper we use artificial neural networks to build a mapping from the input parameters of the process to output parameters which are indicative of the performance of the process. Once the NN has been 'trained,' it is also possible to observe the process 'in reverse,' and to extract the values of the inputs which yield outputs
Survey of cellular radiosensitivity parameters.
Katz, R; Zachariah, R; Cucinotta, F A; Zhang, C
1994-12-01
A model of the formation of particle tracks in emulsion has been extended through the use of biological target theory to formulate a theory of the response of biological cells and molecules of biological importance to irradiation with energetic heavy ions. For this purpose the response to gamma rays is represented by the single-hit, multitarget model with parameters m and D0, while additional parameters kappa (or a0) and sigma 0 are required to represent the size of internal cellular targets and the effective cross-sectional area of the cell nucleus, respectively, for heavy-ion bombardments. For one-or-more-hit detectors, only the first three of these parameters are required and m = 1. For cells m is typically 2 or more. The model is developed from the concept that response to secondary electrons follows the same functional form for gamma rays and for the gamma rays surrounding an ion's path. Originally applied to dry enzymes and viruses in 1967, the model of the one-hit detector has been extended to emulsions, to other physical and chemical detectors, to single- and double-strand breaks in DNA in EO buffer and to three E. coli strains. The two-hit response has been observed for "track core" effects in radiation chemistry, for supralinearity in thermoluminescent dosimeters and for desensitized nuclear emulsions, where hit numbers up to 6 have been observed. In its extension to biological cells, additional concepts are required relating to the character of the track, namely the grain-count and track-width regimes, and to the ability of multitarget systems to acquire damage from intertrack delta rays (called gamma kill) as well as from intratrack delta rays (called ion kill). The model has been applied to some 40 sets of radiobiological data obtained from gamma, track-segment heavy-ion and neutron irradiations. Here we elaborate on the meaning of these concepts, tabulate the cellular parameters, and display their systematic behavior and the relationships among them
Parameter estimation for transformer modeling
NASA Astrophysics Data System (ADS)
Cho, Sung Don
Large Power transformers, an aging and vulnerable part of our energy infrastructure, are at choke points in the grid and are key to reliability and security. Damage or destruction due to vandalism, misoperation, or other unexpected events is of great concern, given replacement costs upward of $2M and lead time of 12 months. Transient overvoltages can cause great damage and there is much interest in improving computer simulation models to correctly predict and avoid the consequences. EMTP (the Electromagnetic Transients Program) has been developed for computer simulation of power system transients. Component models for most equipment have been developed and benchmarked. Power transformers would appear to be simple. However, due to their nonlinear and frequency-dependent behaviors, they can be one of the most complex system components to model. It is imperative that the applied models be appropriate for the range of frequencies and excitation levels that the system experiences. Thus, transformer modeling is not a mature field and newer improved models must be made available. In this work, improved topologically-correct duality-based models are developed for three-phase autotransformers having five-legged, three-legged, and shell-form cores. The main problem in the implementation of detailed models is the lack of complete and reliable data, as no international standard suggests how to measure and calculate parameters. Therefore, parameter estimation methods are developed here to determine the parameters of a given model in cases where available information is incomplete. The transformer nameplate data is required and relative physical dimensions of the core are estimated. The models include a separate representation of each segment of the core, including hysteresis of the core, lambda-i saturation characteristic, capacitive effects, and frequency dependency of winding resistance and core loss. Steady-state excitation, and de-energization and re-energization transients
Topological aspects of age parameter
NASA Technical Reports Server (NTRS)
Capdevielle, J. N.; Gawin, J.
1985-01-01
The well known NKG function is a very useful tool to describe the lateral extension of the electromagnetic component in Extensive Air Showers (EAS); however, in spite of non-negligible qualities (simplicity, normalization by beta function), it doesn't correspond exactly to the natural shape of the lateral electron distribution. Several bias may occur in size estimation if NKG is used without correction. It is shown that the longitudinal age parameter s sub t can be correlated with the information obtained from the lateral electron densities according to the conditions of use of the NKG function.
Parameters of photosynthetic energy partitioning.
Lazár, Dušan
2015-03-01
Almost every laboratory dealing with plant physiology, photosynthesis research, remote sensing, and plant phenotyping possesses a fluorometer to measure a kind of chlorophyll (Chl) fluorescence induction (FLI). When the slow Chl FLI is measured with addition of saturating pulses and far-red illumination, the so-called quenching analysis followed by the so-called relaxation analysis in darkness can be realized. These measurements then serve for evaluation of the so-called energy partitioning, that is, calculation of quantum yields of photochemical and of different types of non-photochemical processes. Several theories have been suggested for photosynthetic energy partitioning. The current work aims to summarize all the existing theories, namely their equations for the quantum yields, their meaning and their assumptions. In the framework of these theories it is also found here that the well-known NPQ parameter ( [Formula: see text] ; Bilger and Björkman, 1990) equals the ratio of the quantum yield of regulatory light-induced non-photochemical quenching to the quantum yield of constitutive non-regulatory non-photochemical quenching (ΦNPQ/Φf,D). A similar relationship is also found here for the PQ parameter (ΦP/Φf,D). PMID:25569797
Kinetic parameters from thermogravimetric analysis
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.
1993-01-01
High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.
Schizophrenia--a parameters' game?
Radulescu, Anca
2008-09-01
Schizophrenia is a severe, currently incurable, relatively common mental condition. Its symptoms are complex and widespread. It structurally and functionally affects cortical and subcortical regions involved in cognitive, emotional and motivational aspects of behavior. Its diagnosis is based on statistical behavior rather than on its actual cause and its treatment is elusive. We elaborate a theoretical paradigm that accounts for some of the most important features of this illness. Our nonlinear mathematical model, built upon recent hypotheses of neural vulnerability and limbic dysregulation, addresses the amygdala-hippocampus-prefrontal interactions and their evolution under perturbation. The dependence of the dynamics on the system's parameters offers an analytical context for the "normality/disease" dichotomy. The concept of bifurcation could be the key to understanding the threshold between these two states. The nonlinearity parameter (Lyapunov number) is responsible in our setup for tuning the limbic vulnerability characteristic to schizophrenia. Studying its effect on the dynamics helps us understand how stressful events and medication can switch the system from a regime of safety to one of instability, and conversely. The approach has potential for pre-symptomatic risk assessments and for long-term predictions. PMID:18571677
Gravity asymptotics with topological parameters
NASA Astrophysics Data System (ADS)
Sengupta, Sandipan
2013-07-01
In four-dimensional gravity theory, the Barbero-Immirzi parameter has a topological origin, and can be identified as the coefficient multiplying the Nieh-Yan topological density in the gravity Lagrangian, as proposed by Date et al. [Phys. Rev. D 79, 044008 (2009)]. Based on this fact, a first order action formulation for spacetimes with boundaries is introduced. The bulk Lagrangian, containing the Nieh-Yan density, needs to be supplemented with suitable boundary terms so that it leads to a well-defined variational principle. Within this general framework, we analyze spacetimes with and without a cosmological constant. For locally anti-de Sitter (or de Sitter) asymptotia, the action principle has nontrivial implications. It admits an extremum for all such solutions provided the SO(3,1) Pontryagin and Euler topological densities are added to it with fixed coefficients. The resulting Lagrangian, while containing all three topological densities, has only one independent topological coupling constant, namely, the Barbero-Immirzi parameter. In the final analysis, it emerges as a coefficient of the SO(3,2) [or SO(4,1)] Pontryagin density, and is present in the action only for manifolds for which the corresponding topological index is nonzero.
Measuring neutrino oscillation parameters using $\
Backhouse, Christopher James
2011-01-01
MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δm_{atm}^{2} and sin^{2} 2θ_{atm}). The oscillation signal consists of an energy-dependent deficit of v_{μ} interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the v_{μ}-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the v_{μ}-disappearance analysis, incorporating this new estimator were: Δm^{2} = 2.32_{-0.08}^{+0.12} x 10^{-3} eV^{2}, sin ^{2} 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$_{μ} beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36_{-0.40}^{+0.46}(stat.) ± 0.06(syst.)) x 10^{-3}eV^{2}, sin^{2} 2$\\bar{θ}$ = 0.86_{-0.12}^{_0.11 }
Wearable vital parameters monitoring system
NASA Astrophysics Data System (ADS)
Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina
2015-02-01
The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.
Computer analysis of cardiovascular parameters.
Mass, H J; Gean, J T; Gwirtz, P A
1987-01-01
A computer program is described for the analysis of several cardiovascular parameters frequently measured or derived in the chronically instrumented dog model. Data are stored on magnetic tape and are subsequently analyzed with the Apple IIe microcomputer equipped with the ADALAB (Interactive Microware, Inc.) analog-to-digital convertor. Not limited to the chronically instrumented animal model, the program is capable of analyzing left ventricular pressure, three channels of regional myocardial segment length, coronary flow velocity as measured by the Doppler ultrasonic flow technique, and two channels of systemic arterial pressure. Derived data include: left ventricular dP/dtmax, left ventricular pressure-heart rate product, left ventricular ejection time, tension time index; percent segment length shortening and velocity of shortening, dL/dt(s)max, regional stroke work and power, duration of systole and diastole; mean coronary flow velocity, peak diastolic and systolic flow velocity, and true mean systemic arterial pressure. PMID:3581809
Practice parameter on disaster preparedness.
Pfefferbaum, Betty; Shaw, Jon A
2013-11-01
This Practice Parameter identifies best approaches to the assessment and management of children and adolescents across all phases of a disaster. Delivered within a disaster system of care, many interventions are appropriate for implementation in the weeks and months after a disaster. These include psychological first aid, family outreach, psychoeducation, social support, screening, and anxiety reduction techniques. The clinician should assess and monitor risk and protective factors across all phases of a disaster. Schools are a natural site for conducting assessments and delivering services to children. Multimodal approaches using social support, psychoeducation, and cognitive behavioral techniques have the strongest evidence base. Psychopharmacologic interventions are not generally used but may be necessary as an adjunct to other interventions for children with severe reactions or coexisting psychiatric conditions. PMID:24157398
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
Stokes' Parameters Compared to Astrophysical Magnetic Turbulence Parameters
NASA Astrophysics Data System (ADS)
Forman, Miriam; Wicks, Robert; Oughton, Sean; Horbury, Timothy
2015-04-01
Since the divergence of a magnetic field is zero, the Fourier transform of fluctuations δB(k) must be perpendicular to k, so δB(k) has components only in the plane perpendicular to k. When there is also a mean field B, the obvious choice of coordinates to describe δB(k) are the unit vectors tin the directionB x k and p in the direction (Bxk) x k, called the ``toroidal'' and ``poloidal'' directions, respectively. Oughton, et al. (1997) as elucidated by Wicks et al. (2012) showed that the power spectral tensor Pij(k) of magnetic fluctuations is described by four scalar functions of k, multiplying the tensors t:t, p:p, t:p +p:t, and t:p-p:t so that the Hermitian Pij(k) = Tor(k) t:t + Pol(k) p:p + C(k) [t:p +p:t] + i kH(k) [t:p-p:t]. Since the electromagnetic fluctuations δB(k) and δE(k) in a beam of light are also perpendicular to their k, the four scalar functions of magnetic turbulence in astrophysics which scatters cosmic rays and allows their acceleration, are analogs of the Stokes' parameters. Using Chandrasekhar's (1960) notation [I,Q,U,V]: I = Tor + Pol = Tr(Pij(k); Q = Tor-Pol; U = C; we speculate that V corresponds to magnetic helicity kH in turbulence. We are studying projections of Pij(k) observed by spacecraft in the solar wind.
Comet Halley, parameter study I
Huebner, W.F.; Fikani, M.M.
1982-06-01
To aid in defining a mission to comet P/Halley, its inner coma is simulated by a computer program that models time-dependent chemical reactions in a radially and isentropically expanding gas, taking into account attenuation of solar ultraviolet radiation in the subsolar direction. Column density predictions are based on intelligently selected combinations of poorly known values for nucleus parameters that include size, visual albedo, and infrared emissivity. Only one chemical composition and a minor modification of it are considered here; the dust-to-gas ratio in this model is zero. Although the somewhat optimistically volatile composition chosen here favors a smaller nucleus, a mean nuclear radius of only 0.5 km is unlikely. No significant increase of molecular column density is predicted by this model as a spacecraft approaches, once it is less than a few 10/sup 4/ km from the nucleus. Predictions are made for various heliocentric distances of interest for comet missions and for ground observations.
Deformation parameters influencing prepreg tack
Ahn, K.J.; Seferis, J.C. ); Pelton, T.; Wilhelm, M. )
1992-01-01
A compression to tension apparatus and a methodology capable of measuring prepreg tack have been analyzed in detail in order to establish fundamental material and operating characteristics. Both intrinsic and extrinsic parameters influencing prepreg tack were identified and analyzed using commercially available carbon fiber/epoxy prepregs and mechanical testing equipment. Two different factors, (1) contact (or wetting) area of adjacent prepreg plies and (2) viscoelastic properties of the prepreg, were found to control prepreg tack. At low temperatures, contact area was the main deformation controlling step, while at high temperatures, the viscoelastic property of the prepreg was found to be dominant. Both interlaminar and intralaminar deformations were observed depending on the prepreg systems examined as well as the operating conditions of the test. In addition, hold time, hold pressure, loading rate, resin content, and out-time were also found to affect prepreg tack. Energy of separation, which may be viewed as a descriptor of prepreg tack, was observed to increase with increasing hold time, hold pressure, and loading rate. Energy of separation also showed a maximum value at a specific resin content for a specific prepreg system, while it decreased with increasing prepreg out-time due to prepreg surface characteristic change rather than bulk physical aging. Conclusively, it was observed that prepreg tack must be viewed as an extrinsic, bulk, but surface-sensitive, viscoelastic property which depends on material as well as operating conditions.
Rainfall-Runoff Parameters Uncertainity
NASA Astrophysics Data System (ADS)
Heidari, A.; Saghafian, B.; Maknoon, R.
2003-04-01
Karkheh river basin, located in southwest of Iran, drains an area of over 40000 km2 and is considered a flood active basin. A flood forecasting system is under development for the basin, which consists of a rainfall-runoff model, a river routing model, a reservior simulation model, and a real time data gathering and processing module. SCS, Clark synthetic unit hydrograph, and Modclark methods are the main subbasin rainfall-runoff transformation options included in the rainfall-runoff model. Infiltration schemes, such as exponentioal and SCS-CN methods, account for infiltration losses. Simulation of snow melt is based on degree day approach. River flood routing is performed by FLDWAV model based on one-dimensional full dynamic equation. Calibration and validation of the rainfall-runoff model on Karkheh subbasins are ongoing while the river routing model awaits cross section surveys.Real time hydrometeological data are collected by a telemetry network. The telemetry network is equipped with automatic sensors and INMARSAT-C comunication system. A geographic information system (GIS) stores and manages the spatial data while a database holds the hydroclimatological historical and updated time series. Rainfall runoff parameters uncertainty is analyzed by Monte Carlo and GLUE approaches.
System and method for motor parameter estimation
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values for motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Acoustic emission characterization using AE (parameter) delay
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.
1983-01-01
The acoustic emission (AE) parameter delay concept is defined as that particular measured value of a parameter at which a specified baseline level of cumulative AE activity is reached. The parameter can be from any of a broad range of elastic, plastic, viscoelastic, and fracture mechanics parameters, as well as their combinations. Such parameters include stress, load, strain, displacement, time, temperature, loading cycle, unloading stress, stress intensity factor, strain energy release rate, and crack tip plasticity zone size, while the AE activity may be AE event counts, ringdown counts, energy, event duration, etc., as well as their combinations. Attention is given to examples for the AE parameter delay concept, together with various correlations.
Renormalizable two-parameter piecewise isometries
NASA Astrophysics Data System (ADS)
Lowenstein, J. H.; Vivaldi, F.
2016-06-01
We exhibit two distinct renormalization scenarios for two-parameter piecewise isometries, based on 2 π / 5 rotations of a rhombus and parameter-dependent translations. Both scenarios rely on the recently established renormalizability of a one-parameter triangle map, which takes place if and only if the parameter belongs to the algebraic number field K = Q ( √{ 5 }) associated with the rotation matrix. With two parameters, features emerge which have no counterpart in the single-parameter model. In the first scenario, we show that renormalizability is no longer rigid: whereas one of the two parameters is restricted to K , the second parameter can vary continuously over a real interval without destroying self-similarity. The mechanism involves neighbouring atoms which recombine after traversing distinct return paths. We show that this phenomenon also occurs in the simpler context of Rauzy-Veech renormalization of interval exchange transformations, here regarded as parametric piecewise isometries on a real interval. We explore this analogy in some detail. In the second scenario, which involves two-parameter deformations of a three-parameter rhombus map, we exhibit a weak form of rigidity. The phase space splits into several (non-convex) invariant components, on each of which the renormalization still has a free parameter. However, the foliations of the different components are transversal in parameter space; as a result, simultaneous self-similarity of the component maps requires that both of the original parameters belong to the field K .
Design parameters for toroidal and bobbin magnetics
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1974-01-01
Handbook has been published to facilitate conversion to metric system. Conversion data makes it possible for transformer designers to obtain fast and close approximation of significant parameters. For greater convenience, derivations of some transformer and inductor parameters are also presented.
Klute, K A; Nadler, S A; Stenger, D C
1996-07-01
The complete nucleotide sequence (3080 nt) of an infectious DNA clone derived from the geminivirus horseradish curly top virus (HrCTV) has been determined. The relationship of HrCTV to other geminiviruses was examined using dot matrix plots of nucleotide sequence similarities, and by phylogeny of predicted amino acid sequences of individual ORFs based upon parsimony or neighbour-joining methods. These analyses indicate that the V1 and V2 virion sense ORFs of HrCTV are most closely related to, yet distinct from, the corresponding ORFs of the subgroup II geminivirus beet curly top virus (BCTV). HrCTV also encodes a third virion sense ORF (V3) which is similar (72-74 percent amino acid identity) to the BCTV V3 ORF; however, the HrCTV V3 ORF has diverged in sequence to a greater extent relative to that observed among isolates of BCTV (98-100% amino acid identity). The HrCTV genome encodes only three complementary sense ORFs (Cl, C2 and C4) and lacks a C3 ORF which is conserved among all other subgroup II and III geminiviruses characterized to date. Although the neighbour-joining analysis indicated that the HrCTV C2 ORF was distantly related to the C2 ORF of BCTV, the predicted amino acid sequence deduced from the HrCTV C2 ORF lacks the characteristic zinc-finger domain present in the transcriptional activating protein (TrAP) encoded by the subgroup III ORF AC2, which is also retained within the TrAP-related product of the BCTV C2 ORF. Surprisingly, the rep and C4 proteins encoded by HrCTV share a closer phylogenetic relationship to the corresponding proteins of the subgroup III geminivirus squash leaf curl virus (SLCV) than to BCTV. These results suggest that the HrCTV genome may have arisen by a recombination event between a BCTV-like subgroup II virus ancestor and an SLCV-like subgroup III virus ancestor. Possible mechanisms that may explain recombination events among geminiviruses are discussed. PMID:8757976
Parameter margins for stabilized conservative multilinear systems
NASA Technical Reports Server (NTRS)
Warren, Wayne; Wie, Bong
1991-01-01
Simple and elegant derivations of recent results concerning the computation of infinity-norm real-parameter margins for stabilized, mass-spring dynamical systems with the masses and the spring constraints as uncertain parameters are presented. The authors introduce the concept of critical frequency and gain for stabilized conservative systems whose uncertain parameters do not necessarily appear multilinearly in the numerator and denominator of the plant transfer function. An approach to parameter margin computation is presented.
Extraction of SUSY Parameters from Collider Data
Zerwas, Dirk
2008-11-23
The extraction of the parameters of the supersymmetric Lagrangian is discussed. Particular emphasis is put on the rigorous treatment of experimental and theoretical errors. While the LHC can provide a valuable first estimate of the parameters, the combination of LHC and ILC will be necessary to determine with high precision the parameters of the MSSM.
Understanding Parameter Invariance in Unidimensional IRT Models
ERIC Educational Resources Information Center
Rupp, Andre A.; Zumbo, Bruno D.
2006-01-01
One theoretical feature that makes item response theory (IRT) models those of choice for many psychometric data analysts is parameter invariance, the equality of item and examinee parameters from different examinee populations or measurement conditions. In this article, using the well-known fact that item and examinee parameters are identical only…
Self-adaptive parameters in genetic algorithms
NASA Astrophysics Data System (ADS)
Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain
2004-04-01
Genetic algorithms are powerful search algorithms that can be applied to a wide range of problems. Generally, parameter setting is accomplished prior to running a Genetic Algorithm (GA) and this setting remains unchanged during execution. The problem of interest to us here is the self-adaptive parameters adjustment of a GA. In this research, we propose an approach in which the control of a genetic algorithm"s parameters can be encoded within the chromosome of each individual. The parameters" values are entirely dependent on the evolution mechanism and on the problem context. Our preliminary results show that a GA is able to learn and evaluate the quality of self-set parameters according to their degree of contribution to the resolution of the problem. These results are indicative of a promising approach to the development of GAs with self-adaptive parameter settings that do not require the user to pre-adjust parameters at the outset.
BIOFILM IMAGE RECONSTRUCTION FOR ASSESSING STRUCTURAL PARAMETERS
Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk
2011-01-01
The structure of biofilms can be numerically quantified from microscopy images using structural parameters. These parameters are used in biofilm image analysis to compare biofilms, to monitor temporal variation in biofilm structure, to quantify the effects of antibiotics on biofilm structure and to determine the effects of environmental conditions on biofilm structure. It is often hypothesized that biofilms with similar structural parameter values will have similar structures; however, this hypothesis has never been tested. The main goal was to test the hypothesis that the commonly used structural parameters can characterize the differences or similarities between biofilm structures. To achieve this goal 1) biofilm image reconstruction was developed as a new tool for assessing structural parameters, 2) independent reconstructions using the same starting structural parameters were tested to see how they differed from each other, 3) the effect of the original image parameter values on reconstruction success was evaluated and 4) the effect of the number and type of the parameters on reconstruction success was evaluated. It was found that two biofilms characterized by identical commonly used structural parameter values may look different, that the number and size of clusters in the original biofilm image affect image reconstruction success and that, in general, a small set of arbitrarily selected parameters may not reveal relevant differences between biofilm structures. PMID:21280029
Inference in high-dimensional parameter space.
O'Hare, Anthony
2015-11-01
Model parameter inference has become increasingly popular in recent years in the field of computational epidemiology, especially for models with a large number of parameters. Techniques such as Approximate Bayesian Computation (ABC) or maximum/partial likelihoods are commonly used to infer parameters in phenomenological models that best describe some set of data. These techniques rely on efficient exploration of the underlying parameter space, which is difficult in high dimensions, especially if there are correlations between the parameters in the model that may not be known a priori. The aim of this article is to demonstrate the use of the recently invented Adaptive Metropolis algorithm for exploring parameter space in a practical way through the use of a simple epidemiological model. PMID:26176624
NASA Technical Reports Server (NTRS)
Jackson, G. A.
1972-01-01
A parameter identification method is presented which combines the best features of two well-established, existing methods: Continuous Parameter Tracking and Acceleration Search (Partan). In this paper the equations are developed for the general n-parameter identification problem, and results are given for a specific two parameter application.
ERIC Educational Resources Information Center
Fitzpatrick, Anne R.; And Others
1996-01-01
One-parameter (1PPC) and two-parameter partial credit (2PPC) models were compared using real and simulated data with constructed response items present. Results suggest that the more flexible three-parameter logistic-2PPC model combination produces better model fit than the combination of the one-parameter logistic and the 1PPC models. (SLD)
A new parameter for predicting crossflow instability
NASA Technical Reports Server (NTRS)
Kohama, Y.; Davis, S.
1991-01-01
Instability of boundary-layer over a concave wall and a rotating disk which were thought to be essentially different in instability sources, are compared in order to investigate whether or not a single crossflow parameter can be defined. Using a newly defined crossflow parameter, prediction was attempted on a yawed cylinder boundary-layer transition. By comparing the calculation with experiment, it was found out that this parameter can document fairly well the onset condition of the crossflow instability.
Parameter Description Language Version 1.0
NASA Astrophysics Data System (ADS)
Zwolf, Carlo Maria; Harrison, Paul; Garrido, Julian; Ruiz, Jose Enrique; Le Petit, Franck; Zwolf, Carlo Maria
2014-05-01
This document discusses the definition of the Parameter Description Language (PDL). In this language parameters are described in a rigorous data model. With no loss of generality, we will represent this data model using XML. It intends to be a expressive language for self-descriptive web services exposing the semantic nature of input and output parameters, as well as all necessary complex constraints. PDL is a step forward towards true web services interoperability.
Sensitivity analysis of Stirling engine design parameters
Naso, V.; Dong, W.; Lucentini, M.; Capata, R.
1998-07-01
In the preliminary Stirling engine design process, the values of some design parameters (temperature ratio, swept volume ratio, phase angle and dead volume ratio) have to be assumed; as a matter of fact it can be difficult to determine the best values of these parameters for a particular engine design. In this paper, a mathematical model is developed to analyze the sensitivity of engine's performance variations corresponding to variations of these parameters.
Multivariate distributions of soil hydraulic parameters
NASA Astrophysics Data System (ADS)
Qu, Wei; Pachepsky, Yakov; Huisman, Johan Alexander; Martinez, Gonzalo; Bogena, Heye; Vereecken, Harry
2014-05-01
Statistical distributions of soil hydraulic parameters have to be known when synthetic fields of soil hydraulic properties need to be generated in ensemble modeling of soil water dynamics and soil water content data assimilation. Pedotransfer functions that provide statistical distributions of water retention and hydraulic conductivity parameters for textural classes are most often used in the parameter field generation. Presence of strong correlations can substantially influence the parameter generation results. The objective of this work was to review and evaluate available data on correlations between van Genuchten-Mualem (VGM) model parameters. So far, two different approaches were developed to estimate these correlations. The first approach uses pedotransfer functions to generate VGM parameters for a large number of soil compositions within a textural class, and then computes parameter correlations for each of the textural classes. The second approach computes the VGM parameter correlations directly from parameter values obtained by fitting VGM model to measured water retention and hydraulic conductivity data for soil samples belonging to a textural class. Carsel and Parish (1988) used the Rawls et al. (1982) pedotransfer functions, and Meyer et al. (1997) used the Rosetta pedotransfer algorithms (Schaap, 2002) to develop correlations according to the first approach. We used the UNSODA database (Nemes et al. 2001), the US Southern Plains database (Timlin et al., 1999), and the Belgian database (Vereecken et al., 1989, 1990) to apply the second approach. A substantial number of considerable (>0.7) correlation coefficients were found. Large differences were encountered between parameter correlations obtained with different approaches and different databases for the same textural classes. The first of the two approaches resulted in generally higher values of correlation coefficients between VGM parameters. However, results of the first approach application depend
Parameter Estimation of Partial Differential Equation Models
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J.; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data. PMID:24363476
Parameter Estimation of Partial Differential Equation Models.
Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab
2013-01-01
Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data. PMID:24363476
On the Interpretation of Scattering Parameters
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
1999-01-01
This short paper is in response to one that appeared in this journal a few years ago [2]. The article was a comment on a previous paper [1], which presented the transformation equations between the standard two-port parameters. The equations were stated to be valid for complex terminations; which are useful when S-parameters are treated. The authors in [2] made some incorrect conclusions concerning the concept of "generalized scattering parameters", and this paper seeks to clarify the somewhat confusing area of generalized scattering parameters.
Design Parameters in Multimodal Games for Rehabilitation.
Shah, Nauman; Basteris, Angelo; Amirabdollahian, Farshid
2014-02-01
Objectives: The repetitive and sometimes mundane nature of conventional rehabilitation therapy provides an ideal opportunity for development of interactive and challenging therapeutic games that have the potential to engage and motivate the players. Certain game design parameters that may encourage patients to actively participate by making the games more enjoyable have been identified. In this article, we describe a formative study in which we designed and evaluated some of these parameters with healthy subjects. Materials and Methods: The "operant conditioning" and "scoring" design parameters were incorporated in a remake of a classic labyrinth game, "Marble Maze." A group of participants (n=37) played the game twice: Once in the control condition without both modalities and then with either one of the parameters or with both. Measures of game duration and number of fails in the game were recorded along with survey questionnaires to measure player perceptions of intrinsic motivation on the game. Results: Longer playtimes, higher levels of interest/enjoyment, and effort to play the game were recorded with the introduction of these parameters. Conclusions: This study provides an understanding on how game design parameters can be used to motivate and encourage people to play longer. With these positive results, future aims are to test the parameters with stroke patients, providing much clearer insight as to what influences these parameters have on patients undergoing therapy. The ultimate goal is to utilize game design in order to maintain longer therapeutic interaction between a patient and his or her therapy medium. PMID:24761328
Influence parameters of impact grinding mills
NASA Technical Reports Server (NTRS)
Hoeffl, K.; Husemann, K.; Goldacker, H.
1984-01-01
Significant parameters for impact grinding mills were investigated. Final particle size was used to evaluate grinding results. Adjustment of the parameters toward increased charge load results in improved efficiency; however, it was not possible to define a single, unified set to optimum grinding conditions.
Monitoring SEU parameters at reduced bias
Roth, D.R.; McNulty, P.J.; Abdel-Kader, W.G.; Strauss, L. . Dept. of Physics and Astronomy); Stassinopoulos, E.G. )
1993-12-01
SEU sensitivity of a CMOS SRAM increases with decreasing bias in such a manner that the critical charge exhibits a linear dependence on bias. This should allow proton and neutron monitoring of SEU parameters even for radiation hardened devices. The sensitivity of SEU rates to the thickness of the sensitive volume is demonstrated and procedures for determining the SEU parameters using protons are outlined.
Effects of Structural Errors on Parameter Estimates
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Paper introduces concept of near equivalence in probability between different parameters or mathematical models of physical system. One in series of papers, each establishes different part of rigorous theory of mathematical modeling based on concepts of structural error, identifiability, and equivalence. This installment focuses upon effects of additive structural errors on degree of bias in estimates parameters.
Parameter Invariance in the Rasch Model.
ERIC Educational Resources Information Center
Davison, Mark L.; Chen, Tsuey-Hwa
This paper explores a logistic regression procedure for estimating item parameters in the Rasch model and testing the hypothesis of item parameter invariance across several groups/populations. Rather than using item responses directly, the procedure relies on "pseudo-paired comparisons" (PC) statistics defined over all possible pairs of items.…
RECURSIVE PARAMETER ESTIMATION OF HYDROLOGIC MODELS
Proposed is a nonlinear filtering approach to recursive parameter estimation of conceptual watershed response models in state-space form. he conceptual model state is augmented by the vector of free parameters which are to be estimated from input-output data, and the extended Kal...
Transistor h parameter conversion slide rule
NASA Technical Reports Server (NTRS)
Brantner, R. E.
1967-01-01
Slide rule enables the ready conversion of transistor h parameters from one form to another and reduces calculation time by a factor of 5 to 10. The scales are selected to cover all ranges of each parameter that will normally exist for any transistor, and answers are given in the correct order of magnitude, making powers-of-ten calculations unnecessary.
Useful surface parameters for biomaterial discrimination.
Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos
2015-01-01
Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. PMID:26148576
Reaction parameters for heavy-ion collisions
Wilcke, W.W.; Birkelund, J.R.; Wollersheim, H.J.; Hoover, A.D.; Huizenga, J.R.; Schroeder, W.U.; Tubbs, L.E.
1980-09-01
These tables present reaction parameters for all combinations of 27 projectile and 16 target nuclei in a laboratory bombarding energy range of 1--50 MeV/u. The reaction parameters are derived from the Fresnel model of heavy-ion scattering, the droplet model, and the rotating liquid-drop model, or from systematics of experimental data.
Linking Item Parameters to a Base Scale
ERIC Educational Resources Information Center
Kang, Taehoon; Petersen, Nancy S.
2012-01-01
This paper compares three methods of item calibration--concurrent calibration, separate calibration with linking, and fixed item parameter calibration--that are frequently used for linking item parameters to a base scale. Concurrent and separate calibrations were implemented using BILOG-MG. The Stocking and Lord in "Appl Psychol Measure"…
Parameters and controlling of plasma chemistry
NASA Technical Reports Server (NTRS)
Tsuji, O.
1981-01-01
The parameters involved in plasma polymerization reactions are examined and the use of these parameters in the control of plasma reactions is dicussed. The variables associated with the reaction chamber, electrical discharge form, frequency and electrical source for the development of plasma, and monitoring techniques are addressed.
Reservoir parameter inversion based on weighted statistics
NASA Astrophysics Data System (ADS)
Gui, Jin-Yong; Gao, Jian-Hu; Yong, Xue-Shan; Li, Sheng-Jun; Liu, Bin-Yang; Zhao, Wan-Jin
2015-12-01
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
Coordinate transformation by minimizing correlations between parameters
NASA Technical Reports Server (NTRS)
Kumar, M.
1972-01-01
This investigation was to determine the transformation parameters (three rotations, three translations and a scale factor) between two Cartesian coordinate systems from sets of coordinates given in both systems. The objective was the determination of well separated transformation parameters with reduced correlations between each other, a problem especially relevant when the sets of coordinates are not well distributed. The above objective is achieved by preliminarily determining the three rotational parameters and the scale factor from the respective direction cosines and chord distances (these being independent of the translation parameters) between the common points, and then computing all the seven parameters from a solution in which the rotations and the scale factor are entered as weighted constraints according to their variances and covariances obtained in the preliminary solutions. Numerical tests involving two geodetic reference systems were performed to evaluate the effectiveness of this approach.
Estimation for large non-centrality parameters
NASA Astrophysics Data System (ADS)
Inácio, Sónia; Mexia, João; Fonseca, Miguel; Carvalho, Francisco
2016-06-01
We introduce the concept of estimability for models for which accurate estimators can be obtained for the respective parameters. The study was conducted for model with almost scalar matrix using the study of estimability after validation of these models. In the validation of these models we use F statistics with non centrality parameter τ =‖λ/‖2 σ2 when this parameter is sufficiently large we obtain good estimators for λ and α so there is estimability. Thus, we are interested in obtaining a lower bound for the non-centrality parameter. In this context we use for the statistical inference inducing pivot variables, see Ferreira et al. 2013, and asymptotic linearity, introduced by Mexia & Oliveira 2011, to derive confidence intervals for large non-centrality parameters (see Inácio et al. 2015). These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics.
Exploiting intrinsic fluctuations to identify model parameters.
Zimmer, Christoph; Sahle, Sven; Pahle, Jürgen
2015-04-01
Parameterisation of kinetic models plays a central role in computational systems biology. Besides the lack of experimental data of high enough quality, some of the biggest challenges here are identification issues. Model parameters can be structurally non-identifiable because of functional relationships. Noise in measured data is usually considered to be a nuisance for parameter estimation. However, it turns out that intrinsic fluctuations in particle numbers can make parameters identifiable that were previously non-identifiable. The authors present a method to identify model parameters that are structurally non-identifiable in a deterministic framework. The method takes time course recordings of biochemical systems in steady state or transient state as input. Often a functional relationship between parameters presents itself by a one-dimensional manifold in parameter space containing parameter sets of optimal goodness. Although the system's behaviour cannot be distinguished on this manifold in a deterministic framework it might be distinguishable in a stochastic modelling framework. Their method exploits this by using an objective function that includes a measure for fluctuations in particle numbers. They show on three example models, immigration-death, gene expression and Epo-EpoReceptor interaction, that this resolves the non-identifiability even in the case of measurement noise with known amplitude. The method is applied to partially observed recordings of biochemical systems with measurement noise. It is simple to implement and it is usually very fast to compute. This optimisation can be realised in a classical or Bayesian fashion. PMID:26672148
Hyperspectral signature analysis of skin parameters
NASA Astrophysics Data System (ADS)
Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe
2013-02-01
The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.
A second order parameter for 3SAT
Sandholm, T.W.
1996-12-31
The 3-satisfiability problem (3SAT) has had a central role in the study of complexity. It was recently found that 3SAT instances transition sharply from satisfiable to nonsatisfiable as the ratio of clauses to variables increases. Because this phase transition is so sharp, the ratio - an order parameter - can be used to predict satisfiability. This paper describes a second order parameter for 3SAT. Like the classical order parameter, it can be computed in linear time, but it analyzes the structure of the problem instance more deeply. We present an analytical method for using this new order parameter in conjunction with the classical one to enhance satisfiability prediction accuracy. The assumptions of the method are verified by rigorous statistical testing. The method significantly increases the satisfiability prediction accuracy over using the classical order parameter alone. Hardness - i.e. how long it takes to determine satisfiability - results for one complete and one incomplete algorithm from the literature are also presented as a function of the two order parameters. The importance of new order parameters lies in the fact that they refine the locating of satisfiable vs. nonsatisfiable and hard vs. easy formulas in the space of all problem instances by adding a new dimension in the analysis.
Stellar Parameter Determination Using Bayesian Techniques.
NASA Astrophysics Data System (ADS)
Ekanayake, Gemunu B.; Wilhelm, Ronald J.
2015-01-01
Spectral energy distributions of stars covering the wavelength range from far UV to far IR can be used to derive stellar atmospheric parameters (effective temperature, surface gravity and iron abundance) with a high reliability. For this purpose we are using a method based on Bayesian statistics, which make use of all available photometric data for a given star to construct stellar parameter probability distribution function (PDF) in order to determine the expectation values and their uncertainties in stellar parameters. The marginalized probabilities allow us to characterize the constraint for each parameter and estimate the influence of the quantity and quality of the photometric data on the resulting parameter values. We have obtained low resolution spectroscopy of blue horizontal branch, blue straggler and normal main sequence A, B, G and F stellar parameter standard stars using the McDonald observatory, 2.1m telescope to constrain both synthetic and empirical stellar libraries like Atlas9, MARCS, MILES and Pickles across a wide range in parameter space. This calibration process helps to evaluate the correlations between different stellar libraries and observed data especially in the UV part of the spectrum. When the calibration is complete the Bayesian analysis can be applied to large samples of data from GALEX, SDSS, 2MASS,WISE etc. We expect significant improvements to luminosity classification, distances and interstellar extinction using this technique.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Parameters Describing Earth Observing Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim
2003-01-01
The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the
Estimators for overdetermined linear Stokes parameters
NASA Astrophysics Data System (ADS)
Furey, John
2016-05-01
The mathematics of estimating overdetermined polarization parameters is worked out within the context of the inverse modeling of linearly polarized light, and as the primary new result the general solution is presented for estimators of the linear Stokes parameters from any number of measurements. The utility of the general solution is explored in several illustrative examples including the canonical case of two orthogonal pairs. In addition to the actual utility of these estimators in Stokes analysis, the pedagogical discussion illustrates many of the considerations involved in solving the ill-posed problem of overdetermined parameter estimation. Finally, suggestions are made for using a rapidly rotating polarizer for continuously updating polarization estimates.
Parameter identification of civil engineering structures
NASA Technical Reports Server (NTRS)
Juang, J. N.; Sun, C. T.
1980-01-01
This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.
EXAFS Energy Shift and Structural Parameters
NASA Astrophysics Data System (ADS)
Kelly, Shelly D.; Ravel, Bruce
2007-02-01
In EXAFS analysis, the energy shift parameter is used to align the theoretical calculated spectrum to the energy grid of the measured spectrum. Unrealistically large energy shift values, sometimes in excess of 20 eV, are at times published in research articles. We therefore see the need for a concise discussion of the EXAFS energy shift parameter. This paper is intended as a learning tool for the proper alignment of theory to measured EXAFS spectra and proper interpretation of the energy shift parameter.
ZASPE: Zonal Atmospheric Stellar Parameters Estimator
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar
2016-07-01
ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Sun, Yu; Tesfa, Teklu; Ruby Leung, L.
2016-05-01
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrological parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified according to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using Principal component analysis (PCA) and expectation-maximization (EM) - based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each parameter sensitivity-based classification system (S-Class) with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the
ERIC Educational Resources Information Center
Kolen, Michael J.; Whitney, Douglas R.
The application of latent trait theory to classroom tests necessitates the use of small sample sizes for parameter estimation. Computer generated data were used to assess the accuracy of estimation of the slope and location parameters in the two parameter logistic model with fixed abilities and varying small sample sizes. The maximum likelihood…
Sample Size and Item Parameter Estimation Precision When Utilizing the One-Parameter "Rasch" Model
ERIC Educational Resources Information Center
Custer, Michael
2015-01-01
This study examines the relationship between sample size and item parameter estimation precision when utilizing the one-parameter model. Item parameter estimates are examined relative to "true" values by evaluating the decline in root mean squared deviation (RMSD) and the number of outliers as sample size increases. This occurs across…
Fixing the c Parameter in the Three-Parameter Logistic Model
ERIC Educational Resources Information Center
Han, Kyung T.
2012-01-01
For several decades, the "three-parameter logistic model" (3PLM) has been the dominant choice for practitioners in the field of educational measurement for modeling examinees' response data from multiple-choice (MC) items. Past studies, however, have pointed out that the c-parameter of 3PLM should not be interpreted as a guessing parameter. This…
Thermophysical parameters of the LBO crystal
Grechin, Sergei G; Zuev, A V; Fokin, A S; Kokh, Aleksandr E; Moiseev, N V; Popov, Petr A; Sidorov, Aleksei A
2010-08-27
The thermophysical parameters (linear thermal expansion coefficients, thermal conductivities, and heat capacity) of the lithium triborate (LBO) crystal are measured and compared with previously published data. (nonlinear-optics phenomena)
Earth Rotation Parameters from DSN VLBI: 1994
NASA Technical Reports Server (NTRS)
Steppe, J. A.; Oliveau, S. H.; Sovers, O. J.
1994-01-01
In this report, Earth Rotation Parameter (ERP) estimates ahve been obtained from an analysis of Deep Space Network (DSN) VLBI data that directly aligns its celestial and terrestrial reference frames with those of the International Earth Rotation Service (IERS).
Vertical Axis Wind Turbine Foundation parameter study
Lodde, P.F.
1980-07-01
The dynamic failure criterion governing the dimensions of prototype Vertical Axis Wind Turbine Foundations is treated as a variable parameter. The resulting change in foundation dimensions and costs is examined.
DEB parameters estimation for Mytilus edulis
NASA Astrophysics Data System (ADS)
Saraiva, S.; van der Meer, J.; Kooijman, S. A. L. M.; Sousa, T.
2011-11-01
The potential of DEB theory to simulate an organism life-cycle has been demonstrated at numerous occasions. However, its applicability requires parameter estimates that are not easily obtained by direct observations. During the last years various attempts were made to estimate the main DEB parameters for bivalve species. The estimation procedure was by then, however, rather ad-hoc and based on additional assumptions that were not always consistent with the DEB theory principles. A new approach has now been developed - the covariation method - based on simultaneous minimization of the weighted sum of squared deviations between data sets and model predictions in one single procedure. This paper presents the implementation of this method to estimate the DEB parameters for the blue mussel Mytilus edulis, using several data sets from the literature. After comparison with previous trials we conclude that the parameter set obtained by the covariation method leads to a better fit between model and observations, with potentially more consistency and robustness.
Integral data analysis for resonance parameters determination
Larson, N.M.; Leal, L.C.; Derrien, H.
1997-09-01
Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.
Efficient computation of parameter confidence intervals
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1987-01-01
An important step in system identification of aircraft is the estimation of stability and control derivatives from flight data along with an assessment of parameter accuracy. When the maximum likelihood estimation technique is used, parameter accuracy is commonly assessed by the Cramer-Rao lower bound. It is known, however, that in some cases the lower bound can be substantially different from the parameter variance. Under these circumstances the Cramer-Rao bounds may be misleading as an accuracy measure. This paper discusses the confidence interval estimation problem based on likelihood ratios, which offers a more general estimate of the error bounds. Four approaches are considered for computing confidence intervals of maximum likelihood parameter estimates. Each approach is applied to real flight data and compared.
LISA Parameter Estimation using Numerical Merger Waveforms
NASA Technical Reports Server (NTRS)
Thorpe, J. I.; McWilliams, S.; Baker, J.
2008-01-01
Coalescing supermassive black holes are expected to provide the strongest sources for gravitational radiation detected by LISA. Recent advances in numerical relativity provide a detailed description of the waveforms of such signals. We present a preliminary study of LISA's sensitivity to waveform parameters using a hybrid numerical/analytic waveform describing the coalescence of two equal-mass, nonspinning black holes. The Synthetic LISA software package is used to simulate the instrument response and the Fisher information matrix method is used to estimate errors in the waveform parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 10(exp 6) deg M solar mass at a redshift of z is approximately 1 were found to decrease by a factor of slightly more than two when the merger was included.
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
Parameter Estimation in Atmospheric Data Sets
NASA Technical Reports Server (NTRS)
Wenig, Mark; Colarco, Peter
2004-01-01
In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .
Reionization history and CMB parameter estimation
Dizgah, Azadeh Moradinezhad; Kinney, William H.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.edu
2013-05-01
We study how uncertainty in the reionization history of the universe affects estimates of other cosmological parameters from the Cosmic Microwave Background. We analyze WMAP7 data and synthetic Planck-quality data generated using a realistic scenario for the reionization history of the universe obtained from high-resolution numerical simulation. We perform parameter estimation using a simple sudden reionization approximation, and using the Principal Component Analysis (PCA) technique proposed by Mortonson and Hu. We reach two main conclusions: (1) Adopting a simple sudden reionization model does not introduce measurable bias into values for other parameters, indicating that detailed modeling of reionization is not necessary for the purpose of parameter estimation from future CMB data sets such as Planck. (2) PCA analysis does not allow accurate reconstruction of the actual reionization history of the universe in a realistic case.
PSS Parameters Tuning Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Abdulrahim, M.; Almoula, Zakaria Fadl; Al-Hafid, Hafid
2008-10-01
Optimal tuning of power system stabilizer (PSS) parameters using genetic algorithm with single objective function is presented in this paper. A Single Machine Infinite Bus (SMIB) system is considered. The main objective of this research paper is to investigate the suitability of genetic algorithm for effective tuning of parameters of the power system stabilizer in a single machine infinite bus system. A conventional speed based lead-lag PSS is used. A simple and effective method of tuning the parameters of PSS is proposed which is posed as an optimization formulation by maximizing the damping of modes of oscillations of the SMIB system over a wide range of loading conditions and different system configurations. It is found that GA based PSS with single objective design shows improved dynamic performance over Conventional PSS over a wide range of operating conditions and different system parameters.
Tropospheric range error parameters: Further studies
NASA Technical Reports Server (NTRS)
Hopfield, H. S.
1972-01-01
Improved parameters are presented for predicting the tropospheric effect on electromagnetic range measurements from surface meteorological data. Parameters are given for computing the dry component of the zenith radio range effect from surface pressure alone with an rms error of 1 to 2 mm, or the total range effect from the dry and wet components of the surface refractivity, N, and a two-part quartic profile model. The parameters were obtained from meteorological balloon data with improved procedures, including the conversion of the geopotential heights of the balloon data to actual or geometric heights before using the data. The revised values of the parameter k show more latitude variation than is accounted for by the variation of g. This excess variation of k indicates a small latitude variation in the mean molecular weight of air and yields information about the latitude-varying water vapor content of air.
Component temperature versus laser-welding parameters
Jones, W.H.
1983-01-01
Applications have arisen in which the component temperature near a laser weld is critical because of possible damage to the explosive powder adjacent to the member being welded. To evaluate the thermal excursion experienced at the powder cavity wall, a study was conducted using assemblies that had been equipped with 0.05 mm diameter thermocouple wires. The main goal of the study was to determine how changes in the laser welding parameters owuld affect the powder cavity wall temperature. The objective lens-to-work distance, pulse rate, and beam power parameters were varied. The peak temperature varied from 117/sup 0/C to 311/sup 0/C in response to welding parameter changes. The study concluded that by utilizing a selected set of welding parameters, the design requirement of a 160/sup 0/C maximum powder cavity wall temperature could easily be satisfied.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
Project Integration Architecture: Formulation of Semantic Parameters
NASA Technical Reports Server (NTRS)
Jones, William Henry
2005-01-01
One of several key elements of the Project Integration Architecture (PIA) is the intention to formulate parameter objects which convey meaningful semantic information. In so doing, it is expected that a level of automation can be achieved in the consumption of information content by PIA-consuming clients outside the programmatic boundary of a presenting PIA-wrapped application. This paper discusses the steps that have been recently taken in formulating such semantically-meaningful parameters.
Design Parameters in Multimodal Games for Rehabilitation
Basteris, Angelo; Amirabdollahian, Farshid
2014-01-01
Abstract Objectives: The repetitive and sometimes mundane nature of conventional rehabilitation therapy provides an ideal opportunity for development of interactive and challenging therapeutic games that have the potential to engage and motivate the players. Certain game design parameters that may encourage patients to actively participate by making the games more enjoyable have been identified. In this article, we describe a formative study in which we designed and evaluated some of these parameters with healthy subjects. Materials and Methods: The “operant conditioning” and “scoring” design parameters were incorporated in a remake of a classic labyrinth game, “Marble Maze.” A group of participants (n=37) played the game twice: Once in the control condition without both modalities and then with either one of the parameters or with both. Measures of game duration and number of fails in the game were recorded along with survey questionnaires to measure player perceptions of intrinsic motivation on the game. Results: Longer playtimes, higher levels of interest/enjoyment, and effort to play the game were recorded with the introduction of these parameters. Conclusions: This study provides an understanding on how game design parameters can be used to motivate and encourage people to play longer. With these positive results, future aims are to test the parameters with stroke patients, providing much clearer insight as to what influences these parameters have on patients undergoing therapy. The ultimate goal is to utilize game design in order to maintain longer therapeutic interaction between a patient and his or her therapy medium. PMID:24761328
Distillation tray structural parameter study: Phase 1
NASA Technical Reports Server (NTRS)
Winter, J. Ronald
1991-01-01
The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.
Measurements of thermal parameters of solar modules
NASA Astrophysics Data System (ADS)
Górecki, K.; Krac, E.
2016-04-01
In the paper the methods of measuring thermal parameters of photovoltaic panels - transient thermal impedance and the absorption factor of light-radiation are presented. The manner of realising these methods is described and the results of measurements of the considered thermal parameters of selected photovoltaic panels are presented. The influence of such selected factors as a type of the investigated panel and its mounting manner on transient thermal impedance of the considered panels is also discussed.
Correlation of Catalytic Rates With Solubility Parameters
NASA Technical Reports Server (NTRS)
Lawson, Daniel D.; England, Christopher
1987-01-01
Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.
Model parameter updating using Bayesian networks
Treml, C. A.; Ross, Timothy J.
2004-01-01
This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.
Material parameter measurements at high temperatures
NASA Technical Reports Server (NTRS)
Dominek, A.; Park, A.; Peters, L., Jr.
1988-01-01
Alternate fixtures of techniques for the measurement of the constitutive material parameters at elevated temperatures are presented. The technique utilizes scattered field data from material coated cylinders between parallel plates or material coated hemispheres over a finite size groundplane. The data acquisition is centered around the HP 8510B Network Analyzer. The parameters are then found from a numerical search algorithm using the Newton-Ralphson technique with the measured and calculated fields from these canonical scatters. Numerical and experimental results are shown.
Optimized parameter extraction using fuzzy logic
NASA Astrophysics Data System (ADS)
Picos, Rodrigo; Calvo, Oscar; Iñiguez, Benjamín; García-Moreno, Eugeni; García, Rodolfo; Estrada, Magali
2007-05-01
Precise extraction of transistor model parameters is of much importance for modeling and at the same time a difficult and time consuming task. Methods for parameter extraction can rely on purely mathematical basis, calling for intensive use of computational resources, or in human expertise to interpret results. In this work, we propose a method for parameter extraction based on fuzzy logic that includes a precise knowledge about the function of each parameter in the model to create a set of simple fitting rules that are easy to describe in human language. To simplify the computational effort, the parameter fitting rules work using only data at specific points (e.g. the distance between the calculated curve and the measured one at VDS corresponding to 50% of the maximum current). If necessary, a more accurate implementation can be used without altering the basic underlying philosophy of the method. In this work, the method is applied to extract model parameters required by Level 3 bulk MOS model and by a compact model for TFTs used in the Unified Model and Extraction Method (UMEM), which is based on an integral function. Results obtained show that the method is quite insensitive to the initial conditions and that it is also quite fast. Extension of this method for more complex models requires only the creation of the corresponding rule base, using the appropriate measurements. The method is especially useful for production testing or design.
Comparative study of pressure-flow parameters.
Eri, Lars M; Wessel, Nicolai; Tysland, Ole; Berge, Viktor
2002-01-01
Methods for quantification of bladder outlet obstruction (BOO) are still controversial. Parameters such as detrusor opening pressure (p(det.open)), maximum detrusor pressure (p(det.max)), minimum voiding pressure (p(det.min.void)), and detrusor pressure at maximum flow rate (P(det.Qmax)) separate obstructed from nonobstructed patients to some extent, but two nomograms, the Abrams-Griffiths nomogram and the linearized passive urethral resistance relation (LinPURR), are more accepted for this purpose, along with the urethral resistance algorithm. In this retrospective, methodologic study, we evaluated the properties of these parameters with regard to test-retest reproducibility and ability to detect a moderate (pharmacologic) and a pronounced (surgical) relief of bladder outlet obstruction. We studied the pressure-flow charts of 42 patients who underwent 24 weeks of androgen suppressive therapy, 42 corresponding patients who received placebo, and 30 patients who had prostate surgery. The patients performed repeat void pressure-flow examinations before and after treatment or placebo. The various parameters were compared. Among the bladder pressure parameters, P(det.Qmax) seemed to have some advantages, supporting the belief that it is the most relevant detrusor pressure parameter to include in nomograms to quantify BOO. In assessment of a large decrease in urethral resistance, such as after TURp, resistance parameters that are based on maximum flow rate as well as detrusor pressure are preferable. PMID:11948710
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-04-01
Kawakatsu et al. (2015) recently proposed a new parameter, ηκ that properly characterizes the incidence angle dependence (relative to the symmetry axis) of seismic bodywaves in a transverse isotropy (TI) system. While the commonly used fifth parameter in global seismology to describe TI system, η = F/(A ‑ 2L), has no simple physical meaning, the newly defined parameter, ηκ = (F + L)/[(A ‑ L)1/2(C ‑ L)1/2] where A, C, F and L denote the Love's elastic constants for TI, measures the departure from the "elliptic condition" when ηκ not equal to unity, and characterizes nicely the incidence angle dependence of bodywaves. When existing models of upper mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220km), ηκ < 1 in the top half and ηκ > 1 in the lower half. If ηκ > 1, anisotropy cannot be attributed to the layering of homogeneous layers, and thus requires the presence of intrinsic anisotropy (Kawakatsu, 2016). To further investigate significance of the new parameter for long-period seismology, partial derivatives of surface wave phase velocity and normal mode eigen-frequency for the new set of five parameters are examined. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ is more resolved than is usually considered. While partial derivatives for (anisotropic) S-velocities are not so changed, those for (anisotropic) P-velocities are significantly modified; the sensitivity for anisotropic P-velocities is greatly reduced. In contrary to Dziewonski and Anderson (1981)'s suggestion, there is not much control on the anisotropic P-velocities. The significance of ηκ for the long-period seismology has been shown. While how well the fifth parameter is constrained from data needs to be carefully examined, we now have, at least, a parameter that properly characterizes the TI system. This
Aerodynamic Parameter Identification of a Venus Lander
NASA Astrophysics Data System (ADS)
Sykes, Robert A.
An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.
Modelling spin Hamiltonian parameters of molecular nanomagnets.
Gupta, Tulika; Rajaraman, Gopalan
2016-07-12
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs. PMID:27366794
Robust parameter estimation method for bilinear model
NASA Astrophysics Data System (ADS)
Ismail, Mohd Isfahani; Ali, Hazlina; Yahaya, Sharipah Soaad S.
2015-12-01
This paper proposed the method of parameter estimation for bilinear model, especially on BL(1,0,1,1) model without and with the presence of additive outlier (AO). In this study, the estimated parameters for BL(1,0,1,1) model are using nonlinear least squares (LS) method and also through robust approaches. The LS method employs the Newton-Raphson (NR) iterative procedure in estimating the parameters of bilinear model, but, using LS in estimating the parameters can be affected with the occurrence of outliers. As a solution, this study proposed robust approaches in dealing with the problem of outliers specifically on AO in BL(1,0,1,1) model. In robust estimation method, for improvement, we proposed to modify the NR procedure with robust scale estimators. We introduced two robust scale estimators namely median absolute deviation (MADn) and Tn in linear autoregressive model, AR(1) that be adequate and suitable for bilinear BL(1,0,1,1) model. We used the estimated parameter value in AR(1) model as an initial value in estimating the parameter values of BL(1,0,1,1) model. The investigation of the performance of LS and robust estimation methods in estimating the coefficients of BL(1,0,1,1) model is carried out through simulation study. The achievement of performance for both methods will be assessed in terms of bias values. Numerical results present that, the robust estimation method performs better than LS method in estimating the parameters without and with the presence of AO.
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, H.
2015-12-01
Kawakatsu et al. (2015) recently proposed a new parameter, ¥eta¥kappa that properly characterizes the incidence angle dependence (relative to the symmetry axis) of seismic bodywaves in a transverse isotropy (TI) system. While the commonly used fifth parameter in global seismology to describe TI system, ¥eta=F/(A-2L) , has no simple physical meaning, the newly defined parameter, ¥[¥eta_{¥kappa} = ¥frac{F+L}{ (A-L)^{1/2}(C-L)^{1/2} } ,¥] where A, C, F and L denote the Love's elastic constants for TI, measures the departure from the ``elliptic condition" (Thomsen, 1986) when ¥eta¥kappa not equal to unity, and characterizes nicely the incidence angle dependence of bodywaves. When existing models of upper mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220km), ¥eta¥kappa < 1 in the top half and ¥eta¥kappa > 1 in the lower half. If ¥eta¥kappa > 1, anisotropy cannot be attributed to the layering of homogeneous layers. While how well the fifth parameter is constrained from data needs to be carefully examined, we now have, at least, a parameter that properly characterizes the TI system. I suggest (hope) this parameter to be used in future surface wave and bodywave studiesof the mantle anisotropy, rather than the conventional ¥eta.¥bigskip¥noindent{¥bf Reference:} ¥¥¥noindentKawakatsu, H, J-P Montagner, and T-R A Song, On DLA's ¥eta, in The Interdisciplinary Earth: A volume in honor of Don L. Anderson, edited by Foulger et al., GSA, in press (2015).
Inhomogeneity-induced variance of cosmological parameters
NASA Astrophysics Data System (ADS)
Wiegand, A.; Schwarz, D. J.
2012-02-01
Context. Modern cosmology relies on the assumption of large-scale isotropy and homogeneity of the Universe. However, locally the Universe is inhomogeneous and anisotropic. This raises the question of how local measurements (at the ~102 Mpc scale) can be used to determine the global cosmological parameters (defined at the ~104 Mpc scale)? Aims: We connect the questions of cosmological backreaction, cosmic averaging and the estimation of cosmological parameters and show how they relate to the problem of cosmic variance. Methods: We used Buchert's averaging formalism and determined a set of locally averaged cosmological parameters in the context of the flat Λ cold dark matter model. We calculated their ensemble means (i.e. their global value) and variances (i.e. their cosmic variance). We applied our results to typical survey geometries and focused on the study of the effects of local fluctuations of the curvature parameter. Results: We show that in the context of standard cosmology at large scales (larger than the homogeneity scale and in the linear regime), the question of cosmological backreaction and averaging can be reformulated as the question of cosmic variance. The cosmic variance is found to be highest in the curvature parameter. We propose to use the observed variance of cosmological parameters to measure the growth factor. Conclusions: Cosmological backreaction and averaging are real effects that have been measured already for a long time, e.g. by the fluctuations of the matter density contrast averaged over spheres of a certain radius. Backreaction and averaging effects from scales in the linear regime, as considered in this work, are shown to be important for the precise measurement of cosmological parameters.
Blind estimation of compartmental model parameters.
Di Bella, E V; Clackdoyle, R; Gullberg, G T
1999-03-01
Computation of physiologically relevant kinetic parameters from dynamic PET or SPECT imaging requires knowledge of the blood input function. This work is concerned with developing methods to accurately estimate these kinetic parameters blindly; that is, without use of a directly measured blood input function. Instead, only measurements of the output functions--the tissue time-activity curves--are used. The blind estimation method employed here minimizes a set of cross-relation equations, from which the blood term has been factored out, to determine compartmental model parameters. The method was tested with simulated data appropriate for dynamic SPECT cardiac perfusion imaging with 99mTc-teboroxime and for dynamic PET cerebral blood flow imaging with 15O water. The simulations did not model the tomographic process. Noise levels typical of the respective modalities were employed. From three to eight different regions were simulated, each with different time-activity curves. The time-activity curve (24 or 70 time points) for each region was simulated with a compartment model. The simulation used a biexponential blood input function and washin rates between 0.2 and 1.3 min(-1) and washout rates between 0.2 and 1.0 min(-1). The system of equations was solved numerically and included constraints to bound the range of possible solutions. From the cardiac simulations, washin was determined to within a scale factor of the true washin parameters with less than 6% bias and 12% variability. 99mTc-teboroxime washout results had less than 5% bias, but variability ranged from 14% to 43%. The cerebral blood flow washin parameters were determined with less than 5% bias and 4% variability. The washout parameters were determined with less than 4% bias, but had 15-30% variability. Since washin is often the parameter of most use in clinical studies, the blind estimation approach may eliminate the current necessity of measuring the input function when performing certain dynamic studies
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests
Cosmological parameter estimation: impact of CMB aberration
Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es
2013-04-01
The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.
Pumping test evaluation of stream depletion parameters.
Lough, Hilary K; Hunt, Bruce
2006-01-01
Descriptions are given of a pumping test and a corresponding analysis that permit calculation of all five hydrogeological parameters appearing in the Hunt (2003) solution for stream depletion caused by ground water abstraction from a well beside a stream. This solution assumes that flow in the pumped aquifer is horizontal, flow in the overlying aquitard or system of aquitards is vertical, and the free surface in the top aquitard is allowed to draw down. The definition of an aquitard in this paper is any layer with a vertical hydraulic conductivity much lower than the horizontal hydraulic conductivity of the pumped aquifer. These "aquitards" may be reasonably permeable layers but are distinguished from the pumped aquifer by their hydraulic conductivity contrast. The pumping test requires a complete set of drawdown measurements from at least one observation well. This well must be deep enough to penetrate the pumped aquifer, and pumping must continue for a sufficient time to ensure that depleted streamflow becomes a significant portion of the well abstraction rate. Furthermore, two of the five parameters characterize an aquitard that overlies the pumped aquifer, and values for these parameters are seen to be dependent upon the initial water table elevation in the aquitard. The field test analyzed herein used a total of eight observation wells screened in the pumped aquifer, and measurements from these wells gave eight sets of parameters that are used in a sensitivity analysis to determine the relative importance of each parameter in the stream depletion calculations. PMID:16857031
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results. PMID:27408830
Batdorf parameter for the spherical shells tectonics
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuhei; Nagahama, Hiroyuki
2015-04-01
The buckling phenomena of the subducting lithosphere due to the sphericity of the earth has been studied as spherical shell tectonics which happen the megaquake along the boundary of subducting lithosphere. The earthquake scale is decided by slab length or arc length. However, a relationship between slab length and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell has not been clear yet. So, by using the data set of the geometrical parameters for subducting lithosphere andBuckingham's Pi-theorem, we found out a new linear relationship between Batdorf parameter Z = L2(l - v2)0.5/(Rh) for the measurement of the slab length L and the normalized hydrostatic pressure along the bottom circumferential edge of a hemispherical shell Q = qRL2/(π2D), where D = Eh3/[12(1 - v2)] with E = modulus of elasticity of lithosphere, R is Earth radius, q is the hydrostatic pressure along the bottom circumferential edge of a hemispherical shell, and h is the thickness of subducting lithosphere. In the engineering sciences, a similar relationship between Batdorf parameter for the panel length and normalized hydrostatic pressure was proposed for the buckling of partially liquid-filled circular cylindrical shells under hydrostatic pressure. Moreover, by previous researches, the slab length is approximately proportional to the arc length or the lithosphere thickness related to lithosphere age. Therefore, the Batdorf parameter for subducting lithosphere is an important parameter for the spherical shells tectonics.
Cosmological parameter estimation: impact of CMB aberration
NASA Astrophysics Data System (ADS)
Catena, Riccardo; Notari, Alessio
2013-04-01
The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.
A Tool for Parameter-space Explorations
NASA Astrophysics Data System (ADS)
Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu
A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.
ERIC Educational Resources Information Center
Karkee, Thakur B.; Wright, Karen R.
2004-01-01
Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…
Cosmological parameters from lenses distance ratio
NASA Astrophysics Data System (ADS)
Cardone, Vincenzo F.; Piedipalumbo, Ester; Scudellaro, Paolo
2016-01-01
Strong lensing provides popular techniques to investigate the mass distribution of intermediate redshift galaxies, testing galaxy evolution and formation scenarios. It especially probes the background cosmic expansion, hence constraining cosmological parameters. The measurement of Einstein radii and central velocity dispersions indeed allows to trace the ratio Ds/Dls between the distance Ds from the observer to the source and the distance Dls from the lens to the source. We present an improved method to explicitly include the two-component structure in the galaxy lens modelling, in order to analyse the role played by the redshift and the model dependence on a nuisance parameter, F_E, which is usually marginalized in the cosmological applications. We show how to deal with these problems and carry on a Fisher matrix analysis to infer the accuracy on cosmological parameters achieved by this method.
Proline puckering parameters for collagen structure simulations
Wu, Di
2015-03-15
Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.
Effect of Burnishing Parameters on Surface Finish
NASA Astrophysics Data System (ADS)
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2016-06-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
Simulating performance sensitivity of supercomputer job parameters.
Clearwater, Scott Harvey; Kleban, Stephen David
2003-03-01
We report on the use of a supercomputer simulation to study the performance sensitivity to systematic changes in the job parameters of run time, number of CPUs, and interarrival time. We also examine the effect of changes in share allocation and service ratio for job prioritization under a Fair Share queuing Algorithm to see the effect on facility figures of merit. We used log data from the ASCI supercomputer Blue Mountain and the ASCI simulator BIRMinator to perform this study. The key finding is that the performance of the supercomputer is quite sensitive to all the job parameters with the interarrival rate of the jobs being most sensitive at the highest rates and increasing run times the least sensitive job parameter with respect to utilization and rapid turnaround. We also find that this facility is running near its maximum practical utilization. Finally, we show the importance of the use of simulation in understanding the performance sensitivity of a supercomputer.
On entanglement of light and Stokes parameters
NASA Astrophysics Data System (ADS)
Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin
2016-08-01
We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.
Asteroid absolute magnitudes and slope parameters
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.
1991-01-01
A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.
Estimating physiological skin parameters from hyperspectral signatures.
Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe
2013-05-01
We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers. PMID:23722495
Optical phantoms with adjustable subdiffusive scattering parameters.
Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin
2015-10-01
A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment. PMID:26473589
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-01-01
Properties of a new parameter, ηκ, that is recently introduced by Kawakatsu et al. for transverse isotropy are examined. It is illustrated that the parameter nicely characterizes the incidence angle dependence of bodywave phase velocities for vertical transverse isotropy models that share the same P- and S-wave anisotropy. When existing models of upper-mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220 km), ηκ < 1 in the upper half and ηκ > 1 in the lower half. If ηκ > 1, anisotropy cannot be attributed to a layering of homogeneous isotropic layers, and thus requires the presence of intrinsic anisotropy.
GALA: Stellar atmospheric parameters and chemical abundances
NASA Astrophysics Data System (ADS)
Mucciarelli, A.; Pancino, E.; Lovisi, L.; Ferraro, F. R.; Lapenna, E.
2013-02-01
GALA is a freely distributed Fortran code to derive the atmospheric parameters (temperature, gravity, microturbulent velocity and overall metallicity) and abundances for individual species of stellar spectra using the classical method based on the equivalent widths of metallic lines. The abundances of individual spectral lines are derived by using the WIDTH9 code developed by R. L. Kurucz. GALA is designed to obtain the best model atmosphere, by optimizing temperature, surface gravity, microturbulent velocity and metallicity, after rejecting the discrepant lines. Finally, it computes accurate internal errors for each atmospheric parameter and abundance. The code obtains chemical abundances and atmospheric parameters for large stellar samples quickly, thus making GALA an useful tool in the epoch of the multi-object spectrographs and large surveys.
Degradation Parameters from Pulse-Chase Experiments
Sin, Celine; Chiarugi, Davide; Valleriani, Angelo
2016-01-01
Pulse-chase experiments are often used to study the degradation of macromolecules such as proteins or mRNA. Considerations for the choice of pulse length include the toxicity of the pulse to the cell and maximization of labeling. In the general case of non-exponential decay, varying the length of the pulse results in decay patterns that look different. Analysis of these patterns without consideration to pulse length would yield incorrect degradation parameters. Here we propose a method that constructively includes pulse length in the analysis of decay patterns and extracts the parameters of the underlying degradation process. We also show how to extract decay parameters reliably from measurements taken during the pulse phase. PMID:27182698
Determining Spacecraft Reaction Wheel Friction Parameters
NASA Technical Reports Server (NTRS)
Sarani, Siamak
2009-01-01
Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.
Determination of kinetic parameters for biomass combustion.
Álvarez, A; Pizarro, C; García, R; Bueno, J L; Lavín, A G
2016-09-01
The aim of this work is to provide a wide database of kinetic data for the most common biomass by thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). Due to the characteristic parameters of DTG curves, a two-stage reaction model is proposed and the kinetic parameters obtained from model-based methods with energy activation values for first and second stages in the range 1.75·10(4)-1.55·10(5)J/mol and 1.62·10(4)-2.37·10(5)J/mol, respectively. However, it has been found that Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose model-free methods are not suitable to determine the kinetic parameters of biomass combustion since the assumptions of these two methods were not accomplished in the full range of the combustion process. PMID:27233095
Estimating physiological skin parameters from hyperspectral signatures
NASA Astrophysics Data System (ADS)
Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe
2013-05-01
We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.
Technical parameters for specifying imagery requirements
NASA Technical Reports Server (NTRS)
Coan, Paul P.; Dunnette, Sheri J.
1994-01-01
Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.
Optical phantoms with adjustable subdiffusive scattering parameters
NASA Astrophysics Data System (ADS)
Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin
2015-10-01
A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment.
Aquifer parameter estimation from surface resistivity data.
Niwas, Sri; de Lima, Olivar A L
2003-01-01
This paper is devoted to the additional use, other than ground water exploration, of surface geoelectrical sounding data for aquifer hydraulic parameter estimation. In a mesoscopic framework, approximated analytical equations are developed separately for saline and for fresh water saturations. A few existing useful aquifer models, both for clean and shaley sandstones, are discussed in terms of their electrical and hydraulic effects, along with the linkage between the two. These equations are derived for insight and physical understanding of the phenomenon. In a macroscopic scale, a general aquifer model is proposed and analytical relations are derived for meaningful estimation, with a higher level of confidence, of hydraulic parameter from electrical parameters. The physical reasons for two different equations at the macroscopic level are explicitly explained to avoid confusion. Numerical examples from existing literature are reproduced to buttress our viewpoint. PMID:12533080
Parameters of high-temperature superconducting transformers
NASA Astrophysics Data System (ADS)
Volkov, E. P.; Dzhafarov, E. A.
2015-12-01
Parameters of the high-temperature superconducting (HTSC) transformer with a core-type magnetic circuit and with coaxial and symmetrical interleaved windings made of the first-generation HTSC wire with a localized magnetic field are considered. The parameters of the most widespread core-type transformer with a coaxial HTSC winding are compared with those of a conventional transformer with a copper wire winding. Advantages of the HTSC transformers, such as reduction in the leakage inductive reactance and the HTSC winding's cross section, volume, and mass, as compared with the same parameters of conventional transformers with a copper wire winding are demonstrated. The efficiency of the HTSC transformers has proven to be determined predominantly by the core loss. In order to increase the efficiency of the HTSC transformer, it is proposed to use the amorphous electrical steel as the material of its magnetic circuit.
Traveling waves and impact-parameter correlations
Munier, S.; Salam, G. P.; Soyez, G.
2008-09-01
It is usually assumed that the high-energy evolution of partons in QCD remains local in coordinate space. In particular, fixed impact-parameter scattering is thought to be in the universality class of one-dimensional reaction-diffusion processes as if the evolutions at different points in the transverse plane became uncorrelated through rapidity evolution. We check this assumption by numerically comparing a toy model with QCD-like impact-parameter dependence to its exact counterpart with uniform evolution in impact-parameter space. We find quantitative differences, but which seem to amount to a mere rescaling of the strong coupling constant. Since the rescaling factor does not show any strong {alpha}{sub s} dependence, we conclude that locality is well verified, up to subleading terms at small {alpha}{sub s}.
Determination of range parameters of observation devices
NASA Astrophysics Data System (ADS)
Bareła, J.; Kastek, M.; Firmanty, K.; Trzaskawka, P.; Dulski, R.; Kucharz, J.
2012-10-01
Range parameters of observation devices can be determined on the basis of numerical simulations (NVTherm) or on the basis of measured characteristics. Those measurements can be conducted in both laboratory and field conditions. It is, however, difficult to carry on reliable field measurements of range parameters because they are strongly depended on atmospheric conditions. Thus the laboratory measurements are more favorable option. Analysis of literature and catalogue specifications reveal, that range parameters are given mainly on the basis of Johnson criteria or TTP model. The Johnson criteria has been used since the 50s and most of catalogue range specifications are determined according to it. There are also NATO standards, which describe the measurement procedures and methodology required to define the detection, recognition and identification ranges for standard NATO targets. For the determination of range parameters the following device characteristics must be known: minimal resolvable temperature for thermal imaging devices and minimal resolvable contrast for VIS devices. The TTP model offers a new approach to the determination of range characteristics of observation devices. It has been developed by U.S. Army's Night Vision and Electronic Sensors Directorate since the year 2000. It was created because the modified Johnson criteria did not yield reliable results in case of modern systems with digital image processing. In order to determine the range parameters using TTP model, the modulation transfer function MTF, presample MTF function, and 3D noise of a tested system must be known as well as its basic design data as optical magnification and display type. The paper describes the measurement stand, measurement methodology and the procedure for the determination of range parameters. The results for thermal and VIS cameras are also presented, and they are analyzed and compared with the results obtained from current methods, including the measurement
Optimized Parameters for a Mercury Jet Target
Ding, X.; Kirk, H.
2010-12-01
A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.
Parameter estimate of signal transduction pathways
Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio
2006-01-01
Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160
Application of Statistically Derived CPAS Parachute Parameters
NASA Technical Reports Server (NTRS)
Romero, Leah M.; Ray, Eric S.
2013-01-01
The Capsule Parachute Assembly System (CPAS) Analysis Team is responsible for determining parachute inflation parameters and dispersions that are ultimately used in verifying system requirements. A model memo is internally released semi-annually documenting parachute inflation and other key parameters reconstructed from flight test data. Dispersion probability distributions published in previous versions of the model memo were uniform because insufficient data were available for determination of statistical based distributions. Uniform distributions do not accurately represent the expected distributions since extreme parameter values are just as likely to occur as the nominal value. CPAS has taken incremental steps to move away from uniform distributions. Model Memo version 9 (MMv9) made the first use of non-uniform dispersions, but only for the reefing cutter timing, for which a large number of sample was available. In order to maximize the utility of the available flight test data, clusters of parachutes were reconstructed individually starting with Model Memo version 10. This allowed for statistical assessment for steady-state drag area (CDS) and parachute inflation parameters such as the canopy fill distance (n), profile shape exponent (expopen), over-inflation factor (C(sub k)), and ramp-down time (t(sub k)) distributions. Built-in MATLAB distributions were applied to the histograms, and parameters such as scale (sigma) and location (mu) were output. Engineering judgment was used to determine the "best fit" distribution based on the test data. Results include normal, log normal, and uniform (where available data remains insufficient) fits of nominal and failure (loss of parachute and skipped stage) cases for all CPAS parachutes. This paper discusses the uniform methodology that was previously used, the process and result of the statistical assessment, how the dispersions were incorporated into Monte Carlo analyses, and the application of the distributions in
Determining camera parameters for round glassware measurements
NASA Astrophysics Data System (ADS)
Baldner, F. O.; Costa, P. B.; Gomes, J. F. S.; Filho, D. M. E. S.; Leta, F. R.
2015-01-01
Nowadays there are many types of accessible cameras, including digital single lens reflex ones. Although these cameras are not usually employed in machine vision applications, they can be an interesting choice. However, these cameras have many available parameters to be chosen by the user and it may be difficult to select the best of these in order to acquire images with the needed metrological quality. This paper proposes a methodology to select a set of parameters that will supply a machine vision system with the needed quality image, considering the measurement required of a laboratory glassware.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Bayesian parameter estimation for effective field theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah; Klco, Natalie; Furnstahl, Richard; Phillips, Daniel; Thapilaya, Arbin
2015-10-01
We present a procedure based on Bayesian statistics for effective field theory (EFT) parameter estimation from experimental or lattice data. The extraction of low-energy constants (LECs) is guided by physical principles such as naturalness in a quantifiable way and various sources of uncertainty are included by the specification of Bayesian priors. Special issues for EFT parameter estimation are demonstrated using representative model problems, and a set of diagnostics is developed to isolate and resolve these issues. We apply the framework to the extraction of the LECs of the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Estimation of Seismicity Parameters Using a Computer
NASA Astrophysics Data System (ADS)
Veneziano, Daniele
The book is a translation from an original in Russian, published in 1972. After 15 years, the book appears dated, its emphasis being the use of computers as an innovative technology for seismicity parameter estimation.The book is divided into two parts. Part I (29 pages) reviews the literature for quantitative measures of seismicity and for earthquake recurrence models, and describes previous uses of the computer to determine seismicity parameters. The literature reviewed is mainly that of the 1960s, with prevalence of Russian and European titles. This part of the book may retain some interest for the historical perspective it gives on the subject.
AM1* parameters for manganese and iron.
Kayi, Hakan; Clark, Timothy
2010-06-01
We report the parameterization of AM1* for the elements manganese and iron. The basis sets for both metals contain one set each of s-, p- and d-orbitals. AM1* parameters are now available for H, C, N, O and F (which use the original AM1 parameters), Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, I and Au. The performance and typical errors of AM1* are discussed for Mn and Fe, and are compared with available NDDO Hamiltonians. PMID:19937261
Design parameters of toroidal and bobbin magnetics
NASA Technical Reports Server (NTRS)
Mclyman, W. T.
1973-01-01
The adoption by NASA of the metric system for dimensioning to replace the long-used English units imposes a requirement on the U.S. transformer designer to convert from the familiar units to the less familiar metric equivalents. Material is presented to assist in that transition in the field of transformer design and fabrication. The conversion data makes it possible for the designer to obtain a fast and close approximation of significant parameters such as size, weight, and temperature rise. Nomographs are included to provide a close approximation for breadboarding purposes. For greater convenience, derivations of some of the parameters are also presented.
Model atmospheres and fundamental stellar parameters
NASA Astrophysics Data System (ADS)
Plez, B.
2013-11-01
I start by illustrating the need for precise and accurate fundamental stellar parameters through there examples: lithium abundances in metal-poor stars, the derivation of stellar ages from isochrones, and the chemical composition of planet-hosting stars. I present widely used methods (infrared flux method, spectroscopy) in the determination of T_{eff}, and log g. I comment upon difficulties encountered with the determination of stellar parameters of red supergiant stars, and I discuss the impact of non-LTE and 3D hydrodynamical effects.
Atmospheric Stellar Parameters using Numerical CCFs
NASA Astrophysics Data System (ADS)
Malavolta, L.
2013-09-01
We present a new technique for the determination of atmospheric stellar parameters for low signal-to-noise spectra, based on the determination of several numerical Cross Correlation Functions (CCFs). From a qualitative point of view it is well know that the shape of the CCF depends somehow by the characteristics of the spectrum under analysis, but the interplay between temperature, metallicity and gravity in line formation affects a direct determination from a single CCF. Taking inspiration by the wellexperimented approach in temperature determination with equivalent widths, we use several CCFs to break the temperature-metallicity degeneracy by including lines selected according to their excitation potential. The use of neutral Iron lines ensures a reduced effected from gravity, which is in turn determined using ionized species. Atmosphere parameters as function of the CCFs properties are calibrated using a set of stars with equivalent width (EW)-derived parameters from high signal-to-noise spectra (Adibekyan et al. 2012). First preliminary results are shown in 1, where the difference between the atmosphere parameters determined with our technique on individual observations are compared with the EW-based ones (on co-added spectra) as functions of the signal-to-noise for 1111 FGK stars. The aim of this technique is to provide a quick and reliable atmosphere parameters determination right after the first spectrum acquisition. In particular the project has started after the installation of HARPS-N at the Telescopio Nazionale Galileo (Cosentino et al. 2012) for confirmation and follow-up of Kepler super- Earth and hot-Neptunes candidates. The expected radial velocity semi-amplitude K induced by the transiting planet and the precision of the radial-velocity measurements depend strongly on the atmospheric parameters of the host stars. An underestimated expected K would cause the exclusion from the target list of a star with a detectable planet, while in the opposite
A three-parameter asteroid taxonomy
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.; Williams, James G.; Matson, Dennis L.; Veeder, Glenn J.; Gradie, Jonathan C.
1989-01-01
Broadband U, V, and x photometry together with IRAS asteroid albedos have been used to construct an asteroid classification system. The system is based on three parameters (U-V and v-x color indices and visual geometric albedo), and it is able to place 96 percent of the present sample of 357 asteroids into 11 taxonomic classes. It is noted that all but one of these classes are analogous to those previously found using other classification schemes. The algorithm is shown to account for the observational uncertainties in each of the classification parameters.
Blast wave parameters at diminished ambient pressure
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.
2015-04-01
Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.
Stokes parameters in undergraduate laboratory exercises
NASA Astrophysics Data System (ADS)
Topasna, Gregory A.; Topasna, Daniela M.
2009-06-01
Polarization is a concept most students readily understand in terms of the preferential direction of electric field vectors. The visualization of the electric field component of an electromagnetic wave facilitates the understanding of a large body of knowledge concerning propagation and measurement of completely and partially polarized light. Little known to undergraduate students, however, is the Stokes parameters and students typically receive a cursory treatment regarding their usefulness in describing and measuring polarized light in a laboratory or astronomical setting. We present laboratory exercises where students use Stokes parameters when measuring and describing the polarization of electromagnetic radiation and in the statistical analysis of polarized light.
Pellet impact drilling operational parameters: experimental research
NASA Astrophysics Data System (ADS)
Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Aliev, F. R.; Gorbenko, M. V.; Baranova, A. V.
2015-02-01
The article deals with the study of particle-impact drilling that is designed to enhance the rate-of-penetration function in hard and tough drilling environments. It contains the experimental results on relation between drilling parameters and drilling efficiency, the experiments being conducted by means of a specially designed laboratory model. To interpret the results properly a high-speed camera was used to capture the pellet motion. These results can be used to choose optimal parameters, as well as to develop enhanced design of ejector pellet impact drill bits.
Linear Parameter Varying Control for Actuator Failure
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.
GEODYN- ORBITAL AND GEODETIC PARAMETER ESTIMATION
NASA Technical Reports Server (NTRS)
Putney, B.
1994-01-01
The Orbital and Geodetic Parameter Estimation program, GEODYN, possesses the capability to estimate that set of orbital elements, station positions, measurement biases, and a set of force model parameters such that the orbital tracking data from multiple arcs of multiple satellites best fits the entire set of estimation parameters. The estimation problem can be divided into two parts: the orbit prediction problem, and the parameter estimation problem. GEODYN solves these two problems by employing Cowell's method for integrating the orbit and a Bayesian least squares statistical estimation procedure for parameter estimation. GEODYN has found a wide range of applications including determination of definitive orbits, tracking instrumentation calibration, satellite operational predictions, and geodetic parameter estimation, such as the estimations for global networks of tracking stations. The orbit prediction problem may be briefly described as calculating for some later epoch the new conditions of state for the satellite, given a set of initial conditions of state for some epoch, and the disturbing forces affecting the motion of the satellite. The user is required to supply only the initial conditions of state and GEODYN will provide the forcing function and integrate the equations of motion of the satellite. Additionally, GEODYN performs time and coordinate transformations to insure the continuity of operations. Cowell's method of numerical integration is used to solve the satellite equations of motion and the variational partials for force model parameters which are to be adjusted. This method uses predictor-corrector formulas for the equations of motion and corrector formulas only for the variational partials. The parameter estimation problem is divided into three separate parts: 1) instrument measurement modeling and partial derivative computation, 2) data error correction, and 3) statistical estimation of the parameters. Since all of the measurements modeled by
Selection of informative parameters of vibroacoustic processes
NASA Technical Reports Server (NTRS)
Koshek, L. N.
1973-01-01
The problem of selecting informative parameters of vibro-acoustic processes and the construction of apparatus for their determination are discussed. It is assumed that the processes being investigated are structurally uniform and either purely random or contain not very many determinative components.
Practice Parameter for Psychiatric Consultation to Schools
ERIC Educational Resources Information Center
Journal of the American Academy of Child and Adolescent Psychiatry, 2005
2005-01-01
This practice parameter reviews the topic of psychiatric consultation to schools. The review covers the history of school consultation and current consultative models; the process of developing a consultative relationship; school administrative procedures, personnel, and milieu; legal protections for students with mental disabilities; and issues…
Local tsunamis and earthquake source parameters
Geist, Eric L.
1999-01-01
This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.
A variable parameter parametric snake method
NASA Astrophysics Data System (ADS)
Marouf, A.; Houacine, A.
2015-12-01
In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.
Practice Parameter for Psychodynamic Psychotherapy with Children
ERIC Educational Resources Information Center
Medicus, Jennifer
2012-01-01
This Practice Parameter describes the principles of psychodynamic psychotherapy with children and is based on clinical consensus and available research evidence. It presents guidelines for the practice of child psychodynamic psychotherapy, including indications and contraindications, the setting, verbal and interactive (play) techniques, work with…
Physiological parameters in space settlement design
NASA Technical Reports Server (NTRS)
Billingham, J.
1977-01-01
One of the major goals of space settlement design is the provision of an environment which will allow full health and effective performance for all members of the population. Attention is given to questions concerning an alternation of 1 G-0 G environment, the physiology of weightlessness, the transit between earth and settlement, research on physiological parameters, and the need for a sensitivity analysis.
Order Parameters for Two-Dimensional Networks
NASA Astrophysics Data System (ADS)
Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi
2007-10-01
We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.
Extreme parameter sensitivity in quasidilaton massive gravity
NASA Astrophysics Data System (ADS)
Anselmi, Stefano; López Nacir, Diana; Starkman, Glenn D.
2015-10-01
We reanalyze the behavior of Friedmann-Lemaître-Robertson-Walker cosmologies in the recently proposed quasidilaton massive-gravity model, and discover that the background dynamics present hitherto unreported features that require unexpected fine-tuning of the additional fundamental parameters of the theory for an observationally consistent background cosmology. We also identify new allowed regions in the parameter space and exclude some of the previously considered ones. The evolution of the mass of gravitational waves reveals nontrivial behavior, exhibiting a mass-squared that may be negative in the past, and that presently, while positive, is larger than the square of the Hubble parameter, H02 . These properties of the gravity-wave mass have the potential to lead to observational tests of the theory. While quasidilaton massive gravity is known to have issues with stability at short distances, the current analysis is a first step toward the investigation of the more stable extended quasidilaton massive-gravity theory, with some expectation that both the fine-tuning of parameters and the interesting behavior of the gravity-wave mass will persist.
Multi-Parameter Scattering Sensor and Methods
NASA Technical Reports Server (NTRS)
Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)
2016-01-01
Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.
Global Model Analysis by Parameter Space Partitioning
ERIC Educational Resources Information Center
Pitt, Mark A.; Kim, Woojae; Navarro, Daniel J.; Myung, Jay I.
2006-01-01
To model behavior, scientists need to know how models behave. This means learning what other behaviors a model can produce besides the one generated by participants in an experiment. This is a difficult problem because of the complexity of psychological models (e.g., their many parameters) and because the behavioral precision of models (e.g.,…
Models and parameters for environmental radiological assessments
Miller, C W
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
Divertor parameters and divertor operation in ASDEX
NASA Astrophysics Data System (ADS)
Fussmann, G.; Ditte, U.; Eckstein, W.; Grave, T.; Keilhacker, M.; McCormick, K.; Murmann, H.; Röhr, H.; Elshaer, M.; Steuer, K.-H.; Szymanski, Z.; Wagner, F.; Becker, G.; Bernhardi, K.; Eberhagen, A.; Gehre, O.; Gernhardt, J.; Gierke, G. V.; Glock, E.; Gruber, O.; Haas, G.; Hesse, M.; Janeschitz, G.; Karger, F.; Kissel, S.; Klüber, O.; Kornherr, M.; Lisitano, G.; Mayer, H. M.; Meisel, D.; Müller, E. R.; Poschenrieder, W.; Ryter, F.; Rapp, H.; Schneider, F.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Stäbler, A.; Vollmer, O.
1984-12-01
Recent measurements of plasma boundary and divertor scrape-off parameters for ohmically and neutral injection heated plasmas are presented. For these data the power flow onto the divertor plates and the sputtering rates at the plates are calculated and compared with separate measurements. The impurity behaviour in front of the plates is also discussed.
DXA parameters: beyond bone mineral density.
Briot, Karine
2013-05-01
Dual-energy X-ray absorptiometry (DXA) is the reference standard for measuring bone mineral density (BMD) to diagnose osteoporosis. However, BMD measurement alone does not reliably predict the fracture risk. DXA can be used to assess other parameters (e.g. presence of vertebral fractures, bone microarchitecture, bone geometry, and body composition) simultaneously with BMD measurements, to help identify individuals at high fracture risk. Among these parameters, some are suitable for use in clinical practice, whereas others are reserved for research. Vertebral fracture assessment (VFA) is a very low radiation-dose method for detecting thoracic and lumbar vertebral fractures. Compared to standard radiography, VFA can be used in a broader population to detect asymptomatic vertebral fractures. The very good negative predictive value of VFA leads, in one-third of cases, to changes in patient management (drug treatment and prescription of radiographs). The trabecular bone score (TBS) is a noninvasively measured texture parameter that correlates with 3D bone microarchitecture parameters independently from BMD and that can be determined from lumbar-spine DXA images. Several cross-sectional studies and a prospective study established that the TBS was effective in identifying individuals with fractures. Additional studies will have to be performed to determine whether TBS determination can be recommended for everyday practice when treatment decisions are difficult. PMID:23622733
Resonance Parameter Adjustment Based on Integral Experiments
Sobes, Vladimir; Leal, Luiz; Arbanas, Goran; Forget, Benoit
2016-06-02
Our project seeks to allow coupling of differential and integral data evaluation in a continuous-energy framework and to use the generalized linear least-squares (GLLS) methodology in the TSURFER module of the SCALE code package to update the parameters of a resolved resonance region evaluation. We recognize that the GLLS methodology in TSURFER is identical to the mathematical description of a Bayesian update in SAMMY, the SAMINT code was created to use the mathematical machinery of SAMMY to update resolved resonance parameters based on integral data. Traditionally, SAMMY used differential experimental data to adjust nuclear data parameters. Integral experimental data, suchmore » as in the International Criticality Safety Benchmark Experiments Project, remain a tool for validation of completed nuclear data evaluations. SAMINT extracts information from integral benchmarks to aid the nuclear data evaluation process. Later, integral data can be used to resolve any remaining ambiguity between differential data sets, highlight troublesome energy regions, determine key nuclear data parameters for integral benchmark calculations, and improve the nuclear data covariance matrix evaluation. Moreover, SAMINT is not intended to bias nuclear data toward specific integral experiments but should be used to supplement the evaluation of differential experimental data. Using GLLS ensures proper weight is given to the differential data.« less
Design parameters for rotating cylindrical filtration
NASA Technical Reports Server (NTRS)
Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.
2002-01-01
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.
Vital parameters related low level laser radiation
NASA Astrophysics Data System (ADS)
Palmieri, Beniamino; Capone, Stefania
2011-08-01
The first work hypotesis is that biosensors on the patient detecting heart, breath rate and skin parameters, modulate laser radiation to enhance the therapeutic outcome; in the second work hypotesis: biofeedback could be effective, when integrated in the low level laser energy release.
Automated determination of volume phase hologram parameters
NASA Astrophysics Data System (ADS)
Brown, Robert D.; Stanley, James H.
2015-03-01
Commercially available ray tracing programs by themselves are not adequate for modelling optical systems with holographic gratings. In this paper, we describe a suite of tools that we have developed specifically for working with volume phase holograms. One tool measures the diffraction efficiency of a grating with respect to angle and position. Our automated measurement process is described. The measured diffraction data is analyzed to extract key grating parameters; such as, grating thickness and index modulation. The theoretical basis for this analysis is described. The extracted grating parameters can be used to ray trace expected performance for comparison with direct measurements. Such a methodology has allowed us to develop modelling capabilities that can be confidently used to compare design options and guide development activities. In our environment, data is collected and grating parameters are extracted using LabView; ray tracing is performed using Zemax. The concepts, however, are quite general. An example of measuring a grating recorded in a photopolymer and extracting its grating parameters is given. Results are compared to published datasheet specifications.
Experimental determination of terahertz atmospheric absorption parameters
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.
2015-05-01
The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high--resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.
Putting Parameters in Their Proper Place
ERIC Educational Resources Information Center
Montrul, Silvina; Yoon, James
2009-01-01
Seeing the logical problem of second language acquisition as that of primarily selecting and re-assembling bundles of features anew, Lardiere proposes to dispense with the deductive learning approach and its broad range of consequences subsumed under the concept of parameters. While we agree that feature assembly captures more precisely the…
Genetic parameters for kyphosis in pork carcasses
Technology Transfer Automated Retrieval System (TEKTRAN)
Genetic parameters for degree of kyphosis were estimated in pigs from a Duroc-Landrace F2 population (n = 316) and in pigs and sows from a composite population (Line C) composed of Duroc, Large White, and two sources of Landrace (n = 1,552). Live presentation did not indicate kyphosis in pigs or sow...
Changing Throwing Pattern: Instruction and Control Parameter
ERIC Educational Resources Information Center
Southard, Dan
2006-01-01
The purpose of this study was to determine the effects of instruction and scaling up a control parameter (velocity of throw) on changes in throwing pattern. Sixty adult female throwers (ages 20-26 years) were randomly placed into one of four practice conditions: (a) scale up on velocity with no instruction, (b) maintain constant velocity with no…
A Unified View of Engineering Creep Parameters
Eno, Daniel R.; Young, George A.; Sham, Sam
2008-01-01
Creep data are often analyzed using derived engineering parameters to correlate creep life (either time to rupture, or time to a specified strain) to applied stress and temperature. Commonly used formulations include Larson-Miller, Orr-Sherby-Dorn, Manson-Haferd, and Manson-Succop parameterizations. In this paper, it is shown that these parameterizations are all special cases of a common general framework based on a linear statistical model. Recognition of this fact allows for statistically efficient estimation of material model parameters and quantitative statistical comparisons among the various parameterizations in terms of their ability to fit a material database, including assessment of a stress-temperature interaction in creep behavior. This provides a rational basis for choosing the best parameterization to describe a particular material. Furthermore, using the technique of maximum likelihood estimation to estimate model parameters allows for a statistically proper treatment of runouts in a test database via censored data analysis methods, and for construction of probabilistically interpretable upper and lower bounds on creep rate. A generalized Larson-Miller formulation is developed, which is comparable in complexity to the Manson-Haferd parameter, but utilizes a reciprocal temperature dependence. The general framework for analysis of creep data is illustrated with analysis of Alloy 617 and Alloy 230 test data.
[Toward pertinent analytical objectives for haematological parameters].
Iobagiu, Cristina; Nehar, Diane; Denis, Isabelle; de Saint-Trivier, Aurélie; Boyer, Michelle
2014-01-01
Usually, the blood cell counting activity in haematology laboratory uses the comparison of IQC values to the target values proposed by the manufacturer. We intended to improve the monitoring of the proper functioning of our analytical measure system for 17 main haematologic parameters. To set the allowable critical limits of IQC, we propose our reflection based on several elements: benchmark and expert recommendation, clinical requirements, statistical indicators of the laboratory calculated using IQC values (3 levels, 2 different lots, 2 haematology analysers and 2 passage modes) and the EEQ values, during four months. We exploited the reports obtained from the middleware (our own IQC values), and the interlaboratory comparison reports (obtained from SNCS and EuroCell websites) and we compared our performances to the Ricos objectives, to set clearly argued allowable limits for IQC values. Finally, the allowable limits correspond to the imprecision limits stated by Ricos for 14 parameters (desirable for 11 parametres and minimal for 3 parameters) and personalized limits (more exigent than desirable Ricos limits) for 3 parameters of blood cell counting. PMID:25486666
PERSONALISED BODY COUNTER CALIBRATION USING ANTHROPOMETRIC PARAMETERS.
Pölz, S; Breustedt, B
2016-09-01
Current calibration methods for body counting offer personalisation for lung counting predominantly with respect to ratios of body mass and height. Chest wall thickness is used as an intermediate parameter. This work revises and extends these methods using a series of computational phantoms derived from medical imaging data in combination with radiation transport simulation and statistical analysis. As an example, the method is applied to the calibration of the In Vivo Measurement Laboratory (IVM) at Karlsruhe Institute of Technology (KIT) comprising four high-purity germanium detectors in two partial body measurement set-ups. The Monte Carlo N-Particle (MCNP) transport code and the Extended Cardiac-Torso (XCAT) phantom series have been used. Analysis of the computed sample data consisting of 18 anthropometric parameters and calibration factors generated from 26 photon sources for each of the 30 phantoms reveals the significance of those parameters required for producing an accurate estimate of the calibration function. Body circumferences related to the source location perform best in the example, while parameters related to body mass show comparable but lower performances, and those related to body height and other lengths exhibit low performances. In conclusion, it is possible to give more accurate estimates of calibration factors using this proposed approach including estimates of uncertainties related to interindividual anatomical variation of the target population. PMID:26396263
Drawing an elephant with four complex parameters
NASA Astrophysics Data System (ADS)
Mayer, Jürgen; Khairy, Khaled; Howard, Jonathon
2010-06-01
We define four complex numbers representing the parameters needed to specify an elephantine shape. The real and imaginary parts of these complex numbers are the coefficients of a Fourier coordinate expansion, a powerful tool for reducing the data required to define shapes.
Atmospheric Science Data Center
2013-02-18
... (-90, 90)(-180,180) Parameters: Methyl nitrate (CH3ONO2) Ethyl nitrate (C2H5ONO2) Isopropyl nitrate ... Halon-1301 (CBrF3) Halon-1202 (CBr2F2) Methyl bromide (CH3Br) Bromopropane (C3H7Br) Methyl Chloride(CH3Cl) Ethyl ...
Educational Parameters Revealed from VLE Logging Data
ERIC Educational Resources Information Center
van der Zanden, A. H. W. (Piet); Veen, W. (Wim)
2007-01-01
Educational management wants to comprehend the uses of ICT in Education to get a grip on its effects due to the multiple annual investments in the Virtual Learning Environment. In the search to define educational parameters a vast amount of datasets is examined from 289 institutes using Blackboard. The focus is on the three dimensions growth,…
Evolution of Pedostructure Parameters Under Tillage Practices
Technology Transfer Automated Retrieval System (TEKTRAN)
The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are 15 unique pedostructure parameters that define the macropore and micropore soil water behavior fo...
Stokes parameters modulator for birefringent filters
NASA Technical Reports Server (NTRS)
Dollfus, A.
1985-01-01
The Solar Birefringent Filter (Filter Polarisiant Solaire Selectif FPSS) of Meudon Observatory is presently located at the focus of a solar refractor with a 28 cm lens directly pointed at the Sun. It produces a diffraction limited image without instrumental polarization and with a spectral resolution of 46,000 in a field of 6 arc min. diameter. The instrument is calibrated for absolute Doppler velocity measurements and is presently used for quantitative imagery of the radial velocity motions in the photosphere. The short period oscillations are recorded. Work of adapting the instrument for the imagery of the solar surface in the Stokes parameters is discussed. The first polarizer of the birefringent filter, with a reference position angle 0 deg, is associated with a fixed quarter wave plate at +45 deg. A rotating quarter wave plate is set at 0 deg and can be turned by incremented steps of exactly +45 deg. Another quarter wave plate also initially set at 0 deg is simultaneously incremented by -45 deg but only on each even step of the first plate. A complete cycle of increments produces images for each of the 6 parameters I + or - Q, I + or - U and I + or - V. These images are then subtracted by pairs to produce a full image in the three Stokes parameters Q, U and V. With proper retardation tolerance and positioning accuracy of the quarter wave plates, the cross talk between the Stokes parameters was calculated and checked to be minimal.
Coherence parameter measurements for neon and hydrogen
NASA Astrophysics Data System (ADS)
Wright, Robert; Hargreaves, Leigh; Khakoo, Murtadha; Zatsarinny, Oleg; Bartschat, Klaus; Stauffer, Al
2015-09-01
We present recent coherence parameter measurements for excitation of neon and hydrogen by 50 eV electrons. The measurements were made using a crossed electron/gas beam spectrometer, featuring a hemispherically selected electron energy analyzer for detecting scattered electrons and double-reflection VUV polarization analyzer to register fluorescence photons. Time-coincidence counting methods on the electron and photon signals were employed to determine Stokes Parameters at each scattering angle, with data measured at angles between 20 - 115 degrees. The data are compared with calculated results using the B-Spline R-Matrix (BSR) and Relativistic Distorted Wave (RDW) approaches. Measurements were made of both the linear (Plin and γ) and circular (Lperp) parameters for the lowest lying excited states in these two targets. We particularly focus on results in the Lperp parameter, which shows unusual behavior in these particular targets, including strong sign changes implying reversal of the angular momentum transfer. In the case of neon, the unusual behavior is well captured by the BSR, but not by other models.
Natural frequencies of structures with interval parameters
NASA Astrophysics Data System (ADS)
Sofi, A.; Muscolino, G.; Elishakoff, I.
2015-07-01
This paper deals with the evaluation of the lower and upper bounds of the natural frequencies of structures with uncertain-but-bounded parameters. The solution of the generalized interval eigenvalue problem is pursued by taking into account the actual variability and dependencies of uncertain structural parameters affecting the mass and stiffness matrices. To this aim, interval uncertainties are handled by applying the improved interval analysis via extra unitary interval (EUI), recently introduced by the first two authors. By associating an EUI to each uncertain-but-bounded parameter, the cases of mass and stiffness matrices affected by fully disjoint, completely or partially coincident uncertainties are considered. Then, based on sensitivity analysis, it is shown that the bounds of the interval eigenvalues can be evaluated as solution of two appropriate deterministic eigenvalue problems without requiring any combinatorial procedure. If the eigenvalues are monotonic functions of the uncertain parameters, then the exact bounds are obtained. The accuracy of the proposed method is demonstrated by numerical results concerning truss and beam structures with material and/or geometrical uncertainties.
Automatic parameter optimization in inspection systems
NASA Astrophysics Data System (ADS)
Bhatia, Peeyush
1997-08-01
Automatic inspection systems for IC mark, package and lead inspection are being widely used as in-process controls and check points. Here their primary function is not only to inspect and sort out defective parts but also to provide feedback on how well a process such as marking or trim and form is performing. Inspection results of every part inspected are often accumulated in a statistical process control (SPC) program that can monitor drifts in the process. Not all drifts are caused by problems in the process itself. For example the mark contrast on a package may be reduced not only because of some problem with the marking process but also because of changes in the mold compound of the package or changes in the light intensity of the inspection system. In latter case a statistical tool such as the SPC program may alert the user of a process drift and he will have to retune, recalibrate or change the parameters of the inspection system. Often the change in parameter is done by trail-and-error. A change too much or too little can result in excess overkill or even escapes. Alternatively the statistical data itself can be used to suggest the user what changes should be made to the inspection parameters. This method of automatic parameter optimization is discussed in detail in this paper. A mark inspection system is chosen as a specific example on how to apply this method.
Five-Parameter Bivariate Probability Distribution
NASA Technical Reports Server (NTRS)
Tubbs, J.; Brewer, D.; Smith, O. W.
1986-01-01
NASA technical memorandum presents four papers about five-parameter bivariate gamma class of probability distributions. With some overlap of subject matter, papers address different aspects of theories of these distributions and use in forming statistical models of such phenomena as wind gusts. Provides acceptable results for defining constraints in problems designing aircraft and spacecraft to withstand large wind-gust loads.
Blind Identification of Convolutional Encoder Parameters
Su, Shaojing; Zhou, Jing; Huang, Zhiping; Liu, Chunwu; Zhang, Yimeng
2014-01-01
This paper gives a solution to the blind parameter identification of a convolutional encoder. The problem can be addressed in the context of the noncooperative communications or adaptive coding and modulations (ACM) for cognitive radio networks. We consider an intelligent communication receiver which can blindly recognize the coding parameters of the received data stream. The only knowledge is that the stream is encoded using binary convolutional codes, while the coding parameters are unknown. Some previous literatures have significant contributions for the recognition of convolutional encoder parameters in hard-decision situations. However, soft-decision systems are applied more and more as the improvement of signal processing techniques. In this paper we propose a method to utilize the soft information to improve the recognition performances in soft-decision communication systems. Besides, we propose a new recognition method based on correlation attack to meet low signal-to-noise ratio situations. Finally we give the simulation results to show the efficiency of the proposed methods. PMID:24982997
Airborne UV Lidar for Forest Parameter Retrievals
NASA Astrophysics Data System (ADS)
Shang, Xiaoxia; Chazette, Patrick; Totems, Julien
2016-06-01
A full-waveform UV lidar performed airborne measurements over several temperate and tropical forests sites. The structural and ecological parameters (canopy height, quadratic mean canopy height and apparent foliage) were extracted from lidar backscattered profiles. The aboveground carbon and leaf area index are also evaluated from lidar measurements.
Seasonal variations of haematological parameters in athletes.
Banfi, Giuseppe; Lundby, Carsten; Robach, Paul; Lippi, Giuseppe
2011-01-01
The influence of training and competition workloads is crucial for evaluation of longitudinal haematological data in athletes. There are only a few papers on the variation of haematological parameters during long-lasting periods and, especially, during an entire competitive season. We summarized that some haematological parameters can be influenced by long-term training and competition periods. Haemoglobin (Hb) and haematocrit (Ht) are decreased during the more intense periods of training, throughout the season. In different sport disciplines, the decline of Hb ranges from 3 to 8% during the competition season, while the range of reticulocytes (Ret%) varies from 5 to 21%. Reticulocytes are also decreased after long periods of training and competitions, but their variation is not necessarily associated with that of Hb. The qualitative variations (trend of modifications) of haematological parameters are roughly independent of the sport discipline, but quantitatively (amount of modifications) dependent on sport discipline. The modifications are more evident in cycling, running, swimming than they are in football and rugby. The variations of haematological parameters within the same sport discipline are qualitatively concordant and quantitatively different among separate but consecutive competitive seasons. These findings are described in aerobic and team sports sportsmen. The definition of reliable reference ranges in sportsmen would only be possible by following the best laboratory practices. For antidoping purposes more studies investigating haematological modifications during the season are advisable. PMID:20842374
FILTRATION PARAMETERS FOR DUST CLEANING FABRICS
The report describes laboratory and pilot scale testing of bag filter fabrics. Filtration performance data and mathematical modeling parameters are given for four Polish fabrics tested with cement dust, coal dust, flyash, and talc. Conclusions include: (1) The process of clean ai...
Practice Parameter for psychodynamic psychotherapy with children.
Kernberg, Paulina F; Ritvo, Rachel; Keable, Helene
2012-05-01
This Practice Parameter describes the principles of psychodynamic psychotherapy with children and is based on clinical consensus and available research evidence. It presents guidelines for the practice of child psychodynamic psychotherapy, including indications and contraindications, the setting, verbal and interactive (play) techniques, work with the parents, and criteria for termination. PMID:22525961
NASA Astrophysics Data System (ADS)
Mizukami, Naoki; Clark, Martyn; Newman, Andrew; Wood, Andy
2016-04-01
Estimation of spatially distributed parameters is one of the biggest challenges in hydrologic modeling over a large spatial domain. This problem arises from methodological challenges such as the transfer of calibrated parameters to ungauged locations. Consequently, many current large scale hydrologic assessments rely on spatially inconsistent parameter fields showing patchwork patterns resulting from individual basin calibration or spatially constant parameters resulting from the adoption of default or a-priori estimates. In this study we apply the Multi-scale Parameter Regionalization (MPR) framework (Samaniego et al., 2010) to generate spatially continuous and optimized parameter fields for the Variable Infiltration Capacity (VIC) model over the contiguous United States(CONUS). The MPR method uses transfer functions that relate geophysical attributes (e.g., soil) to model parameters (e.g., parameters that describe the storage and transmission of water) at the native resolution of the geophysical attribute data and then scale to the model spatial resolution with several scaling functions, e.g., arithmetic mean, harmonic mean, and geometric mean. Model parameter adjustments are made by calibrating the parameters of the transfer function rather than the model parameters themselves. In this presentation, we first discuss conceptual challenges in a "model agnostic" continental-domain application of the MPR approach. We describe development of transfer functions for the soil parameters, and discuss challenges associated with extending MPR for VIC to multiple models. Next, we discuss the "computational shortcut" of headwater basin calibration where we estimate the parameters for only 500 headwater basins rather than conducting simulations for every grid box across the entire domain. We first performed individual basin calibration to obtain a benchmark of the maximum achievable performance in each basin, and examined their transferability to the other basins. We then
Automatic parameter selection for multimodal image registration.
Hahn, Dieter A; Daum, Volker; Hornegger, Joachim
2010-05-01
Over the past ten years similarity measures based on intensity distributions have become state-of-the-art in automatic multimodal image registration. An implementation for clinical usage has to support a plurality of images. However, a generally applicable parameter configuration for the number and sizes of histogram bins, optimal Parzen-window kernel widths or background thresholds cannot be found. This explains why various research groups present partly contradictory empirical proposals for these parameters. This paper proposes a set of data-driven estimation schemes for a parameter-free implementation that eliminates major caveats of heuristic trial and error. We present the following novel approaches: a new coincidence weighting scheme to reduce the influence of background noise on the similarity measure in combination with Max-Lloyd requantization, and a tradeoff for the automatic estimation of the number of histogram bins. These methods have been integrated into a state-of-the-art rigid registration that is based on normalized mutual information and applied to CT-MR, PET-MR, and MR-MR image pairs of the RIRE 2.0 database. We compare combinations of the proposed techniques to a standard implementation using default parameters, which can be found in the literature, and to a manual registration by a medical expert. Additionally, we analyze the effects of various histogram sizes, sampling rates, and error thresholds for the number of histogram bins. The comparison of the parameter selection techniques yields 25 approaches in total, with 114 registrations each. The number of bins has no significant influence on the proposed implementation that performs better than both the manual and the standard method in terms of acceptance rates and target registration error (TRE). The overall mean TRE is 2.34 mm compared to 2.54 mm for the manual registration and 6.48 mm for a standard implementation. Our results show a significant TRE reduction for distortion
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384
Sensitivity of adjustment to parameter correlations and to response-parameter correlations
Wagschal, J.J.
2011-07-01
The adjusted parameters and response, and their respective posterior uncertainties and correlations, are presented explicitly as functions of all relevant prior correlations for the two parameters, one response case. The dependence of these adjusted entities on the various prior correlations is analyzed and portrayed graphically for various valid correlation combinations on a simple criticality problem. (authors)
NASA Astrophysics Data System (ADS)
Galabov, Boris; Dudev, T.
1989-12-01
Mathematical and physical aspects are analysed of the relationship between two theoretical formulations of infrared intensities employing parameters associated with chemical bonds: the valence optical theory and bond polar parameters method. Parallel applications of the two theories in analysing experimental IR intensity data for methylchloride are presented.
ERIC Educational Resources Information Center
Zickar, Michael J.; Ury, Karen L.
2002-01-01
Attempted to relate content features of personality items to item parameter estimates from the partial credit model of E. Muraki (1990) by administering the Adjective Checklist (L. Goldberg, 1992) to 329 undergraduates. As predicted, the discrimination parameter was related to the item subtlety ratings of personality items but the level of word…
Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas
2013-01-01
Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941
Accuracy of Parameter Estimation in Gibbs Sampling under the Two-Parameter Logistic Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for estimation of item and ability parameters under the two-parameter logistic model. Memory test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were analyzed using Gibbs sampling and the marginal Bayesian method. The marginal…
Planck 2013 results. XVI. Cosmological parameters
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (ℓ ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to
Hydraulic parameter identification using satellite earth imagery
NASA Astrophysics Data System (ADS)
Roux, H.; Raclot, D.; Dartus, D.; Puech, C.
2003-04-01
Despite of the progresses recently realized in the implementation of open-channel flow models, the determination of the parameters involved in the simulation process is still uncertain. In alternative to traditional measurements in the field, the use of high resolution satellite earth imagery (visible satellite, infrared, radar) is considered to ascertain, implementing optimization methods, the value of a set of hydraulic parameters allowing to characterize the flow with a precision sufficient to make flood studies. These satellite images generally give a top sight of the flow or of the flooded area. The scope of data assimilation is to make the best possible estimate of the state of a physical system, given data and a model describing the phenomenon. This study focuses only on sequential methods, that is to say methods that correct the model state at the moment of the observations. Data assimilation techniques can be divided into two classes according to the processes of resolution employed. Variational methods minimize a cost function that is the sum of a distance to the observations and a distance to an a priori estimate (often a prevision) of the model state. Statistical methods or filters explicitly solve the assimilation problem by calculating the linear optimal combination between guess and observations that minimizes the estimate error variance. The most known filter, the Best Linear Unbiased Estimator or B.L.U.E., has been proposed by Kalman in 1960. Both approaches have been tested on a simple case. Parameter identification procedure has been implemented for a mono-dimensional steady flow in compound channel with a trapezoidal main channel and near horizontal overbanks. The observations or gauged data, that could be made by a satellite, are created by adding a gaussian noise, inherent to the interpretation of satellite images, to flow top width. Flow top width is obtained by a 1D hydraulic simulation of Saint-Venant equations realized on a known river
Acarbose bioequivalence: exploration of new pharmacodynamic parameters.
Zhang, Min; Yang, Jin; Tao, Lei; Li, Lingjun; Ma, Pengcheng; Fawcett, John Paul
2012-06-01
To investigate bioequivalence (BE) testing of an acarbose formulation in healthy Chinese volunteers through the use of recommended and innovative pharmacodynamic (PD) parameters. Following the Food and Drug Administration (FDA) guidance, a randomized, cross-over study of acarbose test (T) and reference (R) (Glucobay®) formulations was performed with a 1-week wash-out period. Preliminary pilot studies showed that the appropriate dose of acarbose was 2 × 50 mg, and the required number of subjects was 40. Serum glucose concentrations after sucrose administration (baseline) and co-administration of sucrose/acarbose on the following day were both determined. Three newly defined PD measures of glucose fluctuation (glucose excursion (GE), GE' (glucose excursion without the effect of the homeostatic glucose control), and fAUC (degree of fluctuation of serum glucose based on AUC)), the plateau glucose concentration (C(ss)), and time of maximum reduction in glucose concentration (T (max)) were tested in the evaluation. The adequacy of the two parameters recommended by the FDA, ΔC(SG,max) (maximum reduction in serum glucose concentration) and AUEC((0-4h)) (reduction in the AUC((0-4h)) of glucose between baseline and acarbose formulation) was also evaluated. The T (max) values were comparable, and the 90% confidence intervals of the geometric test/reference ratios (T/R) for ΔC(SG,max), C(ss), GE, and fAUC were all within 80-125%. The parameter GE' was slightly outside the limits, and the parameter AUEC((0-4h)) could not be computed due to the presence of negative values. In acarbose BE evaluation, while the recommended parameter ΔC(SG,max) is valuable, the combination of C(ss) and one of the newly defined glucose fluctuation parameters, GE, GE', and fAUC is preferable than AUEC((0-4h)). The acarbose test formulation can be initially considered to be bioequivalent to Glucobay®. PMID:22419151
Parameter estimation for lithium ion batteries
NASA Astrophysics Data System (ADS)
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of
Quantum Fluctuations of a Superconductor Order Parameter.
Arutyunov, K Yu; Lehtinen, J S
2016-12-01
Tunneling I-V characteristics between very narrow titanium nanowires and "massive" superconducting aluminum were measured. The clear trend was observed: the thinner the titanium electrode, the broader the singularity at eV = Δ1(Al) + Δ2(Ti). The phenomenon can be explained by broadening of the gap edge of the quasi-one-dimensional titanium channels due to quantum fluctuations of the order parameter modulus |Δ2|. The range of the nanowire diameters, where the effect is pronounced, correlates with dimensions where the phase fluctuations of the complex superconducting order parameter Δ = |Δ|e(iφ), the quantum phase slips, broadening the R(T) dependencies, have been observed. PMID:27535694
A Full 24-Parameter MSSM Exploration
AbdusSalam, Shehu S.
2008-11-23
Up until now a complete scan in all phenomenologically relevant directions of the MSSM at the TeV scale for performing global fit has not been done. Given the imminent start of operation of the LHC, this is a major gap on our quest to discovering and understanding the physical implications of low energy supersymmetry. The main reason for this is the large number of parameters involved that makes it computationally extremely expensive using the traditional methods. In this talk I demonstrate that with advanced Bayesian sampling techniques the problem is solvable. The results from the explored 24-parameter TeV scale MSSM (phenoMSSM) are remarkably distinct from previous studies and are independent of models for supersymmetry breaking and mediation mechanisms. Hence they are a more robust guide to searches for supersymmetry.
Bayesian parameter estimation for effective field theories
NASA Astrophysics Data System (ADS)
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Renormalization of the jet-quenching parameter
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Mehtar-Tani, Yacine
2014-09-01
We study the radiative processes that affect the propagation of a high energy gluon in a dense medium, such as a quark-gluon plasma. In particular, we investigate the role of the large double logarithmic corrections, ∼αsln2 L /τ0, that were recently identified in the study of p⊥-broadening by Liou, Mueller and Wu. We show that these large corrections can be reabsorbed in a renormalization of the jet quenching parameter controlling both momentum broadening and energy loss. We argue that the probabilistic description of these phenomena remains valid, in spite of the large non-locality in time of the radiative corrections. The renormalized jet-quenching parameter is enhanced compared to its standard perturbative estimate. As a particular consequence, the radiative energy loss scales with medium size L as L 2 + γ, with γ = 2√{αsNc / π }, as compared to the standard scaling in L2.
RTLS entry load relief parameter optimization
NASA Technical Reports Server (NTRS)
Crull, T. J.
1975-01-01
The results are presented of a study of a candidate load relief control law for use during the pullup phase of Return-to-Launch-Site (RTLS) abort entries. The control law parameters and cycle time which optimized performance of the normal load factor limiting phase (load relief phase) of an RTLS entry are examined. A set of control law gains, a smoothing parameter, and a normal force coefficient curve fit are established which resulted in good load relief performance considering the possible aerodynamic coefficient uncertainties defined. Also, the examination of various guidance cycle times revealed improved load relief performance with decreasing cycle time. A .5 second cycle provided smooth and adequate load relief in the presence of all the aerodynamic uncertainties examined.
Fracture mechanics parameters for small fatigue cracks
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1992-01-01
This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.
NMR parameters in gapped graphene systems
NASA Astrophysics Data System (ADS)
Crisan, Mircea; Grosu, Ioan; Ţifrea, Ionel
2016-06-01
We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.
Renal parameter estimates in unrestrained dogs
NASA Technical Reports Server (NTRS)
Rader, R. D.; Stevens, C. M.
1974-01-01
A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.
Improved Dynamical Parameters for Transiting Circumbinary Planets
NASA Astrophysics Data System (ADS)
Thomadis, Pantelis C.; Orosz, Jerome A.; Welsh, William F.; Friedmann, Matan; Mazeh, Tsevi; Short, Donald R.; Windmiller, Gur
2016-06-01
To date, the Kepler space telescope has detected about a dozen transiting circumbinary planets (i.e. planets that orbit a binary star system). Here we present improved dynamical parameters for the following four circumbinary planets: Kepler-16b (Doyle et al. 2011), 34b and 35b (Welsh et al. 2012), and 38b (Orosz et al. 2012). The original analyses contained only a subsample of the entire Kepler dataset available today. In the case of Kepler-16b, we have also obtained additional spectra and an additional transit not present in the Kepler photometry. We present updated parameters for these four systems, including a preliminary search for additional bodies in the Kepler-16 system.
Parameter estimation, nonlinearity, and Occam's razor.
Alonso, Leandro M
2015-03-01
Nonlinear systems are capable of displaying complex behavior even if this is the result of a small number of interacting time scales. A widely studied case is when complex dynamics emerges out of a nonlinear system being forced by a simple harmonic function. In order to identify if a recorded time series is the result of a nonlinear system responding to a simpler forcing, we develop a discrete nonlinear transformation for time series based on synchronization techniques. This allows a parameter estimation procedure which simultaneously searches for a good fit of the recorded data, and small complexity of a fluctuating driving parameter. We illustrate this procedure using data from respiratory patterns during birdsong production. PMID:25833426
Parameter estimation, nonlinearity, and Occam's razor
NASA Astrophysics Data System (ADS)
Alonso, Leandro M.
2015-03-01
Nonlinear systems are capable of displaying complex behavior even if this is the result of a small number of interacting time scales. A widely studied case is when complex dynamics emerges out of a nonlinear system being forced by a simple harmonic function. In order to identify if a recorded time series is the result of a nonlinear system responding to a simpler forcing, we develop a discrete nonlinear transformation for time series based on synchronization techniques. This allows a parameter estimation procedure which simultaneously searches for a good fit of the recorded data, and small complexity of a fluctuating driving parameter. We illustrate this procedure using data from respiratory patterns during birdsong production.
Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013
Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir
2015-01-29
A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.
Habitable zone dependence on stellar parameter uncertainties
Kane, Stephen R.
2014-02-20
An important property of exoplanetary systems is the extent of the Habitable Zone (HZ), defined as that region where water can exist in a liquid state on the surface of a planet with sufficient atmospheric pressure. Both ground- and space-based observations have revealed a plethora of confirmed exoplanets and exoplanetary candidates, most notably from the Kepler mission using the transit detection technique. Many of these detected planets lie within the predicted HZ of their host star. However, as is the case with the derived properties of the planets themselves, the HZ boundaries depend on how well we understand the host star. Here we quantify the uncertainties of HZ boundaries on the parameter uncertainties of the host star. We examine the distribution of stellar parameter uncertainties from confirmed exoplanet hosts and Kepler candidate hosts and translate these into HZ boundary uncertainties. We apply this to several known systems with an HZ planet to determine the uncertainty in their HZ status.
Design parameters for borehole strain instrumentation
NASA Astrophysics Data System (ADS)
Gladwin, Michael T.; Hart, Rhodes
1985-01-01
The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.
Estimation of saxophone reed parameters during playing.
Muñoz Arancón, Alberto; Gazengel, Bruno; Dalmont, Jean-Pierre; Conan, Ewen
2016-05-01
An approach for the estimation of single reed parameters during playing, using an instrumented mouthpiece and an iterative method, is presented. Different physical models describing the reed tip movement are tested in the estimation method. The uncertainties of the sensors installed on the mouthpiece and the limits of the estimation method are studied. A tenor saxophone reed is mounted on this mouthpiece connected to a cylinder, played by a musician, and characterized at different dynamic levels. Results show that the method can be used to estimate the reed parameters with a small error for low and medium sound levels (piano and mezzoforte dynamic levels). The analysis reveals that the complexity of the physical model describing the reed behavior must increase with dynamic levels. For medium level dynamics, the most relevant physical model assumes that the reed is an oscillator with non-linear stiffness and damping, the effect of mass (inertia) being very small. PMID:27250168
Testing Saliency Parameters for Automatic Target Recognition
NASA Technical Reports Server (NTRS)
Pandya, Sagar
2012-01-01
A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.
CosmoSIS: Modular cosmological parameter estimation
Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.
2015-06-09
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis
Parameter inference with estimated covariance matrices
NASA Astrophysics Data System (ADS)
Sellentin, Elena; Heavens, Alan F.
2016-02-01
When inferring parameters from a Gaussian-distributed data set by computing a likelihood, a covariance matrix is needed that describes the data errors and their correlations. If the covariance matrix is not known a priori, it may be estimated and thereby becomes a random object with some intrinsic uncertainty itself. We show how to infer parameters in the presence of such an estimated covariance matrix, by marginalizing over the true covariance matrix, conditioned on its estimated value. This leads to a likelihood function that is no longer Gaussian, but rather an adapted version of a multivariate t-distribution, which has the same numerical complexity as the multivariate Gaussian. As expected, marginalization over the true covariance matrix improves inference when compared with Hartlap et al.'s method, which uses an unbiased estimate of the inverse covariance matrix but still assumes that the likelihood is Gaussian.
CosmoSIS: Modular cosmological parameter estimation
Zuntz, J.; Paterno, M.; Jennings, E.; Rudd, D.; Manzotti, A.; Dodelson, S.; Bridle, S.; Sehrish, S.; Kowalkowski, J.
2015-06-09
Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. Here we present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmicmore » shear calculations, and a suite of samplers. Lastly, we illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis« less
Parameter studies for traveling wave coaxial launchers
Wu, A.Y. . Center for Electromechanics)
1991-01-01
The traveling wave coaxial launcher is a complex machine that requires very extensive parameter studies to optimize. Most of previous attempts to realize hypervelocity using coaxial launchers have failed partly due to inadequate analyses. This paper reports the results of very extensive air-core coaxial launcher parameter studies performed using computers. These results and the methodology introduced should help future researchers on this topic. In the course of studying the feasibility of accelerating a 1-kg projectile to 10 km/s with an 18 m air-core multiphase coaxial launcher powered by a rising frequency generator (RFGs), a complete simulation code based on the current filament method was developed. Results from the simulation code indicate rather chaotic behavior of an arbitrary coaxial launcher design. More fundamental studies were then conducted using various computer codes based on the current filament method.
Hexagonal boron nitride and water interaction parameters
NASA Astrophysics Data System (ADS)
Wu, Yanbin; Wagner, Lucas K.; Aluru, Narayana R.
2016-04-01
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.
Parameter Estimation for Viscoplastic Material Modeling
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.
1997-01-01
A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.
Hexagonal boron nitride and water interaction parameters.
Wu, Yanbin; Wagner, Lucas K; Aluru, Narayana R
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems. PMID:27131542
Supersymmetric parameter space of family symmetries
Velasco-Sevilla, L.
2008-11-23
In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.
UPRE method for total variation parameter selection
Wohlberg, Brendt; Lin, Youzuo
2008-01-01
Total Variation (TV) Regularization is an important method for solving a wide variety of inverse problems in image processing. In order to optimize the reconstructed image, it is important to choose the optimal regularization parameter. The Unbiased Predictive Risk Estimator (UPRE) has been shown to give a very good estimate of this parameter for Tikhonov Regularization. In this paper we propose an approach to extend UPRE method to the TV problem. However, applying the extended UPRE is impractical in the case of inverse problems such as de blurring, due to the large scale of the associated linear problem. We also propose an approach to reducing the large scale problem to a small problem, significantly reducing computational requirements while providing a good approximation to the original problem.
Analysis of Modeling Parameters on Threaded Screws.
Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
"Cosmological Parameters from Large Scale Structure"
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
2005-01-01
This grant has provided primary support for graduate student Mark Neyrinck, and some support for the PI and for colleague Nick Gnedin, who helped co-supervise Neyrinck. This award had two major goals. First, to continue to develop and apply methods for measuring galaxy power spectra on large, linear scales, with a view to constraining cosmological parameters. And second, to begin try to understand galaxy clustering at smaller. nonlinear scales well enough to constrain cosmology from those scales also. Under this grant, the PI and collaborators, notably Max Tegmark. continued to improve their technology for measuring power spectra from galaxy surveys at large, linear scales. and to apply the technology to surveys as the data become available. We believe that our methods are best in the world. These measurements become the foundation from which we and other groups measure cosmological parameters.
Whipple Mission Simulations - Detectability and Parameter Extraction
NASA Astrophysics Data System (ADS)
Murray, S. S.; Alcock, C.; Nulsen, P.; Kraft, R.; Kenter, A.
2014-12-01
The Whipple mission will conduct a blind occultation survey to detect small solar system bodies beyond the orbit of Neptune extending to thousands of AU. Flux from a distant star occulted by an intervening body varies over time periods of tenths to a few seconds, depending on the distance to the object and its size. Other parameters that characterize the observed light curve include the impact parameter, angular size and magnitude of the monitored star, sampling rate, and relative velocity of the observer and the occulting body. Using an idealized light curve generator based on these parameters, and a model for the Whipple instrument and spacecraft (including the telescope PSF, photon shot noise, readout noise, detector non-uniformity; spacecraft jitter and stray light), we generate random instances of an observation. A chi-squared test that matches pre-computed templates to the simulated observation is used to determine best fit size and distance estimates, keeping the known star angular size, magnitude, cadence and relative velocity parameters fixed. For objects characteristic of the Kuiper Belt (35-50 AU distant), the size of small objects (1-3 km in radius) is determined to better than ~15%, while distances are determined ~30%. Both size and distance estimates are slightly biased, with sizes slightly smaller and distances generally larger than the ideal values. For objects characteristic of the outer Oort Cloud (> 3,000 AU), the size of 10-20 km objects is determined to better than ~25% and the distances are determined to better than about 50%, with biases similar to what we find for KBOs. These preliminary results demonstrate that the Whipple mission can observe and characterize the population of small bodies with sufficient accuracy to permit classification as belonging to the Kuiper Belt or Oort Cloud (inner and outer), and with a sufficient number of detections, comparison to model predictions for the numbers of objects and their size distributions.
Surveillance of industrial processes with correlated parameters
White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.
1996-12-17
A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.
Surveillance of industrial processes with correlated parameters
White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.
1996-01-01
A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.
Parameter estimation techniques for LTP system identification
NASA Astrophysics Data System (ADS)
Nofrarias Serra, Miquel
LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.
Parton Distributions in the Impact Parameter Space
Matthias Burkardt
2009-08-01
Parton distributions in impact parameter space, which are obtained by Fourier transforming GPDs, exhibit a significant deviation from axial symmetry when the target and/or quark is transversely polarized. In combination with the final state interactions, this transverse deformation provides a natural mechanism for naive-T odd transverse single-spin asymmetries in semi-inclusive DIS. The deformation can also be related to the transverse force acting on the active quark in polarized DIS at higher twist.
Operational parameters for the superconducting cavity maser
NASA Technical Reports Server (NTRS)
Wang, R. T.; Dick, G. J.; Strayer, D. M.
1989-01-01
Tests of the superconducting cavity maser (SCM) ultra-stable frequency source have been made for the first time using a hydrogen maser for a frequency reference. In addition to characterizing the frequency stability, the sensitivity of the output frequency to several crucial parameters was determined for various operating conditions. Based on this determination, the refrigeration and thermal control systems of the SCM were modified. Subsequent tests showed substantially improved performance, especially at the longest averaging times.
146 Kepler-Lamost targets fundamental parameters
NASA Astrophysics Data System (ADS)
Wu, Yaqian
2015-08-01
Accurate stellar fundamental parameters with high precision are important for distinguishing stellar populationand star study.Turn-off stars are in the relatively vital stellar evolution state. Studying turn-off stars can help us to have a more comprehensive understand of the stellar physics.With the help of observation provided by Lamost project, we obtain atmospheric parameters of 146 turn-off stars from LSP3 pipeline. Combined with stellar pulsation data from Kepler, we can get asteroseismic characteristic of stars,such as Δν and νmax.In this paper,we constructed a grid of evolutionary models, with the mass range from 0.8 to 2.5 M⊙ and metallicities Zini = 0.0085, 0.0105, 0.0130, 0.0165, 0.0200, 0.0250, 0.0300, 0.0400 (i.e.[Fe/H] from -0.3 to 0.4dex).All evolutionary tracks were started in the pre-main sequence birth line and ended at the base of Red Giant Branch.Based on the stellar model grid we constructed,as well as Kepler-Lamost observations, we obtained fundamental parameters of 146 around turn-off stars, and found that 112 targets lied in turn-off state or in the Main Sequence,15 targets are subgiant stars and 7 targets have evolved to the red giants stage.Then we use pulsation code(JIG) of Guenther to extract theorical individual frequencies and calculate theorical Δν.Meanwhile we obtained more precise fundamental parameters of these stars.
Damping Parameters for flow-induced vibration
NASA Astrophysics Data System (ADS)
Vandiver, J. Kim
2012-11-01
A dimensionless damping parameter, c*=2cω/ρU, is defined for cylinders experiencing flow-induced vibration. It overcomes the limitations of "mass-damping" parameters, which first came into use in 1955. A review of the history of mass-damping parameters reveals that they have been used in three principal variations, commonly expressed as Sc, SG and α. For spring-mounted rigid cylinders all three forms reduce to a constant times the following dimensionless group, 2c/πρDωn, where 'c' is the structural damping constant per unit length of cylinder and ωnis the natural frequency of the oscillator, including, when so specified, the fluid added mass. All have been used to predict A*max=Amax/D, the peak response amplitude for VIV. None are useful at organizing response at reduced velocities away from the peak in response. The proposed alternative, c*, may be used to characterize VIV at all reduced velocities in the lock-in range. The simple product of A* and c* is shown to equal CL, the lift coefficient, thus providing a simple method for compiling CL data from free response measurements. Mass-damping parameters are not well-suited to the organization of the response of flexible cylinders in sheared flows or for cylinders equipped with strakes or fairings. c* is well-suited for use with sheared flows or for cylinders with partial coverage of strakes or fairings. Data from three independent sources are used to illustrate the applications of c*. It is shown that the method of modal analysis may be used to generalize the application of c* to flexible risers. An example for a riser with partial fairing coverage is presented.
Mapping coal quality parameters for economic assessments
Hohn, M.E.; Smith, C.J.; Ashton, K.C.; McColloch, G.H. Jr.
1988-08-01
This study recommends mapping procedures for a data base of coal quality parameters. The West Virginia Geological and Economic Survey has developed a data base that includes about 10,000 analyses of coal samples representing most seams in West Virginia. Coverage is irregular and widely spaced; minimal sample spacing is generally greater than 1 mi. Geologists use this data base to answer public and industry requests for maps that show areas meeting coal quality specifications.
The Age Parameter in Giant EAS
NASA Astrophysics Data System (ADS)
Capdevielle, J. N.; Cohen, F.; Sanosyan, K.
The age parameter from the longitudinal development can be used to describe the lateral distribution in giant EAS up to 5 km from the axis, even if the scaling properties of Approximation B in cascade theory fail after 3.5 Moliere radii. A set of analytic descriptions is proposed under the gaussian hypergeometric formalism replacing the Eulerian formalism of the classical NKG distribution, valid for electrons, muons and vertical equivalent muons (v.e.m.).
Correlation dependences of electromagnetic and deformation parameters
NASA Astrophysics Data System (ADS)
Bataleva, E. A.
2016-05-01
In-situ monitoring observations are carried out, and correlation analysis aimed at estimating the dependences between the electromagnetic parameters (variations of apparent resistivity, the impedance phase, components of the impedance tensor, and deformations of the daylight surface on the territory of the Bishkek geodynamic polygon) is performed. A new approach to the explanation of the physical mechanism forming variations in electrical conductivity of the medium is proposed on this basis.
Structure parameters in molecular tunneling ionization theory
NASA Astrophysics Data System (ADS)
Wang, Jun-Ping; Li, Wei; Zhao, Song-Feng
2014-04-01
We extracted the accurate structure parameters in molecular tunneling ionization theory (so called MO-ADK theory) for 22 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model.
Identifying Crucial Parameter Correlations Maintaining Bursting Activity
Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358
Generalized REGression Package for Nonlinear Parameter Estimation
1995-05-15
GREG computes modal (maximum-posterior-density) and interval estimates of the parameters in a user-provided Fortran subroutine MODEL, using a user-provided vector OBS of single-response observations or matrix OBS of multiresponse observations. GREG can also select the optimal next experiment from a menu of simulated candidates, so as to minimize the volume of the parametric inference region based on the resulting augmented data set.
Telemetry methods for monitoring physiological parameters
NASA Technical Reports Server (NTRS)
Fryer, T. B.; Sandler, H.
1982-01-01
The use of telemetry to monitor various physiological functions is discussed. The advantages of the technique and the parameters that it can monitor are assessed, and the main telemetry systems, including pressure telemetry, flow telemetry, and multichannel telemetry, are detailed. Human applications of implanted flow transducers, total implant versus backpack telemetry, the use of power sources and integrated circuits in telemetry, and the future prospects of the technique in hypertension treatment and research are discussed.
Cosmological parameters from SDSS and WMAP
NASA Astrophysics Data System (ADS)
Tegmark, Max; Strauss, Michael A.; Blanton, Michael R.; Abazajian, Kevork; Dodelson, Scott; Sandvik, Havard; Wang, Xiaomin; Weinberg, David H.; Zehavi, Idit; Bahcall, Neta A.; Hoyle, Fiona; Schlegel, David; Scoccimarro, Roman; Vogeley, Michael S.; Berlind, Andreas; Budavari, Tamás; Connolly, Andrew; Eisenstein, Daniel J.; Finkbeiner, Douglas; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Johnston, David; Kent, Stephen; Lin, Huan; Nakajima, Reiko; Nichol, Robert C.; Ostriker, Jeremiah P.; Pope, Adrian; Scranton, Ryan; Seljak, Uroš; Sheth, Ravi K.; Stebbins, Albert; Szalay, Alexander S.; Szapudi, István; Xu, Yongzhong; Annis, James; Brinkmann, J.; Burles, Scott; Castander, Francisco J.; Csabai, Istvan; Loveday, Jon; Doi, Mamoru; Fukugita, Masataka; Gillespie, Bruce; Hennessy, Greg; Hogg, David W.; Ivezić, Željko; Knapp, Gillian R.; Lamb, Don Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Kunszt, Peter; Munn, Jeffrey A.; O'Connell, Liam; Peoples, John; Pier, Jeffrey R.; Richmond, Michael; Rockosi, Constance; Schneider, Donald P.; Stoughton, Christopher; Tucker, Douglas L.; vanden Berk, Daniel E.; Yanny, Brian; York, Donald G.
2004-05-01
We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200 000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with Wilkinson Microwave Anisotropy Probe (WMAP) and other data. Our results are consistent with a “vanilla” flat adiabatic cold dark matter model with a cosmological constant without tilt (ns=1), running tilt, tensor modes, or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1σ constraints on the Hubble parameter from h≈0.74+0.18-0.07 to h≈0.70+0.04-0.03, on the matter density from Ωm≈0.25±0.10 to Ωm≈0.30±0.04 (1σ) and on neutrino masses from <11 to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the Two Degree Field Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0≈16.3+2.3-1.8 Gyr to t0≈14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.
Extraction of the Susy and Higgs parameters
Adam-Bourdarios, Claire
2010-02-10
If supersymmetry is discovered by the next generation of collider experiments, it will be crucial to determine its fundamental high-scale parameters. Three scenarios have been recently investigated by the SFitter collaboration : the case where the LHC 'only' measures a light Higgs like signal, the case where SUSY signal are discovered at the LHC, and the dream scenario, where LHC and ILC measurements can be combined.
Propellant Sloshing Parameter Extraction from CFD Analysis
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2010-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicle. The sloshing dynamics is typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the sloshing, sloshing mass, sloshing mass center coordinates, and critical damping coefficient. During the 1960 s US space program, these parameters were either computed from analytical solution for simple geometry or by experimental testing for the sub-scaled configurations. The purpose of this work is to demonstrate the soundness of a CFD approach in modeling the detailed fluid dynamics of tank sloshing and the excellent accuracy in extracting mechanical properties for different tank configurations and at different fill levels. The validation studies included straight cylinder against analytical solution, and sub-scaled Centaur LOX and LH2 tanks with and without baffles against experimental results. This effort shows that CFD technology can provide accurate mechanical parameters for any tank configuration, and is especially valuable to the future design of propellant tanks, as there is no previous experimental data available for the same size and configuration.
Parameters for a Super-Flavor-Factory
Seeman, J.T.; Cai, Y.; Ecklund, S.; Novokhatski, A.; Seryi, A.; Sullivan, M.; Wienands, U.; Biagini, M.; Raimondi, P.; /Frascati
2006-06-27
A Super Flavor Factory, an asymmetric energy e{sup +}e{sup -} collider with a luminosity of order 10{sup 36} cm{sup -2} s{sup -1}, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10{sup 34} cm{sup -2} s{sup -1} has taught us about the accelerator physics of asymmetric e{sup +}e{sup -} collider in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10{sup 36} cm{sup -2} s{sup -1} at the Y(4S) resonance and about 10{sup 35} cm{sup -2} s{sup -1} at the {tau} production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the Y(4S) resonance. In the following note only the parameters relative to the Y(4S) resonance will be shown, the ones relative to the lower energy operations are still under study.
Regularization Parameter Selections via Generalized Information Criterion
Zhang, Yiyun; Li, Runze; Tsai, Chih-Ling
2009-01-01
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC), for selecting the regularization parameter. Our proposal makes a connection between the classical variable selection criteria and the regularization parameter selections for the nonconcave penalized likelihood approaches. We show that the BIC-type selector enables identification of the true model consistently, and the resulting estimator possesses the oracle property in the terminology of Fan and Li (2001). In contrast, however, the AIC-type selector tends to overfit with positive probability. We further show that the AIC-type selector is asymptotically loss efficient, while the BIC-type selector is not. Our simulation results confirm these theoretical findings, and an empirical example is presented. Some technical proofs are given in the online supplementary material. PMID:20676354
Parameter Estimation of Spacecraft Fuel Slosh Model
NASA Technical Reports Server (NTRS)
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
On selecting satellite conjunction filter parameters
NASA Astrophysics Data System (ADS)
Alfano, Salvatore; Finkleman, David
2014-06-01
This paper extends concepts of signal detection theory to predict the performance of conjunction screening techniques and guiding the selection of keepout and screening thresholds. The most efficient way to identify satellites likely to collide is to employ filters to identify orbiting pairs that should not come close enough over a prescribed time period to be considered hazardous. Such pairings can then be eliminated from further computation to accelerate overall processing time. Approximations inherent in filtering techniques include screening using only unperturbed Newtonian two body astrodynamics and uncertainties in orbit elements. Therefore, every filtering process is vulnerable to including objects that are not threats and excluding some that are threats, Type I and Type II errors. The approach in this paper guides selection of the best operating point for the filters suited to a user's tolerance for false alarms and unwarned threats. We demonstrate the approach using three archetypal filters with an initial three-day span, select filter parameters based on performance, and then test those parameters using eight historical snapshots of the space catalog. This work provides a mechanism for selecting filter parameters but the choices depend on the circumstances.
Vortex-induced vibration parameters: Critical review
Pantazopoulos, M.S.
1994-12-31
This paper presents the results of a research study to develop an empirical basis for modeling hydrodynamic vortex-induced vibrations in marine risers, tethers, and other slender marine structures. Published model tests were reviewed, and evaluated, including more than 150 model tests compiled to provide extensive insight and understanding of the hydrodynamic VIV parameters. The data could provide values for the VIV parameters used in a VIV analysis model. The most important VIV parameters are: the lift coefficient, the shedding frequency (Strouhal number), the correlation length, and the shedding frequency bandwidth. The empirical data are based on steady flow model tests that are applicable to long, flexible cylinders simulating marine risers undergoing large amplitude vibrations of the order of up to one riser diameter. The empirical data account for the lock-in phenomenon that is the most important consideration to predict accurately VIV extreme response. Conclusions and recommendations are included to develop an empirical methodology that captures the hydrodynamic VIV phenomena. These recommendations provide the basis for the development of a VIV prediction model that is a significant extension from previous models in the literature, because it can predict lock-in behavior of a flexible cylinder in shear flow.
Visual parameter optimisation for biomedical image processing
2015-01-01
Background Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results We present a visualisation method that transforms users' ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches. PMID:26329538
Fast cosmological parameter estimation using neural networks
NASA Astrophysics Data System (ADS)
Auld, T.; Bridges, M.; Hobson, M. P.; Gull, S. F.
2007-03-01
We present a method for accelerating the calculation of cosmic microwave background (CMB) power spectra, matter power spectra and likelihood functions for use in cosmological parameter estimation. The algorithm, called COSMONET, is based on training a multilayer perceptron neural network and shares all the advantages of the recently released PICO algorithm of Fendt & Wandelt, but has several additional benefits in terms of simplicity, computational speed, memory requirements and ease of training. We demonstrate the capabilities of COSMONET by computing CMB power spectra over a box in the parameter space of flat Λ cold dark matter (ΛCDM) models containing the 3σ WMAP1-year confidence region. We also use COSMONET to compute the WMAP3-year (WMAP3) likelihood for flat ΛCDM models and show that marginalized posteriors on parameters derived are very similar to those obtained using CAMB and the WMAP3 code. We find that the average error in the power spectra is typically 2-3 per cent of cosmic variance, and that COSMONET is ~7 × 104 faster than CAMB (for flat models) and ~6 × 106 times faster than the official WMAP3 likelihood code. COSMONET and an interface to COSMOMC are publically available at http://www.mrao.cam.ac.uk/software/cosmonet.
Prebiotic network evolution: six key parameters.
Nghe, Philippe; Hordijk, Wim; Kauffman, Stuart A; Walker, Sara I; Schmidt, Francis J; Kemble, Harry; Yeates, Jessica A M; Lehman, Niles
2015-12-01
The origins of life likely required the cooperation among a set of molecular species interacting in a network. If so, then the earliest modes of evolutionary change would have been governed by the manners and mechanisms by which networks change their compositions over time. For molecular events, especially those in a pre-biological setting, these mechanisms have rarely been considered. We are only recently learning to apply the results of mathematical analyses of network dynamics to prebiotic events. Here, we attempt to forge connections between such analyses and the current state of knowledge in prebiotic chemistry. Of the many possible influences that could direct primordial network, six parameters emerge as the most influential when one considers the molecular characteristics of the best candidates for the emergence of biological information: polypeptides, RNA-like polymers, and lipids. These parameters are viable cores, connectivity kinetics, information control, scalability, resource availability, and compartmentalization. These parameters, both individually and jointly, guide the aggregate evolution of collectively autocatalytic sets. We are now in a position to translate these conclusions into a laboratory setting and test empirically the dynamics of prebiotic network evolution. PMID:26490759
Software Computes Tape-Casting Parameters
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2003-01-01
Tcast2 is a FORTRAN computer program that accelerates the setup of a process in which a slurry containing metal particles and a polymeric binder is cast, to a thickness regulated by a doctor blade, onto fibers wound on a rotating drum to make a green precursor of a metal-matrix/fiber composite tape. Before Tcast2, setup parameters were determined by trial and error in time-consuming multiple iterations of the process. In Tcast2, the fiber architecture in the final composite is expressed in terms of the lateral distance between fibers and the thickness-wise distance between fibers in adjacent plies. The lateral distance is controlled via the manner of winding. The interply spacing is controlled via the characteristics of the slurry and the doctor-blade height. When a new combination of fibers and slurry is first cast and dried to a green tape, the shrinkage from the wet to the green condition and a few other key parameters of the green tape are measured. These parameters are provided as input to Tcast2, which uses them to compute the doctor-blade height and fiber spacings needed to obtain the desired fiber architecture and fiber volume fraction in the final composite.
Equation-of-state parameter for reheating
NASA Astrophysics Data System (ADS)
Muñoz, Julian B.; Kamionkowski, Marc
2015-02-01
Constraints to the parameters of inflation models are often derived assuming some plausible range for the number—e.g., Nk=46 to Nk=60 —of e -folds of inflation that occurred between the time that our current observable Universe exited the horizon and the end of inflation. However, that number is, for any specific inflaton potential, related to an effective equation-of-state parameter wre and temperature Tre, for reheating. Although the physics of reheating is highly uncertain, there is a finite range of reasonable values for wre. Here we show that, by restricting wre to this range, more stringent constraints to inflation-model parameters can be derived than those obtained from the usual procedure. To do so, we focus in this work in particular on natural inflation and inflation with a Higgs-like potential and on power-law models as limiting cases of those. As one example, we show that the lower limit to the tensor-to-scalar ratio r , derived from current measurements of the scalar spectral index, is about 20%-25% higher (depending on the model) with this procedure than with the usual approach.
Quadruple test parameters in art pregnancies
Güdücü, Nilgün; Görmüş, Uzay; Güner, Ebru İlhan; Güzel, Ömer; Kavak, Zehra Neşe
2014-01-01
Aim: Quadruple test is used for Down’s syndrome screening in the second trimester of pregnancy. The aim of this study was to investigate differences in quadruple test parameters between pregnancies achieved by assisted reproductive treatments (ART) and spontaneous conception. Materials and methods: We retrospectively compared levels of alfa-fetoprotein (AFP), unconjugated Estriol (uE3), inhibin-A and hCG and also screen positive test results. Results: Levels of all quadruple test parameters were statistically significantly increased in ART pregnancies when compared to spontaneous pregnancies, AFP was 1.4±0.74 and 1.16±0.53, (p=0.001), uE3 was 1.10±0.37 and 1.00±0.28, (p=0.004), hCG was 1.56±1.04 and 1.26±0.76, (p=0.001), inhibin A was 1.38±0.76 and 1.08±0.57, (p=0.001), screen positive tests were nearly doubled (4.8% and 8.4%). Conclusions: Increased screen positive test results and quadruple test parameters in ART pregnancies may lead to unnecessary amniocentesis. PMID:25232428
Parameter estimation and optimal experimental design.
Banga, Julio R; Balsa-Canto, Eva
2008-01-01
Mathematical models are central in systems biology and provide new ways to understand the function of biological systems, helping in the generation of novel and testable hypotheses, and supporting a rational framework for possible ways of intervention, like in e.g. genetic engineering, drug development or treatment of diseases. Since the amount and quality of experimental 'omics' data continue to increase rapidly, there is great need for methods for proper model building which can handle this complexity. In the present chapter we review two key steps of the model building process, namely parameter estimation (model calibration) and optimal experimental design. Parameter estimation aims to find the unknown parameters of the model which give the best fit to a set of experimental data. Optimal experimental design aims to devise the dynamic experiments which provide the maximum information content for subsequent non-linear model identification, estimation and/or discrimination. We place emphasis on the need for robust global optimization methods for proper solution of these problems, and we present a motivating example considering a cell signalling model. PMID:18793133
The Advanced Photon Source list of parameters
Bizek, H.M.
1996-07-01
The Advanced Photon Source (APS) is a third-generation synchrotron radiation source that stores positrons in a storage ring. The choice of positrons as accelerating particles was motivated by the usual reason: to eliminate the degradation of the beam caused by trapping of positively charged dust particles or ions. The third-generation synchrotron radiation sources are designed to have low beam emittance and many straight sections for insertion devices. The parameter list is comprised of three basic systems: the injection system, the storage ring system, and the experimental facilities system. The components of the injection system are listed according to the causal flow of positrons. Below we briefly list the individual components of the injection system, with the names of people responsible for managing these machines in parentheses: the linac system; electron linac-target-positron linac (Marion White); low energy transport line from linac to the PAR (Michael Borland); positron accumulator ring or PAR (Michael Borland); low energy transport line from PAR to injector synchrotron (Michael Borland); injector synchrotron (Stephen Milton); high energy transport line from injector synchrotron to storage ring (Stephen Milton). The storage ring system, managed by Glenn Decker, uses the Chasman-Green lattice. The APS storage ring, 1104 m in circumference, has 40 periodic sectors. Six are used to house hardware and 34 serve as insertion devices. Another 34 beamlines emit radiation from bending magnets. The experimental facilities system`s parameters include parameters for both an undulator and a wiggler.
Dynamical topological order parameters far from equilibrium
NASA Astrophysics Data System (ADS)
Budich, Jan Carl; Heyl, Markus
2016-02-01
We introduce a topological quantum number—coined dynamical topological order parameter (DTOP)—that is dynamically defined in the real-time evolution of a quantum many-body system and represented by a momentum space winding number of the Pancharatnam geometric phase. Our construction goes conceptually beyond the standard notion of topological invariants characterizing the wave function of a system, which are constants of motion under coherent time evolution. In particular, we show that the DTOP can change its integer value at discrete times where so called dynamical quantum phase transitions occur, thus serving as a dynamical analog of an order parameter. Interestingly, studying quantum quenches in one-dimensional two-banded Bogoliubov-de Gennes models, we find that the DTOP is capable of resolving if the topology of the system Hamiltonian has changed over the quench. Furthermore, we investigate the relation of the DTOP to the dynamics of the string order parameter that characterizes the topology of such systems in thermal equilibrium.
Parameters affecting seat belt use in Greece.
Yannis, G; Laiou, A; Vardaki, S; Papadimitriou, E; Dragomanovits, A; Kanellaidis, G
2011-09-01
The objective of this research is the exploration of seat belt use in Greece and particularly the identification of the parameters affecting seat belt use in Greece. A national field survey was conducted for the analytical recording of seat belt use. A binary logistic regression model was developed, and the impact of each parameter on seat belt use in Greece was quantified. Parameters included in the model concern characteristics of car occupants (gender, age and position in the car), the type of the car and the type of the road network. The data collection revealed that in Greece, the non-use of seat belt on the urban road network was higher than on the national and rural road network and young and older men use seat belts the least. The developed model showed that travelling on a national road is negative for not wearing the seat belt. Finally, the variable with the highest impact on not wearing a seat belt is being a passenger on the back seats. PMID:21452095
Parameters Determination of Oscillatory Impulse Current Waveform
NASA Astrophysics Data System (ADS)
Sato, Shuji; Nishimura, Seisuke; Seki, Shingo
This paper proposes numerical techniques to distil waveform parameters out of digitally measured data of oscillatory impulse current. The first method, to be used for liner circuit, based on a curve-fitting technique in which a smooth analytical curve is defined to fit the noise-superposed measured data. The waveform parameters are derived from the curve. The algorithm is examined its performance using a measured waveform data which is obtained from a circuit composed of linear elements only. It is not rare when impulse current is measured in a circuit with non-linear element, namely an arrester. After carefully observed behaviours of the circuit current when the non-linear element turns on and off, authors developed two algorithms capable to determine the parameters from the recorded data obtained from a circuit having a ZnO arrester. The developed algorithm processed the waveform data generated by TDG which is to be issued in 2009 as a part of IEC 61083-2. The details of the algorithm are to be demonstrated in the paper.
Evaluation of the IRT Parameter Invariance Property for the MCAT.
ERIC Educational Resources Information Center
Kelkar, Vinaya; Wightman, Linda F.; Luecht, Richard M.
The purpose of this study was to investigate the viability of the property of parameter invariance for the one-parameter (1P), two-parameter (2P), and three-parameter (3P) item response theory (IRT) models for the Medical College Admissions Tests (MCAT). Invariance of item parameters across different gender, ethnic, and language groups and the…
Baker, Syed Murtuza; Poskar, C Hart; Junker, Björn H
2011-01-01
In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison. PMID:21989173
Implication of Migration Pattern For Critical Parameters
NASA Astrophysics Data System (ADS)
Wu, Y.; Rundle, J. B.
2012-12-01
Seismicity migration has been shown by improved pattern informatics (PI) method in retrospective studies. The retrospective studies also show that the migration patterns are dependent on the tectonic setting and parameters used in statistical calculation. For the purpose of a forecast, the critical parameters for a specified efficient forecast period have to be learned. In this study we propose that a forecast and its critical parameters, that is, the magnitude and precursory time, can be learned from a series of empirical migration patterns. We also make the forecast with half year of efficient forecast period for three densely populated seismic regions in Taiwan, Japan, and California based on the migration patterns. The seismic catalog in each region was cut in depth according to the seismogenic layer. Considering the activity of seismicity, the cut magnitudes Mc are given at 3.0, 3.5, and 4.0. The magnitude Mt of the target events are 5.0, 5.5, and 6.0, but the eventual magnitude of the event which can be forecast was determined by the performance of the migration pattern. We calculate the migration pattern with different cut magnitudes and time parameters and count the number of migration hotspots Nhs and the number of hit hotspots Nhit; the migration hotspots means the grids which seismicity migrate toward and the hit hotspots are the migration hotspots with M>Mt target events occurred in the following efficient time on them. The performance of the migration pattern depends both on the ratio of the number of hit hotspots Nhit to the number of target event Nevent which occurred in the following efficient time and the ratio Nhit/Nhs. Giving the criteria of the performance that highest Nhit/Nhs with Nhit/Nevent=1, we obtained the critical parameters for each region. In western Taiwan, the M>=5 events can be forecast using earthquakes with cut magnitude 4.0 and the total precursory time could be about 2.5 years. In Kanto region, the M>=5 events can be forecast
Sparsity regularization for parameter identification problems
NASA Astrophysics Data System (ADS)
Jin, Bangti; Maass, Peter
2012-12-01
The investigation of regularization schemes with sparsity promoting penalty terms has been one of the dominant topics in the field of inverse problems over the last years, and Tikhonov functionals with ℓp-penalty terms for 1 ⩽ p ⩽ 2 have been studied extensively. The first investigations focused on regularization properties of the minimizers of such functionals with linear operators and on iteration schemes for approximating the minimizers. These results were quickly transferred to nonlinear operator equations, including nonsmooth operators and more general function space settings. The latest results on regularization properties additionally assume a sparse representation of the true solution as well as generalized source conditions, which yield some surprising and optimal convergence rates. The regularization theory with ℓp sparsity constraints is relatively complete in this setting; see the first part of this review. In contrast, the development of efficient numerical schemes for approximating minimizers of Tikhonov functionals with sparsity constraints for nonlinear operators is still ongoing. The basic iterated soft shrinkage approach has been extended in several directions and semi-smooth Newton methods are becoming applicable in this field. In particular, the extension to more general non-convex, non-differentiable functionals by variational principles leads to a variety of generalized iteration schemes. We focus on such iteration schemes in the second part of this review. A major part of this survey is devoted to applying sparsity constrained regularization techniques to parameter identification problems for partial differential equations, which we regard as the prototypical setting for nonlinear inverse problems. Parameter identification problems exhibit different levels of complexity and we aim at characterizing a hierarchy of such problems. The operator defining these inverse problems is the parameter-to-state mapping. We first summarize some
NASA Astrophysics Data System (ADS)
Li, Yun-He; Zhang, Jing-Fei; Zhang, Xin
2014-12-01
Dark energy can modify the dynamics of dark matter if there exists a direct interaction between them. Thus, a measurement of the structure growth, e.g., redshift-space distortions (RSDs), can provide a powerful tool to constrain the interacting dark energy (IDE) models. For the widely studied Q =3 β H ρde model, previous works showed that only a very small coupling [β ˜O (10-3) ] can survive in current RSD data. However, all of these analyses had to assume w >-1 and β >0 due to the existence of the large-scale instability in the IDE scenario. In our recent work [Phys. Rev. D 90, 063005 (2014)], we successfully solved this large-scale instability problem by establishing a parametrized post-Friedmann framework for the IDE scenario. So we, for the first time, have the ability to explore the full parameter space of the IDE models. In this work, we re-examine the observational constraints on the Q =3 β H ρde model within the parametrized post-Friedmann framework. By using the Planck data, the baryon acoustic oscillation data, the JLA sample of supernovae, and the Hubble constant measurement, we get β =-0.01 0-0.033+0.037 (1 σ ). The fit result becomes β =-0.014 8-0.0089+0.0100 (1 σ ) once we further incorporate the RSD data in the analysis. The error of β is substantially reduced with the help of the RSD data. Compared with the previous results, our results show that a negative β is favored by current observations, and a relatively larger interaction rate is permitted by current RSD data.
Linear Parameter Varying Control Synthesis for Actuator Failure, Based on Estimated Parameter
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine
2002-01-01
The design of a linear parameter varying (LPV) controller for an aircraft at actuator failure cases is presented. The controller synthesis for actuator failure cases is formulated into linear matrix inequality (LMI) optimizations based on an estimated failure parameter with pre-defined estimation error bounds. The inherent conservatism of an LPV control synthesis methodology is reduced using a scaling factor on the uncertainty block which represents estimated parameter uncertainties. The fault parameter is estimated using the two-stage Kalman filter. The simulation results of the designed LPV controller for a HiMXT (Highly Maneuverable Aircraft Technology) vehicle with the on-line estimator show that the desired performance and robustness objectives are achieved for actuator failure cases.
Rocks in motion: a one parameter description
NASA Astrophysics Data System (ADS)
Haug, O. T.; Rosenau, M.; Leever, K.; Oncken, O.
2013-12-01
Rock fall, slide and avalanches are dynamically different phenomena of rocks in motion: falls are mostly dominated by free fall and elastic impacts, slides by friction at their base and avalanches by granular flow. Despite these dynamical differences, the properties of the material involved can be viewed similar, and the main (and only?) difference is typically the size of the systems (falls: 10 meters, slides: 102 meters, avalanches: 103 meters). If only size matters: can gravitational rock movements be described in a simple quantitative framework without losing any underlying physics? To explore the dynamics of gravitational rock movements we performed a dimensional analysis combined with experimental validation. Dimensional analysis suggests 9 dimensionless parameters that describe the system, one of which is Π = C/ρgh, where ρ is density, h height and C cohesion of the material and g is the gravitational acceleration. This dimensionless number describes how strong the material is compared to its size, and varies from < 103 for rock falls to > 10-4 for rock avalanches. Can this parameter be used to describe the spectrum of dynamics for rocks in motions in a physically meaningful way? To test this, we performed experiments using labscale rock analogues. Gravitational rock movements are modeled under normal gravity conditions, by releasing material down a 1 meter planar slope at an angle of 45°. The material used is a cemented granular material, the cohesion of which can be controlled over several order of magnitude (101 to 106 Pa). The experiments are monitored using a 50 Hz digital camera. Surface velocities are quantified using a Particle Image Velocimetry while other physical parameters (fragment size distribution, position, friction) are measured using optical image analysis. We perform experiments where the initial value of Π (Π0) is varied over 7 orders of magnitude (10-2 to 104), mapping a parameters space large enough to study a wide range of
Quark masses, B-parameters, and CP violation parameters {epsilon} and {epsilon}{prime}/{epsilon}
Gupta, R.
1998-01-20
After a brief introduction to lattice QCD, the author summarizes the results for the light quark masses and the bag parameters B{sub K}, B{sub 6}{sup 1/2}, and B{sub 8}{sup 3/2}. The implications of these results for the standard model estimates of CP violation parameters {epsilon} and {epsilon}{prime}/{epsilon} are also discussed.
Transition Parameter applied to boundaries at Venus
NASA Astrophysics Data System (ADS)
Guymer, Gemma; Grande, Manuel; Fraenz, Marcus; Barabash, Stas; Zhang, Tielong; Pinter, Balazs
2015-04-01
We have used a transition parameter to characterise magnetospheric boundaries at Venus. The technique allows sparsely sampled data to be related to a variable and rapidly moving structure, such as the Bow shock, Magnetic Pile-up boundary or Ion Composition boundary. The solar minimum in 2009 was one of the lowest on record, and by 2006 minimum conditions were already in place. Utilising the ASPERA-4 Ion Mass Analyzer data and the paired magnetometers on board Venus Express the relation between the ions and flux ropes are investigated, in order to determine whether they a part of the replenishment or loss of the Venusian atmosphere. First, by using the magnetometer to identify the flux rope in the ionosphere Wei H.Y. (2006 -personal communication) and then by using the IMA to observe coincident composition changes. The altitude of ropes is dependent on the time spent in the ionosphere, with older ropes increasing weight and dropping weight. However, the occurrence of flux ropes and a mixed populations of ionospheric and solar wind ions is coincidental. Venus boundaries are examined during 2007, and 2011 / 2012 going toward solar maximum. A new use of the transition parameter is put forward; to aid with boundary placement. The bow shock is located with an automatic algorithm and this is then compared with previous models, giving a sense of Venus reaction to solar activity. It is shown that the bow shock position is largely unchanged. The ion composition boundary and the magnetic pile-up boundary are also located. They coincide to within an ion sampling period, but transition parameter analysis reveals that they are not coincident, with the ion composition boundary inside the pileup boundary.
Parameter optimization in S-system models
Vilela, Marco; Chou, I-Chun; Vinga, Susana; Vasconcelos, Ana Tereza R; Voit, Eberhard O; Almeida, Jonas S
2008-01-01
Background The inverse problem of identifying the topology of biological networks from their time series responses is a cornerstone challenge in systems biology. We tackle this challenge here through the parameterization of S-system models. It was previously shown that parameter identification can be performed as an optimization based on the decoupling of the differential S-system equations, which results in a set of algebraic equations. Results A novel parameterization solution is proposed for the identification of S-system models from time series when no information about the network topology is known. The method is based on eigenvector optimization of a matrix formed from multiple regression equations of the linearized decoupled S-system. Furthermore, the algorithm is extended to the optimization of network topologies with constraints on metabolites and fluxes. These constraints rejoin the system in cases where it had been fragmented by decoupling. We demonstrate with synthetic time series why the algorithm can be expected to converge in most cases. Conclusion A procedure was developed that facilitates automated reverse engineering tasks for biological networks using S-systems. The proposed method of eigenvector optimization constitutes an advancement over S-system parameter identification from time series using a recent method called Alternating Regression. The proposed method overcomes convergence issues encountered in alternate regression by identifying nonlinear constraints that restrict the search space to computationally feasible solutions. Because the parameter identification is still performed for each metabolite separately, the modularity and linear time characteristics of the alternating regression method are preserved. Simulation studies illustrate how the proposed algorithm identifies the correct network topology out of a collection of models which all fit the dynamical time series essentially equally well. PMID:18416837
[Outcome parameters for use in psoriatic arthritis].
Braun, J; Wassenberg, S
2006-03-01
The most important and most commonly occurring form of psoriasis is psoriasis vulgaris. In the specialism of rheumatology palmoplantar pustulosis is also important. The outcome is influenced mainly by how severe and how widespread the manifestations affecting the skin and nails are. All manifestations affecting the joints and occurring in association with psoriasis are subsumed under the term 'psoriatic arthritis' (PsA). Asymmetric oligoarthritis, enthesitis and inflammatory spinal manifestations are especially frequent. PsA is a rheumatic illness with widely varying clinical pictures, most patients having signs and symptoms resembling those of spondyloarthritides (SpA) and other features of rheumatoid arthritis (RA) and/or of arthrosis/osteoarthritis (OA). Clinical features that are particularly typical of PsA are ray-wise joint involvement, dactylitis and osteodestructive and osteoproliferative joint destruction. Dactylitis, asymmetric joint involvement and enthesitis also occur in other SpA. It is becoming increasingly important to define outcome parameters for use in PsA against the backdrop of new forms of treatment. In the case of clinical outcome basic distinctions must be made between clinical signs and symptoms, function and structure. In PsA the sometimes significant manifestations affecting skin and nails must also be considered. The outcome parameters used thus far have varied very widely. The extent and intensity of involvement of the peripheral joints and insertions of tendons and of spinal involvement are particularly important in PsA. In addition, functional impairments, quality of life and parameters concerned with work must be considered. There are hardly any measuring instruments specific to PsA; many have been developed and used primarily for SpA or RA. PMID:16501924
Deceleration parameter in tilted Friedmann universes
NASA Astrophysics Data System (ADS)
Tsagas, Christos G.; Kadiltzoglou, Miltiadis I.
2015-08-01
Large-scale peculiar motions are believed to reflect the local inhomogeneity and anisotropy of the Universe, triggered by the ongoing process of structure formation. As a result, realistic observers do not follow the smooth Hubble flow but have a peculiar "tilt" velocity relative to it. Our local group of galaxies, in particular, moves with respect to the universal expansion at a speed of roughly 600 km /sec . Relative motion effects are known to interfere with the observations and their interpretation. The strong dipolar anisotropy seen in the cosmic microwave background, for example, is not treated as a sign of real universal anisotropy, but as a mere artifact of our peculiar motion relative to the Hubble flow. With these in mind, we look into the implications of large-scale bulk motions for the kinematics of their associated observers, by adopting a tilted Friedmann model. Our aim is to examine whether the deceleration parameter measured in the rest frame of the bulk flow can differ from that of the actual Universe due to relative-motion effects alone. We find that there is a difference, which depends on the speed as well as the scale of the bulk motion. The faster and the smaller the drifting domain, the larger the difference. In principle, this allows relatively slow peculiar velocities to have a disproportionately strong effect on the value of the deceleration parameter measured by observers within bulk flows of, say, a few hundred megaparsecs. In fact, under certain circumstances, it is even possible to change the sign of the deceleration parameter. It goes without saying that all these effects vanish identically in the Hubble frame, which makes them an illusion and mere artifact of the observers' relative motion.
NASA Astrophysics Data System (ADS)
Ozturk, Yusuf; Egemen Yilmaz, Asim; Ozbay, Ekmel
2016-04-01
In this study, we explain an approach including conversion from constitutive parameters to dispersive transmission line parameters using the double-band DNG (double-negative) properties of the circular type fishnet metamaterials. After designing the metamaterial structure, the numerical calculations and the composite right/left-handed (CRLH) modeling of circular-type metamaterials are realized in free space. Detailed dispersion characteristics give us the opportunity to explain the true behavior of the inclusions during the analysis stage. By combining the results coming from the standard retrieval procedure with the conventional CRLH theory, we calculate the actual values of the transmission line parameters for all frequency regimes. The constitutive parameters of an equivalent CRLH transmission line are derived and shown to be negative values. It is shown that the constitutive parameters present the same behavior for all negative refractive index regimes. The double-negative properties and the phase advance/lag behavior of metamaterials are observed based on the dispersive transmission line parameters.
Karr, Jonathan R; Williams, Alex H; Zucker, Jeremy D; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A; Bot, Brian M; Hoff, Bruce R; Kellen, Michael R; Covert, Markus W; Stolovitzky, Gustavo A; Meyer, Pablo
2015-05-01
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation. PMID:26020786
Karr, Jonathan R.; Williams, Alex H.; Zucker, Jeremy D.; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A.; Bot, Brian M.; Hoff, Bruce R.; Kellen, Michael R.; Covert, Markus W.; Stolovitzky, Gustavo A.; Meyer, Pablo
2015-01-01
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation. PMID:26020786
Phenomena and Parameters Important to Burnup Credit
Parks, C.V.
2001-01-10
Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.
Mass loss parameters for typical Shuttle materials
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Odonnell, T.
1982-01-01
The weight loss of twenty different typical Shuttle materials was measured with a thermogravimetric analyzer as the material temperature was increased from ambient to 300 C. An additional ten tests were performed where conditioning of the material varied. The materials were selected from each general grouping such as adhesives, coatings, lubricants, encapsulants, elastomers, and resins. Care was taken in the preparation, curing, and preconditioning of the materials to simulate flight use. Making the assumption that the weight loss follows first order rate theory, the source outgassing parameters for these thirty materials is presented.
Photon Interaction Parameters for Some Borate Glasses
NASA Astrophysics Data System (ADS)
Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.
2010-11-01
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
Identification of constitutive parameters for fractional viscoelasticity
NASA Astrophysics Data System (ADS)
Xiao, Zhao; Haitian, Yang; Yiqian, He
2014-01-01
This paper develops a numerical model to identify constitutive parameters in the fractional viscoelastic field. An explicit semi-analytical numerical model and a finite difference (FD) method based numerical model are derived for solving the direct homogenous and regionally inhomogeneous fractional viscoelastic problems, respectively. A continuous ant colony optimization (ACO) algorithm is employed to solve the inverse problem of identification. The feasibility of the proposed approach is illustrated via the numerical verification of a two-dimensional identification problem formulated by the fractional Kelvin-Voigt model, and the noisy data and regional inhomogeneity etc. are taken into account.
Effects of contamination on radioligand binding parameters.
Lazareno, S; Birdsall, N J
2000-02-01
Radioligand binding studies are used to provide quantitative estimates of parameters such as the receptor density of a tissue and the affinity values of labelled and unlabelled ligands. The presence of an unlabelled competing contaminant, which might be present because of actual contamination, inadequate radioligand purification or the breakdown of the radioligand to an active species, has surprising effects on these estimates: the apparent affinity of the radioligand is increased but the Ki values of unlabelled ligands are unaffected. The most striking and sensitive effects are on radioligand association kinetics, which become independent of radioligand concentration at high radioligand concentrations. PMID:10664609
Information Gains in Cosmological Parameter Estimation
NASA Astrophysics Data System (ADS)
Seehars, Sebastian; Amara, Adam; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël
2014-05-01
Combining datasets from different experiments and probes to constrain cosmological models is an important challenge in observational cosmology. We summarize a framework for measuring the constraining power and the consistency of separately or jointly analyzed data within a given model that we proposed in earlier work (Seehars et al. 2014). Applying the Kullback-Leibler divergence to posterior distributions, we can quantify the difference between constraints and distinguish contributions from gains in precision and shifts in parameter space. We show results from applying this technique to a combination of datasets and probes such as the cosmic microwave background or baryon acoustic oscillations.
Photon Interaction Parameters for Some Borate Glasses
Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.
2010-11-06
Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.
Renormalization group running of neutrino parameters.
Ohlsson, Tommy; Zhou, Shun
2014-01-01
Neutrinos are the most elusive particles in our Universe. They have masses at least one million times smaller than the electron mass, carry no electric charge and very weakly interact with other particles, meaning that they are rarely captured in terrestrial detectors. Tremendous efforts in the past two decades have revealed that neutrinos can transform from one type to another as a consequence of neutrino oscillations--a quantum mechanical effect over macroscopic distances--yet the origin of neutrino masses remains puzzling. The physical evolution of neutrino parameters with respect to energy scale may help elucidate the mechanism for their mass generation. PMID:25322932
Renormalization group running of neutrino parameters
NASA Astrophysics Data System (ADS)
Ohlsson, Tommy; Zhou, Shun
2014-10-01
Neutrinos are the most elusive particles in our Universe. They have masses at least one million times smaller than the electron mass, carry no electric charge and very weakly interact with other particles, meaning that they are rarely captured in terrestrial detectors. Tremendous efforts in the past two decades have revealed that neutrinos can transform from one type to another as a consequence of neutrino oscillations—a quantum mechanical effect over macroscopic distances—yet the origin of neutrino masses remains puzzling. The physical evolution of neutrino parameters with respect to energy scale may help elucidate the mechanism for their mass generation.
Estimation of Damage Preference From Strike Parameters
Canavan, G.H.
1998-09-11
Estimation of an opponent's damage preference is illustrated by discussing the sensitivity of stability indices and strike parameters to it and inverting the results to study the sensitivity of estimates to uncertainties in strikes. Costs and stability indices do not generally have the monotonicity and sensitivity needed to support accurate estimation. First and second strikes do. Second strikes also have proportionality, although they are not unambiguously interpretable. First strikes are observable and have the greatest overall power for estimation, whether linear or numerical solutions are used.
Sensitivity of optimum solutions to problem parameters
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Barthelemy, J. F.; Ryan, K. M.
1981-01-01
Derivation of the sensitivity equations that yield the sensitivity derivatives directly, which avoids the costly and inaccurate perturb-and-reoptimize approach, is discussed and solvability of the equations is examined. The equations apply to optimum solutions obtained by direct search methods as well as those generated by procedures of the sequential unconstrained minimization technique class. Applications are discussed for the use of the sensitivity derivatives in extrapolation of the optimal objective function and design variable values for incremented parameters, optimization with multiple objectives, and decomposition of large optimization problems.
Comet brightness parameters: Definition, determination, and correlations
NASA Technical Reports Server (NTRS)
Meisel, D. D.; Morris, C. S.
1976-01-01
The power-law definition of comet brightness is reviewed and possible systematic influences are discussed that can affect the derivation of m sub o and n values from visual magnitude estimates. A rationale for the Bobrovnikoff aperture correction method is given and it is demonstrated that the Beyer extrafocal method leads to large systematic effects which if uncorrected by an instrumental relationship result in values significantly higher than those derived according to the Bobrovnikoff guidelines. A series of visual brightness parameter sets are presented which have been reduced to the same photometric system. Recommendations are given to insure that future observations are reduced to the same system.
An empirical study of scanner system parameters
NASA Technical Reports Server (NTRS)
Landgrebe, D.; Biehl, L.; Simmons, W.
1976-01-01
The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.
Performance Parameters Of A Kinestatic Charge Detector
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Wagenaar, Douglas J.; Fetter, Joan E.; Tenney, Charles R.; Vance, Joseph E.; Bolz, Martha J.; McDaniel, David L.; Granfors, Paul
1986-06-01
The goal of developing an on-line electronic digital radiographic (EDR) system to replace conventional film-screen radiography (FSR) is important for at least two reasons. First, theoretical arguments show that EDR can have improved diagnostic quality, reduced patient dose and faster image accessibility than FSR. Secondly, the availability of EDR systems will remove the final impediment to the realization of the PACS concept inasmuch as FSR is the only major nonelectronic imaging modality left in the modern radiology department. The Kinestatic Charge Detector (KCD) has properties which make it a candidate for an on-line EDR systems-10. The KCD is a strip detector with high spatial resolution in two dimensions. However, mechanically and electronically, it operates like a one-dimensional detector. Thus, it can effectively scan on the order of 64 to 128 parallel x-ray lines simultaneously but with a 64 to 128-fold reduction in the number of actual detector cells and electronic channels. Moreover, this can be done at quantum detection efficiencies approaching unity. In this paper, theoretical calculations and experimental measurements of the performance parameters of a KCD are presented. Some of the particular parameters discussed include spatial, contrast, and temporal resolution.
Parameter Choices for Approximation by Harmonic Splines
NASA Astrophysics Data System (ADS)
Gutting, Martin
2016-04-01
The approximation by harmonic trial functions allows the construction of the solution of boundary value problems in geoscience, e.g., in terms of harmonic splines. Due to their localizing properties regional modeling or the improvement of a global model in a part of the Earth's surface is possible with splines. Fast multipole methods have been developed for some cases of the occurring kernels to obtain a fast matrix-vector multiplication. The main idea of the fast multipole algorithm consists of a hierarchical decomposition of the computational domain into cubes and a kernel approximation for the more distant points. This reduces the numerical effort of the matrix-vector multiplication from quadratic to linear in reference to the number of points for a prescribed accuracy of the kernel approximation. The application of the fast multipole method to spline approximation which also allows the treatment of noisy data requires the choice of a smoothing parameter. We investigate different methods to (ideally automatically) choose this parameter with and without prior knowledge of the noise level. Thereby, the performance of these methods is considered for different types of noise in a large simulation study. Applications to gravitational field modeling are presented as well as the extension to boundary value problems where the boundary is the known surface of the Earth itself.
Nondipole Photoionization Parameters of Atomic Mercury
NASA Astrophysics Data System (ADS)
Banerjee, T.; Manson, S. T.
2005-05-01
Over the past few years, photoionization parameters have been found to be affected by nondipole terms at much lower energies than was known earlier [1,2]. The primary motivation for the present investigation is to study the effect of interchannel coupling involving E1 and E2 photoionization channels from subshells with large orbital angular momentum (l>2). In an extension of earlier work [3], the nondipole photoelectron angular distribution asymmetry parameters γandδ from the 6s and 5d subshells of atomic mercury have been obtained in the energy range from the respective thresholds up to 45 au. Relativistic-Random-Phase Approximation (RRPA) theory at various levels of truncation of the RRPA was used which allowed us to pinpoint the effects of interchannel coupling. The role of interchannel coupling between the 6s and 5d photoionization channels and the 4f channels in both the dipole (E1) and the quadrupole (E2) manifolds has been detailed and has been found to be of considerable significance. This work was supported by DST and NSF. [1] A. Derevianko, W. R. Johnson and K. T. Cheng , At. Data Nucl. Data Tables 73, 153 (1999). [2] O. Hemmers, et al, Phys. Rev. Lett. 91, 053002 (2003); 93, 11301 (2004). [3] P. C. Deshmukh, Radiation Phys. and Chem. 70, 515 (2004) and references therein.
Radiation Parameters of Some Potential Bioactive Compounds.
Gedik, Zeynep; Tugrak, Mehtap; Dastan, Aysenur; Gul, Halise Inci; Yilmaz, Demet
2015-06-01
In this study, we aimed to determine the radiation parameters of some potential bioactive compounds. 1-Aryl-3-dibenzylamino-propane-1-on hydrochloride type Mannich bases were synthesized via classical conventional heating method. Aryl part was changed as phenyl (C6H5), 4-methylphenyl (4-CH3C6H4), 4-fluorophenyl ( 4-FC6H4), 4-nitrophenyl (4-NO2C6H4), 4-chlorophenyl (4-ClC6H4), 4-bromophenyl (4-BrC6H4), and 2-thienyl (C4H3S-2-yl). Mass attenuation coefficient (μm), effective atomic number (Z(eff)) and effective electron density (N(el)) of compounds were determined experimentally and theoretically for at 8.040, 8.910, 13.40, 14.96, 17.48, 19.61, 22.16, 24.94, 32.19, 36.38, 44.48, 50.38 and 59.54 keV photon energies by using an HPGe detector with a resolution of 182 eV at 5.9 keV. Radiation parameters of these compounds which can be anti-cancer drug candidate were given in the tables. The results show that phenyl ring behave like thiophene ring in terms of radiation absorption. It is thought that the results of study may drive allow the development of drug candidate new compounds in medical oncology. PMID:26601355
Remarkable analytic relations among greybody parameters
NASA Astrophysics Data System (ADS)
Elia, Davide; Pezzuto, S.
2016-09-01
In this paper we derive and discuss several implications of the analytic form of a modified blackbody, also called greybody, which is widely used in Astrophysics, and in particular in the study of star formation in the far-infrared/submillimetre domain. The research in this area has been greatly improved thanks to recent observations taken with the Herschel satellite, so that it became important to clarify the sense of the greybody approximation, to suggest possible further uses, and to delimit its intervals of validity. First, we discuss the position of the greybody peak, making difference between the optically thin and thick regimes. Second, we analyse the behaviour of bolometric quantities as a function of the different greybody parameters. The ratio between the bolometric luminosity and the mass of a source, the ratio between the so-called `submillimetre luminosity' and the bolometric one, and the bolometric temperature are observables used to characterize the evolutionary stage of a source, and it is of primary importance to have analytic equations describing the dependence of such quantities on the greybody parameters. Here we discuss all these aspects, providing analytic relations, illustrating particular cases, and providing graphical examples. Some equations reported here are well known in Astrophysics, but are often spread over different publications. Some of them, instead, are brand new and represent a novelty in Astrophysics literature. Finally, we indicate an alternative way to obtain, under some conditions, the greybody temperature and dust emissivity index directly from an observing spectral energy distribution, avoiding a best-fitting procedure.
Partial solvation parameters and mixture thermodynamics.
Panayiotou, Costas
2012-06-21
The recently introduced partial solvation parameters (PSPs) are molecular descriptors that combine elements from quantum mechanics with the QSPR/LSER/solvatochromic and solubility parameter approaches. Basic regularities and universalities exhibited by PSPs are examined in this work and the concepts of homosolvation, heterosolvation and solvation energy density are quantified. A simple consistent thermodynamic framework is developed, through which the validity of the PSP approach is tested. The predictions are compared with experimental phase equilibrium data that span the full composition range from the pure fluid state to infinite dilution. They include vapor-liquid equilibria of fluids interacting with strong specific forces, dissolution of solids/liquids in various solvents and probe/oligomer or probe/polymer interactions as typically determined by inverse gas-chromatography. These applications show the potential of the PSP approach not only to reasonably predict a variety of properties of classes of complex systems but, also, to shed light to challenging aspects of intermolecular interactions. The perspectives of this unified approach to solution thermodynamics are discussed. PMID:22642662
Vibroacoustic test plan evaluation: Parameter variation study
NASA Technical Reports Server (NTRS)
Stahle, C. V.; Gongloef, H. R.
1976-01-01
Statistical decision models are shown to provide a viable method of evaluating the cost effectiveness of alternate vibroacoustic test plans and the associated test levels. The methodology developed provides a major step toward the development of a realistic tool to quantitatively tailor test programs to specific payloads. Testing is considered at the no test, component, subassembly, or system level of assembly. Component redundancy and partial loss of flight data are considered. Most and probabilistic costs are considered, and incipient failures resulting from ground tests are treated. Optimums defining both component and assembly test levels are indicated for the modified test plans considered. modeling simplifications must be considered in interpreting the results relative to a particular payload. New parameters introduced were a no test option, flight by flight failure probabilities, and a cost to design components for higher vibration requirements. Parameters varied were the shuttle payload bay internal acoustic environment, the STS launch cost, the component retest/repair cost, and the amount of redundancy in the housekeeping section of the payload reliability model.
Researches on predictions of Earth orientation parameters
NASA Astrophysics Data System (ADS)
Xu, Xueqing
2012-08-01
Earth orientation parameters (EOP) are essential for transformation between the celestial and terrestrial coordinate systems, which has important applications in the Earth sciences, astronomy and navigation system. In this report, we firstly describe the principles and analyze the characteristics of several commonly used EOP prediction methods. Based on this discussion, we found that it’s essential to select appropriate method and length of base prediction sequence at different prediction span, e.g., autoregressive (AR) model has a higher accuracy in short - term forecasting, while the artificial neural network (ANN) model has advantage in the long term forecasting. Secondly, we employ for the first time a combination of AR model and Kalman filter (AR+Kalman) in short - term EOP prediction. Comparing with the single AR model, the combination of AR model and Kalman filter shows a significant improvement in short - term EOP prediction. At last, we will present the recent work during the period of our participation in the Earth Orientation Parameters Combination of Prediction Pilot Project (EOPC PPP). The EOPC PPP was initiated by the International Earth Rotation and Reference Systems Service (IERS) and Jet Propulsion Laboratory (JPL) in the summer of 2010, with the go al to develop a strategy for combining predictions.
Parameter Studies for the VISTA Spacecraft Concept
Orth, C D
2000-11-21
The baseline design for the VISTA spacecraft concept employs a diode-pumped solid-state laser (DPSSL) driver. This type of driver is now under development at LLNL and elsewhere as an extension of the mature solid-state (glass) laser technology developed for terrestrial applications of inertial confinement fusion (ICF). A DPSSL is repratable up to at least 30 Hz, and has an efficiency soon to be experimentally verified of at least 10%. By using a detailed systems code including the essential physics of a DPSSL, we have run parameter studies for the baseline roundtrip (RT) to Mars with a 100-ton payload. We describe the results of these studies as a function of the optimized (minimum) RT flight duration. We also demonstrate why DT fuel gives the best performance, although DD, D3He, or even antimatter can be used, and why DT-ignited DD is probably the fuel most preferred. We also describe the overall power flow, showing where the fusion energy is ultimately utilized, and estimate the variation in performance to the planets dictated by variations in target gain and other parameters.
Defining muscle elastance as a parameter.
Palladino, Joseph L; Noordergraaf, Abraham
2007-01-01
Functional descriptions of striated muscle are often based on the measured variables force and initial velocity of shortening, embodied as Hill's contractile element. The fundamental difficulty of describing the mechanical properties of muscle with a force-velocity relation that is set a priori, and the practical problem of the act of measurement changing muscle's force-velocity relation or elastance curve, are described. As an alternative, a new model of muscle contraction is presented, which characterizes muscle's contractile state with parameters, rather than variables. Muscle is treated as a force generator that is time, length, and velocity dependent. Muscle dynamics develop from a single equation based on the formation and relaxation of crossbridge bonds. This analytical function permits the calculation of muscle elastance via E(m)=[abstract: see text]. This new muscle model is defined independently from load properties, and muscle elastance is dynamic and reflects changing numbers of crossbridge bonds. This parameter is more representative of the mechanical properties of muscle than are variables such as muscle force and shortening velocity. PMID:18003207
HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY
Farooq, Omer; Mania, Data; Ratra, Bharat E-mail: mania@phys.ksu.edu
2013-02-20
We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.
A PARAMETER STUDY FOR BAROCLINIC VORTEX AMPLIFICATION
Raettig, Natalie; Klahr, Hubert; Lyra, Wladimir E-mail: klahr@mpia.de
2013-03-10
Recent studies have shown that baroclinic vortex amplification is strongly dependent on certain factors, namely, the global entropy gradient, the efficiency of thermal diffusion and/or relaxation as well as numerical resolution. We conduct a comprehensive study of a broad range and combination of various entropy gradients, thermal diffusion and thermal relaxation timescales via local shearing sheet simulations covering the parameter space relevant for protoplanetary disks. We measure the Reynolds stresses as a function of our control parameters and see that there is angular momentum transport even for entropy gradients as low as {beta} = -dln s/dln r = 1/2. Values we expect in protoplanetary disks are between {beta} = 0.5-2.0 The amplification-rate of the perturbations, {Gamma}, appears to be proportional to {beta}{sup 2} and thus proportional to the square of the Brunt-Vaeisaelae frequency ({Gamma}{proportional_to}{beta}{sup 2}{proportional_to}N {sup 2}). The saturation level of Reynolds stresses, on the other hand, seems to be proportional to {beta}{sup 1/2}. This highlights the importance of baroclinic effects even for the low entropy gradients expected in protoplanetary disks.
XTC MRI: sensitivity improvement through parameter optimization.
Ruppert, Kai; Mata, Jaime F; Wang, Hsuan-Tsung J; Tobias, William A; Cates, Gordon D; Brookeman, James R; Hagspiel, Klaus D; Mugler, John P
2007-06-01
Xenon polarization Transfer Contrast (XTC) MRI pulse sequences permit the gas exchange of hyperpolarized xenon-129 in the lung to be measured quantitatively. However, the pulse sequence parameter values employed in previously published work were determined empirically without considering the now-known gas exchange rates and the underlying lung physiology. By using a theoretical model for the consumption of magnetization during data acquisition, the noise intensity in the computed gas-phase depolarization maps was minimized as a function of the gas-phase depolarization rate. With such optimization the theoretical model predicted an up to threefold improvement in precision. Experiments in rabbits demonstrated that for typical imaging parameter values the optimized XTC pulse sequence yielded a median noise intensity of only about 3% in the depolarization maps. Consequently, the reliable detection of variations in the average alveolar wall thickness of as little as 300 nm can be expected. This improvement in the precision of the XTC MRI technique should lead to a substantial increase in its sensitivity for detecting pathological changes in lung function. PMID:17534927
Chronic boron exposure and human semen parameters.
Robbins, Wendie A; Xun, Lin; Jia, Juan; Kennedy, Nola; Elashoff, David A; Ping, Liu
2010-04-01
Boron found as borates in soil, food, and water has important industrial and medical applications. A panel reviewing NTP reproductive toxicants identified boric acid as high priority for occupational studies to determine safe versus adverse reproductive effects. To address this, we collected boron exposure/dose measures in workplace inhalable dust, dietary food/fluids, blood, semen, and urine from boron workers and two comparison worker groups (n=192) over three months and determined correlations between boron and semen parameters (total sperm count, sperm concentration, motility, morphology, DNA breakage, apoptosis and aneuploidy). Blood boron averaged 499.2 ppb for boron workers, 96.1 and 47.9 ppb for workers from high and low environmental boron areas (p<0.0001). Boron concentrated in seminal fluid. No significant correlations were found between blood or urine boron and adverse semen parameters. Exposures did not reach those causing adverse effects published in animal toxicology work but exceeded those previously published for boron occupational groups. PMID:19962437
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Iterative atmospheric parameters estimationof the tropical atmospere
NASA Astrophysics Data System (ADS)
Longo, F.; Laneve, G.; Castronuovo, M.
This work describes an iterative algorithm capable of determining the atmospheric parameters (temperature, water vapor and ozone profiles) by using the observations currently collected at the BSC Station (Malindi -Kenya, 40° E, 3° S) of the Centro di Ricerca Progetto San Marco (CRPSM) of the University of Rome "La Sapienza" (Italy), by using the NOAA ATOVS data. The method is based on the usual approach to the problem of retrieving atmospheric characteristics:- a forward model (using the FASCODE atmospheric code);- a numerical method to find a solution (by means of the Least SquareEstimation (LSE), the Extended Kalman Filter (EKF) and a regularizationmethod for computing stabilized solutions to the ill-posed problems). Moreover, the retrieval method for the temperature, water vapor and ozone is discussed in detail; comparisons are also made with available co-located atmospheric informations from AAPP-ICI software and balloon based soundings. The aim of this paper is to evaluate the accuracy of the estimate of the tropical atmosphere parameters using an autonomous ret rieval algorithm, based on a modified LSE technique, introducing a gain computed from Kalman theory.
Determining Supersymmetric Parameters With Dark Matter Experiments
Hooper, Dan; Taylor, Andrew M.; /Oxford U.
2006-07-01
In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of {mu} (and the composition of the lightest neutralino), m{sub A} and tan {beta}. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, {mu} can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m{sub A} to roughly {+-}100 GeV, even when heavy neutral MSSM Higgs bosons (A, H{sub 1}) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.
Earth Rotation Parameters From DSN VLBI: 1995
NASA Technical Reports Server (NTRS)
Steppe, J.; Oliveau, S.; Sovers, O.
1995-01-01
A description of the DSN VLBI data set and of last year's analysis can be found in last year's report. Other than including another year's data, the main changes in this year's analysis from last year's are in the use of meteorological data for determining tropospheric parameters and in the weighting of the data to account for the uncertainty in the observables caused by tropospheric effects and source structure. A priori dry zenith tropospheric delays were determined from barometric pressure measurements at the DSN sites, corrected for height differences between the pressure sensor and the antennas. A priori wet zenith tropospheric delays were derived from tables of monthly average wet zenith delays for each station, which are based on historical radiosonde data. The Lanyi function was used for mapping zenith tropospheric delays to observed elevations. the temperature at the top of the boundary layer, a parameter in the Lanyi function, was taken to be the 24-hour average of the surface temperature at the station. Adjustments to the wet troposphere zenith delays were estimated every two to three hours.
Line Narrowing Parameter Measurement by Modulation Spectroscopy
NASA Technical Reports Server (NTRS)
Dharamsi, Amin N.
1998-01-01
Accurate Characterization of Oxygen A-Band Line Parameters by Wavelength Modulation Spectroscopy with tunable diode lasers is an ongoing research at Old Dominion University, under sponsorship from NASA Langley research Center. The work proposed here will be undertaken under the guidance of Dr. William Chu and Dr. Lamont Poole of the Aerosol Research Branch at NASA Langley-Research Center in Hampton, Virginia. The research was started about two years ago and utilizes wavelength modulation absorption spectroscopy with higher harmonic detection, a technique that we developed at Old Dominion University, to obtain the absorption line characteristics of the Oxygen A-band rovibronic lines. Accurate characterization of this absorption band is needed for processing of data that will be obtained in experiments such as the NASA Stratospheric Aerosol and Gas Experiment III (SAGE III) as part of the US Mission to Planet Earth. The research work for Summer Fellowship undertook a measurement of the Dicke line-narrowing parameters of the Oxygen A-Band lines by using wavelength modulation spectroscopy. Our previous theoretical results had indicated that such a measurement could be done sensitively and in a convenient fashion by using this type of spectroscopy. In particular, theoretical results had indicated that the signal magnitude would depend on pressure in a manner that was very sensitive to the narrowing parameter. One of the major tasks undertaken during the summer of 1998 was to establish experimentally that these theoretical predictions were correct. This was done successfully and the results of the work are being prepared for publication. Experimental Results were obtained in which the magnitude of the signal was measured as a function of pressure, for various harmonic detection orders (N = 1, 2, 3, 4, 5). A comparison with theoretical results was made, and it was shown that the agreement between theory and experiment was very good. More importantly, however, it was shown
NASA Astrophysics Data System (ADS)
Weigand, M.; Kemna, A.
2016-06-01
Spectral induced polarization (SIP) data are commonly analysed using phenomenological models. Among these models the Cole-Cole (CC) model is the most popular choice to describe the strength and frequency dependence of distinct polarization peaks in the data. More flexibility regarding the shape of the spectrum is provided by decomposition schemes. Here the spectral response is decomposed into individual responses of a chosen elementary relaxation model, mathematically acting as kernel in the involved integral, based on a broad range of relaxation times. A frequently used kernel function is the Debye model, but also the CC model with some other a priorly specified frequency dispersion (e.g. Warburg model) has been proposed as kernel in the decomposition. The different decomposition approaches in use, also including conductivity and resistivity formulations, pose the question to which degree the integral spectral parameters typically derived from the obtained relaxation time distribution are biased by the approach itself. Based on synthetic SIP data sampled from an ideal CC response, we here investigate how the two most important integral output parameters deviate from the corresponding CC input parameters. We find that the total chargeability may be underestimated by up to 80 per cent and the mean relaxation time may be off by up to three orders of magnitude relative to the original values, depending on the frequency dispersion of the analysed spectrum and the proximity of its peak to the frequency range limits considered in the decomposition. We conclude that a quantitative comparison of SIP parameters across different studies, or the adoption of parameter relationships from other studies, for example when transferring laboratory results to the field, is only possible on the basis of a consistent spectral analysis procedure. This is particularly important when comparing effective CC parameters with spectral parameters derived from decomposition results.
Source Parameters of European Intraplate Earthquakes
NASA Astrophysics Data System (ADS)
Braunmiller, J.
2002-12-01
Seismicity in the European-Mediterranean region follows mainly the plate boundary zones. However, a significant number of earthquakes is located inside the Eurasian plate in Europe. These intraplate events pose a serious hazard; for example, a repeat of the 1356 Basel earthquake, the largest historic earthquake in central Europe, could cause billions of US\\ in damage. The cause for intraplate seismicity is still poorly understood. Systematic fault parameter retrieval may improve our understanding of their origin in relation to the acting stresses and existing geologic structures. Here, I present robust, waveform modeling derived earthquake source parameters that provide the seismic moment tensor (principal stress axes), seismic moment and centroid depth. One data source is the global Harvard CMT catalog covering larger events (moment magnitude M_{w} \\geq 5) for a 26 year period. Such larger intraplate events, that can be analyzed with teleseismic data, occur infrequently. I thus used regional data from the evolving European broadband station network to analyze the more frequent moderate size events of the last three years. The magnitude threshold for regional analysis is M_{w}=4.5. In some areas with dense station coverage events as small as M_{w}$=3.5 can be analyzed. Regional analysis expands the spatial coverage and number of events significantly. The combined source parameter data set contains more than 60 intraplate events in Europe. Most intraplate activity is associated with known weak zones (palaeo-collision zones, former continental rifts and subduction zones, and passive continental margins) and other, slowly moving faults. Distributed seismicity in southeastern Europe may be related to the near-by active subduction and collision zones. Several events are probably mining induced and have large non double-couple source components. Thrust type source mechanisms are restricted to continental margins (offshore Norway) and former subduction zones (Romania
Impersonal parameters from Hertzsprung-Russell diagrams
NASA Astrophysics Data System (ADS)
Wilson, R. E.; Hurley, Jarrod R.
2003-10-01
An objective process for estimation of star cluster parameters from Hertzsprung-Russell (HR) diagrams is introduced, with direct inclusion of multiple stars, a least-squares fitting criterion, and standard error estimates. No role is played by conventional isochrones. Instead the quantity compared between observation and theory is the density of points (areal ) as it varies over the diagram. With as the effective observable quantity, standard parameter adjustment theory can be brought to bear on HR diagram analysis. Here we use the method of differential corrections with a least-squares fitting criterion, but any of the many known fitting methods should be applicable to comparison of observed and theoretical distributions. Diverse numerical schemes were developed to make the overall algorithm workable, including two that improve differentiability of by rendering point distributions effectively equivalent to continuous distributions in certain respects. Statistics of distributions are handled not via Monte Carlo methods but by the Functional Statistics Algorithm (hereafter FSA), a statistical algorithm that has been developed for HR diagram fitting but should serve as an alternative to Monte Carlo in many other applications. FSA accomplishes the aims of Monte Carlo with orders of magnitude less computation. Analysis of luminosity functions is included within the HR diagram algorithm as a special case. Areal density analysis of HR diagrams is acceptably fast because we handle stellar evolution via approximation functions, whose output also is more precisely differentiable than that of a full stellar evolution program. Evolution by approximation functions is roughly a million times as fast as full evolution and has virtually no numerical noise. The algorithmic ideas that lead to objective solutions can be applied to many kinds of HR diagram analysis that are now done subjectively. The present solution program is limited by speed considerations to use of one evolution
NASA Astrophysics Data System (ADS)
Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.
A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.
Sato, Yukinori; Miyawaki, Osato
2016-01-01
The hydration parameter h was obtained from the viscosity B-coefficients and the partial molar volume of solute, V2, for various sugars and urea in aqueous solutions. The parameter h showed a good correlation with the parameter α, determined from the activity coefficient of water, representing the solute-solvent interaction. The parameter h also showed a good correlation with the number of equatorial-OH groups (e-OH) for sugars, suggesting that the sugar molecules with the higher e-OH fit more to the water-structure. From the temperature dependence of the parameter h (dh/dT), the negative dh/dT for sugars suggested their water-structure making activity while the positive dh/dT for urea corresponded to its structure breaking effect. From the Arrhenius plot, the activation energy for h, Ea, was determined to be as low as 10 kJ/mol for disaccharides suggesting the stable hydration structure. The Ea increased with a decrease in molecular weight for sugars. PMID:26213015
Coordinated Parameter Identification Technique for the Inertial Parameters of Non-Cooperative Target
Ning, Xin; Zhang, Teng; Wu, Yaofa; Zhang, Pihui; Zhang, Jiawei; Li, Shuai; Yue, Xiaokui; Yuan, Jianping
2016-01-01
Space operations will be the main space missions in the future. This paper focuses on the precise operations for non-cooperative target, and researches of coordinated parameter identification (CPI) which allows the motion of multi-joints. The contents of this paper are organized: (1) Summarize the inertial parameters identification techniques which have been conducted now, and the technique based on momentum conservation is selected for reliability and realizability; (2) Elaborate the basic principles and primary algorithm of coordinated parameter identification, and analyze some special problems in calculation (3) Numerical simulation of coordinated identification technique by an case study on non-cooperative target of spacecraft mounting dual-arm with six joints is done. The results show that the coordinated parameter identification technique could get all the inertial parameters of the target in 3D by one-time identification, and does not need special configuration or driven joints, moreover the results are highly precise and save much more time than traditional ones. PMID:27116187
Optimal parameters of leader development in lightning
NASA Technical Reports Server (NTRS)
Petrov, N. I.; Petrova, G. N.
1991-01-01
The dependences between the different parameters of a leader in lightning are obtained theoretically. The physical mechanism of the instability leading to the formation of the streamer zone is proposed. The instability has the wave nature and is caused by the self-influence effects of the space charge. Using a stability condition of the leader propagation, a dependence is obtained between the current across the leader head and its velocity of motion. The dependence of the streamer zone length on the gap length is also obtained. It is shown that the streamer zone length is saturated with the increasing of the gap length. A comparison between the obtained dependences and the experimental data is presented.
CMB Polarization Detector Operating Parameter Optimization
NASA Astrophysics Data System (ADS)
Randle, Kirsten; Chuss, David; Rostem, Karwan; Wollack, Ed
2015-04-01
Examining the polarization of the Cosmic Microwave Background (CMB) provides the only known way to probe the physics of inflation in the early universe. Gravitational waves produced during inflation are posited to produce a telltale pattern of polarization on the CMB and if measured would provide both tangible evidence for inflation along with a measurement of inflation's energy scale. Leading the effort to detect and measure this phenomenon, Goddard Space Flight Center has been developing high-efficiency detectors. In order to optimize signal-to-noise ratios, sources like the atmosphere and the instrumentation must be considered. In this work we examine operating parameters of these detectors such as optical power loading and photon noise. SPS Summer Internship at NASA Goddard Spaceflight Center.
The superconducting state parameters of glassy superconductors
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2011-11-01
We present theoretical investigations of the superconducting state parameters (SSPs), i.e. the electron-phonon coupling strength, λ, Coulomb pseudopotential, μ*, transition temperature, Tc, isotope effect exponent, α, and effective interaction strength, N0V, of glassy superconductors by employing Ashcroft's well know empty core model potential for the first time using five screening functions proposed by Hartree (H), Taylor, Ichimaru-Utsumi (IU), Farid et al and Sarkar et al. The Tc obtained from the H and IU screening functions is found to be in excellent agreement with available experimental data. Also, the present results confirm the superconducting phase in bulk metallic glass superconductors. A strong dependency of the SSPs of the glassy superconductors on the 'Z' valence is found.
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Virtual Laboratories in Physics with Autogenerated Parameters
NASA Astrophysics Data System (ADS)
Maksimov, M. A.; Monakhov, V. V.; Kozhedub, A. V.
2015-09-01
The paper is devoted to a virtual laboratory system, which in particular can be used to test knowledge through research. The participant can prefer which tools to operate and what actions should be taken. For the most of the tasks, there are copious ways to obtain the correct solution. One of the most important features of the system that distinguish this one among other simulation packages and educational systems is the pseudo-random physical parameter generation technique. The technique supports constraints and relationships between variables. As a result, it provides correctness and equal complexity of the generated task. The system can be very complex and is highly customizable by internal script system executed on server-side. The system is used as a part of distolymp Learning Management System with about 40 thousand participants per year.
Electron swarm parameters in water vapour
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Date, H.; Shimozuma, M.
2007-04-01
Electron swarm parameters, such as the drift velocity and the ionization coefficient, in water vapour have been measured for relatively wide ranges in reduced electric fields (E/N) at room temperature. The drift velocity (Wm) was obtained based upon the arrival-time spectra of electrons by using a double-shutter drift tube for the E/N from 60 to 1000 Td, while the first and second ionization coefficients (α and γ) were determined by the steady-state Townsend method from 50 to 3000 Td. A comparison between the results and other data in the literature shows that our results for both the drift velocity and the effective ionization coefficient are lower than those of the other data in the above ranges.
Aquarius Third Stokes Parameter Measurements: Initial Results
NASA Technical Reports Server (NTRS)
Utku, Cuneyt; Vine, David M Le; Abraham, S.; Piepmeier, J.
2012-01-01
The Aquarius/SAC-D observatory was launched on June 10, 2011 and the Aquarius instrument has been collecting data continuously since late August. One of the unique features of the L-band radiometers comprising Aquarius is the presence of a polarimetric channel to measure the third Stokes parameter. The purpose is to provide a measure of Faraday rotation, which can be important for remote sensing at L-band, especially in the case of remote sensing of salinity which requires high precision. Initial results are presented here showing a reasonable agreement between retrieved and modeled Faraday rotation and also the "noisy" behavior at land-water boundaries and other mixed scenes predicted by theory.
Parameter monitoring compensation system and method
Barkman, W.E.; Babelay, E.F.; DeMint, P.D.; Hebble, T.L.; Igou, R.E.; Williams, R.R.; Klages, E.J.; Rasnick, W.H.
1995-02-07
A compensation system is described for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along a preprogrammed path during a machining operation. It utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer. 7 figs.
Moose models with vanishing S parameter
Casalbuoni, R.; De Curtis, S.; Dominici, D.
2004-09-01
In the linear moose framework, which naturally emerges in deconstruction models, we show that there is a unique solution for the vanishing of the S parameter at the lowest order in the weak interactions. We consider an effective gauge theory based on K SU(2) gauge groups, K+1 chiral fields, and electroweak groups SU(2){sub L} and U(1){sub Y} at the ends of the chain of the moose. S vanishes when a link in the moose chain is cut. As a consequence one has to introduce a dynamical nonlocal field connecting the two ends of the moose. Then the model acquires an additional custodial symmetry which protects this result. We examine also the possibility of a strong suppression of S through an exponential behavior of the link couplings as suggested by the Randall Sundrum metric.
Optimal filtration of the atmospheric parameters profiles
NASA Technical Reports Server (NTRS)
Zuev, V. E.; Glazov, G. N.; Igonin, G. M.
1986-01-01
The idea of optimal Marcovian filtration of fluctuating profiles from lidar signals is developed but as applied to a double-frequency sounding which allows the use of large cross sections of elastic scattering and correct separation of the contributions due to aerosol and Rayleigh scatterings from the total lidar return. The filtration efficiency is shown under different conditions of sounding using a computer model. The accuracy of restituted profiles (temperature, pressure, density) is determined by the elements of a posteriori matrix K. The results obtained allow the determination of the lidar power required for providing the necessary accuracy of restitution of the atmospheric parameter profiles at chosen wavelengths of sounding in the ultraviolet and visible range.
Determination of dose distributions and parameter sensitivity
Napier, B.A.; Farris, W.T.; Simpson, J.C.
1992-12-01
A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.
The coronal parameters of local Seyfert galaxies
NASA Astrophysics Data System (ADS)
Marinucci, A.; Tortosa, A.; NuSTAR AGN Physics Working Group
2016-05-01
One of the open problems for AGN is the nature of the primary X-ray emission: It is likely due to Comptonization of soft UV photons, but the optical depth and temperature of the emitting corona were largely unknown before the launch of the Nuclear Spectroscopic Telescope Array (NuSTAR). It is the first focusing hard X-ray telescope on orbit, ∼ 100 times more sensitive in the 10-79 keV band compared to previous observatories, enabling the study of AGN at high energies with high precision. We present and discuss the results on the hot corona parameters of active galactic nuclei that have been recently measured with NuSTAR (often in coordination with XMM-Newton, Suzaku, or wift) with unprecedented accuracy, in a number of local Seyfert galaxies.
Nonsingular Attitude Filtering Using Modified Rodrigues Parameters
NASA Astrophysics Data System (ADS)
Karlgaard, Christopher D.; Schaub, Hanspeter
2009-10-01
A method to estimate the general rigid body attitude using a minimal modified Rodrigues parameters (MRP) coordinate set is presented. The singularity avoidance technique is based on the stereographic projection properties of the MRP set, and makes use of a simple mapping relationship between MRP representations. Previous work has used the MRP duality to avoid singular attitude descriptions but has ignored the associated covariance transformation. This article presents a mapping to transform the state covariance matrix between these two representations as the attitude description is mapped between the two possible MRP sets. Second-order covariance transformations suitable for divided difference filtering are also provided. The MRP filter formulation based on extended Kalman filtering and divided difference filtering is compared with a standard multiplicative quaternion Kalman filter in an example problem.
[Liver parameters in intensive care medicine].
Penndorf, V; Saner, F; Gerken, G; Canbay, A
2013-12-01
Elevated liver function tests in ICU-bound patients are associated with a greater risk of mor-tality. Chronic liver diseases as well as acute events and complications of therapy are among the causes. The disorder could further be investigated by assessment of liver cell integrity markers (AST, ALT and GLDH), cholestasis parameters -(bilirubin, GGT, ALP) and liver synthethic function (albumin, coagulation profile). Ultrasound and elastography are cheap and mobile options to evaluate chronic liver disease, cholestasis or perfusion of the liver. The interpretation of the results should include the medical history on the ICU. Liver injury could be due to septic or isch-aemic complications as well as toxic side effects or parenteral nutrition. The main therapeutic option is to identify the cause of the liver dysfuntion and to eliminate it as far as possible. PMID:22565500
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
Atlas performance and imploding liner parameter space
Reinovsky, R.; Lindemuth, I. R.; Atchison, W. L.; Cochrane, J. C. , Jr.; Faehl, R. J.
2002-01-01
Ultra-high magnetic fields have many applications in the confining and controlling plasmas and in exploring electron physics as manifested in the magnetic properties of materials. Another application of high fields is the acceleration of metal conductors to velocities higher than that achievable with conventional high explosive drive or gas guns. The Atlas pulse power system is the world's first pulse power system specifically designed to implode solid and near-solid density metal liners for use in pulse power hydrodynamic experiments. This paper describes the Atlas system during the first year of its operational life at Los Alamos, (comprising 10-15 implosion experiments); describes circuit models that adequately predicted the bulk kinematic behavior of liner implosions; and shows how those (now validated) models can be used to describe the range of parameters accessible through Atlas implosions.
Model parameters for simulation of physiological lipids.
Hills, Ronald D; McGlinchey, Nicholas
2016-05-01
Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed-chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid-protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972
Rho resonance parameters from lattice QCD
NASA Astrophysics Data System (ADS)
Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael
2016-08-01
We perform a high-precision calculation of the phase shifts for π -π scattering in the I =1 , J =1 channel in the elastic region using elongated lattices with two mass-degenerate quark flavors (Nf=2 ). We extract the ρ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to mπ=226 MeV and mπ=315 MeV , and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase shifts around the resonance for both quark masses. We find that the extrapolated value, mρ=720 (1 )(15 ) MeV , is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
Average deployments versus missile and defender parameters
Canavan, G.H.
1991-03-01
This report evaluates the average number of reentry vehicles (RVs) that could be deployed successfully as a function of missile burn time, RV deployment times, and the number of space-based interceptors (SBIs) in defensive constellations. Leakage estimates of boost-phase kinetic-energy defenses as functions of launch parameters and defensive constellation size agree with integral predictions of near-exact calculations for constellation sizing. The calculations discussed here test more detailed aspects of the interaction. They indicate that SBIs can efficiently remove about 50% of the RVs from a heavy missile attack. The next 30% can removed with two-fold less effectiveness. The next 10% could double constellation sizes. 5 refs., 7 figs.
Parameters Identification for Motorcycle Simulator's Platform Characterization
NASA Astrophysics Data System (ADS)
Nehaoua, L.; Arioui, H.
2008-06-01
This paper presents the dynamics modeling and parameters identification of a motorcycle simulator's platform. This model begins with some suppositions which consider that the leg dynamics can be neglected with respect to the mobile platform one. The objectif is to synthesis a simplified control scheme, adapted to driving simulation application, minimising dealys and without loss of tracking performance. Electronic system of platform actuation is described. It's based on a CAN BUS communication which offers a large transmission robustness and error handling. Despite some disadvanteges, we adapted a control solution which overcome these inconvenients and preserve the quality of tracking trajectory. A bref description of the simulator's platform is given and results are shown and justified according to our specifications.
New approaches to estimation of magnetotelluric parameters
Egbert, G.D.
1991-01-01
Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the dead band'' (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.
Optimization of laser wakefield accelerator parameters
Pogorelsky, I.V.
1998-02-01
The author reveals the dependencies of the laser wakefield accelerator (LWFA) performance upon such basic parameters as laser wavelength, power, and pulse duration and apply them for optimization of the plasma-channeled standard LWFA operating in a linear regime. The maximum energy gain over the dephasing distance scales proportionally to the laser peak power, while the allowed minimum laser pulse duration is proportional to the square root of the energy gain. Electron beam energy spread, emittance and luminosity tend to improve with the laser wavelength increase. These considerations, supported by quantitative examples for the S GeV LWFA stage, favor picosecond CO{sub 2} laser as the optimum choice for future advanced accelerator projects.
Extracting parameters from colour-magnitude diagrams
NASA Astrophysics Data System (ADS)
Bonatto, C.; Campos, F.; Kepler, S. O.; Bica, E.
2015-07-01
We present a simple approach for obtaining robust values of astrophysical parameters from the observed colour-magnitude diagrams (CMDs) of star clusters. The basic inputs are the Hess diagram built with the photometric measurements of a star cluster and a set of isochrones covering wide ranges of age and metallicity. In short, each isochrone is shifted in apparent distance modulus and colour excess until it crosses over the maximum possible Hess density. Repeating this step for all available isochrones leads to the construction of the solution map, in which the optimum values of age and metallicity - as well as foreground/background reddening and distance from the Sun - can be searched for. Controlled tests with simulated CMDs show that the approach is efficient in recovering the input values. We apply the approach to the open clusters M 67, NGC 6791 and NGC 2635, which are characterized by different ages, metallicities and distances from the Sun.
Dynamic measurements of beam-pump parameters
Lea, J.F.; Bowen, J.F. )
1992-02-01
Measurements of nine electrical and mechanical parameters were made on conventional and special-geometry units during operation of beam-pump/sucker rod systems in oil and natural gas wells. All quantities were measured simultaneously and computer-recorded for a variety of pumping conditions. In this paper, using this data, the authors compared measured dynamic gearbox torques with calculated values, illustrating how calculation techniques model dynamically measured data. Calculated efficiencies indicating losses through the units from polished rod to the gearbox are shown to be necessary for adjusting gearbox torque calculations to measured values. Also, torque/speed curves are shown at the motor sheave. These data are corrected for inertial effects and plotted vs. motor manufacturers' published curves. Possibilities for future work incorporating these measurement techniques while the unit is in operation were discussed. In general, the data show how dynamically measured beam-pump data compare with conventional calculation techniques.
Thermal Property Parameter Estimation of TPS Materials
NASA Technical Reports Server (NTRS)
Maddren, Jesse
1998-01-01
Accurate knowledge of the thermophysical properties of TPS (thermal protection system) materials is necessary for pre-flight design and post-flight data analysis. Thermal properties, such as thermal conductivity and the volumetric specific heat, can be estimated from transient temperature measurements using non-linear parameter estimation methods. Property values are derived by minimizing a functional of the differences between measured and calculated temperatures. High temperature thermal response testing of TPS materials is usually done in arc-jet or radiant heating facilities which provide a quasi one-dimensional heating environment. Last year, under the NASA-ASEE-Stanford Fellowship Program, my work focused on developing a radiant heating apparatus. This year, I have worked on increasing the fidelity of the experimental measurements, optimizing the experimental procedures and interpreting the data.
Parameters of human discomfort in warm environments
Berglund, L.G.; Cunningham, D.J.
1986-01-01
The relationship between thermoregulatory responses during exposure to warm and hot environments and the associated subjective perceptions, e.g., comfort, thermal sensation, etc., have been studied by numerous investigators over a considerable span of time, i.e., roughly 50 years. Skin temperature, mean body temperature, sweating, and percent of skin wettedness have been shown to have a role in comfort, thermal sensation, and perception of skin moisture. This paper reviews studies concerned with the physical and physiological parameters relative to these subjective responses and their level of magnitude, with primary emphasis on warm discomfort and skin moisture. The review indicates that, while utilizing different methodologies for quantification of skin moisture under a wide range of ambient conditions and experimental protocols, the relationship between skin wettedness and discomfort or unpleasantness is consistent and experimentally supported.
Parameter monitoring compensation system and method
Barkman, William E.; Babelay, Edwin F.; DeMint, Paul D.; Hebble, Thomas L.; Igou, Richard E.; Williams, Richard R.; Klages, Edward J.; Rasnick, William H.
1995-01-01
A compensation system for a computer-controlled machining apparatus having a controller and including a cutting tool and a workpiece holder which are movable relative to one another along preprogrammed path during a machining operation utilizes sensors for gathering information at a preselected stage of a machining operation relating to an actual condition. The controller compares the actual condition to a condition which the program presumes to exist at the preselected stage and alters the program in accordance with detected variations between the actual condition and the assumed condition. Such conditions may be related to process parameters, such as a position, dimension or shape of the cutting tool or workpiece or an environmental temperature associated with the machining operation, and such sensors may be a contact or a non-contact type of sensor or a temperature transducer.
Parameter space for successful soccer kicks
NASA Astrophysics Data System (ADS)
Cook, Brandon G.; Goff, John Eric
2006-07-01
A computational model of two important types of soccer kicks, the free kick and the corner kick, is developed with the goal of determining the success rate for each type of kick. What is meant by 'success rate' is the probability of getting an unassisted goal via a free kick and the probability of having a corner kick reach an optimum location so that a teammate's chance of scoring a goal is increased. Success rates are determined through the use of four-dimensional parameter space volumes. A one-in-ten success rate is found for the free kick while the corner-kick success rate is found to be one in four.
Distributed parameter statics of magnetic catheters.
Tunay, Ilker
2011-01-01
We discuss how to use special Cosserat rod theory for deriving distributed-parameter static equilibrium equations of magnetic catheters. These medical devices are used for minimally-invasive diagnostic and therapeutic procedures and can be operated remotely or controlled by automated algorithms. The magnetic material can be lumped in rigid segments or distributed in flexible segments. The position vector of the cross-section centroid and quaternion representation of an orthonormal triad are selected as DOF. The strain energy for transversely isotropic, hyperelastic rods is augmented with the mechanical potential energy of the magnetic field and a penalty term to enforce the quaternion unity constraint. Numerical solution is found by 1D finite elements. Material properties of polymer tubes in extension, bending and twist are determined by mechanical and magnetic experiments. Software experiments with commercial FEM software indicate that the computational effort with the proposed method is at least one order of magnitude less than standard 3D FEM. PMID:22256282
40 CFR 63.1334 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Parameter monitoring levels and... Parameter monitoring levels and excursions. (a) Establishment of parameter monitoring levels. The owner or operator of a control or recovery device that has one or more parameter monitoring level...
Effects of process parameters on hydrothermal carbonization
NASA Astrophysics Data System (ADS)
Uddin, Md. Helal
In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.
Earth rotation parameters from satellite techniques
NASA Astrophysics Data System (ADS)
Thaller, Daniela; Beutler, Gerhard; Jäggi, Adrian; Meindl, Michael; Dach, Rolf; Sosnica, Krzysztof; Baumann, Christian
2013-04-01
It has been demonstrated since several years that satellite techniques are capable of determining Earth Rotation Parameters (ERPs) with a daily or even sub-daily resolution. Especially Global Navigation Satellite Systems (GNSS) with their huge amount of observations can determine time series of polar motion (PM) and length of day (LOD) rather well. But also SLR with its spherical satellites whose orbital motions are easy to model and that allow long orbital arc lengths can deliver valuable contributions to Earth rotation. We analyze GNSS solutions (using GPS and GLONASS) and SLR solutions (using LAGEOS) regarding their potential of estimating polar motion and LOD with daily and subdaily temporal resolution. A steadily improving modeling applied in the analysis of space-geodetic data aims at improved time series of geodetic parameters, e.g., the ERPs. The Earth's gravity field and especially its temporal variations are one point of interest for an improved modeling for satellite techniques. For modeling the short-periodic gravity field variations induced by mass variations in the atmosphere and the oceans the GRACE science team provides the Atmosphere and Ocean Dealiasing (AOD) products. They contain 6-hourly gravity fields of the atmosphere and the oceans. We apply these corrections in the analysis of satellite-geodetic data and show the impact on the estimated ERPs. It is well known that the degree-2 coefficients of the Earth's gravity field are correlated with polar motion and LOD. We show to what extent temporal variations in the degree-2 coefficients are influencing the ERP estimates.
Vocal Parameters of Elderly Female Choir Singers
Aquino, Fernanda Salvatico de; Ferreira, Léslie Piccolotto
2015-01-01
Introduction Due to increased life expectancy among the population, studying the vocal parameters of the elderly is key to promoting vocal health in old age. Objective This study aims to analyze the profile of the extension of speech of elderly female choristers, according to age group. Method The study counted on the participation of 25 elderly female choristers from the Choir of Messianic Church of São Paulo, with ages varying between 63 and 82 years, and an average of 71 years (standard deviation of 5.22). The elders were divided into two groups: G1 aged 63 to 71 years and G2 aged 72 to 82. We asked that each participant count from 20 to 30 in weak, medium, strong, and very strong intensities. Their speech was registered by the software Vocalgrama that allows the evaluation of the profile of speech range. We then submitted the parameters of frequency and intensity to descriptive analysis, both in minimum and maximum levels, and range of spoken voice. Results The average of minimum and maximum frequencies were respectively 134.82–349.96 Hz for G1 and 137.28–348.59 Hz for G2; the average for minimum and maximum intensities were respectively 40.28–95.50 dB for G1 and 40.63–94.35 dB for G2; the vocal range used in speech was 215.14 Hz for G1 and 211.30 Hz for G2. Conclusion The minimum and maximum frequencies, maximum intensity, and vocal range presented differences in favor of the younger elder group. PMID:26722341
Relativity Parameters Determined from Lunar Laser Ranging
NASA Technical Reports Server (NTRS)
Williams, J. G.; Newhall, X. X.; Dickey, J. O.
1996-01-01
Analysis of 24 years of lunar laser ranging data is used to test the principle of equivalence, geodetic precession, the PPN parameters beta and gamma, and G/G. Recent data can be fitted with a rms scatter of 3 cm. (a) Using the Nordtvedt effect to test the principle of equivalence, it is found that the Moon and Earth accelerate alike in the Sun's field. The relative accelerations match to within 5 x 10(exp -13) . This limit, combined with an independent determination of y from planetary time delay, gives beta. Including the uncertainty due to compositional differences, the parameter beta differs from unity by no more than 0.0014; and, if the weak equivalence principle is satisfied, the difference is no more than 0.0006. (b) Geodetic precession matches its expected 19.2 marc sec/yr rate within 0.7%. This corresponds to a 1% test of gamma. (c) Apart from the Nordtvedt effect, beta and gamma can be tested from their influence on the lunar orbit. It is argued theoretically that the linear combination 0.8(beta) + 1.4(gamma) can be tested at the 1% level of accuracy. For solutions using numerically derived partial derivatives, higher sensitivity is found. Both 6 and y match the values of general relativity to within 0.005, and the linear combination beta+ gamma matches to within 0,003, but caution is advised due to the lack of theoretical understanding of these sensitivities. (d) No evidence for a changing gravitational constant is found, with absolute value of G/G less than or equal to 8 x lO(exp -12)/yr. There is significant sensitivity to G/G through solar perturbations on the lunar orbit.
Wnt signalling pathway parameters for mammalian cells.
Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W
2012-01-01
Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters
Progression parameters for emphysema: a clinical investigation.
Stolk, Jan; Putter, Hein; Bakker, Els M; Shaker, Saher B; Parr, David G; Piitulainen, Eeva; Russi, Erich W; Grebski, Elzbieta; Dirksen, Asger; Stockley, Robert A; Reiber, Johan H C; Stoel, Berend C
2007-09-01
In patients with airflow limitation caused by cigarette smoking, lung density measured by computed tomography is strongly correlated with quantitative pathology scores of emphysema, but the ability of lung densitometry to detect progression of emphysema is disputed. We assessed the sensitivity of lung densitometry as a parameter of disease progression of emphysema in comparison to FEV(1) and gas transfer. At study baseline and after 30 months we measured computed tomography (CT)-derived lung density, spirometry and carbon monoxide diffusion coefficient in 144 patients with chronic obstructive pulmonary disease (COPD) in five different centers. Annual change in lung density was 1.31 g/L/year (CI 95%: -2.12 to -0.50 HU, p=0.0015, 39.5 mL/year (CI 95%: -100.0-21.0 mL, p=0.2) for FEV(1) (-39.5 mL) and 24.3 micromol/min/kPa/L/year for gas transfer (CI 95%: -61.0-12.5 micromol/min/kPa/L/year, p=0.2). Signal-to-noise ratio (mean change divided by standard error of the change) for the detection of annual change was 3.2 for lung densitometry, but 1.3 for both FEV(1) and gas diffusion. We conclude that detection of progression of emphysema was found to be 2.5-fold more sensitive using lung densitometry than by using currently recommended lung function parameters. Our results support CT scan as an efficacious test for novel drugs for emphysema. PMID:17644366
Resonance parameter measurements and analysis of gadolinium
Leinweber, G.; Barry, D. P.; Trbovich, M. J.; Burke, J. A.; Drindak, N. J.; Knox, H. D.; Ballad, R. V.; Block, R. C.; Danon, Y.; Severnyak, L. I.
2006-07-01
The purpose of the present work is to measure the neutron cross sections of gadolinium accurately. Gd has the highest thermal absorption cross section of any natural element. Therefore it is an important element for thermal reactor applications Neutron capture and transmission measurements were performed by the time-of-flight technique at the Rensselaer Polytechnic Inst. (RPI) LINAC facility using metallic and liquid Gd samples. The liquid samples were isotopically-enriched in either {sup 155}Gd or {sup 157}Gd. The capture measurements were made at the 25-m flight station with a sodium iodide detector, and the transmission measurements were performed at 15- and 25-m flight stations with {sup 6}Li glass scintillation detectors. The multilevel R-matrix Bayesian code SAMMY was used to extract resonance parameters. The results of the thermal region analysis are significant. Resonance parameters for the low energy doublet, at 0.025 and 0.032 eV, are presented. The thermal (2200 m/s) capture cross section of {sup 157}Gd has been measured to be 11% smaller than that calculated from ENDF/B-VI updated through release 8. Thermal capture cross sections and capture resonance integrals for each isotope as well as elemental gadolinium are presented. In the epithermal region, natural metal samples were measured in capture and transmission. Neutron interaction data up to 300 eV have been analyzed. Substantial improvement to the understanding of gadolinium cross sections is presented, particularly above 180 eV where the ENDF resolved region for {sup 155}Gd ends. (authors)
Scaling of echolocation call parameters in bats.
Jones, G
1999-12-01
I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats. PMID:10562518
Simunek, J.; Nimmo, J.R.
2005-01-01
A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time-variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field. Copyright 2005 by the American Geophysical Union.
Bailleux, Caroline; Falk, Alexander Tuan; Chand-Fouche, Marie-Eve; Gautier, Mathieu; Barranger, Emmanuel
2016-01-01
Purpose There is no consensus for parametrial boost technic while both transvaginal and transperineal approaches are discussed. A prototype was developed consisting of a perineal template, allowing transperineal needle insertion. This study analyzed acute toxicity of concomitant cervical and transperineal parametrial high-dose-rate brachytherapy (HDRB) boost for locally advanced cervical cancer. Material and methods From 01.2011 to 12.2014, 33 patients (pts) presenting a locally advanced cervical cancer with parametrial invasion were treated. After the first course of external beam radiation therapy with cisplatinum, HDRB was performed combining endocavitary and interstitial technique for cervical and parametrial disease. Post-operative delineation (CTV, bladder, rectum, sigmoid) and planification were based on CT-scan/MRI. HDRB was delivered in 3-5 fractions over 2-3 consecutive days. Acute toxicities occurring within 6 months after HDRB were retrospectively reviewed. Results Median age was 56.4 years (27-79). Clinical stages were: T2b = 23 pts (69.7%), T3a = 1 pt (3%), T3b = 6 pts (18.2%), and T4a = 3 pts (9.1%). Median HDRB prescribed dose was 21 Gy (21-27). Median CTVCT (16 pts) and HR-CTVMRI (17 pts) were 52.6 cc (28.5-74.3), 31.9 cc (17.1-58), respectively. Median EQD2αβ10 for D90CTV and D90HR-CTV were 82.9 Gy (78.2-96.5), 84.8 Gy (80.6-91.4), respectively. Median EQD2αβ3 (CT/MRI) for D2cc bladder, rectum and sigmoid were 75.5 Gy (66.6-90.9), 64.4 Gy (51.9-77.4), and 60.4 Gy (50.9-81.1), respectively. Median follow-up was 14 months (ranged 6-51). Among the 24 pts with MFU = 24 months, 2-year LRFS rate, RRFS, and OS were 86.8%, 88.8%, and 94.1%, respectively. The rates of acute genitourinary and gastrointestinal toxicities were 36% (G1 dysuria = 8 pts, G2 infection = 2 pts, G3 infection = 2 pts), and 27% (G1 diarrhea = 9 pts), respectively. One patient presented vaginal bleeding at the time of applicator withdrawal (G3-blood transfusion); no bleeding was
Experimental Determination of the Multiplicity Deadtime Parameter
Menaa, N.; Croft, S.; Kane, S.C.; Philips, S.; Villani, M.; Evans, L.G.
2008-07-01
Definition, extraction, and application of dead-time parameters, in correlated neutron counting, are long standing, thorny issues. Traditionally, dead-time corrections have been estimated on the assumption of a simple paralyzing model, arising from the action of the discriminator in the charged amplifiers connected to the {sup 3}He proportional counters, using a fixed dead-time. Various schemes exist to apply the paralysable model to the multiplicity shift register histogram data. In principle, several methods could be used to estimate the dead-time parameter. The approach which is most widely applied involves measuring a series of Cf-252 sources spanning a wide dynamic range of counting rates. Ratios between the Singles, Doubles and Triples rates which ought to be independent of fissile mass are extracted. The dead-time is chosen so as to achieve the best independence in the ratios, characteristic of the fissioning system, over the counting range. These measurements can be quite laborious to conduct; require a set of Cf-252 sources matched in construction and isotopic composition; require long counts to achieve the requisite precision and involve a good deal of numerical analysis to interpret. In this work we present a simpler scheme which produces comparable values in a way that is easier to implement. In essence we place a near random neutron source, such as may be realized using Am/Li {alpha}-n sources, in the cavity and record the multiplicity histograms as one would for an assay. The variance to mean-squared is narrower than for a random counting experiment, however, as a result of the dead-time losses. A simple formula exists allowing the deadtime to be extracted from this measurement. In this paper, we present results for the traditional approach, the proposed approach and also a variation based on adjusting the total event rate by adding Am/Li sources to a single Cf-252 source fixed in position for the case of a pair of Passive Scrap Multiplicity Counters
Investigation of hemorheological parameters in periodontal diseases.
Seringec, Nurten; Guncu, Guliz; Arihan, Okan; Avcu, Nihal; Dikmenoglu, Neslihan
2015-01-01
Periodontal diseases are frequently associated with cardiovascular diseases (CVD). On the other hand, occurrence of CVD has also been related with increased blood viscosity. This study was planned to investigate four main hemorheological parameters contributing to blood viscosity - hematocrit, erythrocyte deformability, erythrocyte aggregation and plasma viscosity - and also some biochemical parameters (hs-CRP, fibrinogen, globulin etc.) in patients with periodontal disease. We hypothesized that poor periodontal health would be associated with deterioration of hemorheological properties. According to periodontal health status, subjects were divided into three groups as control (healthy), with plaque induced gingivitis and with chronic periodontitis. All groups included 15 males who had not received periodontal therapy in the last six months before the study, were non-smokers, had no systemic diseases and were not on any medication. Erythrocyte deformability and erythrocyte aggregation were measured with laser-assisted optical rotational cell analyzer (LORCA). Plasma viscosity was measured by a cone-plate viscometer. Data were analyzed with Kruskal-Wallis, Mann-Whitney U Test and Spearman Correlation Coefficient. Plasma viscosity (1.36 ± 0.01 mPa.s in the control group and 1.43 ± 0.02 mPa.s in the chronic periodontitis group, P < 0.01), erythrocyte aggregation tendency (aggregation index, amplitude and t½ were 58.82 ± 1.78% , 20.22 ± 0.40 au, 2.80 ± 0.25 s respectively in the control group, and 67.05 ± 1.47% , 22.19 ± 0.50 au, 1.84 ± 0.15 s in the chronic periodontitis group, P < 0.01), hs-CRP, fibrinogen and globulin levels were significantly higher, whereas HDL level was significantly lower in the chronic periodontitis group (P < 0.05) compared to the control group. All of these conditions may contribute to cardiovascular morbidity and mortality observed in people with periodontal disease, via increasing blood viscosity. PMID:25261434
Parameter estimation with Sandage-Loeb test
Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn
2014-12-01
The Sandage-Loeb (SL) test directly measures the expansion rate of the universe in the redshift range of 2 ∼< z ∼< 5 by detecting redshift drift in the spectra of Lyman-α forest of distant quasars. We discuss the impact of the future SL test data on parameter estimation for the ΛCDM, the wCDM, and the w{sub 0}w{sub a}CDM models. To avoid the potential inconsistency with other observational data, we take the best-fitting dark energy model constrained by the current observations as the fiducial model to produce 30 mock SL test data. The SL test data provide an important supplement to the other dark energy probes, since they are extremely helpful in breaking the existing parameter degeneracies. We show that the strong degeneracy between Ω{sub m} and H{sub 0} in all the three dark energy models is well broken by the SL test. Compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraints on Ω{sub m} and H{sub 0} by more than 60% for all the three models. But the SL test can only moderately improve the constraint on the equation of state of dark energy. We show that a 30-yr observation of SL test could help improve the constraint on constant w by about 25%, and improve the constraints on w{sub 0} and w{sub a} by about 20% and 15%, respectively. We also quantify the constraining power of the SL test in the future high-precision joint geometric constraints on dark energy. The mock future supernova and baryon acoustic oscillation data are simulated based on the space-based project JDEM. We find that the 30-yr observation of SL test would help improve the measurement precision of Ω{sub m}, H{sub 0}, and w{sub a} by more than 70%, 20%, and 60%, respectively, for the w{sub 0}w{sub a}CDM model.
Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs
Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan
2015-01-01
Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214
NASA Astrophysics Data System (ADS)
Catena, Riccardo; Notari, Alessio
2013-07-01
The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In ref. [1] we checked the validity of this assumption in parameter estimation for a Planck-like angular resolution, both for a full-sky ideal experiment and also when sky cuts are included to model CMB foreground contaminations with a sky fraction similar to the Planck satellite. The result to this analysis was that aberration and Doppler have a sizable impact on a CMB based parameter estimation. In this erratum we correct an error made in ref. [1] when comparing pseudo angular power spectra computed in the CMB rest frame with the ones measured by a moving observer. Properly comparing the two spectra we find now that although the corrections to the Cl due to aberration and Doppler are larger than the cosmic variance at l > 1000 and potentially important, the resulting bias on the parameters is negligible for Planck.
ERIC Educational Resources Information Center
Quinn, Terry; Rai, Sanjay
2012-01-01
The method of variation of parameters can be found in most undergraduate textbooks on differential equations. The method leads to solutions of the non-homogeneous equation of the form y = u[subscript 1]y[subscript 1] + u[subscript 2]y[subscript 2], a sum of function products using solutions to the homogeneous equation y[subscript 1] and…
NASA Astrophysics Data System (ADS)
Paris, Adrien; André Garambois, Pierre; Calmant, Stéphane; Paiva, Rodrigo; Walter, Collischonn; Santos da Silva, Joecila; Medeiros Moreira, Daniel; Bonnet, Marie-Paule; Seyler, Frédérique; Monnier, Jérôme
2016-04-01
Estimating river discharge for ungauged river reaches from satellite measurements is not straightforward given the nonlinearity of flow behavior with respect to measurable and non measurable hydraulic parameters. As a matter of facts, current satellite datasets do not give access to key parameters such as river bed topography and roughness. A unique set of almost one thousand altimetry-based rating curves was built by fit of ENVISAT and Jason-2 water stages with discharges obtained from the MGB-IPH rainfall-runoff model in the Amazon basin. These rated discharges were successfully validated towards simulated discharges (Ens = 0.70) and in-situ discharges (Ens = 0.71) and are not mission-dependent. The rating curve writes Q = a(Z-Z0)b*sqrt(S), with Z the water surface elevation and S its slope gained from satellite altimetry, a and b power law coefficient and exponent and Z0 the river bed elevation such as Q(Z0) = 0. For several river reaches in the Amazon basin where ADCP measurements are available, the Z0 values are fairly well validated with a relative error lower than 10%. The present contribution aims at relating the identifiability and the physical meaning of a, b and Z0given various hydraulic and geomorphologic conditions. Synthetic river bathymetries sampling a wide range of rivers and inflow discharges are used to perform twin experiments. A shallow water model is run for generating synthetic satellite observations, and then rating curve parameters are determined for each river section thanks to a MCMC algorithm. Thanks to twin experiments, it is shown that rating curve formulation with water surface slope, i.e. closer from Manning equation form, improves parameter identifiability. The compensation between parameters is limited, especially for reaches with little water surface variability. Rating curve parameters are analyzed for riffle and pools for small to large rivers, different river slopes and cross section shapes. It is shown that the river bed
NASA Astrophysics Data System (ADS)
Morton, D.; Bolton, W. R.; Endalamaw, A. M.; Young, J. M.; Hinzman, L. D.
2014-12-01
As part of a study on how vegetation water use and permafrost dynamics impact stream flow in the boreal forest discontinuous permafrost zone, a Bayesian modeling framework has been developed to assess the effect of parameter uncertainties in an integrated vegetation water use and simple, first-order, non-linear hydrological model. Composed of a front-end Bayes driver and a backend interactive hydrological model, the system is meant to facilitate rapid execution of seasonal simulations driven by hundreds to thousands of parameter variations to analyze the sensitivity of the system to a varying parameter space in order to derive more effective parameterizations for larger-scale simulations. The backend modeling component provides an Application Programming Interface (API) for introducing parameters in the form of constant or time-varying scalars or spatially distributed grids. In this work, we describe the basic structure of the flexible, object-oriented modeling system and test its performance against collected basin data from headwater catchments of varying permafrost extent and ecosystem structure (deciduous versus coniferous vegetation). We will also analyze model and sub-model (evaporation, transpiration, precipitation and streamflow) sensitivity to parameters through application of the system to two catchment basins of the Caribou-Poker Creeks Research Watershed (CPCRW) located in Interior Alaska. The C2 basin is a mostly permafrost-free, south facing catchment dominated by deciduous vegetation. The C3 basin is underlain by more than 50% permafrost and is dominated by coniferous vegetation. The ultimate goal of the modeling system is to improve parameterizations in mesoscale hydrologic models, and application of the HYPE system to the well-instrumented CPCRW provides a valuable opportunity for experimentation.
Superconducting state parameters of binary metallic glasses
NASA Astrophysics Data System (ADS)
Vora, Aditya
2008-06-01
Ashcroft's empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C, isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S') and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence `Z' is identified.
Superconducting state parameters of binary metallic glasses
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2008-06-01
Ashcroft’s empty core (EMC) model potential is used to study the superconducting state parameters (SSPs) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent αand effective interaction strength N O V of some binary metallic glasses based on the superconducting (S), conditional superconducting (S’) and non-superconducting (NS) elements of the periodic table. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used for the first time with EMC potential in the present investigation to study the screening influence on the aforesaid properties. The T C obtained from the H-local field correction function are in excellent agreement with available theoretical or experimental data. In the present computation, the use of the pseudo-alloy-atom model (PAA) was proposed and found successful. Present work results are in qualitative agreement with such earlier reported experimental values which confirm the superconducting phase in all metallic glasses. A strong dependency of the SSPs of the metallic glasses on the valence ‘Z’ is identified.
Superconducting state parameters of amorphous metals
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2007-07-01
The theoretical computation of the superconducting state parameters (SSP) viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N0V of some monovalent (Li, Na, K, Rb and Cs), divalent (Mg, Zn, Be, Cd and Hg) and polyvalent (In, Tl, Ga, Al, La, Sn, Pb, Ti, Zr, Th, Bi, Nb and W) amorphous metals have been carried out by well known Ashcroft’s empty core (EMC) model pseudopotential. We have employed here five different types of local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to study the exchange and correlation effects on the present investigations. The SSP for Be, Cd, Ga, Al, La, Ti, Zr, Th, Nb and W amorphous metals are reported first time in the present study. A very strong influence of all the exchange and correlation functions is found in the present study. Our results are in fair agreement with other available theoretical as well as experimental data. A strong dependency of the SSP of amorphous metals on the valency Z is found.
Statistical cautions when estimating DEBtox parameters.
Billoir, Elise; Delignette-Muller, Marie Laure; Péry, Alexandre R R; Geffard, Olivier; Charles, Sandrine
2008-09-01
DEBtox (Dynamic Energy Budget in toxicology) models have been designed to analyse various results from classic tests in ecotoxicology. They consist of a set of mechanistic models describing how organisms manage their energy, when they are exposed to a contaminant. Until now, such a biology-based modeling approach has not been used within the regulatory context. However, these methods have been promoted and discussed in recent guidance documents on the statistical analysis of ecotoxicity data. Indeed, they help us to understand the underlying mechanisms. In this paper, we focused on the 21 day Daphnia magna reproduction test. We first aimed to clarify and detail the model building process leading to DEBtox models. Equations were rederived step by step, and for some of them we obtained results different from the published ones. Then, we statistically evaluated the estimation process quality when using a least squares approach. Using both experimental and simulated data, our analyses highlighted several statistical issues related to the fitting of DEBtox models on OECD-type reproduction data. In this case, particular attention had to be paid to parameter estimates and the interpretation of their confidence intervals. PMID:18571678
Fundamental Parameters and Chemical Composition of Arcturus
NASA Astrophysics Data System (ADS)
Ramírez, I.; Allende Prieto, C.
2011-12-01
We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T eff = 4286 ± 30 K, log g = 1.66 ± 0.05, and [Fe/H] = -0.52 ± 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 μm). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 ± 0.06 M ⊙, R = 25.4 ± 0.2 R ⊙, and τ = 7.1+1.5 - 1.2 Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.
Optimizing parameters for magnetorheological finishing supersmooth surface
NASA Astrophysics Data System (ADS)
Cheng, Haobo; Feng, Zhijing; Wang, Yingwei
2005-02-01
This paper presents a reasonable approach to this issue, i.e., computer controlled magnetorheological finishing (MRF). In MRF, magnetically stiffened magnetorheological (MR) abrasive fluid flows through a preset converging gap that is formed by a workpiece surface and a moving rigid wall, to create precise material removal and polishing. Tsinghua University recently completed a project with MRF technology, in which a 66 mm diameter, f/5 parabolic mirror was polished to the shape accuracy of λ/17 RMS (λ=632.8nm) and the surface roughness of 1.22 nm Ra. This was done on a home made novel aspheric computer controlled manufacturing system. It is a three-axis, self-rotating wheel machine, the polishing tool is driven with one motor through a belt. This paper presents the manufacturing and testing processes, including establish the mathematics model of MRF optics on the basis of Preston equation, profiler test and relative coefficients, i.e., pressure between workpiece and tool, velocity of MR fluid in polishing spot, tolerance control of geometrical parameters such as radius of curvature and conic constant also been analyzed in the paper. Experiments were carried out on the features of MRF. The results indicated that the required convergent speed, surface roughness could be achieved with high efficiency.
FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS
Ramirez, I.; Allende Prieto, C. E-mail: callende@iac.es
2011-12-20
We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T{sub eff} = 4286 {+-} 30 K, log g = 1.66 {+-} 0.05, and [Fe/H] = -0.52 {+-} 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 {mu}m). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 {+-} 0.06 M{sub Sun }, R = 25.4 {+-} 0.2 R{sub Sun }, and {tau} = 7.1{sup +1.5}{sub -1.2} Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.
Physical parameters affecting living cells in space.
Langbein, D
1986-01-01
The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842
Defining the customer`s buying parameters
Roth, B.
1997-03-01
Many customers are already implementing processes to select suppliers in anticipation of full customer choice, establishing price and risk parameters. Customers are also recognizing that transitional steps on the way to full competition, including such options as buy-through and real-time pricing, can lower costs at reasonable risk. Retail competition is transforming the US electricity market at a dazzling pace, promising major customers greater choices and better prices--and a lot of new headaches. Even though regulators have not yet put retail access into general practice, many customers are working diligently to make sure they are properly prepared to deal with the additional issues and complexities being created by electricity`s new world order. By the time retail competition is officially unleashed, many national buyers of electricity will have: (1) specified their service criteria (contract terms and conditions), (2) defined their price risk tolerances, (3) structured their purchasing organization/process, and (4) chosen their national/regional suppliers.
Coagulation parameters in inflammatory bowel disease
Dolapcioglu, Can; Soylu, Aliye; Kendir, Tulin; Ince, Ali Tuzun; Dolapcioglu, Hatice; Purisa, Sevim; Bolukbas, Cengiz; Sokmen, Haci Mehmet; Dalay, Remzi; Ovunc, Oya
2014-01-01
Thromboembolic events represent a major cause of morbidity and mortality in patients with inflammatory bowel disease and they may occur both at the gastrointestinal tract and at extraintestinal sites. This study aimed to examine the alterations in coagulation parameters involved at different steps of hemostasis in patients with Crohn’s disease and ulcerative colitis, in comparison with healthy individuals. Fifty-one patients with inflammatory bowel disease and 26 healthy controls were included in this study. Plasma levels of PT, APTT, AT III, plasminogen, fibrinogen, D-dimer, factor V, factor VIII, protein C, protein S, and APCR were measured and factor V Leiden mutation was examined in both patients and controls. Two patients with ulcerative colitis had a history of previous thromboembolic event. Inflammatory bowel disease was associated with significantly higher levels of fibrinogen, PT, factor V, factor VIII, plasminogen and thrombocyte. Protein S, fibrinogen, plasminogen and thrombocyte levels were associated with disease activity, depending on the type of the disease (Crohn’s disease or ulcerative colitis). The coagulation abnormalities detected in this study seems to be a secondary phenomena resulting from the disease process, which is more likely to be associated with a multitude of factors rather than a single abnormality. PMID:24995109
Virus detection and quantification using electrical parameters
Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Rizvi, Tahir A.
2014-01-01
Here we identify and quantitate two similar viruses, human and feline immunodeficiency viruses (HIV and FIV), suspended in a liquid medium without labeling, using a semiconductor technique. The virus count was estimated by calculating the impurities inside a defined volume by observing the change in electrical parameters. Empirically, the virus count was similar to the absolute value of the ratio of the change of the virus suspension dopant concentration relative to the mock dopant over the change in virus suspension Debye volume relative to mock Debye volume. The virus type was identified by constructing a concentration-mobility relationship which is unique for each kind of virus, allowing for a fast (within minutes) and label-free virus quantification and identification. For validation, the HIV and FIV virus preparations were further quantified by a biochemical technique and the results obtained by both approaches corroborated well. We further demonstrate that the electrical technique could be applied to accurately measure and characterize silica nanoparticles that resemble the virus particles in size. Based on these results, we anticipate our present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of viruses and other nano-sized particles. PMID:25355078
A novel multistage estimation of signal parameters
NASA Technical Reports Server (NTRS)
Kumar, Rajendra
1990-01-01
A multistage estimation scheme is presented for estimating the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc. Such a situation arises, for example, in the case of the Global Positioning Systems (GPS). In the proposed scheme, the first-stage estimator operates as a coarse estimator of the frequency and its derivatives, resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency (an event termed cycle slip). The second stage of the estimator operates on the error signal available from the first stage, refining the overall estimates, and in the process also reduces the number of cycle slips. The first-stage algorithm is a modified least-squares algorithm operating on the differential signal model and referred to as differential least squares (DLS). The second-stage algorithm is an extended Kalman filter, which yields the estimate of the phase as well as refining the frequency estimate. A major advantage of the is a reduction in the threshold for the received carrier power-to-noise power spectral density ratio (CNR) as compared with the threshold achievable by either of the algorithms alone.
Update of electroweak parameters from Z decays
NASA Astrophysics Data System (ADS)
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M. N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Griggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Botterill, D. R.; Clift, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfied, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.
1993-03-01
Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of the Z are determined to be M Z =(91.187±0.009) GeV, Γ Z =(2.501±0.012) GeV, σ{had/0}=(41.60±0.27) nb, and R ℓ=20.78±0.13. The corresponding number of light neutrino species is N ν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons: g {/V 2}( M {/Z 2})/ g {/A 2}( M {/Z 2})=0.0052±0.0016. Combining this with ALEPH measurements of the b and c quark asymmetries and τ polarization gives sin2θ{/W eff}=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements of M W / M Z from p bar p colliders and neutrino-nucleon scattering, the mass of the top quark isM_{top} = 156 ± begin{array}{*{20}c} {22} \\ {25} \\ ± begin{array}{*{20}c} {17} \\ {22Higgs} \\ GeV.
Measuring Cosmological Parameters with Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Amati, Lorenzo; Della Valle, Massimo
2013-12-01
In a few dozen seconds, gamma ray bursts (GRBs) emit up to 1054 erg in terms of an equivalent isotropically radiated energy Eiso, so they can be observed up to z 10. Thus, these phenomena appear to be very promising tools to describe the expansion rate history of the universe. Here, we review the use of the Ep,i-Eiso correlation of GRBs to measure the cosmological density parameter ΩM. We show that the present data set of GRBs, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that ΩM 0.3. We show that current (e.g. Swift, Fermi/GBM, Konus-WIND) and forthcoming gamma ray burst (GRB) experiments (e.g. CALET/GBM, SVOM, Lomonosov/UFFO, LOFT/WFM) will allow us to constrain ΩM with an accuracy comparable to that currently exhibited by Type Ia supernovae (SNe-Ia) and to study the properties of dark energy and their evolution with time.
PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS
Pucci, Stefano; Romoli, Marco; Poletto, Giannina; Sterling, Alphonse C.
2013-10-10
The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adopt spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.
Obtaining Stokes Parameters from the SUMI Experiment
NASA Technical Reports Server (NTRS)
Fayock, Brian; Winebarger, Amy; Cirtain, Jonathan; Kobayashi, Ken; West, Ed
2014-01-01
A sounding rocket experiment designed at the Marshall Space Flight Center, named the Solar Ultraviolet Magnetograph Investigation, had its second launch in July of 2012 to test the feasibility of measuring polarization signals of the ionized magnesium resonance doublet near 280 nm, originating from the transition region. The rocket housed a telescope at the front end and an imaging system at the rear end. Placed at the focal point of the self-filtering telescope, a wave plate rotated through 12 predefined angular orientations to restrict the measurements to specific combinations of circular and linear polarization. Coupled with a double Wollaston analyzer, the linearly polarized ordinary and extraordinary beams were measured for the 12 combinations, each containing different fractions of the Stokes parameters (I, Q, U, V). A thorough analysis of the data has allowed us to come to several conclusions regarding the design of the experiment. 1) We are confident that polarization can be measured. A sunspot region was determined to exhibit similar results over multiple pixels. 2) Measurements are limited by resolution, i.e. regions smaller than the angular resolution per pixel cannot be resolved with any certainty. 3) Temporal evolution of magnetic features must be considered in future experimental designs. Measurements need to be taken in repeated cycles as opposed to a single cycle over the duration of the experiment. In our presentation, we will provide a summary of the observations along with the methods of our analysis, including the limitations that we've encountered.
Effective Material Parameter Retrieval for Terahertz Metamaterials
NASA Astrophysics Data System (ADS)
Kim, T.-T.; Choi, Muhan; Kim, Yushin; Min, Bumki
Metamaterials, which are generally composed of subwavelength scale metallic structures, have been the subject of intensive research in recent years. Because their effective electromagnetic properties can be engineered by designing subwavelength scale metallic structures, called `meta-atoms', these artificially constructed materials are expected to lead to many new developments in the field of photonics. Furthermore, the terahertz (THz) frequency range has many important applications such as security detection, sensing, and biomedical imaging. Because many natural materials are inherently unresponsive to THz radiation, the natural materials that can be applied in devices in order to manipulate THz waves are very limited. Accordingly, the development of metamaterials with unusual optical properties in the THz frequency range has generated intense interest among researchers. In this part, design methods for metamaterials in the terahertz frequencies are introduced. This method is based on the unit cell design and S-parameter retrieval technique. Following a brief introduction to the method, some examples of terahertz metamaterial design will be presented in the last section.
SPADES: a Stellar PArameters DEtermination Software
NASA Astrophysics Data System (ADS)
Posbic, H.; Katz, D.; Caffau, E.; Bonifacio, P.; Sbordone, L.; Gomez, A.; Arenou, F.
2011-12-01
With the large amounts of spectroscopic data available today and the very large surveys to come (e.g. Gaia), the need for automatic data analysis software is unquestionable. We thus developed an automatic spectra analysis program for the determination of stellar parameters: radial velocity, effective temperature, surface gravity, micro-turbulence, metallicity and the elemental abundances of the elements present in the spectral range. Target stars for this software should include all types of stars. The analysis method relies on a line by line comparison of the spectrum of a target star to a library of synthetic spectra. The idea is built on the experience acquired in developing the TGMET (Katz et al. 1998, Soubiran et al. 2003), ETOILE (Katz 2001) and Abbo (Bonifacio & Caffau 2003) software.The method is presented and the performances are illustrated with GIRAFFE-like simulated spectra with high resolution (R = 25000), with high and low signal to noise ratios (down to SNR = 30). These spectra should be close to what could be targeted by the Gaia-ESO Survey (GCDS).
Parameters and abundances in luminous stars
Earle Luck, R.
2014-06-01
Parameters and abundances for 451 stars of spectral types F, G, and K of luminosity classes I and II have been derived. Absolute magnitudes and E(B – V) have been derived for the warmer stars in order to investigate the galactic abundance gradient. The value found here: d[Fe/H]/dR ∼ –0.06 dex kpc{sup –1}, agrees well with previous determinations. Stellar evolution indicators have also been investigated with the derived C/O ratios indicating that standard CN processing has been operating. Perhaps the most surprising result found in these supposedly relatively young intermediate-mass stars is that both [O/Fe] and [C/Fe] show a correlation with [Fe/H] much the same as found in older populations. While the stars were selected based on luminosity class, there does exist a significant [Fe/H] range in the sample. The likely explanation of this is that there is a significant range in age in the sample; that is, some of the sample are low-mass red-giant stars with types that place them within the selection criteria.
Optical measurement of medical aerosol media parameters
NASA Astrophysics Data System (ADS)
Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.
2000-07-01
The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.
[Bronchial parameters in inhabitants from the North].
Shishkin, G S; Goncharov, V V; Valitskaia, R I; Valitskiĭ, Iu N; Ustiuzhaninova, N V
2001-01-01
The number of branches in the bronchial tree as a whole and in each generation was calculated on corrosion preparations of the right lung in 16 male inhabitants of Novosibirsk and Magadan. Diameters and lengths of a trachea, main, lobar, segmentary and subsegmentary bronchi, interlobular, lobular and terminal bronchioles were determined. The parameters of the 9 first generations were measured completely while those of distal airways--by 15% occasional choice. In both groups the number of branches in the generation was established to grow proportionally to generation number growth and then to decrease due to asymmetry of branches and termination of the part of them at the level of terminal bronchiole. In Magadan inhabitants bronchial tree was longer and wider. The anatomical dead space was 1.6 fold larger in North inhabitants than in that of Novosibirsk. Comparison to physiological data shows that in Novosibirsk inhabitants anatomic dead space makes 27% of respiratory volume, while in that of Magadan--34%. As a result the volume of the air inhaled in North inhabitants which is blended in airways is greater than in Western Siberia people. PMID:11534145
ANALYSIS OF BIOMECHANICAL PARAMETERS IN COLONIC ANASTOMOSIS
IWANAGA, Tiago Cavalcanti; AGUIAR, José Lamartine de Andrade; MARTINS-FILHO, Euclides Dias; KREIMER, Flávio; SILVA-FILHO, Fernando Luiz; de ALBUQUERQUE, Amanda Vasconcelos
2016-01-01
ABSTRACT Background: The use of measures in colonic anastomoses to prevent dehiscences is of great medical interest. Sugarcane molasses, which has adequate tolerability and compatibility in vivo, has not yet been tested for this purpose. Aim: To analyze the biomechanical parameters of colonic suture in rats undergoing colectomy, using sugarcane molasses polysaccharide as tape or gel. Methods: 45 Wistar rats (Rattus norvegicus albinus) were randomized into three groups of 15 animals: irrigation of enteric sutures with 0.9% saline solution; application of sugarcane molasses polysaccharide as tape; and sugarcane molasses polysaccharide as gel. The rats underwent colon ressection, with subsequent reanastomosis using polypropylene suture; they were treated according to their respective groups. Five rats from each group were evaluated at different times after the procedure: 30, 90 and 180 days postoperatively. The following variables were evaluated: maximum rupture force, modulus of elasticity and specific deformation of maximum force. Results: The biomechanical variables among the scheduled times and treatment groups were statistically calculated. The characteristics of maximum rupture force and modulus of elasticity of the specimens remained identical, regardless of treatment with saline, polysaccharide gel or tape, and treatment time. However, it was found that the specific deformation of maximum force of the intestinal wall was higher after 180 days in the group treated with sugarcane polysaccharide gel (p=0.09). Conclusion: Compared to control, it was detected greater elasticity of the intestinal wall in mice treated with sugarcane polysaccharide gel, without changing other biomechanical characteristics, regardless of type or time of treatment. PMID:27438033
On the lattice parameters of silicon carbide
NASA Astrophysics Data System (ADS)
Stockmeier, M.; Müller, R.; Sakwe, S. A.; Wellmann, P. J.; Magerl, A.
2009-02-01
The thermal expansion coefficients of the hexagonal SiC polytypes 4H and 6H and with Al and N dopants have been determined for temperatures between 300 and 1770 K. Further, a set of the room temperature lattice parameters in dependence on doping with N, Al, and B has been obtained. Data for the thermal expansion were taken on a triple axis diffractometer for high energy x rays with a photon energy of 60 keV, which allows the use of large single crystals with a volume of at least 6×6×6 mm3 without the need to consider absorption. The room temperature measurements for samples with different dopants have been performed on a four-circle diffractometer. The thermal expansion coefficients along the a- and c-directions, α11 and α33, increase from 3×10-6 K-1 at 300 K to 6×10-6 K-1 at 1750 K. It is found that α11 and α33 are isotropic within 107 K-1. At high temperatures both coefficients for doped samples are ˜0.2×10-6 and 0.3×10-6 K-1 lower than for the undoped material.
Paleo-reconstruction: Using multiple biomarker parameters
NASA Astrophysics Data System (ADS)
Chen, Zhengzheng
Advanced technologies have played essential roles in the development of molecular organic geochemistry. In this thesis, we have developed several new techniques and explored their applications, alone and with previous techniques, to paleo-reconstruction. First, we developed a protocol to separate biomarker fractions for accurate measurement of compound-specific isotope analysis. This protocol involves combination of zeolite adduction and HPLC separation. Second, an integrated study of traditional biomarker parameters, diamondoids and compound-specific biomarker isotopes, differentiated oil groups from Saudi Arabia. Specifically, Cretaceous reservoired oils were divided into three groups and the Jurassic reservoired oils were divided into two groups. Third, biomarker acids provide an alternative way to characterize biodegradation. Oils from San Joaquin Valley, U.S.A. and oils from Mediterranean display drastically different acid profiles. These differences in biomarker acids probably reflect different processes of biodegradation. Fourth, by analyzing biomarker distributions in the organic-rich rocks recording the onset of Late Ordovician extinction, we propose that changes in salinity associated with eustatic sea-level fall, contributed at least locally to the extinction of graptolite species.
Determining the Tsallis parameter via maximum entropy.
Conroy, J M; Miller, H G
2015-05-01
The nonextensive entropic measure proposed by Tsallis [C. Tsallis, J. Stat. Phys. 52, 479 (1988)] introduces a parameter, q, which is not defined but rather must be determined. The value of q is typically determined from a piece of data and then fixed over the range of interest. On the other hand, from a phenomenological viewpoint, there are instances in which q cannot be treated as a constant. We present two distinct approaches for determining q depending on the form of the equations of constraint for the particular system. In the first case the equations of constraint for the operator Ô can be written as Tr(F(q)Ô)=C, where C may be an explicit function of the distribution function F. We show that in this case one can solve an equivalent maxent problem which yields q as a function of the corresponding Lagrange multiplier. As an illustration the exact solution of the static generalized Fokker-Planck equation (GFPE) is obtained from maxent with the Tsallis enropy. As in the case where C is a constant, if q is treated as a variable within the maxent framework the entropic measure is maximized trivially for all values of q. Therefore q must be determined from existing data. In the second case an additional equation of constraint exists which cannot be brought into the above form. In this case the additional equation of constraint may be used to determine the fixed value of q. PMID:26066124
A Fibre Optic Sensor Of Physiological Parameters
NASA Astrophysics Data System (ADS)
Legendre, J. P.; Forester, G. V.
1986-11-01
This paper presents an ultraminiature fibre optic probe capable of physiological monitoring in situ. The system has been described previously where a fibre optic reflectometer was configured as a temperature sensor and as a refractometer. For the present experiments a bare fibre tip was used as sensing element. We show that we have been able to monitor cyclic physiological parameters such as heart and respiratory rates in various animal preparations. The probe has been used to obtain signals from the oesophagus, the lower gastro-intestinal tract, the abdominal cavity and from blood vessels (arteries and veins). The probe has also measured phasic activity coincident with mechanical activity of isolated heart muscle. The small physical size of the sensor (125 µm diameter), its flexibility and the fact that it is biologically inert are all very important characteristics for medical and biological considerations. Most recently, the probe has been used to monitor cardiac and respiratory rates while obtaining NMR spectra assessing metabolic activity. This was possible only because the probe is magnetically transparent.
Fundamental Parameters of Nearby Young Stars
NASA Astrophysics Data System (ADS)
McCarthy, Kyle; Wilhelm, R. J.
2013-06-01
We present high resolution (R ~ 60,000) spectroscopic data of F and G members of the nearby, young associations AB Doradus and β Pictoris obtained with the Cross-Dispersed Echelle Spectrograph on the 2.7 meter telescope at the McDonald Observatory. Effective temperatures, log(g), [Fe/H], and microturbulent velocities are first estimated using the TGVIT code, then finely tuned using MOOG. Equivalent width (EW) measurements were made using TAME alongside a self-produced IDL routine to constrain EW accuracy and improve computed fundamental parameters. MOOG is also used to derive the chemical abundance of several elements including Mn which is known to be over abundant in planet hosting stars. Vsin(i) are also computed using a χ2 analysis of our observed data to Atlas9 model atmospheres passed through the SPECTRUM spectral synthesis code on lines which do not depend strongly on surface gravity. Due to the limited number of Fe II lines which govern the surface gravity fit in both TGVIT and MOOG, we implement another χ2 analysis of strongly log(g) dependent lines to ensure the values are correct. Coupling the surface gravities and temperatures derived in this study with the luminosities found in the Tycho-2 catalog, we estimate masses for each star and compare these masses to several evolutionary models to begin the process of constraining pre-main sequence evolutionary models.
Transparency parameters from relativistically expanding outflows
Bégué, D.; Iyyani, S.
2014-09-01
In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.
Evaluating intensity parameters for debris flow vulnerability
NASA Astrophysics Data System (ADS)
Keiler, Margreth
2014-05-01
In mountain regions natural hazard processes such as debris flows or hyper-concentrated flows repeatedly lead to high damages. After an event, detailed documentation of the meteorological, hydrological and geomorphological indicators are standardized, and additional data on debris covering run out areas, indicators for processes velocity and transported volumes are gathered. Information on deposition height of debris is an important parameter to estimate the intensity of the process impacting the buildings and infrastructure and hence to establish vulnerability curves. However, the deposition height of mobilized material in settlements and on infrastructure is mostly not directly evaluated because recovery work starts immediately or even during the event leading to a removal of accumulated material. Different approaches exist to reconstruct deposition heights after torrent events, such as mind mapping, comparison of LIDAR-based DEM before and after the event as well as the reconstruction by using photo documentation and the estimation of deposition heights according to standardised elements at buildings and infrastructure. In our study, these different approaches to estimate deposition height and the spatial distribution of the accumulated material are applied and compared against each other by using the case study of the debris flow event in Brienz (Switzerland) which occurred during the serve flood events of August 2005 in the Alps. Within the analysis, different factors including overall costs and time consumption (manpower, equipment), accuracy and preciseness are compared and evaluated to establish optimal maps of the extent and deposition depth after torrent events and to integrate this information in the vulnerability analysis.
Electron transport parameters in NF3
NASA Astrophysics Data System (ADS)
Lisovskiy, V.; Yegorenkov, V.; Ogloblina, P.; Booth, J.-P.; Martins, S.; Landry, K.; Douai, D.; Cassagne, V.
2014-03-01
We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF3 gas calculated from published elastic and inelastic electron-NF3 collision cross-sections using the BOLSIG+ code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 329, Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5475) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 783) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG+ code employing the JB momentum-transfer cross-section.
Linear parameter estimation of rational biokinetic functions.
Doeswijk, T G; Keesman, K J
2009-01-01
For rational biokinetic functions such as the Michaelis-Menten equation, in general, a nonlinear least-squares method is a good estimator. However, a major drawback of a nonlinear least-squares estimator is that it can end up in a local minimum. Rearranging and linearizing rational biokinetic functions for parameter estimation is common practice (e.g. Lineweaver-Burk linearization). By rearranging, however, the error is distorted. In addition, the rearranged model frequently leads to a so-called 'errors-in-variables' estimation problem. Applying the ordinary least squares (OLS) method to the linearly reparameterized function ensures a global minimum, but its estimates become biased if the regression variables contain errors and thus bias compensation is needed. Therefore, in this paper, a bias compensated total least squares (CTLS) method, which as OLS is a direct method, is proposed to solve the estimation problem. The applicability of a general linear reparameterization procedure and the advances of CTLS over ordinary least squares and nonlinear least squares approaches are shown by two simulation examples. The examples contain Michaelis-Menten kinetics and enzyme kinetics with substrate inhibition. Furthermore, CTLS is demonstrated with real data of an activated sludge experiment. It is concluded that for rational biokinetic models CTLS is a powerful alternative to the existing least-squares methods. PMID:19004464
Cell Forces and Cytoskeletal Order Parameters
NASA Astrophysics Data System (ADS)
Discher, Dennis
2012-02-01
Nematic, Smectic and Isotropic Order parameters have found wide-spread use in characterizing all manner of soft matter systems, but have not yet been applied to characterize and understand the structures within living cells, particularly cytoskeletal structures. Several examples will be used to illustrate the utility of such analyses, ranging from experiments on stem cells attached to or in various elastic matrices to embryonic heart tissue and simulations of membrane cytoskeletons under all manner of stressing. Recently developed theory will be shown to apply in general with account of cell contractility, matrix elasticity and dimensionality as well as cell shape and a newly defined ``cytoskeletal polarizability.'' The latter property of cells is likely different between different cell types due to different amounts of key cytoskeletal components with some types of stem cells being more polarizable than others. Evidence of coupling to the nucleus as a viscoelastic inclusion will also be presented. [4pt] References: (1) P. Dalhaimer, D.E. Discher, T. Lubensky. Crosslinked actin networks exhibit liquid crystal elastomer behavior, including soft-mode elasticity. Nature Physics 3: 354-360 (2007). (2) A. Zemel, F.Rehfeldt, A.E.X. Brown, D.E. Discher, and S.A. Safran. Optimal matrix rigidity in the self-polarization of stem cells. Nature Physics 6: 468 - 473 (2010).
IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS
Torres, Guillermo; Holman, Matthew J.; Carter, Joshua A.; Fischer, Debra A.; Sozzetti, Alessandro; Buchhave, Lars A.; Winn, Joshua N.
2012-10-01
We report homogeneous spectroscopic determinations of the effective temperature, metallicity, and projected rotational velocity for the host stars of 56 transiting planets. Our analysis is based primarily on the stellar parameter classification (SPC) technique. We investigate systematic errors by examining subsets of the data with two other methods that have often been used in previous studies (Spectroscopy Made Easy (SME) and MOOG). The SPC and SME results, both based on comparisons between synthetic spectra and actual spectra, show strong correlations between T{sub eff}, [Fe/H], and log g when solving for all three quantities simultaneously. In contrast the MOOG results, based on a more traditional curve-of-growth approach, show no such correlations. To combat the correlations and improve the accuracy of the temperatures and metallicities, we repeat the SPC analysis with a constraint on log g based on the mean stellar density that can be derived from the analysis of the transit light curves. Previous studies that have not taken advantage of this constraint have been subject to systematic errors in the stellar masses and radii of up to 20% and 10%, respectively, which can be larger than other observational uncertainties, and which also cause systematic errors in the planetary mass and radius.
Virtual Acoustics: Evaluation of Psychoacoustic Parameters
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Null, Cynthia H. (Technical Monitor)
1997-01-01
Current virtual acoustic displays for teleconferencing and virtual reality are usually limited to very simple or non-existent renderings of reverberation, a fundamental part of the acoustic environmental context that is encountered in day-to-day hearing. Several research efforts have produced results that suggest that environmental cues dramatically improve perceptual performance within virtual acoustic displays, and that is possible to manipulate signal processing parameters to effectively reproduce important aspects of virtual acoustic perception in real-time. However, the computational resources for rendering reverberation remain formidable. Our efforts at NASA Ames have been focused using a several perceptual threshold metrics, to determine how various "trade-offs" might be made in real-time acoustic rendering. This includes both original work and confirmation of existing data that was obtained in real rather than virtual environments. The talk will consider the importance of using individualized versus generalized pinnae cues (the "Head-Related Transfer Function"); the use of head movement cues; threshold data for early reflections and late reverberation; and consideration of the necessary accuracy for measuring and rendering octave-band absorption characteristics of various wall surfaces. In addition, a consideration of the analysis-synthesis of the reverberation within "everyday spaces" (offices, conference rooms) will be contrasted to the commonly used paradigm of concert hall spaces.
Study of Dill's B parameter measurement of EUV resist
NASA Astrophysics Data System (ADS)
Sekiguchi, Atsushi; Matsumoto, Yoko; Harada, Tetsuo; Watanabe, Takeo; Kinoshita, Hiroo
2015-03-01
Our group previously explored methods for measuring simulation parameter for advanced chemically amplified (CA) resists, including development parameters [1]. Dill's C parameter [2-3] , acid diffusion length generated from PAG [4], and de-protection reaction parameters [5-6]. We performed simulations of EUV resists using these parameters, the results of which allowed us to examine the conditions for reducing LER and improving resolution. This paper discusses a method for measuring the Dill's B parameter, which had been difficult to measure with conventional methods. We also confirmed that enhancing the resist polymer's EUV light absorption is effective in improving the sensitivity of the CA resist.
Practice parameter for telepsychiatry with children and adolescents.
Myers, Kathleen; Cain, Sharon
2008-12-01
This practice parameter discusses the use of telepsychiatry to provide services to children and adolescents. The parameter defines terms and reviews the status of telepsychiatry as a mode of health service delivery. Because many of the issues addressed are unique to telepsychiatry, the parameter presents principles for establishing a telepsychiatry service and optimizing clinical practice within that service. The principles presented are based on existing scientific evidence and clinical consensus. Telepsychiatry is still evolving, and this parameter represents a first approach to determining "best practices." The parameter emphasizes the integration of telepsychiatry within other practice parameters of the American Academy of Child and Adolescent Psychiatry. PMID:19034191
Morris, W. James Keyes, Mira M.D.; Palma, David M.D.; McKenzie, Michael; Spadinger, Ingrid; Agranovich, Alex; Pickles, Tom; Liu, Mitchell; Kwan, Winkle; Wu, Jonn; Lapointe, Vince; Berthelet, Eric; Pai, Howard; Harrison, Robert; Kwa, William; Bucci, Joe; Racz, Violet; Woods, Ryan
2009-04-01
Purpose: To analyze dosimetric outcomes after permanent brachytherapy for men with low-risk and 'low-tier' intermediate-risk prostate cancer and explore the relationship between the traditional dosimetric values, V100 (volume of prostate receiving 100% of the prescribed dose) and D90 (minimum dose to 90% of the prostate), and risk of biochemical failure. Methods and Materials: A total of 1,006 consecutive patients underwent implantation between July 20, 1998, and Oct 23, 2003. Most (58%) had low-risk disease; the remaining 42% comprised a selected low-tier subgroup of intermediate-risk patients. The prescribed minimum peripheral dose (MPD) was 144 Gy. All implants used 0.33 mCi {sup 125}I sources using a preplan technique featuring right-left symmetry and a strong posterior-peripheral dose bias. Sixty-five percent of patients had 6 months of androgen deprivation therapy. Postimplantation dosimetry was calculated using day-28 CT scans. Results: With a median follow-up of 54 months, the actuarial 5-year rate of freedom from biochemical recurrence (bNED) was 95.6% {+-} 1.6%. Median D90 was 105% of MPD, median V100 was 92%, median V150 was 58%, and median V200 was 9%. Dosimetric values were not predictive of biochemical recurrence on univariate or multivariate analysis. Analysis of dosimetric values by implantation number showed statistically significant increases in all values with time (D90, V100, V150, and V200; p < 0.001), but this did not translate into improved bNED. Conclusions: In contrast to some previous studies, dosimetric outcomes did not correlate with biochemical recurrence in the first 1,006 patients treated with {sup 125}I prostate brachytherapy at the British Columbia Cancer Agency. Despite a median D90 of only 105% of MPD, our bNED rates are indistinguishable from series that reported higher D90 values.
Superconducting state parameters of ternary amorphous superconductors
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2008-11-01
The theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N0V of five Nb xTa yMo z ( x = 0.15, 0.30, 0.30, 0.40, 0.45; y = 0.15, 0.30, 0.30, 0.40, 0.45 and z = 0.10, 0.30, 0.30, 0.40, 0.70) ternary amorphous superconductors viz. Nb 0.45Ta 0.45Mo 0.10, Nb 0.30Ta 0.40Mo 0.30, Nb 0.40Ta 0.30Mo 0.30, Nb 0.30Ta 0.30Mo 0.40 and Nb 0.15Ta 0.15Mo 0.70 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The TC obtained from Hartree (H) local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the superconductors.
Estimation of high altitude Martian dust parameters
NASA Astrophysics Data System (ADS)
Pabari, Jayesh; Bhalodi, Pinali
2016-07-01
Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.
Dimopoulos, Johannes C.A.; Schmid, Maximilian P.; Fidarova, Elena; Berger, Daniel; Kirisits, Christian; Poetter, Richard
2012-04-01
Purpose: To investigate the clinical feasibility of magnetic resonance image-guided adaptive brachytherapy (IGABT) for patients with locally advanced vaginal cancer and to report treatment outcomes. Methods and Materials: Thirteen patients with vaginal cancer were treated with external beam radiotherapy (45-50.4 Gy) plus IGABT with or without chemotherapy. Distribution of International Federation of Gynecology and Obstetrics stages among patients were as follows: 4 patients had Stage II cancer, 5 patients had Stage III cancer, and 4 patients had Stage IV cancer. The concept of IGABT as developed for cervix cancer was transferred and adapted for vaginal cancer, with corresponding treatment planning and reporting. Doses were converted to the equivalent dose in 2 Gy, applying the linear quadratic model ({alpha}/{beta} = 10 Gy for tumor; {alpha}/{beta} = 3 for organs at risk). Endpoints studied were gross tumor volume (GTV), dose-volume parameters for high-risk clinical target volume (HRCTV), and organs at risk, local control (LC), adverse side effects, and survival. Results: The mean GTV ({+-} 1 standard deviation) at diagnosis was 45.3 ({+-}30) cm{sup 3}, and the mean GTV at brachytherapy was 10 ({+-}14) cm{sup 3}. The mean D90 for the HRCTV was 86 ({+-}13) Gy. The mean D2cc for bladder, urethra, rectum, and sigmoid colon were 80 ({+-}20) Gy, 76 ({+-}16) Gy, 70 ({+-}9) Gy, and 60 ({+-}9) Gy, respectively. After a median follow-up of 43 months (range, 19-87 months), one local recurrence and two distant metastases cases were observed. Actuarial LC and overall survival rates at 3 years were 92% and 85%. One patient with Stage IVA and 1 patient with Stage III disease experienced fistulas (one vesicovaginal, one rectovaginal), and 1 patient developed periurethral necrosis. Conclusions: The concept of IGABT, originally developed for treating cervix cancer, appears to be applicable to vaginal cancer treatment with only minor adaptations. Dose-volume parameters for HRCTV and
Isolating parameter sensitivity in reach scale transient storage modeling
NASA Astrophysics Data System (ADS)
Schmadel, Noah M.; Neilson, Bethany T.; Heavilin, Justin E.; Wörman, Anders
2016-03-01
Parameter sensitivity analyses, although necessary to assess identifiability, may not lead to an increased understanding or accurate representation of transient storage processes when associated parameter sensitivities are muted. Reducing the number of uncertain calibration parameters through field-based measurements may allow for more realistic representations and improved predictive capabilities of reach scale stream solute transport. Using a two-zone transient storage model, we examined the spatial detail necessary to set parameters describing hydraulic characteristics and isolate the sensitivity of the parameters associated with transient storage processes. We represented uncertain parameter distributions as triangular fuzzy numbers and used closed form statistical moment solutions to express parameter sensitivity thus avoiding copious model simulations. These solutions also allowed for the direct incorporation of different levels of spatial information regarding hydraulic characteristics. To establish a baseline for comparison, we performed a sensitivity analysis considering all model parameters as uncertain. Next, we set hydraulic parameters as the reach averages, leaving the transient storage parameters as uncertain, and repeated the analysis. Lastly, we incorporated high resolution hydraulic information assessed from aerial imagery to examine whether more spatial detail was necessary to isolate the sensitivity of transient storage parameters. We found that a reach-average hydraulic representation, as opposed to using detailed spatial information, was sufficient to highlight transient storage parameter sensitivity and provide more information regarding the potential identifiability of these parameters.
NASA Astrophysics Data System (ADS)
Bates, P. D.; Neal, J. C.; Fewtrell, T. J.
2012-12-01
In this we paper we consider two related questions. First, we address the issue of how much physical complexity is necessary in a model in order to simulate floodplain inundation to within validation data error. This is achieved through development of a single code/multiple physics hydraulic model (LISFLOOD-FP) where different degrees of complexity can be switched on or off. Different configurations of this code are applied to four benchmark test cases, and compared to the results of a number of industry standard models. Second we address the issue of how parameter sensitivity and transferability change with increasing complexity using numerical experiments with models of different physical and geometric intricacy. Hydraulic models are a good example system with which to address such generic modelling questions as: (1) they have a strong physical basis; (2) there is only one set of equations to solve; (3) they require only topography and boundary conditions as input data; and (4) they typically require only a single free parameter, namely boundary friction. In terms of complexity required we show that for the problem of sub-critical floodplain inundation a number of codes of different dimensionality and resolution can be found to fit uncertain model validation data equally well, and that in this situation Occam's razor emerges as a useful logic to guide model selection. We find also find that model skill usually improves more rapidly with increases in model spatial resolution than increases in physical complexity, and that standard approaches to testing hydraulic models against laboratory data or analytical solutions may fail to identify this important fact. Lastly, we find that in benchmark testing studies significant differences can exist between codes with identical numerical solution techniques as a result of auxiliary choices regarding the specifics of model implementation that are frequently unreported by code developers. As a consequence, making sound
NASA Technical Reports Server (NTRS)
Sovers, O. J.; Fanselow, J. L.
1987-01-01
This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.
NASA Astrophysics Data System (ADS)
Sovers, O. J.; Fanselow, J. L.
1987-12-01
This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.
NASA Astrophysics Data System (ADS)
Yong, Kilyuk; Jo, Sujang; Bang, Hyochoong
This paper presents a modified Rodrigues parameter (MRP)-based nonlinear observer design to estimate bias, scale factor and misalignment of gyroscope measurements. A Lyapunov stability analysis is carried out for the nonlinear observer. Simulation is performed and results are presented illustrating the performance of the proposed nonlinear observer under the condition of persistent excitation maneuver. In addition, a comparison between the nonlinear observer and alignment Kalman filter (AKF) is made to highlight favorable features of the nonlinear observer.
Parameter space of experimental chaotic circuits with high-precision control parameters.
de Sousa, Francisco F G; Rubinger, Rero M; Sartorelli, José C; Albuquerque, Holokx A; Baptista, Murilo S
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family. PMID:27586603
Parameter space of experimental chaotic circuits with high-precision control parameters
NASA Astrophysics Data System (ADS)
de Sousa, Francisco F. G.; Rubinger, Rero M.; Sartorelli, José C.; Albuquerque, Holokx A.; Baptista, Murilo S.
2016-08-01
We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (˜21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.
DETERMINING UNCERTAINTY IN PHYSICAL PARAMETER MEASUREMENTS BY MONTE CARLO SIMULATION
A statistical approach, often called Monte Carlo Simulation, has been used to examine propagation of error with measurement of several parameters important in predicting environmental transport of chemicals. These parameters are vapor pressure, water solubility, octanol-water par...
What are the associated parameters and temporal coverage?
Atmospheric Science Data Center
2014-12-08
... Parameters BDS Filtered Radiances, Detector Values, Instr. Engineering Parameters CERES-NEWS-CCCM ... Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in PC/Tau bins similar to ISCCP-D2 product ...
An enhancement to the NA4 gear vibration diagnostic parameter
NASA Technical Reports Server (NTRS)
Decker, Harry J.; Handschuh, Robert F.; Zakrajsek, James J.
1994-01-01
A new vibration diagnostic parameter for health monitoring of gears, NA4*, is proposed and tested. A recently developed gear vibration diagnostic parameter NA4 outperformed other fault detection methods at indicating the start and initial progression of damage. However, in some cases, as the damage progressed, the sensitivity of the NA4 and FM4 parameters tended to decrease and no longer indicated damage. A new parameter, NA4* was developed by enhancing NA4 to improve the trending of the parameter. This allows for the indication of damage both at initiation and also as the damage progresses. The NA4* parameter was verified and compared to the NA4 and FM4 parameters using experimental data from single mesh spur and spiral bevel gear fatigue rigs. The primary failure mode for the test cases was naturally occurring tooth surface pitting. The NA4* parameter is shown to be a more robust indicator of damage.
Physiological Parameters Database for PBPK Modeling (External Review Draft)
EPA released for public comment a physiological parameters database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence. It also contains similar data for an...
Parameter Estimation and Data Management System of Sea Clutter
NASA Astrophysics Data System (ADS)
Cong, Bo; Duan, Qingguang; Qu, Yuanxin
2016-02-01
In this paper, a parameter estimation and data management system of sea clutter is described, which can acquire the data of sea clutter, implement parameter estimation and realize real-time communications.
EMODnet Physical Parameters (EMODNet PP) Portal
NASA Astrophysics Data System (ADS)
Novellino, A.; Schaap, D.; Manzella, G. M. R.; Pouliquen, S.; Gorringe, P.
2012-04-01
In December 2007 the European Parliament and Council adopted a common text for the Marine Strategy Framework Directive which aims to achieve environmentally healthy marine waters by 2020. This Directive includes an initiative for an overarching European Marine Observation and Data Network (EMODNet). During the one-year consultation phase that followed the release of the EU Green Paper on a Future Maritime Policy for the European Union, stakeholders gave an overwhelming positive response. Facilitating access to high quality marine data will resolve difficulties and stimulate an expansion of value-added public and commercial services, lay the foundations for sound governance and reduce uncertainties on human impact on the planet as well as of forecasts relating to the future state of the marine environment. Better and linked marine data will have an immediate impact on the planning of environmental policy and mitigation measures, and will also facilitate impact assessments and scientific work. The overall objectives of the EMODnet Physical Parameters (EMODNet PP) preparatory action is to provide access to archived and near real-time data on physical conditions in Europe's seas and oceans by means of a dedicated Pilot Portal and to determine how well the data meet the needs of users from industry, public authorities and scientists. The latter implicates that it is also an objective to identify data gaps and arguments why these gaps should be filled in future monitoring. This project will contribute towards the definition of an operational European Marine Observation and Data Network (EMODnet). This is done done by: 1. providing through a portal: a. access to marine data from measurement stations and ferryboxes. Both near real-time and archived data of time series are to be made available. b. metadata for these data sets using EMODnet/INSPIRE standards. c. metadata maps and overviews for whole sea-basins showing the availability of data and monitoring intensity of that
Sensitivity analysis of textural parameters for vertebroplasty
NASA Astrophysics Data System (ADS)
Tack, Gye Rae; Lee, Seung Y.; Shin, Kyu-Chul; Lee, Sung J.
2002-05-01
Vertebroplasty is one of the newest surgical approaches for the treatment of the osteoporotic spine. Recent studies have shown that it is a minimally invasive, safe, promising procedure for patients with osteoporotic fractures while providing structural reinforcement of the osteoporotic vertebrae as well as immediate pain relief. However, treatment failures due to excessive bone cement injection have been reported as one of complications. It is believed that control of bone cement volume seems to be one of the most critical factors in preventing complications. We believed that an optimal bone cement volume could be assessed based on CT data of a patient. Gray-level run length analysis was used to extract textural information of the trabecular. At initial stage of the project, four indices were used to represent the textural information: mean width of intertrabecular space, mean width of trabecular, area of intertrabecular space, and area of trabecular. Finally, the area of intertrabecular space was selected as a parameter to estimate an optimal bone cement volume and it was found that there was a strong linear relationship between these 2 variables (correlation coefficient = 0.9433, standard deviation = 0.0246). In this study, we examined several factors affecting overall procedures. The threshold level, the radius of rolling ball and the size of region of interest were selected for the sensitivity analysis. As the level of threshold varied with 9, 10, and 11, the correlation coefficient varied from 0.9123 to 0.9534. As the radius of rolling ball varied with 45, 50, and 55, the correlation coefficient varied from 0.9265 to 0.9730. As the size of region of interest varied with 58 x 58, 64 x 64, and 70 x 70, the correlation coefficient varied from 0.9685 to 0.9468. Finally, we found that strong correlation between actual bone cement volume (Y) and the area (X) of the intertrabecular space calculated from the binary image and the linear equation Y = 0.001722 X - 2
Spectroscopic Parameters of Lumbar Intervertebral Disc Material
NASA Astrophysics Data System (ADS)
Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.
2009-06-01
There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the
Planning Robot-Control Parameters With Qualitative Reasoning
NASA Technical Reports Server (NTRS)
Peters, Stephen F.
1993-01-01
Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.
Yang, Changwei; Yang, Mingyuan; Chen, Yuanyuan; Wei, Xianzhao; Ni, Haijian; Chen, Ziqiang; Li, Jingfeng; Bai, Yushu; Zhu, Xiaodong; Li, Ming
2015-01-01
Abstract A retrospective study. To summarize and describe the radiographic parameters of adult degenerative scoliosis (ADS) and explore the radiological parameters which are significantly different in sagittal balanced and imbalanced ADS patients. ADS is the most common type of adult spinal deformity. However, no comprehensive description of radiographic parameters in ADS patients has been made, and few studies have been performed to explore which radiological parameters are significantly different between sagittal balanced and imbalanced ADS patients. Medical records of ADS patients in our outpatient clinic from January 2012 to January 2014 were reviewed. Demographic data including age and sex, and radiographic data including the coronal Cobb angle, location of apical vertebra/disc, convexity of the curve, degree of apical vertebra rotation, curve segments, thoracic kyphosis (TK), lumbar lordosis (LL), thoracolumbar kyphosis (TL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI), sagittal vertical axis (SVA), and PI minus LL (PI − LL) were reviewed to make comprehensive description of radiographic parameters of ADS. Furthermore, patients were divided into 2 groups according to whether the patients’ sagittal plane was balanced: Group A (imbalanced, SVA > 5 cm) and Group B (balanced, SVA ≤ 5 cm). Demographic and radiological parameters were compared between these 2 groups. A total of 99 patients were included in this study (Group A = 33 and Group B = 66; female = 83 and male = 16; sex ratio = 5:1). The median of age were 67 years (range: 41–92 years). The median of coronal Cobb angle and length of curve was 23 (range: 10–75°) and 5 segments (range: 3–7), respectively. The most common location of apical vertebra was at L2 to L3 (81%) and the median of degree of apical vertebra rotation was 2° (range: 1–3). Our study also showed significant correlations between coronal Cobb angle and curve segments (r
40 CFR 63.1438 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... caused by an activity that violates other applicable provisions of 40 CFR part 63, subparts A, F, G, or H... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Parameter monitoring levels and....1438 Parameter monitoring levels and excursions. (a) Establishment of parameter monitoring levels....
Some aspects of application of the two parameter SEU model
Miroshkin, V.V.; Tverskoy, M.G.
1995-12-01
Influence of the projectile type, pion production in nucleon-nucleon interaction inside nucleus and direction of the beam incidence on SEU cross section for INTEL 2164A microcircuit in framework of the two parameter model is investigated. Model parameters for devices, investigated recently are reported. Optimum proton energies for determination of model parameters are proposed.
40 CFR 86.1833-01 - Adjustable parameters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... idle fuel-air mixture parameter on Otto-cycle vehicles; the choke valve action parameter(s) on... bimetal spring, the plate covering the bimetal spring is riveted or welded in place, or held in place with... return to its original shape after the force is removed (plastic or spring steel materials); (D) In...
40 CFR 86.1833-01 - Adjustable parameters.
Code of Federal Regulations, 2014 CFR
2014-07-01
... idle fuel-air mixture parameter on Otto-cycle vehicles; the choke valve action parameter(s) on... bimetal spring, the plate covering the bimetal spring is riveted or welded in place, or held in place with... return to its original shape after the force is removed (plastic or spring steel materials); (D) In...
[The value of current echographic parameters in fetal biometry].
Sussmann, M; Curie, P; Dreyfus, M; Renaud, R
1985-05-01
A review of current literature concerning developments of new parameters in fetal biometry is presented. To be sure, these parameters are very useful for detection of fetal malformations but outside of femoral length they do not contribute more valuable information than the already accepted parameters for determination of gestational age or detection of disorders of fetal growth. PMID:3895364
40 CFR 761.389 - Testing parameter requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Testing parameter requirements. 761... Under Â§ 761.79(d)(4) § 761.389 Testing parameter requirements. There are no restrictions on the variable testing parameters described in this section which may be used in the validation study....
40 CFR 761.389 - Testing parameter requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Testing parameter requirements. 761... Under Â§ 761.79(d)(4) § 761.389 Testing parameter requirements. There are no restrictions on the variable testing parameters described in this section which may be used in the validation study....