Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo
2015-10-01
The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.
Estimating leaf area and leaf biomass of open-grown deciduous urban trees
David J. Nowak
1996-01-01
Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.
Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Borel, Christoph
2009-05-01
In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.
Gap probability - Measurements and models of a pecan orchard
NASA Technical Reports Server (NTRS)
Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI
1992-01-01
Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.
Leaf area and its spatial distribution are key parameters in describing canopy characteristics. They determine radiation regimes and influence mass and energy exchange with the atmosphere. The evaluation of leaf area in conifer stands is particularly challengi...
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Ishida, Atsushi; Nakano, Takashi; Yazaki, Kenichi; Matsuki, Sawako; Koike, Nobuya; Lauenstein, Diego L; Shimizu, Michiru; Yamashita, Naoko
2008-05-01
We examined 15 traits in leaves and stems related to leaf C economy and water use for 32 co-existing angiosperms at ridge sites with shallow soil in the Bonin Islands. Across species, stem density was positively correlated to leaf mass per area (LMA), leaf lifespan (LLS), and total phenolics and condensed tannins per unit leaf N (N-based), and negatively correlated to leaf osmotic potential and saturated water content in leaves. LMA and LLS were negatively correlated to photosynthetic parameters, such as area-, mass-, and N-based assimilation rates. Although stem density and leaf osmotic potential were not associated with photosynthetic parameters, they were associated with some parameters of the leaf C economy, such as LMA and LLS. In the principal component (PCA) analysis, the first three axes accounted for 74.4% of total variation. Axis 1, which explained 41.8% of the total variation, was well associated with parameters for leaf C and N economy. Similarly, axis 2, which explained 22.3% of the total variation, was associated with parameters for water use. Axis 3, which explained 10.3% of the total variation, was associated with chemical defense within leaves. Axes 1 and 2 separated functional types relatively well, i.e., creeping trees, ruderal trees, other woody plants, C(3) shrubs and forbs, palms, and CAM plants, indicating that plant functional types were characterized by similar attributes of traits related to leaf C and N economy and water use. In addition, when the plot was extended by two unrelated traits, leaf mass-based assimilation rates and stem density, it also separated these functional types. These data indicate that differences in the functional types with contrasting plant strategies can be attributed to functional integration among leaf C economy, hydraulics, and leaf longevity, and that both leaf mass-based assimilation rates and stem density are key factors reflecting the different functions of plant species.
Strategies of leaf expansion in Ficus carica under semiarid conditions.
González-Rodríguez, A M; Peters, J
2010-05-01
Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.
Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India
NASA Astrophysics Data System (ADS)
Kumar, M.; Raghubanshi, A. S.
2011-08-01
A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.
The Relationship between Anatomy and Photosynthetic Performance of Heterobaric Leaves1
Nikolopoulos, Dimosthenis; Liakopoulos, Georgios; Drossopoulos, Ioannis; Karabourniotis, George
2002-01-01
Heterobaric leaves show heterogeneous pigmentation due to the occurrence of a network of transparent areas that are created from the bundle sheaths extensions (BSEs). Image analysis showed that the percentage of photosynthetically active leaf area (Ap) of the heterobaric leaves of 31 plant species was species dependent, ranging from 91% in Malva sylvestris to only 48% in Gynerium sp. Although a significant portion of the leaf surface does not correspond to photosynthetic tissue, the photosynthetic capacity of these leaves, expressed per unit of projected area (Pmax), was not considerably affected by the size of their transparent leaf area (At). This means that the photosynthetic capacity expressed per Ap (P*max) should increase with At. Moreover, the expression of P*max could be allowing the interpretation of the photosynthetic performance in relation to some critical anatomical traits. The P*max, irrespective of plant species, correlated with the specific leaf transparent volume (λt), as well as with the transparent leaf area complexity factor (CFAt), parameters indicating the volume per unit leaf area and length/density of the transparent tissues, respectively. Moreover, both parameters increased exponentially with leaf thickness, suggesting an essential functional role of BSEs mainly in thick leaves. The results of the present study suggest that although the Ap of an heterobaric leaf is reduced, the photosynthetic performance of each areole is increased, possibly due to the light transferring capacity of BSEs. This mechanism may allow a significant increase in leaf thickness and a consequent increase of the photosynthetic capacity per unit (projected) area, offering adaptive advantages in xerothermic environments. PMID:12011354
Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent
2016-12-01
Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2 m -2 . The slightly higher prediction in India and slightly lower prediction in Niger reflected GxE interactions. Until more understanding is obtained on the possible GxE interaction effects on the canopy development, a generic PLAPOW value of 2.71, no correction for sowing density, and a phyllochron on 53 °C could be used to model canopy development in peanut.
Leaf-IT: An Android application for measuring leaf area.
Schrader, Julian; Pillar, Giso; Kreft, Holger
2017-11-01
The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.
USDA-ARS?s Scientific Manuscript database
It is desirable to be able to predict above ground biomass production indirectly, without extensive sampling or destructive harvesting. Leaf area index (LAI) is the amount of leaf surface area per ground area and is an important parameter in ecophysiology. As LAI increases, the photosynthetically ...
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...
Adam Wolf; Kanat Akshalov; Nicanor Saliendra; Douglas A. Johnson; Emilio A. Laca
2006-01-01
Canopy fluxes of CO2 and energy can be modeled with high fidelity using a small number of environmental variables and ecosystem parameters. Although these ecosystem parameters are critically important for modeling canopy fluxes, they typically are not measured with the same intensity as ecosystem fluxes. We developed an algorithm to estimate leaf...
Relative growth rate in phylogenetically related deciduous and evergreen woody species.
Antúnez, Isabel; Retamosa, Emilio C; Villar, Rafael
2001-07-01
Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR×SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.
NASA Astrophysics Data System (ADS)
Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis
2016-08-01
In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.
2005-04-01
Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.
A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.
Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.
The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).
NASA Astrophysics Data System (ADS)
Simon, E.; Meixner, F. X.; Ganzeveld, L.; Kesselmeier, J.
2005-09-01
Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.
A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR). The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25-40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.
Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise, predicted net assimilation is overestimated by 30-50%. Two stomatal models have been tested, which apply a well established semi-empirical relationship between stomatal conductance and net assimilation. Both models differ in the way they describe the influence of humidity on stomatal response. However, they show a very similar performance within the range of observed environmental conditions. The agreement between predicted and observed stomatal conductance rates is reasonable. In general, the leaf level data suggests seasonal physiological changes, which can be reproduced reasonably well by assuming increased stomatal conductance rates during the wet season, and decreased assimilation rates during the dry season.
The sensitivity of the predicted canopy fluxes of energy and CO2 to the parameterization of canopy structure, the leaf optical parameters, and the scaling of photosynthetic parameters is relatively low (1-12%), with respect to parameter uncertainty. In contrast, modifying leaf model parameters within their uncertainty range results in much larger changes of the predicted canopy net fluxes (5-35%).
Chlorophyll content retrieval from hyperspectral remote sensing imagery.
Yang, Xiguang; Yu, Ying; Fan, Wenyi
2015-07-01
Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.
NASA Astrophysics Data System (ADS)
Kahmen, A.; Merchant, A.; Callister, A.; Dawson, T. E.; Arndt, S. K.
2006-12-01
Stable isotopes have been a valuable tool to study water or carbon fluxes of plants and ecosystems. In particular oxygen isotopes (δ18O) in leaf water or plant organic material are now beginning to be established as a simple and integrative measure for plant - water relations. Current δ18O models, however, are still limited in their application to a broad range of different species and ecosystems. It remains for example unclear, if species-specific effects such as different leaf morphologies need to be included in the models for a precise understanding and prediction of δ18O signals. In a common garden experiment (Currency Creek Arboretum, South Australia), where over 900 different Eucalyptus species are cultivated in four replicates, we tested effects of leaf morphology and anatomy on δ18O signals in leaf water of 25 different species. In particular, we determined for all species enrichment in 18O of mean lamina leaf water above source water (Δ18O) as related to leaf physiology as well as leaf thickness, leaf area, specific leaf area and weight and selected anatomical properties. Our data revealed that diurnal Δ18O in leaf water at steady state was significantly different among the investigated species and with differences up to 10% at midday. Fitting factors (effective path length) of leaf water Δ18O models were also significantly different among the investigated species and were highly affected by species-specific morphological parameters. For example, leaf area explained a high percentage of the differences in effective path length observed among the investigated species. Our data suggest that leaf water δ18O can act as powerful tool to estimate plant - water relations in comparative studies but that additional leaf morphological parameters need to be considered in existing δ18O models for a better interpretation of the observed δ18O signals.
Photosynthetic capacity peaks at intermediate size in temperate deciduous trees.
Thomas, Sean C
2010-05-01
Studies of age-related changes in leaf functional biology have generally been based on dichotomous comparisons of young and mature individuals (e.g., saplings and mature canopy trees), with little data available to describe changes through the entire ontogeny of trees, particularly of broadleaf angiosperms. Leaf-level gas-exchange and morphological parameters were quantified in situ in the upper canopy of trees acclimated to high light conditions, spanning a wide range of ontogenetic stages from saplings (approximately 1 cm in stem diameter) to trees >60 cm d.b.h. and nearing their maximum lifespan, in three temperate deciduous tree species in central Ontario, Canada. Traits associated with growth performance, including leaf photosynthetic capacity (expressed on either an area, mass or leaf N basis), stomatal conductance, leaf size and leaf N content, generally showed a unimodal ('hump-shaped') pattern, with peak values at an intermediate ontogenetic stage. In contrast, leaf mass per area (LMA) and related morphological parameters (leaf thickness, leaf tissue density, leaf C content) increased monotonically with tree size, as did water-use efficiency; these monotonic relationships were well described by simple allometric functions of the form Y = aX(b). For traits showing unimodal patterns, tree size corresponding to the trait maximum differed markedly among traits: all three species showed a similar pattern in which the peak for leaf size occurred in trees approximately 2-6 cm d.b.h., followed by leaf chemical traits and photosynthetic capacity on a mass or leaf N basis and finally by photosynthetic capacity on a leaf area basis, which peaked approximately at the size of reproductive onset. It is argued that ontogenetic increases in photosynthetic capacity and related traits early in tree ontogeny are general among relatively shade-tolerant tree species that have a low capacity for leaf-level acclimation, as are declines in this set of traits late in tree ontogeny.
Lilles, Erica B; Astrup, Rasmus; Lefrançois, Marie-Lou; David Coates, K
2014-12-01
We developed models to describe the responses of four commonly examined leaf traits (mass per area, weight, area and nitrogen (N) concentration) to gradients of light, soil nutrients and tree height in three conifer species of contrasting shade tolerance. Our observational dataset from the sub-boreal spruce forests of British Columbia included subalpine fir (Abies lasioscarpa [Hook.] Nutt; high shade tolerance), interior spruce (Picea glauca × Picea engelmannii [Moench] Voss; intermediate shade tolerance) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia; low shade tolerance) saplings from 0.18 to 4.87 m tall, in 8-98% of total incident light, from field sites with <17.6 kg ha(-1) to >46.8 kg ha(-1) total dissolved N. Leaf weights and areas showed strong positive responses to light and height, but little or no response to soil nutrients. Parameter estimates indicated that the shape of leaf weight and area responses to light corresponded with shade tolerance ranking for the three species; pine had the most linear response whereas spruce and fir had asymptotic responses. Leaf N concentration responded positively to soil nutrients, negatively to light and idiosyncratically to height. The negative effect of light was only apparent on sites of high soil nutrient availability, and parameter estimates for the shape of the negative response also corresponded to shade tolerance ranking (apine = -0.79, aspruce = -0.15, afir = -0.07). Of the traits we measured, leaf mass per area showed the least response to light, soil nutrient and height gradients. Although it is a common practice in comparisons across many species, characterizing these conifers by mean values of their leaf traits would miss important intraspecific variation across environmental and size gradients. In these forests, parameter estimates representing the intraspecific variability of leaf trait responses can be used to understand relative shade tolerances. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Terzi, Rabiye; Saruhan, Neslihan; Sağlam, A; Nar, Hatice; Kadioğlu, A
2009-12-01
We studied the changes in antioxidant system and chlorophyll fluorescence parameters in post-stress emerging Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants (PSE plants) having reduced leaf area under drought stress causing leaf rolling and re-watering. PSE plants were compared to primary stressed plants (PS) in previous studies. The parameters were measured at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others is intermediate form). Water potentials and stomatal conductance of leaves were gradually decreased during leaf rolling. Similarly, maximum quantum efficiency of open PS II center and quantum yield of PS II decreased during the rolling period. Non-photochemical quenching of chlorophyll fluorescence decreased at score 2 then increased while photochemical quenching did not change during leaf rolling. Electron transport rate decreased only at score 4 but approximately reached to score 1 level after re-watering. Superoxide dismutase activity was not constant at all leaf rolling scores. Ascorbate peroxidase, catalase and glutathione reductase activities generally tended to increase during leaf rolling. Lipid peroxidation and H 2 O 2 content increased at score 2 but decreased at the later scores. On the other hand, O 2 .- production increased during the rolling period. After re-watering of the plants having score 4 of leaf rolling, antioxidant enzyme activities were lower than those of score 1. Other physiological parameters also tended to reach the value of score 1. The results indicated that PSE plants gained drought tolerance by reducing leaf area effectively induced their antioxidant systems and protected the photosynthesis under drought stress similar to PS plants.
Measurement of surface physical properties and radiation balance for KUREX-91 study
NASA Technical Reports Server (NTRS)
Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.
1992-01-01
Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.
NASA Astrophysics Data System (ADS)
Chu, H.; Baldocchi, D. D.
2017-12-01
FLUXNET - the global network of eddy covariance tower sites provides valuable datasets of the direct and in situ measurements of fluxes and ancillary variables that are used across different disciplines and applications. Aerodynamic roughness (i.e., roughness length, zero plane displacement height) are one of the potential parameters that can be derived from flux-tower data and are crucial for the applications of land surface models and flux footprint models. As aerodynamic roughness are tightly associated with canopy structures (e.g., canopy height, leaf area), such parameters could potentially serve as an alternative metric for detecting the change of canopy structure (e.g., change of leaf areas in deciduous ecosystems). This study proposes a simple approach for deriving aerodynamic roughness from flux-tower data, and tests their suitability and robustness in detecting the seasonality of canopy structure. We run tests across a broad range of deciduous forests, and compare the seasonality derived from aerodynamic roughness (i.e., starting and ending dates of leaf-on period and peak-foliage period) against those obtained from remote sensing or in situ leaf area measurements. Our findings show aerodynamic roughness generally captures the timing of changes of leaf areas in deciduous forests. Yet, caution needs to be exercised while interpreting the absolute values of the roughness estimates.
Keith F. Jensen
1979-01-01
Hybrid poplar cuttings were fumigated with an ozone dosage of 15 ppm-hours. One treatment was a steady fumigation at 0.2 ppm while the second fumigation fluctuated between 0.1 and 0.3 ppm. No significant differences were found in cutting height, leaf area, leaf width, and leaf dry weight, but significant differences were found in chlorophyll content and carbohydrate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
Extracting scene feature vectors through modeling, volume 3
NASA Technical Reports Server (NTRS)
Berry, J. K.; Smith, J. A.
1976-01-01
The remote estimation of the leaf area index of winter wheat at Finney County, Kansas was studied. The procedure developed consists of three activities: (1) field measurements; (2) model simulations; and (3) response classifications. The first activity is designed to identify model input parameters and develop a model evaluation data set. A stochastic plant canopy reflectance model is employed to simulate reflectance in the LANDSAT bands as a function of leaf area index for two phenological stages. An atmospheric model is used to translate these surface reflectances into simulated satellite radiance. A divergence classifier determines the relative similarity between model derived spectral responses and those of areas with unknown leaf area index. The unknown areas are assigned the index associated with the closest model response. This research demonstrated that the SRVC canopy reflectance model is appropriate for wheat scenes and that broad categories of leaf area index can be inferred from the procedure developed.
NASA Technical Reports Server (NTRS)
Knight, S. L.; Mitchell, C. A.
1989-01-01
Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; ...
2015-04-30
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction.more » We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.« less
NASA Astrophysics Data System (ADS)
Maurer, K. D.; Bohrer, G.; Kenny, W. T.; Ivanov, V. Y.
2015-04-01
Surface roughness parameters, namely the roughness length and displacement height, are an integral input used to model surface fluxes. However, most models assume these parameters to be a fixed property of plant functional type and disregard the governing structural heterogeneity and dynamics. In this study, we use large-eddy simulations to explore, in silico, the effects of canopy-structure characteristics on surface roughness parameters. We performed a virtual experiment to test the sensitivity of resolved surface roughness to four axes of canopy structure: (1) leaf area index, (2) the vertical profile of leaf density, (3) canopy height, and (4) canopy gap fraction. We found roughness parameters to be highly variable, but uncovered positive relationships between displacement height and maximum canopy height, aerodynamic canopy height and maximum canopy height and leaf area index, and eddy-penetration depth and gap fraction. We also found negative relationships between aerodynamic canopy height and gap fraction, as well as between eddy-penetration depth and maximum canopy height and leaf area index. We generalized our model results into a virtual "biometric" parameterization that relates roughness length and displacement height to canopy height, leaf area index, and gap fraction. Using a decade of wind and canopy-structure observations in a site in Michigan, we tested the effectiveness of our model-driven biometric parameterization approach in predicting the friction velocity over heterogeneous and disturbed canopies. We compared the accuracy of these predictions with the friction-velocity predictions obtained from the common simple approximation related to canopy height, the values calculated with large-eddy simulations of the explicit canopy structure as measured by airborne and ground-based lidar, two other parameterization approaches that utilize varying canopy-structure inputs, and the annual and decadal means of the surface roughness parameters at the site from meteorological observations. We found that the classical representation of constant roughness parameters (in space and time) as a fraction of canopy height performed relatively well. Nonetheless, of the approaches we tested, most of the empirical approaches that incorporate seasonal and interannual variation of roughness length and displacement height as a function of the dynamics of canopy structure produced more precise and less biased estimates for friction velocity than models with temporally invariable parameters.
Jason A. Gatch; Timothy B. Harrington; James P. Castleberry
2002-01-01
Leaf area index (LAI) is an important parameter of forest stand productivity that has been used to diagnose stand vigor and potential fertilizer response of southern pines. The LAI-2000 was tested for its ability to provide accurate and precise estimates of LAI of loblolly pine (Pinus taeda L.). To test instrument accuracy, regression was used to...
NASA Technical Reports Server (NTRS)
Knight, Sharon L.; Mitchell, Cary A.
1988-01-01
Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.
Height is more important than light in determining leaf morphology in a tropical forest
Molly A. Cavaleri; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan
2010-01-01
Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number...
Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?
NASA Astrophysics Data System (ADS)
Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.
2015-12-01
Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
NASA Astrophysics Data System (ADS)
Zhang, Pangzhen; Wu, Xiwen; Needs, Sonja; Liu, Di; Fuentes, Sigfredo; Howell, Kate
2017-07-01
Defoliation is a commonly used viticultural technique to balance the ratio between grapevine vegetation and fruit. Defoliation is conducted around the fruit zone to reduce the leaf photosynthetic area, and to increase sunlight exposure of grape bunches. Apical leaf removal is not commonly practiced, and therefore its influence on canopy structure and resultant wine aroma is not well studied. This study quantified the influences of apical and basal defoliation on canopy structure parameters using canopy cover photography and computer vision algorithms. The influence of canopy structure changes on the chemical compositions of grapes and wines was investigated over two vintages (2010-11 and 2015-16) in Yarra Valley, Australia. The Shiraz grapevines were subjected to five different treatments: no leaf removal (Ctrl); basal (TB) and apical (TD) leaf removal at veraison and intermediate ripeness, respectively. Basal leaf removal significantly reduced the leaf area index and foliage cover and increased canopy porosity, while apical leaf removal had limited influences on canopy parameters. However, the latter tended to result in lower alcohol level in the finished wine. Statistically significant increases in pH and decreases in TA was observed in shaded grapes, while no significant changes in the color profile and volatile compounds of the resultant wine were found. These results suggest that apical leaf removal is an effective method to reduce wine alcohol concentration with minimal influences on wine composition.
Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.
Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja
2018-03-01
Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco
2016-03-01
Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.
Schlindwein, C C D; Fett-Neto, A G; Dillenburg, L R
2006-07-01
Young leaves are preferential targets for herbivores, and plants have developed different strategies to protect them. This study aimed to evaluate different leaf attributes of presumed relevance in protection against herbivory in four woody species (Erythroxylum argentinum, Lithrea brasiliensis, Myrciaria cuspidata, and Myrsine umbellata), growing in a dry restinga woodland in southern Brazil. Evaluation of leaf parameters was made through single-point sampling of leaves (leaf mass per area and leaf contents of nitrogen, carbon, and pigments) at three developmental stages and through time-course sampling of expanding leaves (area and strength). Leaves of M. umbellata showed the highest leaf mass per area (LMA), the largest area, and the longest expansion period. On the other extreme, Myrc. cuspidata had the smallest LMA and leaf size, and the shortest expansion period. Similarly to L. brasiliensis, it displayed red young leaves. None of the species showed delayed-greening, which might be related to the high-irradiance growth conditions. Nitrogen contents reduced with leaf maturity and reached the highest values in the young leaves of E. argentinum and Myrc. cuspidata and the lowest in M. umbellata. Each species seems to present a different set of protective attributes during leaf expansion. Myrciaria cuspidata appears to rely mostly on chemical defences to protect its soft leaves, and anthocyanins might play this role at leaf youth, while M. umbellata seems to invest more on mechanical defences, even at early stages of leaf growth, as well as on a low allocation of nitrogen to the leaves. The other species display intermediate characteristics.
Leaf Pressure Volume Data in Caxiuana and Tapajos National Forest, Para, Brazil (2011)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Thomas; Moorcroft, Paul
Pressure volume curve measurements on leaves of canopy trees from the from the Caxiuana and Tapajos National Forests, Para, Brazil. Tapajos samples were harvested from the km 67 forested area, which is adjacent to the decommissioned throughfall exclusion drought experimental plot. Caxiuana samples were harvested from trees growing in the throughfall exclusion plots. Data were collected in 2011. Dataset includes: date of measurement, site ID, plot ID, tree ID (species, tree tag #), leaf area, fresh weight, relative weight, leaf water potential, and leaf water loss. P-V curve parameters (turgor loss point, osmotic potential, and bulk modulus of elasticity) canmore » be found in Powell et al. (2017) Differences in xylem cavitation resistance and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biology.« less
Smith, Nicholas G; Dukes, Jeffrey S
2017-11-01
Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange. © 2017 by the Ecological Society of America.
Seedling growth strategies in Bauhinia species: comparing lianas and trees.
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-10-01
Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25% of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (A(area)) and similar photosynthetic rates per unit mass (A(mass)) than the trees. Across species, RGR was positively related to SLA, but not to LAR and A(area). It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species.
Application and Evaluation of MODIS LAI, fPAR, and Albedo Products in the WRFCMAQ System
Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important parameters in the land surface model (LSM) for meteorology and air quality modeling systems such as WRF/CMAQ. LAI and VF control not only leaf to canopy level evapotranspiration flux scaling but al...
Mänd, Pille; Hallik, Lea; Peñuelas, Josep; Kull, Olevi
2013-02-01
We investigated changes in chlorophyll a fluorescence from alternate leaf surfaces to assess the intraleaf light acclimation patterns in combination with natural variations in radiation, leaf angles, leaf mass per area (LMA), chlorophyll content (Chl) and leaf optical parameters. Measurements were conducted on bottom- and top-layer leaves of Tilia cordata Mill. (a shade-tolerant sub-canopy species, sampled at heights of 11 and 16 m) and Populus tremula L. (a light-demanding upper canopy species, sampled at canopy heights of 19 and 26 m). The upper canopy species P. tremula had a six times higher PSII quantum yield (Φ(II)) and ratio of open reaction centres (qP), and a two times higher LMA than T. cordata. These species-specific differences were also present when the leaves of both species were in similar light conditions. Leaf adaxial/abaxial fluorescence ratio was significantly larger in the case of more horizontal leaves. Populus tremula (more vertical leaves), had smaller differences in fluorescence parameters between alternate leaf sides compared with T. cordata (more horizontal leaves). However, optical properties on alternate leaf sides showed a larger difference for P. tremula. Intraspecifically, the measured optical parameters were better correlated with LMA than with leaf Chl. Species-specific differences in leaf anatomy appear to enhance the photosynthetic potential of leaf biochemistry by decreasing the interception of excess light in P. tremula and increasing the light absorptance in T. cordata. Our results indicate that intraleaf light absorption gradient, described here as leaf adaxial/abaxial side ratio of chlorophyll a fluorescence, varies significantly with changes in leaf light environment in a multi-layer multi-species tree canopy. However, this variation cannot be described merely as a simple function of radiation, leaf angle, Chl or LMA, and species-specific differences in light acclimation strategies should also be considered.
Estimation of Leaf Area Index and its Sunlit Portion from DSCOVR EPIC data
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Yang, B.; Mottus, M.; Rautiainen, M.; Stenberg, P.; Yan, L.; Chen, C.; Yan, K.; Park, T.; Myneni, R. B.; Song, W.
2016-12-01
The NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) mission was launched on February 11, 2015 to the Sun-Earth Lagrangian L1 point where it began to collect radiance data of the entire sunlit Earth at 16 km resolution (in equatorial zone) every 65 to 110 min in June 2015. It provides imageries in near backscattering directions with the scattering angle between 168o and 176o at ten UV to Near-IR narrow spectral bands centered at 317.5 (band width 1.0) nm, 325.0 (1.0) nm, 340.0 (3.0) nm, 388.0 (3.0) nm, 433.0 (3.0) nm, 551.0 (3.0) nm, 680.0 (1.7) nm, 687.8 (0.6) nm, 764.0 (1.7) nm and 779.5 (2.0) nm. This poster presents the theoretical basis of the algorithm designed for the generation of leaf area index (LAI) and diurnal course of sunlit leaf area index (SLAI) from EPIC Bidirectional Reflectance Factor of vegetated land. LAI and SLAI are defined as the total hemi-surface and sunlit leaf semi-surface per unit ground area. Whereas LAI is a standard product of many satellite the SLAI is a new satellite-derived parameter. Sunlit and shaded leaves exhibit different radiative response to incident Photosynthetically Active Radiation (400-700 nm), which in turn triggers various physiological and physical processes required for the functioning of plants. Leaf area and its sunlit portion are key state parameters in most ecosystem productivity and carbon/nitrogen cycle. Status of the EPIC LAI/SLAI product and its validation strategy are also discussed in this poster.
Relating Stomatal Conductance to Leaf Functional Traits.
Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge
2015-10-12
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.
Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.
Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren
2014-04-01
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.
An evolutionary attractor model for sapwood cross section in relation to leaf area.
Westoby, Mark; Cornwell, William K; Falster, Daniel S
2012-06-21
Sapwood cross-sectional area per unit leaf area (SA:LA) is an influential trait that plants coordinate with physical environment and with other traits. We develop theory for SA:LA and also for root surface area per leaf area (RA:LA) on the premise that plants maximizing the surplus of revenue over costs should have competitive advantage. SA:LA is predicted to increase in water-relations environments that reduce photosynthetic revenue, including low soil water potential, high water vapor pressure deficit (VPD), and low atmospheric CO(2). Because sapwood has costs, SA:LA adjustment does not completely offset difficult water relations. Where sapwood costs are large, as in tall plants, optimal SA:LA may actually decline with (say) high VPD. Large soil-to-root resistance caps the benefits that can be obtained from increasing SA:LA. Where a plant can adjust water-absorbing surface area of root per leaf area (RA:LA) as well as SA:LA, optimal RA:SA is not affected by VPD, CO(2) or plant height. If selection favours increased height more so than increased revenue-minus-cost, then height is predicted to rise substantially under improved water-relations environments such as high-CO(2) atmospheres. Evolutionary-attractor theory for SA:LA and RA:LA complements models that take whole-plant conductivity per leaf area as a parameter. Copyright © 2012 Elsevier Ltd. All rights reserved.
Seasonal variation of leaf traits in two woody species of an urban park
NASA Astrophysics Data System (ADS)
Kim, H.; Ryu, Y.
2013-12-01
Leaf traits are important for understanding physiology of woody plants. Some leaf traits such as maximum carboxylation rate (Vcamx) and maximum electron transport rate (Jmax) are especially crucial parameters for photosynthesis modelling. In this study, we report leaf traits (leaf mass per unit area, leaf carbon and nitrogen contents and C:N, Vcmax, Jmax) of two species (Zelkova serrata and Prunus yedoensis) in the Seoul Forest Park in 2013. From May to July, Vcmax and Jmax show gradual increase. In contrast, N concentration and C:N show the opposite pattern. Also we find that the ratio of Jmax to Vcmax was 1.05, which is substantially lower than many previous studies. We discuss main factors that control seasonal variation of leaf traits and correlation between Vcmax and Jmax.
Pietrini, F; Zacchini, M; Iori, V; Pietrosanti, L; Ferretti, M; Massacci, A
2010-03-01
The interaction of cadmium (Cd) with photosynthesis was investigated in poplar (Populus x canadensis Mönch., clone A4A, Populus nigra L., clone Poli) and willow (Salix alba L., clone SS5) clones that had different leaf metal concentrations in preliminary experiments. Plants grown in the presence of 50 microm CdSO(4) for 3 weeks under hydroponic conditions were used to examine leaf gas exchange, chlorophyll fluorescence parameters and images, and for Cd detection using energy dispersive X-ray fluorescence (ED-XRF). Leaves were finally analysed for Cd and phytochelatin concentrations. Results showed that SS5 had the highest leaf Cd concentration and high gas exchange activity similar to that of Poli, which had the lowest Cd concentration. Leaf fluorescence images evidenced in large undamaged areas of SS5 corresponded to high values of F(v)/F(m), F(o), PhiPSII, qP and NPQ, while patches of dark colour (visible necrosis) close to the main vein corresponded to low values of these parameters. In A4A, these necrotic patches were more diffuse on the leaf blade and associated with a range of fluorescence parameter values. ED-XRF analysis indicated that Cd was only detectable in necroses of SS5 leaves, while in A4A it was relatively more diffuse. Phytochelatins (PCs) were not detected in SS5, while their concentration was high in both Poli and A4A. The absence of these molecules in SS5 is thought to favour confinement of high accumulations of Cd to necrotic areas and gives SS5 the ability to maintain high photosynthesis and transpiration in remaining parts of the leaf.
NASA Astrophysics Data System (ADS)
Tahara, N.; Ueyama, M.; Iwata, H.; Ichii, K.; Harazono, Y.; Nagano, H.
2015-12-01
Wildfire is a major disturbance across the North American boreal forests. Canopy ecophysiology is important to understand recovery of carbon dioxide and water vapor fluxes after wildfires. We developed a big-leaf model coupled photosynthesis (Farquhar et al., 1980) and stomatal conductance (Ball et al., 1987) models. We inputted eddy covariance data from fire chronosequence across the North American boreal forests into the big-leaf model for optimizing parameters: maximum carboxylation rate at 25℃ (Vcmax25) and stomatal conductance parameters. The model was optimized with a global optimization technique: SCE-UA method (Duan et al., 1994). The estimated canopy-scale parameters were then downscaled into a leaf scale (vcmax25; values per sun leaf area) using a two-leaf radiation transfer model (de Pury and Farquhar, 1997) and leaf area index. We used 6 sites from two fire chronosequence in Alaska (1~, 3~, 5~, 15~ and 80~ years after fire; Liu et al., 2005; Iwata et al., 2011) and 6 sites from a Canadian chronosequence study (6~, 15~, 23~, 40~ and 74~ years after fire; Goulden et al., 2010). Preliminary results showed clear seasonal variations in canopy-scale Vcmax25 with the maximum during the summer. In Alaska, the downscaled vcmax25 for four years after fire exceeded those of mature forests, indicating that the photosynthetic capacity recovered quickly in the early successional stage. This quick recovery was not seen in gross primary productivity. We will show the variations of the ecophysiological parameters in terms of environment conditions and stand age. References Ball et al., 1987: In Progress in Photosynthesis Research, 221-224. de Pury and Farquhar, 1997: Plant, Cell and Environ., 20, 537-557. Duan et al., 1994: J. Hydrology, 158, 265-284. Farquhar et al., 1980: Planta, 149, 78-90. Goulden et al., 2010: Global Change Biol., 17, 855-871. Iwata et al., 2011: SOLA., 7, 105-108. Liu et al., 2005: J. Geophys. Res., 110, D13101.
Thameur, Afwa; Lachiheb, Belgacem; Ferchichi, Ali
2012-12-30
Two local barley strains cv. Ardhaoui originated from Tlalit and Switir, sourthern Tunisia were grown in pots in a glasshouse assay, under well-watered conditions for a month. Plants were then either subjected to water deficit (treatment) or continually well-watered (control). Control pots were irrigated several times each week to maintain soil moisture near field capacity (FC), while stress pots experienced soil drying by withholding irrigation until they reached 50% of FC. Variation in relative water content, leaf area, leaf appearance rate and leaf gas exchange (i.e. net CO(2) assimilation rate (A), transpiration (E), and stomatal conductance (gs)) in response to water deficit was investigated. High leaf relative water content (RWC) was maintained in Tlalit by stomatal closure and a reduction of leaf area. Reduction in leaf area was due to decline in leaf gas exchange during water deficit. Tlalit was found to be drought tolerant and able to maintain higher leaf RWC under drought conditions. Water deficit treatment reduced stomatal conductance by 43% at anthesis. High net CO(2) assimilation rate under water deficit was associated with high RWC (r = 0.998; P < 0.01). Decline in net CO(2) assimilation rate was due mainly to stomatal closure. Significant differences between studied strains in leaf gas exchange parameters were found, which can give some indications on the degree of drought tolerance. Thus, the ability of the low leaf area plants to maintain higher RWC could explain the differences in drought tolerance in studied barley strains. Results showed that Tlalit showed to be more efficient and more productive than Switir. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren
2014-01-01
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532
Coupled atmosphere/canopy model for remote sensing of plant reflectance features
NASA Technical Reports Server (NTRS)
Gerstl, S. A.; Zardecki, A.
1985-01-01
Solar radiative transfer through a coupled system of atmosphere and plant canopy is modeled as a multiple-scattering problem through a layered medium of random scatterers. The radiative transfer equation is solved by the discrete-ordinates finite-element method. Analytic expressions are derived that allow the calculation of scattering and absorption cross sections for any plant canopy layer form measurable biophysical parameters such as the leaf area index, leaf angle distribution, and individual leaf reflectance and transmittance data. An expression for a canopy scattering phase function is also given. Computational results are in good agreement with spectral reflectance measurements directly above a soybean canopy, and the concept of greenness- and brightness-transforms of Landsat MSS data is reconfirmed with the computed results. A sensitivity analysis with the coupled atmosphere/canopy model quantifies how satellite-sensed spectral radiances are affected by increased atmospheric aerosols, by varying leaf area index, by anisotropic leaf scattering, and by non-Lambertian soil boundary conditions. Possible extensions to a 2-D model are also discussed.
Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer
2012-01-01
Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...
NASA Technical Reports Server (NTRS)
Wiegand, C. L. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Reflectance of crop residues, that are important in reducing wind and water erosion, was more often different from bare soil in band 4 than in bands 5, 6, or 7. The plant parameters leaf area index, plant population, plant cover, and plant height explained 95.9 percent of the variation in band 7 (reflective infrared) digital counts for cotton and 78.2 percent of the variation in digital counts for the combined crops sorghum and corn; hence, measurable plant parameters explain most of the signal variation recorded for corpland. Leaf area index and plant population are both highly correlated with crop yields; since plant population can be readily measured (or possibly inferred from seeding rates), it is useful measurement for calibrating ERTS-type MSS digital data in terms of yield.
The phantom leaf effect: a replication, part 1.
Hubacher, John
2015-02-01
To replicate the phantom leaf effect and demonstrate a possible means to directly observe properties of the biological field. Thirty percent to 60% of plant leaves were amputated, and the remaining leaf sections were photographed with corona discharge imaging. All leaves were cut before placement on film. A total of 137 leaves were used. Plant leaves of 14 different species. Ninety-six phantom leaf specimens were successfully obtained; 41 specimens did not yield the phantom leaf effect. A normally undetected phantom "structure," possibly evidence of the biological field, can persist in the area of an amputated leaf section, and corona discharge can occur from this invisible structure. This protocol may suggest a testable method to study properties of conductivity and other parameters through direct observation of the complete biological field in plant leaves, with broad implications for biology and physics.
Carriquí, Marc; Douthe, Cyril; Molins, Arántzazu; Flexas, Jaume
2018-05-10
Mesophyll conductance to CO 2 (g m ), a key photosynthetic trait, is strongly constrained by leaf anatomy. Leaf anatomical parameters such as cell wall thickness and chloroplast area exposed to the mesophyll intercellular airspace have been demonstrated to determine g m in species with diverging phylogeny, leaf structure and ontogeny. However, the potential implication of leaf anatomy, especially chloroplast movement, on the short-term response of g m to rapid changes (i.e. seconds to minutes) under different environmental conditions (CO 2 , light or temperature) has not been examined. The aim of this study was to determine whether the observed rapid variations of g m in response to variations of light and CO 2 could be explained by changes in any leaf anatomical arrangements. When compared to high light and ambient CO 2 , the values of g m estimated by chlorophyll fluorescence decreased under high CO 2 and increased at low CO 2 , while it decreased with decreasing light. Nevertheless, no changes in anatomical parameters, including chloroplast distribution, were found. Hence, the g m estimated by analytical models based on anatomical parameters was constant under varying light and CO 2 . Considering this discrepancy between anatomy and chlorophyll fluorescence estimates, it is concluded that apparent fast g m variations should be due to artifacts in its estimation and/or to changes in the biochemical components acting on diffusional properties of the leaf (e.g. aquaporins and carbonic anhydrase). This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Pinter, P. J.; Jackson, R. D.; Idso, S. B.; Reginato, R. J. (Principal Investigator)
1982-01-01
Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for.
A hotspot model for leaf canopies
NASA Technical Reports Server (NTRS)
Jupp, David L. B.; Strahler, Alan H.
1991-01-01
The hotspot effect, which provides important information about canopy structure, is modeled using general principles of environmental physics as driven by parameters of interest in remote sensing, such as leaf size, leaf shape, leaf area index, and leaf angle distribution. Specific examples are derived for canopies of horizontal leaves. The hotspot effect is implemented within the framework of the model developed by Suits (1972) for a canopy of leaves to illustrate what might occur in an agricultural crop. Because the hotspot effect arises from very basic geometrical principles and is scale-free, it occurs similarly in woodlands, forests, crops, rough soil surfaces, and clouds. The scaling principles advanced are also significant factors in the production of image spatial and angular variance and covariance which can be used to assess land cover structure through remote sensing.
Automated estimation of leaf distribution for individual trees based on TLS point clouds
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Rutzinger, Martin; Bremer, Magnus
2017-04-01
Light Detection and Ranging (LiDAR) especially the ground based LiDAR (Terrestrial Laser Scanning - TLS) is an operational used and widely available measurement tool supporting forest inventory updating and research in forest ecology. High resolution point clouds from TLS already represent single leaves which can be used for a more precise estimation of Leaf Area Index (LAI) and for higher accurate biomass estimation. However, currently the methodology for extracting single leafs from the unclassified point clouds for individual trees is still missing. The aim of this study is to present a novel segmentation approach in order to extract single leaves and derive features related to leaf morphology (such as area, slope, length and width) of each single leaf from TLS point cloud data. For the study two exemplary single trees were scanned in leaf-on condition on the university campus of Innsbruck during calm wind conditions. A northern red oak (Quercus rubra) was scanned by a discrete return recording Optech ILRIS-3D TLS scanner and a tulip tree (Liliodendron tulpifera) with Riegl VZ-6000 scanner. During the scanning campaign a reference dataset was measured parallel to scanning. In this case 230 leaves were randomly collected around the lower branches of the tree and photos were taken. The developed workflow steps were the following: in the first step normal vectors and eigenvalues were calculated based on the user specified neighborhood. Then using the direction of the largest eigenvalue outliers i.e. ghost points were removed. After that region growing segmentation based on the curvature and angles between normal vectors was applied on the filtered point cloud. On each segment a RANSAC plane fitting algorithm was applied in order to extract the segment based normal vectors. Using the related features of the calculated segments the stem and branches were labeled as non-leaf and other segments were classified as leaf. The validation of the different segmentation parameters was evaluated as the following: i) the sum area of the collected leaves and the point cloud, ii) the segmented leaf length-width ratio iii) the distribution of the leaf area for the segmented and the reference-ones were compared and the ideal parameter-set was found. The results show that the leaves can be captured with the developed workflow and the slope can be determined robustly for the segmented leaves. However, area, length and width values are systematically depending on the angle and the distance from the scanner. For correction of the systematic underestimation, more systematic measurement or LiDAR simulation is required for further detailed analysis. The results of leaf segmentation algorithm show high potential in generating more precise tree models with correctly located leaves in order to extract more precise input model for biological modeling of LAI or atmospheric corrections studies. The presented workflow also can be used in monitoring the change of angle of the leaves due to sun irradiation, water balance, and day-night rhythm.
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Crow, Wade T.; Thorp, Kelly R.; Moran, Mary S.; Reichle, Rolf H.; Gupta, Hoshin V.
2012-01-01
Observing system simulation experiments were used to investigate ensemble Bayesian state updating data assimilation of observations of leaf area index (LAI) and soil moisture (theta) for the purpose of improving single-season wheat yield estimates with the Decision Support System for Agrotechnology Transfer (DSSAT) CropSim-Ceres model. Assimilation was conducted in an energy-limited environment and a water-limited environment. Modeling uncertainty was prescribed to weather inputs, soil parameters and initial conditions, and cultivar parameters and through perturbations to model state transition equations. The ensemble Kalman filter and the sequential importance resampling filter were tested for the ability to attenuate effects of these types of uncertainty on yield estimates. LAI and theta observations were synthesized according to characteristics of existing remote sensing data, and effects of observation error were tested. Results indicate that the potential for assimilation to improve end-of-season yield estimates is low. Limitations are due to a lack of root zone soil moisture information, error in LAI observations, and a lack of correlation between leaf and grain growth.
Seasonal and local differences in leaf litter flammability of six Mediterranean tree species.
Kauf, Zorica; Fangmeier, Andreas; Rosavec, Roman; Španjol, Željko
2015-03-01
One of the suggested management options for reducing fire danger is the selection of less flammable plant species. Nevertheless, vegetation flammability is both complex and dynamic, making identification of such species challenging. While large efforts have been made to connect plant traits to fire behavior, seasonal changes and within species variability of traits are often neglected. Currently, even the most sophisticated fire danger systems presume that intrinsic characteristics of leaf litter stay unchanged, and plant species flammability lists are often transferred from one area to another. In order to assess if these practices can be improved, we performed a study examining the relationship between morphological characteristics and flammability parameters of leaf litter, thereby taking into account seasonal and local variability. Litter from six Mediterranean tree species was sampled throughout the fire season from three different locations along a climate gradient. Samples were subjected to flammability testing involving an epiradiator operated at 400 °C surface temperature with 3 g sample weight. Specific leaf area, fuel moisture content, average area, and average mass of a single particle had significant influences on flammability parameters. Effects of sampling time and location were significant as well. Due to the standardized testing conditions, these effects could be attributed to changes in intrinsic characteristics of the material. As the aforementioned effects were inconsistent and species specific, these results may potentially limit the generalization of species flammability rankings. Further research is necessary in order to evaluate the importance of our findings for fire danger modeling.
A growth analysis of waterlogging damage in mung bean (Phaseolus aureus)
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Vanhoy, M. A.
1989-01-01
Mung beans (Phaseolus aureus Roxb.) were grown for 2 weeks in gravel-vermiculite soilless mix in a growth chamber and subjected to a 1-week waterlogging period followed by a 1-week recovery period. Sequential harvests were made to determine the time course of effects of waterlogging and subsequent recovery on growth parameters by techniques of growth analysis. Root dry matter was the first to be affected, along with an increase in leaf dry matter and specific leaf weight. After a 1-week waterlogging period, specific leaf weight had more than doubled in the stressed plants. Leaf area declined in relation to the control plants as did the ratio of root dry matter to shoot dry matter. During the recovery period there was an increase in the dry matter allocation to the roots relative to the shoot. Specific leaf weight fell to control levels although the rate of leaf area elaboration did not increase during this time, suggesting a redistribution of stored assimilates from the leaves. Net assimilation rate increased during the waterlogging period, probably due to a restriction in root metabolism and reduced translocation out of the leaf rather than to an increase in photosynthesis. Net assimilation rate of waterlogged plants was severely reduced compared with control plants during the recovery period. Both relative growth rate and leaf area duration declined during the waterlogging period and declined further subsequent to the waterlogging treatment. The results illustrate the interrelationships between root and shoot carbon budgets in mung bean during response to the stress of waterlogging.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-04-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System modelling community. However there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) using emergent constraints provided by marginal returns on investment for C and/or N allocation. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. Also, a widely used linear leaf N-respiration relationship did not yield a realistic leaf C : N, while a more recently reported non-linear relationship performed better. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and have spatially and temporally variable leaf C : N helps address challenges for ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
Abdul-Hamid, Hazandy; Mencuccini, Maurizio
2009-01-01
Forest growth is an important factor both economically and ecologically, and it follows a predictable trend with age. Generally, growth accelerates as canopies develop in young forests and declines substantially soon after maximum leaf area is attained. The causes of this decline are multiple and may be linked to age- or size-related processes, or both. Our objective was to determine the relative effects of tree age and tree size on the physiological attributes of two broadleaf species. As age and size are normally coupled during growth, an approach based on grafting techniques to separate the effects of size from those of age was adopted. Genetically identical grafted seedlings were produced from scions taken from trees of four age classes, ranging from 4 to 162 years. We found that leaf-level net photosynthetic rate per unit of leaf mass and some other leaf structural and biochemical characteristics had decreased substantially with increasing size of the donor trees in the field, whereas other gas exchange parameters expressed on a leaf area basis did not. In contrast, these parameters remained almost constant in grafted seedlings, i.e., scions taken from donor trees with different meristematic ages show no age-related trend after they were grafted onto young rootstocks. In general, the results suggested that size-related limitations triggered the declines in photosynthate production and tree growth, whereas less evidence was found to support a role of meristematic age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, L.S.; Gmur, N.F.; Da Costa, F.
1977-08-01
Initial injury to adaxial leaf surfaces of Phaseolus vulgaris and Helianthus annuus occurred near trichomes and stomata after exposure to simulated sulfate acid rain. Lesion frequency was not correlated with density of either stomata or trichomes but was correlated with degree of leaf expansion. The number of lesions per unit area increased with total leaf area. Results suggest that characteristics of the leaf indumentum such as development of trichomes and guard cells and/or cuticle thickness near these structures may be involved in lesion development. Adaxial epidermal cell collapse was the first event in lesion development. Palisade cells and eventually spongymore » mesophyll cells collapsed after continued, daily exposure to simulated rain of low pH. Lesion development on Phaseolus vulgaris followed a specific course of events after exposure to simulated rain of known composition, application rate, drop size frequency, drop velocities, and frequency of exposures. These results allow development of further experiments to observe accurately other parameters, such as nutrient inputs and nutrient leaching from foliage, after exposure to simulated sulfate acid rain.« less
Remote sensing of crop parameters with a polarized, frequency-doubled Nd:YAG laser
NASA Astrophysics Data System (ADS)
Kalshoven, James E., Jr.; Tierney, Michael R., Jr.; Daughtry, Craig S. T.; McMurtrey, James E., III
1995-05-01
Polarized laser remote-sensing measurements that correlate the yield, the normalized difference vegetation index, and the leaf area index with the depolarized backscattered radiation from corn plots grown with eight different nitrogen fertilization dosages are presented. A polarized Nd:YAG laser emitting at 1064 and 532 nm is used. Depolarization increased significantly with increasing fertilization at the infrared wavelength, and there was a decrease in the depolarization at the green wavelength. The depolarization spectral difference index, defined as the absolute difference in the depolarization at the two wavelengths, is introduced as a parameter that is an indicator of the condition of the internal leaf structure.
Height is more important than light in determining leaf morphology in a tropical forest.
Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G
2010-06-01
Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.
Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees
Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans
2007-01-01
Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978
Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.
Coble, Adam P; Cavaleri, Molly A
2014-02-01
Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.
Xin, Hangshu; Ding, Xue; Zhang, Liyang; Sun, Fang; Wang, Xiaofan; Zhang, Yonggen
2017-05-24
The objectives of this study were to investigate (1) nutritive values and biodegradation characteristics and (2) mid-IR spectroscopic features within the regions associated with carbohydrate functional groups (including cellulosic component (CELC), structural carbohydrate (STCHO), and total carbohydrate (CHO)) in different morphological fractions of corn stover. Furthermore, correlation and regression analyses were also applied to determine the relationship between nutritional values and spectroscopic parameters. The results showed that different morphological sections of corn stover had different nutrient supplies, in situ biodegradation characteristics, and spectral structural features within carbohydrate regions. The stem rind and ear husk were both high in fibrous content, which led to the lowest effective degradabilities (ED) among these stalk fractions. The ED values of NDF were ranked ear husk > stem pith > leaf blade > leaf sheath > whole plant > stem rind. Intensities of peak height and area within carbohydrate regions were relatively more stable compared with spectral ratio profiles. Significant difference was found only in peak area intensity of CELC, which was at the highest level for stem rind, followed by stem pith, leaf sheath, whole plant, leaf blade, and ear husk. Correlation results showed that changes in some carbohydrate spectral ratios were highly associated with carbohydrate chemical profiles and in situ rumen degradation kinetics. Among the various carbohydrate molecular spectral parameters that were tested in multiple regression analysis, CHO height ratios, and area ratios of CELC:CHO and CELC:STCHO as well as CELC area were mostly sensitive to nutrient supply and biodegradation characteristics in different morphological fractions of corn stover.
Bauerle, William L.; Bowden, Joseph D.
2011-01-01
A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246
Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav
2017-09-01
Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that there were no drawbacks in the leaf physiological performance which could be attributed to the micropropagated plants of fast growing hybrid poplar. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Preliminary validation of leaf area index sensor in Huailai
NASA Astrophysics Data System (ADS)
Cai, Erli; Li, Xiuhong; Liu, Qiang; Dou, Baocheng; Chang, Chongyan; Niu, Hailin; Lin, Xingwen; Zhang, Jialin
2015-12-01
Leaf area index (LAI) is a key variable in many land surface models that involve energy and mass exchange between vegetation and the environment. In recent years, extracting vegetation structure parameters from digital photography becomes a widely used indirect method to estimate LAI for its simplicity and ease of use. A Leaf Area Index Sensor (LAIS) system was developed to continuously monitor the growth of crops in several sampling points in Huailai, China. The system applies 3G/WIFI communication technology to remotely collect crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX) algorithm in LAIS. The objective of this study is to primarily verify the LAI estimated from LAIS (Lphoto) through comparing them with the destructive green LAI (Ldest). Ldest was measured across the growing season ntil maximum canopy development while plants are still green. The preliminary verification shows that Lphoto corresponds well with the Ldest (R2=0.975). In general, LAI could be accurately estimated with LAIS and its LAI shows high consistency compared with the destructive green LAI. The continuous LAI measurement obtained from LAIS could be used for the validation of remote sensing LAI products.
Assessing soybean leaf area and leaf biomass by spectral measurements
NASA Technical Reports Server (NTRS)
Holben, B. N.; Tucker, C. J.; Fan, C. J.
1979-01-01
Red and photographic infrared spectral radiances were correlated with soybean total leaf area index, green leaf area index, chlorotic leaf area index, green leaf biomass, chlorotic leaf biomass, and total biomass. The most significant correlations were found to exist between the IR/red radiance ratio data and green leaf area index and/or green leaf biomass (r squared equals 0.85 and 0.86, respectively). These findings demonstrate that remote sensing data can supply information basic to soybean canopy growth, development, and status by nondestructive determination of the green leaf area or green leaf biomass.
NASA Technical Reports Server (NTRS)
Kim, Y.; Moorcroft, P. R.; Aleinov, Igor; Puma, M. J.; Kiang, N. Y.
2015-01-01
The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan- Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.
NASA Astrophysics Data System (ADS)
Kim, Y.; Moorcroft, P. R.; Aleinov, I.; Puma, M. J.; Kiang, N. Y.
2015-12-01
The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan-Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.
Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?
NASA Astrophysics Data System (ADS)
Sprintsin, M.; Chen, J. M.
2009-05-01
The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit/shaded leaf separation on GPP prediction was evaluated accounting for the degree of the deviation of 3-dimensional leaf spatial distribution from the random case. More specifically, we compared and evaluated the behavior of both models showing the advantages of sunlit/shaded leaf separation strategy over a simplified big-leaf approach. Keywords: canopy photosynthesis, leaf area index, clumping index, remote sensing.
Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun
2018-01-10
Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.
Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun
2018-01-01
Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458
Wen, Dazhi; Kuang, Yuanwen; Zhou, Guoyi
2004-01-01
Air pollution has been of a major problem in the Pearl River Delta of south China, particularly during the last two decades. Emissions of air pollutants from industries have already led to damages in natural communities and environments in a wide range of the Delta area. Leaf parameters such as chlorophyll fluorescence, leaf area (LA), dry weight (DW) and leaf mass per area (LMA) had once been used as specific indexes of environmental stress. This study aims to determine in situ if the daily variation of chlorophyll fluorescence and other ecophysiological parameters in five seedlings of three woody species, Ilex rotunda, Ficus microcarpa and Machilus chinensis, could be used alone or in combination with other measurements for sensitivity indexes to make diagnoses under air pollution stress and, hence, to choose the correct tree species for urban afforestation in the Delta area. Five seedlings of each species were transplanted in pot containers after their acclimation under shadowing conditions. Chlorophyll fluorescence measurements were made in situ by a portable fluorometer (OS-30, Opti-sciences, U.S.A). Ten random samples of leaves were picked from each species for LA measurements by area-meter (CI-203, CID, Inc., U.S.A). DW was determined after the leaf samples were dried to a constant weight at 65 degrees C. LMA was calculated as the ratio of DW/LA. Leaf N content was analyzed according to the Kjeldhal method, and the extraction of pigments was carried out according Lin et al. The daily mean Fv/Fm (Fv is the variable fluorescence and Fm is the maximum fluorescence) analysis showed that Ilex rotunda and Ficus microcarpa were more highly resistant to pollution stress, followed by Machilus chinensis, implying that the efficiency of photosystem II in I. rotunda was less affected by air pollutants than the other two species. Little difference in daily change of Fv/Fm in I. rotunda between the polluted and the clean site was also observed. However, a relatively large variation of Fv/Fm appeared in the other two species, particularly in M. chinensis, suggesting that they were more sensitive to air pollutants than I. rotunda. The mean LA was reduced for all species growing at the polluted site. The mean LMA for all species exceeded the sclerophylly threshold given by Cowling and Campbell and increased for those under pollution stress, which could be explained as one of the acclimation strategies for plants to air pollution stress. Little difference in leaf chlorophyll content was observed in F. microcarpa and M. chinensis, while remarkable differences were found in I. rotunda growing at the polluted and the clean site. Content of leaf carotenoids was largely reduced in I. rotunda growing at the polluted site, but increased in F. microcarpa and M. chinensis, compared with plants growing at the clean site. Plants growing at the clean site had a lower leaf N content than those growing at the polluted site. In addition, species with a higher resistance to pollution stress showed less difference in leaf N content than those sensitive species. Based on Fv/Fm measurements of the three woody species, I. rotunda showed the highest resistance to air pollutants from ceramic industries, followed by F. microcarpa. M. chinensis was the most sensitive species to air pollution, had lowest capacities to cope with the air pollution stress, which was consistent with visual injury symptoms observed in the crown profiles of plants at the polluted site. Fv/Fm, LAM, LA, leaf pigments and N content could be used alone or in combination to diagnose the extent of the physiological injury. The ratio of Fv/Fm, however, was the best and most effective parameter. Tree species which have higher air-pollutant resistance, as diagnosed by such ecophysiological parameters, should be considered first and planted widely for urban afforestation or forest regeneration in areas where the forest was seriously degraded or forest health was markedly effected by the same kind of air pollutants.
BOREAS RSS-4 1994 Southern Study Area Jack Pine LAI and FPAR Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Plummer, Stephen
2000-01-01
The RSS-4 team collected several data sets related to leaf, plant, and stand physical, optical, and chemical properties. This data set contains leaf area indices and FPAR measurements that were taken at the three conifer sites in the BOREAS SSA during August 1993 and at the jack pine tower flux and a subset of auxiliary sites during July and August 1994. The measurements were made with LAI-2000 and Ceptometer instruments. The measurements were taken for the purpose of model parameterization and to test empirical relationships that were hypothesized between biophysical parameters and remotely sensed data. The data are stored in tabular ASCII files.
A growing Leaf as a Sheet of an Active Solid
NASA Astrophysics Data System (ADS)
Sharon, Eran
A growing leaf is a thin sheet of active solid, which expands while obeying the laws of mechanics. The effective rheology of this active solid is nontrivial, allowing the leaf to increase its area by orders of magnitude, keeping its ''proper'' geometry. The questions of what the characteristics of the leaf growth field are and how it is regulated without any central ''headquarter'' are still open. I will present measurements of natural leaf growth with high time and space resolution. These show that the growth is a highly fluctuating process in both time and space. We suggest that the entire statistics of the growth field, not just its averages contain information important for the understanding of growth regulation. In another set of experiments we measure the effect of mechanical stress on deformation and growth. The measured effective rheology is viscoelastic with time varying parameters, indicating remodeling of the tissue in response to extended application of mechanical stress.
Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François
2008-03-01
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
NASA Astrophysics Data System (ADS)
Thomas, R. Q.; Williams, M.
2014-09-01
Carbon (C) and nitrogen (N) cycles are coupled in terrestrial ecosystems through multiple processes including photosynthesis, tissue allocation, respiration, N fixation, N uptake, and decomposition of litter and soil organic matter. Capturing the constraint of N on terrestrial C uptake and storage has been a focus of the Earth System Modeling community. However, there is little understanding of the trade-offs and sensitivities of allocating C and N to different tissues in order to optimize the productivity of plants. Here we describe a new, simple model of ecosystem C-N cycling and interactions (ACONITE), that builds on theory related to plant economics in order to predict key ecosystem properties (leaf area index, leaf C : N, N fixation, and plant C use efficiency) based on the outcome of assessments of the marginal change in net C or N uptake associated with a change in allocation of C or N to plant tissues. We simulated and evaluated steady-state ecosystem stocks and fluxes in three different forest ecosystems types (tropical evergreen, temperate deciduous, and temperate evergreen). Leaf C : N differed among the three ecosystem types (temperate deciduous < tropical evergreen < temperature evergreen), a result that compared well to observations from a global database describing plant traits. Gross primary productivity (GPP) and net primary productivity (NPP) estimates compared well to observed fluxes at the simulation sites. Simulated N fixation at steady-state, calculated based on relative demand for N and the marginal return on C investment to acquire N, was an order of magnitude higher in the tropical forest than in the temperate forest, consistent with observations. A sensitivity analysis revealed that parameterization of the relationship between leaf N and leaf respiration had the largest influence on leaf area index and leaf C : N. A parameter governing how photosynthesis scales with day length had the largest influence on total vegetation C, GPP, and NPP. Multiple parameters associated with photosynthesis, respiration, and N uptake influenced the rate of N fixation. Overall, our ability to constrain leaf area index and allow spatially and temporally variable leaf C : N can help address challenges simulating these properties in ecosystem and Earth System models. Furthermore, the simple approach with emergent properties based on coupled C-N dynamics has potential for use in research that uses data-assimilation methods to integrate data on both the C and N cycles to improve C flux forecasts.
Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge
2014-01-01
While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance. PMID:25423316
Kröber, Wenzel; Zhang, Shouren; Ehmig, Merten; Bruelheide, Helge
2014-01-01
While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.
NASA Technical Reports Server (NTRS)
Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.
1982-01-01
The interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS 7-5/7+5) for five planting dates of wheat for 1978-79 and 1979-80 in Phoenix. Intercepted PAR was calculated from a model driven by leaf area index and stage of growth. Linear relationships were found between greenness and normalized difference with a separate model representing growth and senescence of the crop. Normalized difference was a significantly better model and would be easier to apply than the empirically derived greenness parameter. For the leaf area growth portion of the season the model between PAR interception and normalized difference was the same over years, however, for the leaf senescence the models showed more variability due to the lack of data on measured interception in sparse canopies. Normalized difference could be used to estimate PAR interception directly for crop growth models.
Andrew D. Richardson; Mathew Williams; David Y. Hollinger; David J.P. Moore; D. Bryan Dail; Eric A. Davidson; Neal A. Scott; Robert S. Evans; Holly. Hughes
2010-01-01
We conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C...
NASA Astrophysics Data System (ADS)
Ramoelo, A.; Cho, M. A.; Madonsela, S.; Mathieu, R.; van der Korchove, R.; Kaszta, Z.; Wolf, E.
2014-02-01
Global change consisting of land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) is one of the key factors limiting agricultural production and ecosystem functioning. Leaf N can be used as an indicator of rangeland quality which could provide information for the farmers, decision makers, land planners and managers. Leaf N plays a crucial role in understanding the feeding patterns and distribution of wildlife and livestock. Assessment of this vegetation parameter using conventional methods at landscape scale level is time consuming and tedious. Remote sensing provides a synoptic view of the landscape, which engenders an opportunity to assess leaf N over wider rangeland areas from protected to communal areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The objective of this study is to monitor leaf N as an indicator of rangeland quality using WorldView 2 satellite images in the north-eastern part of South Africa. Series of field work to collect samples for leaf N were undertaken in the beginning of May (end of wet season) and July (dry season). Several conventional and red edge based vegetation indices were computed. Simple regression was used to develop prediction model for leaf N. Using bootstrapping, indicator of precision and accuracy were analyzed to select a best model for the combined data sets (May and July). The may model for red edge based simple ratio explained over 90% of leaf N variations. The model developed from the combined data sets with normalized difference vegetation index explained 62% of leaf N variation, and this is a model used to estimate and map leaf N for two seasons. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability.
Foliage response of young central European oaks to air warming, drought and soil type.
Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P
2013-01-01
Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Rakocevic, Miroslava; Matsunaga, Fabio Takeshi
2018-04-05
Dynamics in branch and leaf growth parameters, such as the phyllochron, duration of leaf expansion, leaf life span and bud mortality, determine tree architecture and canopy foliage distribution. We aimed to estimate leaf growth parameters in adult Arabica coffee plants based on leaf supporter axis order and position along the vertical profile, considering their modifications related to seasonal growth, air [CO2] and water availability. Growth and mortality of leaves and terminal buds of adult Arabica coffee trees were followed in two independent field experiments in two sub-tropical climate regions of Brazil, Londrina-PR (Cfa) and Jaguariúna-SP (Cwa). In the Cwa climate, coffee trees were grown under a FACE (free air CO2 enrichment) facility, where half of those had been irrigated. Plants were observed at a 15-30 d frequency for 1 year. Leaf growth parameters were estimated on five axes orders and expressed as functions of accumulated thermal time (°Cd per leaf). The phyllochron and duration of leaf expansion increased with axis order, from the seond to the fourth. The phyllochron and life span during the reduced vegetative seasonal growth were greater than during active growth. It took more thermal time for leaves from the first- to fourth-order axes to expand their blades under irrigation compared with rainfed conditions. The compensation effects of high [CO2] for low water availability were observed on leaf retention on the second and third axes orders, and duration of leaf expansion on the first- and fourth-order axes. The second-degree polynomials modelled leaf growth parameter distribution in the vertical tree profile, and linear regressions modelled the proportion of terminal bud mortality. Leaf growth parameters in coffee plants were determined by axis order. The duration of leaf expansion contributed to phyllochron determination. Leaf growth parameters varied according the position of the axis supporter along the vertical profile, suggesting an effect of axes age and micro-environmental light modulations.
Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping
NASA Astrophysics Data System (ADS)
Maghsoudi, Yasser
Forests are a major natural resource of the Earth and control a wide range of environmental processes. Forests comprise a major part of the planet's plant biodiversity and have an important role in the global hydrological and biochemical cycles. Among the numerous potential applications of remote sensing in forestry, forest mapping plays a vital role for characterization of the forest in terms of species. Particularly, in Canada where forests occupy 45% of the territory, representing more than 400 million hectares of the total Canadian continental area. In this thesis, the potential of polarimetric SAR (PolSAR) Radarsat-2 data for forest mapping is investigated. This thesis has two principle objectives. First is to propose algorithms for analyzing the PolSAR image data for forest mapping. There are a wide range of SAR parameters that can be derived from PolSAR data. In order to make full use of the discriminative power offered by all these parameters, two categories of methods are proposed. The methods are based on the concept of feature selection and classifier ensemble. First, a nonparametric definition of the evaluation function is proposed and hence the methods NFS and CBFS. Second, a fast wrapper algorithm is proposed for the evaluation function in feature selection and hence the methods FWFS and FWCBFS. Finally, to incorporate the neighboring pixels information in classification an extension of the FWCBFS method i.e. CCBFS is proposed. The second objective of this thesis is to provide a comparison between leaf-on (summer) and leaf-off (fall) season images for forest mapping. Two Radarsat-2 images acquired in fine quad-polarized mode were chosen for this study. The images were collected in leaf-on and leaf-off seasons. We also test the hypothesis whether combining the SAR parameters obtained from both images can provide better results than either individual datasets. The rationale for this combination is that every dataset has some parameters which may be useful for forest mapping. To assess the potential of the proposed methods their performance have been compared with each other and with the baseline classifiers. The baseline methods include the Wishart classifier, which is a commonly used classification method in PolSAR community, as well as an SVM classifier with the full set of parameters. Experimental results showed a better performance of the leaf-off image compared to that of leaf-on image for forest mapping. It is also shown that combining leaf-off parameters with leaf-on parameters can significantly improve the classification accuracy. Also, the classification results (in terms of the overall accuracy) compared to the baseline classifiers demonstrate the effectiveness of the proposed nonparametric scheme for forest mapping.
NASA Astrophysics Data System (ADS)
Miyauchi, T.; Machimura, T.
2013-12-01
In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the field survey) were weighted for priority. We compared some gradient-based global optimization methods of Dakota starting with the default parameters of Biome-BGC. In the result of sensitive analysis, carbon allocation parameters between coarse root and leaf, between stem and leaf, and SLA had high contribution on both leaf and woody biomass changes. These parameters were selected to be optimized. The measured leaf, above- and below-ground woody biomass carbon density at the last year were 0.22, 1.81 and 0.86 kgC m-2, respectively, whereas those simulated in the non-optimized control case using all default parameters were 0.12, 2.26 and 0.52 kgC m-2, respectively. After optimizing the parameters, the simulated values were improved to 0.19, 1.81 and 0.86 kgC m-2, respectively. The coliny global optimization method gave the better fitness than efficient global and ncsu direct method. The optimized parameters showed the higher carbon allocation rates to coarse roots and leaves and the lower SLA than the default parameters, which were consistent to the general water physiological response in a dry climate. The simulation using the weighted object function resulted in the closer simulations to the measurements at the last year with the lower fitness during the previous years.
Mitchell, Patrick J; Veneklaas, Erik J; Lambers, Hans; Burgess, Stephen S O
2008-12-01
We measured leaf water relations and leaf structural traits of 20 species from three communities growing along a topographical gradient. Our aim was to assess variation in seasonal responses in leaf water status and leaf tissue physiology between sites and among species in response to summer water deficit. Species from a ridge-top heath community showed the greatest reductions in pre-dawn leaf water potentials (Psi(leaf)) and stomatal conductance during summer; species from a valley-floor woodland and a midslope mallee community showed less reductions in these parameters. Heath species also displayed greater seasonal reduction in turgor-loss point (Psi(TLP)) than species from woodland or mallee communities. In general, species that had larger reductions in Psi(leaf) during summer showed significant shifts in either their osmotic potential at full turgor (Psi(pi 100); osmotic adjustment) or in tissue elasticity (epsilon(max)). Psi(pi 100) and epsilon(max) were negatively correlated, during both spring and summer, suggesting a trade-off between these different mechanisms to cope with water stress. Specific leaf area varied greatly among species, and was significantly correlated with seasonal changes in Psi(TLP) and pre-dawn Psi(leaf). These correlations suggest that leaf structure is a prerequisite for cellular mechanisms to be effective in adjusting to water deficit.
Rodeghiero, Mirco; Niinemets, Ulo; Cescatti, Alessandro
2007-08-01
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.
Easlon, Hsien Ming; Bloom, Arnold J
2014-07-01
Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.
NASA Astrophysics Data System (ADS)
Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.
2017-12-01
Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.
Leaf area dynamics of conifer forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolis, H.; Oren, R.; Whitehead, D.
1995-07-01
Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less
VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine
De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra
2016-01-01
Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants. PMID:27120600
VitiCanopy: A Free Computer App to Estimate Canopy Vigor and Porosity for Grapevine.
De Bei, Roberta; Fuentes, Sigfredo; Gilliham, Matthew; Tyerman, Steve; Edwards, Everard; Bianchini, Nicolò; Smith, Jason; Collins, Cassandra
2016-04-23
Leaf area index (LAI) and plant area index (PAI) are common and important biophysical parameters used to estimate agronomical variables such as canopy growth, light interception and water requirements of plants and trees. LAI can be either measured directly using destructive methods or indirectly using dedicated and expensive instrumentation, both of which require a high level of know-how to operate equipment, handle data and interpret results. Recently, a novel smartphone and tablet PC application, VitiCanopy, has been developed by a group of researchers from the University of Adelaide and the University of Melbourne, to estimate grapevine canopy size (LAI and PAI), canopy porosity, canopy cover and clumping index. VitiCanopy uses the front in-built camera and GPS capabilities of smartphones and tablet PCs to automatically implement image analysis algorithms on upward-looking digital images of canopies and calculates relevant canopy architecture parameters. Results from the use of VitiCanopy on grapevines correlated well with traditional methods to measure/estimate LAI and PAI. Like other indirect methods, VitiCanopy does not distinguish between leaf and non-leaf material but it was demonstrated that the non-leaf material could be extracted from the results, if needed, to increase accuracy. VitiCanopy is an accurate, user-friendly and free alternative to current techniques used by scientists and viticultural practitioners to assess the dynamics of LAI, PAI and canopy architecture in vineyards, and has the potential to be adapted for use on other plants.
Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.
Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K
2013-12-01
Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites. © 2013 John Wiley & Sons Ltd.
Viaud, Gautier; Loudet, Olivier; Cournède, Paul-Henry
2017-01-01
A promising method for characterizing the phenotype of a plant as an interaction between its genotype and its environment is to use refined organ-scale plant growth models that use the observation of architectural traits, such as leaf area, containing a lot of information on the whole history of the functioning of the plant. The Phenoscope, a high-throughput automated platform, allowed the acquisition of zenithal images of Arabidopsis thaliana over twenty one days for 4 different genotypes. A novel image processing algorithm involving both segmentation and tracking of the plant leaves allows to extract areas of the latter. First, all the images in the series are segmented independently using a watershed-based approach. A second step based on ellipsoid-shaped leaves is then applied on the segments found to refine the segmentation. Taking into account all the segments at every time, the whole history of each leaf is reconstructed by choosing recursively through time the most probable segment achieving the best score, computed using some characteristics of the segment such as its orientation, its distance to the plant mass center and its area. These results are compared to manually extracted segments, showing a very good accordance in leaf rank and that they therefore provide low-biased data in large quantity for leaf areas. Such data can therefore be exploited to design an organ-scale plant model adapted from the existing GreenLab model for A. thaliana and subsequently parameterize it. This calibration of the model parameters should pave the way for differentiation between the Arabidopsis genotypes. PMID:28123392
NASA Astrophysics Data System (ADS)
Tofelde, Stefanie; Sachse, Dirk; Schildgen, Taylor; Strecker, Manfred R.
2015-04-01
The burial of organic matter in marine sediments represents the main long-term sink for reduced carbon in the global carbon cycle, with the fluvial system being the predominant transport mechanism. Organic matter deposited in marine and continental sediments contains valuable information on ecological and climatic conditions, and organic proxy data is thus often used in paleoclimate research. To use sedimentary records to investigate past environmental conditions in the terrestrial realm, processes dictating the transport of organic matter, including spatial and temporal resolution as well as the influence of climatic and tectonic processes, have to be understood. In this study, we test if a lipid biomarker based approach can be used to trace present-day organic matter sources in a fluvial watershed draining two intermontane basins in the southern-central Andes of NW Argentina, a tectonically active region with pronounced topographic, rainfall, and vegetation gradients. We investigated the distribution of long-chain leaf-wax n-alkanes, a terrestrial plant biomarker (and as such representative of terrestrially sourced carbon), in river sediments and coarse particulate organic matter (CPOM) along two altitudinal and hydrological gradients. We used n-alkane abundances and their stable carbon and hydrogen isotopic values as three independent parameters for source discrimination. Additionally, we analyzed the control of environmental parameters on the isotopic signatures in leaf-wax n-alkanes. The general pattern of n-alkane distribution in river sediments and CPOM samples in our study area suggest that vascular plants are the major source of riverine organic matter. The stable carbon isotopic composition of nC29 alkanes suggests a nearly exclusive input of C3 vegetation. Although C4 plants are present in the lower catchment areas, the total percentage is too low to have a detectable influence on the carbon isotopic composition in river sediment and CPOM samples. Considering environmental parameters, nC29 alkane δ13C values are significantly correlated with mean annual rainfall in the respective catchment area, with less negative δ13C values in drier areas (r = - 0.63, p < 0.01). The variability in stable hydrogen isotopic composition (δD) of nC29 alkanes is determined mostly by the δD value of the source water and aridity. We find that the apparent fractionation (?app), defined as the difference in hydrogen isotopic composition of plant source waters and synthesized leaf-wax n-alkanes, is significantly correlated with aridity (r = -0.65, p < 0.005), with a smaller apparent fractionation in drier areas, as well as with mean annual rainfall (r = -0.59, p < 0.01), relative humidity (r = -0.56, p < 0.02), and actual evapotranspiration (r = -0.53, p < 0.05). Our data indicate that vascular plants are the major source of riverine organic matter, with their stable carbon and hydrogen isotopic compositions influenced by climatic parameters. Thus, on spatial scales covering large gradients in environmental parameters, the analysis of leaf-wax n-alkanes can be used for organic matter source assessment in orogenic settings.
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.
Pollastrini, Martina; Holland, Vera; Brüggemann, Wolfgang; Bruelheide, Helge; Dănilă, Iulian; Jaroszewicz, Bogdan; Valladares, Fernando; Bussotti, Filippo
2016-10-01
The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Rocha, Ledyane D; da Costa, Gustavo M; Gehlen, Günther; Droste, Annette; Schmitt, Jairo L
2014-09-01
Plants growing in environments with different atmospheric conditions may present changes in the morphometric parameters of their leaves. Microgramma squamulosa (Kaulf.) de la Sota is a neotropical epiphytic fern found in impacted environments. The aims of this study were to quantitatively compare structural characteristics of leaves in areas with different air quality conditions, and to identify morphometric parameters that are potential indicators of the effects of pollution on these plants. Fertile and sterile leaves growing on isolated trees were collected from an urban (Estância Velha) and a rural (Novo Hamburgo) environment, in Rio Grande do Sul, Brazil. For each leaf type, macroscopic and microscopic analyses were performed on 192 samples collected in each environment. The sterile and fertile leaves showed significantly greater thickness of the midrib and greater vascular bundle and leaf blade areas in the rural environment, which is characterized by less air pollution. The thickness of the hypodermis and the stomatal density of the fertile leaves were greater in the urban area, which is characterized by more air pollution. Based on the fact that significant changes were found in the parameters of both types of leaves, which could possibly be related to air pollutants, M. squamulosa may be a potential bioindicator.
Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel
2016-02-01
Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.
NASA Astrophysics Data System (ADS)
Holm, J. A.; Jardine, K.; Guenther, A. B.; Chambers, J. Q.; Tribuzy, E.
2014-09-01
Tropical trees are known to be large emitters of biogenic volatile organic compounds (BVOC), accounting for up to 75% of the global isoprene budget. Once in the atmosphere, these compounds influence multiple processes associated with air quality and climate. However, uncertainty in biogenic emissions is two-fold, (1) the environmental controls over isoprene emissions from tropical forests remain highly uncertain; and (2) our ability to accurately represent these environmental controls within models is lacking. This study evaluated the biophysical parameters that drive the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) embedded in a biogeochemistry land surface model, the Community Land Model (CLM), with a focus on isoprene emissions from an Amazonian forest. Upon evaluating the sensitivity of 19 parameters in CLM that currently influence isoprene emissions by using a Monte Carlo analysis, up to 61% of the uncertainty in mean isoprene emissions was caused by the uncertainty in the parameters related to leaf temperature. The eight parameters associated with photosynthetic active radiation (PAR) contributed in total to only 15% of the uncertainty in mean isoprene emissions. Leaf temperature was strongly correlated with isoprene emission activity (R2 = 0.89). However, when compared to field measurements in the Central Amazon, CLM failed to capture the upper 10-14 °C of leaf temperatures throughout the year (i.e., failed to represent ~32 to 46 °C), and the spread observed in field measurements was not representative in CLM. This is an important parameter to accurately simulate due to the non-linear response of emissions to temperature. MEGAN-CLM 4.0 overestimated isoprene emissions by 60% for a Central Amazon forest (5.7 mg m-2 h-1 vs. 3.6 mg m-2 h-1), but due to reductions in leaf area index (LAI) by 28% in MEGAN-CLM 4.5 isoprene emissions were within 7% of observed data (3.8 mg m-2 h-1). When a slight adjustment to leaf temperature was made to match observations, isoprene emissions increased 24%, up to 4.8 mg m-2 h-1. Air temperatures are very likely to increase in tropical regions as a result of human induced climate change. Reducing the uncertainty of leaf temperature in BVOC algorithms, as well as improving the accuracy of replicating leaf temperature output in land surface models is warranted in order to improve estimations of tropical BVOC emissions.
James M. Vose; Neal H. Sullivan; Barton D. Clinton; Paul V. Bolstad
1995-01-01
We quantified stand leaf area index and vertical leaf area distribution, and developed canopy extinction coefficients (k), in four mature hardwood stands. Leaf area index, calculated from litter fall and specific leaf area (cm²·g-1), ranged from 4.3 to 5.4 m²·m-2. In three of the four stands, leaf area was distributed in...
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-09-30
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.
Laubhann, Daniel; Eckmüllner, Otto; Sterba, Hubert
2010-01-01
Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R2 = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables. PMID:21072126
Köstner, B; Falge, E; Tenhunen, J D
2002-06-01
Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to reduced light interception per leaf area provides another potential explanation for reduced carbon gain in old stands of P. abies, even when hydraulic constraints increase in response to changes in canopy architecture and aging.
Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun
2014-01-01
The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called “big-leaf” model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s−1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET. PMID:24752329
NASA Astrophysics Data System (ADS)
Alekseychik, P. K.; Korrensalo, A.; Mammarella, I.; Vesala, T.; Tuittila, E.-S.
2017-06-01
Leaf area index (LAI) is an important parameter in natural ecosystems, representing the seasonal development of vegetation and photosynthetic potential. However, direct measurement techniques require labor-intensive field campaigns that are usually limited in time, while remote sensing approaches often do not yield reliable estimates. Here we propose that the bulk LAI of sedges (LAIs) can be estimated alternatively from a micrometeorological parameter, the aerodynamic roughness length for momentum (z0). z0 can be readily calculated from high-response turbulence and other meteorological data, typically measured continuously and routinely available at ecosystem research sites. The regressions of LAI versus z0 were obtained using the data from two Finnish natural sites representative of boreal fen and bog ecosystems. LAIs was found to be well correlated with z0 and sedge canopy height. Superior method performance was demonstrated in the fen ecosystem where the sedges make a bigger contribution to overall surface roughness than in bogs.
Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José
2016-10-01
In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Structural and Physiological Changes in Sugar Beet Leaves during Sink to Source Conversion 1
Fellows, Robert J.; Geiger, Donald R.
1974-01-01
The onset of export during leaf development was correlated with changes in metabolism and ultrastructure and with patterns of solute distribution in the developing seventh leaf of sugar beet (Beta vulgaris L.) in order to study the cause of initiation of translocation. Infrared gas analysis of carbon dioxide uptake showed a broad peak for net photosynthesis dm−2 at 35 to 40% final laminar length. Pulse labeling with 14CO2 demonstrated that maximum import of translocate occurred at 25% final laminar length; export was first observed at 35% final laminar length. Between 40 and 50% final laminar length a rapid increase in amount of export occurred, primarily as a result of the increase in the area of leaf which was exporting. Whole leaf autoradiography revealed that onset of phloem loading spread basipetally from the leaf tip; loading was initiated at about 22% final laminar length and was essentially complete by 50% final laminar length. Those areas which clearly exhibited loading no longer imported from other parts of the plant while the area in transition still appeared to import label from source regions. There was little difference between source and sink leaf tissue in the kinetic parameters Kj and Jmax (30) for uptake of exogenous sucrose supplied via free space. The concentration of solutes in sieve elements and companion cells of the sink leaf was highest in the mature tip area and gradually decreased in the direction of the immature base. There appeared to be no dramatic structural transformation within the phloem of the minor veins that was closely correlated with the time when phloem loading or export began. Rather, there appeared to be a gradual differentiation of phloem which resulted in a sizable proportion of the population of minor vein sieve elements and companion cells attaining maturity in the older sink regions prior to initiation of phloem loading. The area of the leaf undergoing development appeared to exhibit the beginnings of phloem loading 30 to 45 hours prior to onset of export. Import continued into the area in transition until the full level of vein loading was attained. Structural maturation of the phloem and onset of phloem loading are felt to be more preparatory in nature rather than immediately causal events which triggered export. The initiation of export out of a developing leaf, we believe, is the result of the increasing solute content within the sieve element and companion cells of the minor veins, in particular. The higher osmotic pressure in the sieve tubes causes a reversal of the previously inward directed gradient and produces a mass flow, through unobstructed sieve elements, out of the new source region of the leaf. Images PMID:16658993
Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi
2017-03-18
We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.
Sudhanshu Panda; Devendra Amatya; Young Kim; Ge Sun
2016-01-01
Evapotranspiration (ET) is one of the most important hydrologic parameters for vegetation growth, carbon sequestration, and other associated biodiversity study and analysis. Plant stomatal conductance, leaf area index, canopy temperature, soil moisture, and wind speed values generally correlate well with ET. It is difficult to estimate these hydrologic parameters of...
Hogewoning, Sander W.; Trouwborst, Govert; Maljaars, Hans; Poorter, Hendrik; van Ieperen, Wim; Harbinson, Jeremy
2010-01-01
The blue part of the light spectrum has been associated with leaf characteristics which also develop under high irradiances. In this study blue light dose–response curves were made for the photosynthetic properties and related developmental characteristics of cucumber leaves that were grown at an equal irradiance under seven different combinations of red and blue light provided by light-emitting diodes. Only the leaves developed under red light alone (0% blue) displayed dysfunctional photosynthetic operation, characterized by a suboptimal and heterogeneously distributed dark-adapted Fv/Fm, a stomatal conductance unresponsive to irradiance, and a relatively low light-limited quantum yield for CO2 fixation. Only 7% blue light was sufficient to prevent any overt dysfunctional photosynthesis, which can be considered a qualitatively blue light effect. The photosynthetic capacity (Amax) was twice as high for leaves grown at 7% blue compared with 0% blue, and continued to increase with increasing blue percentage during growth measured up to 50% blue. At 100% blue, Amax was lower but photosynthetic functioning was normal. The increase in Amax with blue percentage (0–50%) was associated with an increase in leaf mass per unit leaf area (LMA), nitrogen (N) content per area, chlorophyll (Chl) content per area, and stomatal conductance. Above 15% blue, the parameters Amax, LMA, Chl content, photosynthetic N use efficiency, and the Chl:N ratio had a comparable relationship as reported for leaf responses to irradiance intensity. It is concluded that blue light during growth is qualitatively required for normal photosynthetic functioning and quantitatively mediates leaf responses resembling those to irradiance intensity. PMID:20504875
Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.
2006-01-01
We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..
NASA Astrophysics Data System (ADS)
Ramoelo, Abel; Cho, M. A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E.
2015-12-01
Land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) and above-ground biomass are some of the key factors limiting agricultural production and ecosystem functioning. Leaf N and biomass can be used as indicators of rangeland quality and quantity. Conventional methods for assessing these vegetation parameters at landscape scale level are time consuming and tedious. Remote sensing provides a bird-eye view of the landscape, which creates an opportunity to assess these vegetation parameters over wider rangeland areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The estimation of above-ground biomass has been hindered by the signal saturation problems using conventional vegetation indices. The objective of this study is to monitor leaf N and above-ground biomass as an indicator of rangeland quality and quantity using WorldView-2 satellite images and random forest technique in the north-eastern part of South Africa. Series of field work to collect samples for leaf N and biomass were undertaken in March 2013, April or May 2012 (end of wet season) and July 2012 (dry season). Several conventional and red edge based vegetation indices were computed. Overall results indicate that random forest and vegetation indices explained over 89% of leaf N concentrations for grass and trees, and less than 89% for all the years of assessment. The red edge based vegetation indices were among the important variables for predicting leaf N. For the biomass, random forest model explained over 84% of biomass variation in all years, and visible bands including red edge based vegetation indices were found to be important. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability, and is important for rangeland assessment and monitoring.
NASA Astrophysics Data System (ADS)
Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.
2014-12-01
Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927
A radiosity model for heterogeneous canopies in remote sensing
NASA Astrophysics Data System (ADS)
GarcíA-Haro, F. J.; Gilabert, M. A.; Meliá, J.
1999-05-01
A radiosity model has been developed to compute bidirectional reflectance from a heterogeneous canopy approximated by an arbitrary configuration of plants or clumps of vegetation, placed on the ground surface in a prescribed manner. Plants are treated as porous cylinders formed by aggregations of layers of leaves. This model explicitly computes solar radiation leaving each individual surface, taking into account multiple scattering processes between leaves and soil, and occlusion of neighboring plants. Canopy structural parameters adopted in this study have served to simplify the computation of the geometric factors of the radiosity equation, and thus this model has enabled us to simulate multispectral images of vegetation scenes. Simulated images have shown to be valuable approximations of satellite data, and then a sensitivity analysis to the dominant parameters of discontinuous canopies (plant density, leaf area index (LAI), leaf angle distribution (LAD), plant dimensions, soil optical properties, etc.) and scene (sun/ view angles and atmospheric conditions) has been undertaken. The radiosity model has let us gain a deep insight into the radiative regime inside the canopy, showing it to be governed by occlusion of incoming irradiance, multiple scattering of radiation between canopy elements and interception of upward radiance by leaves. Results have indicated that unlike leaf distribution, other structural parameters such as LAI, LAD, and plant dimensions have a strong influence on canopy reflectance. In addition, concepts have been developed that are useful to understand the reflectance behavior of the canopy, such as an effective LAI related to leaf inclination.
Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni
2015-10-01
This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.
Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath
2014-11-01
The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.
Jedmowski, Christoph; Brüggemann, Wolfgang
2015-10-01
We quantified the influence of heat stress (HS) on PSII by imaging of parameters of the fast chlorophyll fluorescence (CF) induction (OJIP) kinetic of 20 genotypes of wild barley (Hordeum spontaneum) covering a broad geographical spectrum. We developed a standardised screening procedure, allowing a repetitive fluorescence measurement of leaf segments. The impact of HS was quantified by calculating a Heat Resistance Index (HRI), derived from the decrease of the Performance Index (PI) caused by HS treatment and following recovery. For the genotype showing the lowest HRI, reduced maximum quantum yield (φP0) and increased relative variable fluorescence of the O-J phase (K-Peak) were detected after HS, whereas the basal fluorescence (F0) remained stable. An additional feature was a lowered fraction of active (QA-reducing) reaction centres (RCs). The disturbances disappeared after one day of recovery. Spatial heterogeneities of fluorescence parameters were detected, as the negative effect of HS was stronger in the leaf areas close to the leaf tip. The results of this study prove that chlorophyll fluorescence imaging (CFI) is suitable for the detection of HS symptoms and that imaging of JIP-Test parameters should be considered in future screening and phenotyping studies aiming for the characterisation of plant genotypes. Copyright © 2015 Elsevier B.V. All rights reserved.
Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten
2015-01-22
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.
Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard
2012-06-01
Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.
Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua
2015-01-01
The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726
NASA Technical Reports Server (NTRS)
Latimer, J. G.; Pappas, T.; Mitchell, C. A.
1986-01-01
Eggplant (Solanum melongena L. var. esculentum 'Burpee's Black Beauty') and soybean [Glycine max (L.) Merr. 'Wells II'] seedlings were assigned to a greenhouse or a windless or windy outdoor environment. Plants within each environment received either periodic seismic (shaking) or thigmic (flexing or rubbing) treatment, or were left undisturbed. Productivity (dry weight) and dimensional (leaf area and stem length) growth parameters generally were reduced more by mechanical stress in the greenhouse (soybean) or outdoor-windless environment (eggplant) than in the outdoor windy environment. Outdoor exposure enhanced both stem and leaf specific weights, whereas mechanical stress enhanced only leaf specific weight. Although both forms of controlled mechanical stress tended to reduce node and internode diameters of soybean, outdoor exposure increased stem diameter.
[Growth adaptability of Zostera marina at different habitats of the Swan Lake in Rongcheng, China].
Guo, Mei Yu; Li, Wen Tao; Yang, Xiao Long; Zhang, Xiu Mei; Liu, Jian Ying; Li, Chang Jun
2017-05-18
Eelgrass (Zostera marina), a seagrass species widely distributed in the coastal regions of northern hemisphere, has suffered with a great decline due to a variety of anthropogenic and environmental stresses. In order to examine the adaptability of eelgrass to different environmental stresses, studies on the morphology and reproductive capacity of eelgrass had been carried out monthly from November 2014 to October 2015 at four different habitats of the Swan Lake, including patch area inintertidal area and subtidal area, eelgrass meadow edge, and eelgrass meadow area. The results showed significant spatio-temporal variations in the morphological parameters and branch frequency of eelgrass shoots at different habitats of the Swan Lake. The highest values of leaf length, leaf width, aboveground/belowground biomass, and internode length/diameter were observed in the meadow area, i.e., 78.54 cm, 7.93 mm, 7.03 and 3.88, respectively, while the highest branch frequency was observed in the meadow edge (88.4%). The plasticity index for aboveground/belowground biomass was higher (ranging from 0.77 to 0.92) at the four habitats, but those for the leaf width was slightly lower (ranging from 0.41 to 0.64). The number of spathes in each shoot showed no significant difference at different habitats, whereas the number of spathes per unit area was significantly different. Clonal reproduction was more dominant in meadow area than in the patch area where human disturbance was high.
A computational model for biosonar echoes from foliage
Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals’ sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats. PMID:28817631
A computational model for biosonar echoes from foliage.
Ming, Chen; Gupta, Anupam Kumar; Lu, Ruijin; Zhu, Hongxiao; Müller, Rolf
2017-01-01
Since many bat species thrive in densely vegetated habitats, echoes from foliage are likely to be of prime importance to the animals' sensory ecology, be it as clutter that masks prey echoes or as sources of information about the environment. To better understand the characteristics of foliage echoes, a new model for the process that generates these signals has been developed. This model takes leaf size and orientation into account by representing the leaves as circular disks of varying diameter. The two added leaf parameters are of potential importance to the sensory ecology of bats, e.g., with respect to landmark recognition and flight guidance along vegetation contours. The full model is specified by a total of three parameters: leaf density, average leaf size, and average leaf orientation. It assumes that all leaf parameters are independently and identically distributed. Leaf positions were drawn from a uniform probability density function, sizes and orientations each from a Gaussian probability function. The model was found to reproduce the first-order amplitude statistics of measured example echoes and showed time-variant echo properties that depended on foliage parameters. Parameter estimation experiments using lasso regression have demonstrated that a single foliage parameter can be estimated with high accuracy if the other two parameters are known a priori. If only one parameter is known a priori, the other two can still be estimated, but with a reduced accuracy. Lasso regression did not support simultaneous estimation of all three parameters. Nevertheless, these results demonstrate that foliage echoes contain accessible information on foliage type and orientation that could play a role in supporting sensory tasks such as landmark identification and contour following in echolocating bats.
Wheat productivity estimates using LANDSAT data
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Colwell, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The electro-optical leaf area meter was the most accurate of the approaches tested on harvested wheat samples, but it is very time consuming. It was decided to infer leaf area from dry weight biomass after establishing a relationship between dry weight biomass and area as measured by the leaf area meter. There is a good correlation between leaf area as measured by the meter and dry leaf biomass. There is a less consistent relationship between stem area and stem biomass.
Shine, M B; Guruprasad, K N; Anand, Anjali
2011-09-01
Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. Copyright © 2011 Wiley-Liss, Inc.
Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi
2010-08-01
This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.
A Study of the Relation Between Crop Growth and Spectra Reflectance Parameters
NASA Technical Reports Server (NTRS)
Badhwar, G.
1984-01-01
A differential equation describing the temporal behavior of greenness, G(t), with time was developed. The basic equation, dG(t)/dt=k(t)(1-G/G sub m) where G sub m is the saturation value of greenness at time, t sub p. It demonstrated that k(t) is linearly proportional to the rate of change of leaf area index. It was also demonstrated that G sub m, t sub p and profile width, are the key to vegetation identification and that the inflection points of the profile are related to the ontogenic state of the plant. These profile features were shown to hold not only throughout the United States corn/soybean growing area, but for the first time in Argentina. A mathematical technique that maximizes the sensitivity of spectral transformation to Leaf Area Index and simultaneously minimizes the sensitivity to all other variables was formulated. Initial results on corn and wheat were obtained.
Effect of solution and leaf surface polarity on droplet spread area and contact angle.
Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M
2016-03-01
How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Conel, James E.; Roberts, Dar A.
1995-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) acquired data as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. Flights occurred over the northern study area (NSA) in the region of 56 degrees north latitude and 98.5 degrees west longitude and over the southern study area (SSA) at 54 degrees north latitude and 105 degrees west longitude. These data will be used to directly derive spectral properties of the surface and atmosphere and to provide supporting data for other instruments, models, and experiments in support of the BOREAS objectives. We present a preliminary evaluation of the AVIRIS data collected in BOREAS in terms of the AVIRIS-derived parameters: water vapor, leaf water, and apparent spectral reflectance.
Leaf area prediction models for Tsuga canadensis in Maine
Laura S. Kenefic; R.S. Seymour
1999-01-01
Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...
Determining the K coefficient to leaf area index estimations in a tropical dry forest
NASA Astrophysics Data System (ADS)
Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo
2018-03-01
Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.
Sanches, Ieda Del´Arco; Souza Filho, Carlos Roberto de; Kokaly, Raymond F.
2014-01-01
This paper explores the use of spectral feature analysis to detect plant stress in visible/near infrared wavelengths. A time series of close range leaf and canopy reflectance data of two plant species grown in hydrocarbon-contaminated soil was acquired with a portable spectrometer. The ProSpecTIR-VS airborne imaging spectrometer was used to obtain far range hyperspectral remote sensing data over the field experiment. Parameters describing the chlorophyll 680 nm absorption feature (depth, width, and area) were derived using continuum removal applied to the spectra. A new index, the Plant Stress Detection Index (PSDI), was calculated using continuum-removed values near the chlorophyll feature centre (680 nm) and on the green-edge (560 and 575 nm). Chlorophyll feature’s depth, width and area, the PSDI and a narrow-band normalised difference vegetation index were evaluated for their ability to detect stressed plants. The objective was to analyse how the parameters/indices were affected by increasing degrees of plant stress and to examine their utility as plant stress indicators at the remote sensing level (e.g. airborne sensor). For leaf data, PSDI and the chlorophyll feature area revealed the highest percentage (67–70%) of stressed plants. The PSDI also proved to be the best constraint for detecting the stress in hydrocarbon-impacted plants with field canopy spectra and airborne imaging spectroscopy data. This was particularly true using thresholds based on the ASD canopy data and considering the combination of higher percentage of stressed plants detected (across the thresholds) and fewer false-positives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James; Knight, Paul J.
A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant speciesmore » is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.« less
Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology
C.M. Gough; J.R. Seiler; Chris A. Maier
2004-01-01
Fertilization commonly increases biomass production in loblolly pine (Pinus taeda L.). However, the sequence of short-term physiological adjustments allowing for the establishment of leaf area and enhanced growth is not well understood. The effects of fertilization on photosynthetic parameters, root respiration, and growth for over 200 d following...
USDA-ARS?s Scientific Manuscript database
Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...
Worldwide Historical Estimates of Leaf Area Index, 1932-2000
NASA Technical Reports Server (NTRS)
Scurlock, J. M. O.; Asner, G. P.; Gower, S. T.
2001-01-01
Approximately 1000 published estimates of leaf area index (LAI) from nearly 400 unique field sites, covering the period 1932-2000, have been compiled into a single data set. LA1 is a key parameter for global and regional models of biosphere/atmosphere exchange of carbon dioxide, water vapor, and other materials. It also plays an integral role in determining the energy balance of the land surface. This data set provides a benchmark of typical values and ranges of LA1 for a variety of biomes and land cover types, in support of model development and validation of satellite-derived remote sensing estimates of LA1 and other vegetation parameters. The LA1 data are linked to a bibliography of over 300 originalsource references.This report documents the development of this data set, its contents, and its availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which were collected using a wide range of methodologies and assumptions that may not allow comparisons among sites.
Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.
1998-01-01
Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...
Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb
NASA Astrophysics Data System (ADS)
Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana
2017-11-01
Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.
Fajardo, Alex
2016-05-01
The study of scaling examines the relative dimensions of diverse organismal traits. Understanding whether global scaling patterns are paralleled within species is key to identify causal factors of universal scaling. I examined whether the foliage-stem (Corner's rules), the leaf size-number, and the leaf mass-leaf area scaling relationships remained invariant and isometric with elevation in a wide-distributed treeline species in the southern Chilean Andes. Mean leaf area, leaf mass, leafing intensity, and twig cross-sectional area were determined for 1-2 twigs of 8-15 Nothofagus pumilio individuals across four elevations (including treeline elevation) and four locations (from central Chile at 36°S to Tierra del Fuego at 54°S). Mixed effects models were fitted to test whether the interaction term between traits and elevation was nonsignificant (invariant). The leaf-twig cross-sectional area and the leaf mass-leaf area scaling relationships were isometric (slope = 1) and remained invariant with elevation, whereas the leaf size-number (i.e., leafing intensity) scaling was allometric (slope ≠ -1) and showed no variation with elevation. Leaf area and leaf number were consistently negatively correlated across elevation. The scaling relationships examined in the current study parallel those seen across species. It is plausible that the explanation of intraspecific scaling relationships, as trait combinations favored by natural selection, is the same as those invoked to explain across species patterns. Thus, it is very likely that the global interspecific Corner's rules and other leaf-leaf scaling relationships emerge as the aggregate of largely parallel intraspecific patterns. © 2016 Botanical Society of America.
Using the conservative nature of fresh leaf surface density to measure foliar area
NASA Astrophysics Data System (ADS)
Castillo, Omar S.; Zaragoza, Esther M.; Alvarado, Carlos J.; Barrera, Maria G.; Dasgupta-Schubert, Nabanita
2014-10-01
For a herbaceous species, the inverse of the fresh leaf surface density, the Hughes constant, is nearly conserved. We apply the Hughes constant to develop an absolute method of leafarea measurement that requires no regression fits, prior calibrations or oven-drying. The Hughes constant was determined in situ using a known geometry and weights of a sub-set obtained from the fresh leaves whose areas are desired. Subsequently, the leaf-areas (at any desired stratification level), were derived by utilizing the Hughes constant and the masses of the fresh leaves. The proof of concept was established for leaf-discs of the plants Mandevilla splendens and Spathiphyllum wallisii. The conservativeness of the Hughes constant over individual leaf-zones and different leaftypes from the leaves of each species was quantitatively validated. Using the globally averaged Hughes constant for each species, the leaf-area of these and additional co-species plants, were obtained. The leaf-area-measurement-by-mass was cross-checked with standard digital image analysis. There were no statistically significant differences between the leaf-area-measurement-by-mass and the digital image analysis measured leaf-areas and the linear correlation between the two methods was very good. Leaf-areameasurement- by-mass was found to be rapid and simple with accuracies comparable to the digital image analysis method. The greatly reduced cost of leaf-area-measurement-by-mass could be beneficial for small agri-businesses in developing countries.
Quantitative estimation of the fluorescent parameters for crop leaves with the Bayesian inversion
USDA-ARS?s Scientific Manuscript database
In this study, the fluorescent parameters of crop leaves were retrieved from the leaf hyperspectral measurements by inverting the FluorMODleaf model, which is a leaf-level fluorescence model that is based on the widely used and validated PROSPECT (leaf optical properties) model and can simulate the ...
The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana
Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.
2015-01-01
Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696
The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana
Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...
2015-04-09
Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less
Parnikoza, I Yu; Loro, P; Miryuta, N Yu; Kunakh, V A; Kozeretska, I A
2011-01-01
Under the environmental conditions of the Point Thomas Oasis (King George Island, the South Shetland Islands), we studied the influence of month-long artificial treatment with fresh water, salt water, and guano solution on the biometric characteristics, chlorophyll content, as well as the nuclear area of leaf parenchymal cells and nuclear DNA content, in a maritime Antarctic aboriginal plant Deschampsia antarctica. The modeled factors induced an increase in the generative shoot height and the length of the largest leaf, but did not influence the number of flowers. Treatment with guano caused an increase in the chlorophyll a and b contents, while fresh water treatment only led to some increase in chlorophyll a. Fluctuations of physiologically significant traits, such as the nuclear area and DNA content in the leaf parenchyma cells of D. antarctica, have been traced under the influence of the studied factors. Understanding of the hierarchy of influence of these factors as well as and sensitivity of plants of this species to external agents require further investigation.
Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.
Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea
2014-01-01
A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnosky, David F; Podila, G Krishna; Burton, Andrew J
2009-02-17
This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elitemore » P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate that there is significant variation in gene expression patterns between different tree genotypes. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.« less
Constructing seasonal LAI trajectory by data-model fusion for global evergreen needle-leaf forests
NASA Astrophysics Data System (ADS)
Wang, R.; Chen, J.; Mo, G.
2010-12-01
For decades, advancements in optical remote sensors made it possible to produce maps of a biophysical parameter--the Leaf Area Index (LAI), which is critically necessary in regional and global modeling of exchanges of carbon, water, energy and other substances, across large areas in a fast way. Quite a few global LAI products have been generated since 2000, e.g. GLOBCARBON (Deng et al., 2006), MODIS Collection 5 (Shabanov et al., 2007), CYCLOPES (Baret et al., 2007), etc. Albeit these progresses, the basic physics behind the technology restrains it from accurate estimation of LAI in winter, especially for northern high-latitude evergreen needle-leaf forests. Underestimation of winter LAI in these regions has been reported in literature (Yang et al., 2000; Cohen et al., 2003; Tian et al., 2004; Weiss et al., 2007; Pisek et al., 2007), and the distortion is usually attributed to the variations of canopy reflectance caused by understory change (Weiss et al., 2007) as well as by the presence of ice and snow on leaves and ground (Cohen, 2003; Tian et al., 2004). Seasonal changes in leaf pigments can also be another reason for low LAI retrieved in winter. Low conifer LAI values in winter retrieved from remote sensing make them unusable for surface energy budget calculations. To avoid these drawbacks of remote sensing approaches, we attempt to reconstruct the seasonal LAI trajectory through model-data fusion. A 1-degree LAI map of global evergreen needle-leaf forests at 10-day interval is produced based on the carbon allocation principle in trees. With net primary productivity (NPP) calculated by the Boreal Ecosystems Productivity Simulator (BEPS) (Chen et al., 1999), carbon allocated to needles is quantitatively evaluated and then can be further transformed into LAI using the specific leaf area (SLA). A leaf-fall scheme is developed to mimic the carbon loss caused by falling needles throughout the year. The seasonally maximum LAI from remote sensing data for each pixel is used as an anchor point of the LAI trajectory. Ground data are used for validation. The resulting LAI does not show strong seasonality within a year, which is reasonable for evergreen needle-leaf forests with known leaf longevity.
NASA Astrophysics Data System (ADS)
Zarco-Tejada, P. J.; Miller, J. R.; Pedrós, R.; Verhoef, W.; Berger, M.
2006-06-01
The FluorMODgui Graphic User Interface (GUI) software package developed within the frame of the FluorMOD project Development of a Vegetation Fluorescence Canopy Model is presented in this manuscript. The FluorMOD project was launched in 2002 by the European Space Agency (ESA) to advance the science of vegetation fluorescence simulation through the development and integration of leaf and canopy fluorescence models based on physical methods. The design of airborne or space missions dedicated to the measurement of solar-induced chlorophyll fluorescence using remote-sensing instruments require physical methods for quantitative feasibility analysis and sensor specification studies. The FluorMODgui model developed as part of this project is designed to simulate the effects of chlorophyll fluorescence at leaf and canopy levels using atmospheric inputs, running the leaf model, FluorMODleaf, and the canopy model, FluorSAIL, independently, through a coupling scheme, and by a multiple iteration protocol to simulate changes in the viewing geometry and atmospheric characteristics. Inputs for the FluorMODleaf model are the number of leaf layers, chlorophyll a+ b content, water equivalent thickness, dry matter content, fluorescence quantum efficiency, temperature, species type, and stoichiometry. Inputs for the FluorSAIL canopy model are a MODTRAN-4 6-parameter spectra or measured direct horizontal irradiance and diffuse irradiance spectra, a soil reflectance spectrum, leaf reflectance & transmittance spectra and a excitation-fluorescence response matrix in upward and downward directions (all from FluorMODleaf), 2 PAR-dependent coefficients for the fluorescence response to light level, relative azimuth angle and viewing zenith angle, canopy leaf area index, leaf inclination distribution function, and a hot spot parameter. Outputs available in the 400-1000 nm spectral range from the graphical user interface, FluorMODgui, are the leaf spectral reflectance and transmittance, and the canopy reflectance, with and without fluorescence effects. In addition, solar and sky irradiance on the ground, radiance with and without fluorescence on the ground, and top-of-atmosphere (TOA) radiances for bare soil and surroundings same as target are also produced. The models and documentation regarding the FluorMOD project can be downloaded at http://www.ias.csic.es/fluormod.
Exploring the importance of within-canopy spatial temperature variation on transpiration predictions
Bauerle, William L.; Bowden, Joseph D.; Wang, G. Geoff; Shahba, Mohamed A.
2009-01-01
Models seldom consider the effect of leaf-level biochemical acclimation to temperature when scaling forest water use. Therefore, the dependence of transpiration on temperature acclimation was investigated at the within-crown scale in climatically contrasting genotypes of Acer rubrum L., cv. October Glory (OG) and Summer Red (SR). The effects of temperature acclimation on intracanopy gradients in transpiration over a range of realistic forest growth temperatures were also assessed by simulation. Physiological parameters were applied, with or without adjustment for temperature acclimation, to account for transpiration responses to growth temperature. Both types of parameterization were scaled up to stand transpiration (expressed per unit leaf area) with an individual tree model (MAESTRA) to assess how transpiration might be affected by spatial and temporal distributions of foliage properties. The MAESTRA model performed well, but its reproducibility was dependent on physiological parameters acclimated to daytime temperature. Concordance correlation coefficients between measured and predicted transpiration were higher (0.95 and 0.98 versus 0.87 and 0.96) when model parameters reflected acclimated growth temperature. In response to temperature increases, the southern genotype (SR) transpiration responded more than the northern (OG). Conditions of elevated long-term temperature acclimation further separate their transpiration differences. Results demonstrate the importance of accounting for leaf-level physiological adjustments that are sensitive to microclimate changes and the use of provenance-, ecotype-, and/or genotype-specific parameter sets, two components likely to improve the accuracy of site-level and ecosystem-level estimates of transpiration flux. PMID:19561047
Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu
2017-07-01
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2 = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R 2 = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F q '/F m ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R 2 = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP SIF ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R 2 = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2 = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2 = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-01-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm3 cm−2, control: 1.77 ± 0.30 mm3 cm−2). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. PMID:27614360
Duursma, Remko A; Falster, Daniel S
2016-10-01
Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.
2014-01-01
Ischaemum rugosum is a competitive weed in direct-seeded rice systems. Developing integrated weed management strategies that promote the suppression of weeds by crop density, cultivar selection, and nutrition requires better understanding of the extent to which rice interferes with the growth of this weed and how it responds to resource limitation due to rice interference. The growth of I. rugosum was studied when grown with four rice seeding rates (0, 25, 50, and 100 kg ha−1) and four nitrogen (N) rates (0, 50, 100, and 150 kg ha−1). Compared to the weed plants grown alone, weed tiller number was reduced by 63–80%, leaf number by 68–77%, leaf area by 69–77%, leaf biomass by 72–84%, and inflorescence biomass by 81–93% at the rice seeding rates of 25–100 kg ha−1. All these parameters increased with increasing rates of N from 0 to 150 kg ha−1. At weed maturity, I. rugosum plants were 100% taller than rice at 0 kg N ha−1, whereas, with added N, the weeds were only 50% taller than rice. Weed biomass increased by 82–160%, whereas rice biomass increased by 92–229%, with the application of 50–150 kg N ha−1. Added N favored rice biomass production more than it did the weed. Rice interference reduced the height and biomass of I. rugosum, but did not suppress its growth completely. I. rugosum showed the ability to reduce the effects of rice interference by increasing leaf area, leaf weight ratio, and specific leaf area, and by decreasing the root-shoot weight ratio in comparison to the weed plants grown alone. The results suggest that rice crop interference alone may reduce I. rugosum growth but may not provide complete control of this weed. The need for integrated weed management practices to effectively control this weed species is highlighted. PMID:24910995
Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C Sta
2014-01-01
Ischaemum rugosum is a competitive weed in direct-seeded rice systems. Developing integrated weed management strategies that promote the suppression of weeds by crop density, cultivar selection, and nutrition requires better understanding of the extent to which rice interferes with the growth of this weed and how it responds to resource limitation due to rice interference. The growth of I. rugosum was studied when grown with four rice seeding rates (0, 25, 50, and 100 kg ha(-1)) and four nitrogen (N) rates (0, 50, 100, and 150 kg ha(-1)). Compared to the weed plants grown alone, weed tiller number was reduced by 63-80%, leaf number by 68-77%, leaf area by 69-77%, leaf biomass by 72-84%, and inflorescence biomass by 81-93% at the rice seeding rates of 25-100 kg ha(-1). All these parameters increased with increasing rates of N from 0 to 150 kg ha(-1). At weed maturity, I. rugosum plants were 100% taller than rice at 0 kg N ha(-1), whereas, with added N, the weeds were only 50% taller than rice. Weed biomass increased by 82-160%, whereas rice biomass increased by 92-229%, with the application of 50-150 kg N ha(-1). Added N favored rice biomass production more than it did the weed. Rice interference reduced the height and biomass of I. rugosum, but did not suppress its growth completely. I. rugosum showed the ability to reduce the effects of rice interference by increasing leaf area, leaf weight ratio, and specific leaf area, and by decreasing the root-shoot weight ratio in comparison to the weed plants grown alone. The results suggest that rice crop interference alone may reduce I. rugosum growth but may not provide complete control of this weed. The need for integrated weed management practices to effectively control this weed species is highlighted.
David R. Coyle; Joel D. McMillin; Elwood R. Hart
1999-01-01
Cottonwood leaf beetle, Chrysomela scripta, pupae from a laboratory colony were weighed and monitored through adult emergence, oviposition, and mortality to determine if correlations existed between various pupal or adult parameters and fecundity or longevity. Forty-three female cottonwood leaf beetles were monitored. Pupal weight was not a good...
Physically-based modeling of drag force caused by natural woody vegetation
NASA Astrophysics Data System (ADS)
Järvelä, J.; Aberle, J.
2014-12-01
Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.
Effects of inert dust on olive (Olea europaea L.) leaf physiological para.
Nanos, George D; Ilias, Ilias F
2007-05-01
Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.
NASA Astrophysics Data System (ADS)
Astafurova, T.; Zotikova, A.; Morgalev, Yu; Verkhoturova, G.; Postovalova, V.; Kulizhskiy, S.; Mikhailova, S.
2015-11-01
When wheat is cultivated in the media contaminated with platinum nanoparticles, the change in the morphological and physiological indexes of wheat seedlings depends on the physico-chemical parameters of the germination substrate. The changes become less pronounced with the decreasing bioaccessability of the nanomaterial in the following order: water suspension - luvisols - phaeozems. Contamination with nanoparticles affects the height parameters and activates the mechanisms protecting the plant from stress. When using wheat seedlings as test organisms for biotesting the environmental safety of NPs, it is advisable to use the following parameters: weight of roots, weight of aerial part, leaf area, and flavonoid content.
Peilong Liu; Lu Hao; Cen Pan; Decheng Zhou; Yongqiang Liu; Ge Sun
2017-01-01
Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystemstructure that determines the ecosystem functions and services such as cleanwater supply and carbon sequestration in awatershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of...
Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission
NASA Astrophysics Data System (ADS)
Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.
2011-12-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.
Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission
NASA Astrophysics Data System (ADS)
Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.
2012-03-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.
EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) ...
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency’s Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satel
Paulo C. Olivas; Steven F. Oberbauer; David B. Clark; Deborah A. Clark; Michael G. Ryan; Joseph J. O' Brien; Harlyn Ordonez
2013-01-01
Many functional properties of forests depend on the leaf area; however, measuring leaf area is not trivial in tall evergreen vegetation. As a result, leaf area is generally estimated indirectly by light absorption methods. These indirect methods are widely used, but have never been calibrated against direct measurements in tropical rain forests, either at point or...
Leaf area compounds height-related hydraulic costs of water transport in Oregon White Oak trees.
N. Phillips; B. J. Bond; N. G. McDowell; Michael G. Ryan; A. Schauer
2003-01-01
The ratio of leaf to sapwood area generally decreases with tree size, presumably to moderate hydraulic costs of tree height. This study assessed consequences of tree size and leaf area on water flux in Quercus garryana Dougl. ex. Hook (Oregon White Oak), a species in which leaf to sapwood area ratio increases with tree size. We tested hypotheses that...
Buckley, Thomas N; Roberts, David W
2006-02-01
Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.
USDA-ARS?s Scientific Manuscript database
Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...
Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D
2014-12-01
The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
NASA Astrophysics Data System (ADS)
Zhao, Xiangai; He, Miao; Shang, Haibo; Yu, Hongling; Wang, Hao; Li, Huijie; Piao, Jingyi; Quinto, Maurizio; Li, Donghao
2018-05-01
Studies on seasonal distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in Salix matsudana leaves covering its annual life cycle were carried out in order to evaluate plant leaf response sensitivity to air pollution. Salix matsudana leaves were collected throughout different development phases of plant leaf inclusive of bud break to fallen leaves, covering from spring (May) to autumn (November). Simultaneously, particle and gas samples were collected using a high volume air sampler. Seven different PAHs were determined simultaneously in these samples. The temperature dependence of the partitioning of PAHs in air and plant leaves was investigated and the results were incorporated into a mathematical model. The measured plant/air partition coefficients have been found to be exponentially proportional to the reciprocal temperature, in agreement with theoretical expectations. Furthermore, in order to define the influence of different parameters on PAH adsorption on plant leaves, area and lipid leaf content were also measured. Results demonstrated that temperature plays a very important role in PAHs partitioning and that this value should be carefully considered during sampling, in order to obtain the best correlation between PAHs concentration in air and leaves.
NASA Astrophysics Data System (ADS)
Coiffard, Clément; Mohr, Barbara
2014-05-01
Early Cretaceous Northern Gondwana seems to be the cradle of many early flowering plants, especially mesangiosperms that include magnoliids and monocots and basal eudicots. So far our knowledge was based mostly on dispersed pollen and small flowering structures. New fossil finds from Brazil include more complete plants with attached roots, leaves and flowers. Taxonomic studies show that these fossils belonged to clades which are, based on macroscopic characters and molecular data, also considered to be rather basal, such as several members of Nymphaeales, Piperales, Laurales, Magnoliales, monocots (Araliaceae) and Ranunculales. Various parameters can be used in order to understand the physiology and habitat of these plants. Adaptations to climate and habitat are partly mirrored in their root anatomy (evidence of tap roots), leaf size and shape, leaf anatomy including presence of glands, and distribution of stomata. An important ecophysiolocical parameter is vein density as an indicator for the plants' cabability to pump water, and the stomatal pore index, representing the proportion of stomatal pore area on the leaf surface, which is related to the water vapor resistance of the leaf epidermis. During the mid-Cretaceous leaf vein density started to surpass that of gymnosperms, one factor that made angiosperms very successful in conquering many kinds of new environments. Using data on these parameters we deduce that during the late Early to mid Cretaceous angiosperms were already diverse, being represented as both herbs, with aquatic members, such as Nymphaeles, helophytes (e.g. some monocots) and plants that may have grown in shady locations. Other life forms included shrubs and perhaps already small trees (e.g. Magnoliales). These flowering plants occupied various habitats, ranging from xeric (e.g. some Magnoliales) to mesic and shady (e.g. Piperales) or aquatic (e.g. Araceae, Nymphaeales). Overall, it seems that several of these plants clearly exhibited some mechanisms to withstand drought, which in turn let us assume that the climate was characterized by dry and wet seasons.
Differences in the response of wheat, soybean and lettuce to reduced blue radiation
NASA Technical Reports Server (NTRS)
Dougher, T. A.; Bugbee, B.
2001-01-01
Although many fundamental blue light responses have been identified, blue light dose-response curves are not well characterized. We studied the growth and development of soybean, wheat and lettuce plants under high-pressure sodium (HPS) and metal halide (MH) lamps with yellow filters creating five fractions of blue light. The blue light fractions obtained were < 0.1, 2 and 6% under HPS lamps, and 6, 12 and 26% under MH lamps. Studies utilizing both lamp types were done at two photosynthetic photon flux levels, 200 and 500 mumol m-2 s-1 under a 16 h photoperiod. Phytochrome photoequilibria was nearly identical among treatments. The blue light effect on dry mass, stem length, leaf area, specific leaf area and tillering/branching was species dependent. For these parameters, wheat did not respond to blue light, but lettuce was highly sensitive to blue light fraction between 0 and 6% blue. Soybean stem length decreased and leaf area increased up to 6% blue, but total dry mass was unchanged. The blue light fraction determined the stem elongation response in soybean, whereas the absolute amount of blue light determined the stem elongation response in lettuce. The data indicate that lettuce growth and development requires blue light, but soybean and wheat may not.
Belz, Regina G
2007-09-30
Parthenium hysterophorus L. is an invasive weed that biosynthesizes several phytochemicals. The sesquiterpene lactone parthenin receives most attention regarding allelopathy of the plant or potential herbicidal properties. Since parthenin exhibits dose-dependent phytotoxicity with low dose stimulation, this study investigated the occurrence and temporal features of parthenin hormesis in Sinapis arvensis L. sprayed with parthenin under semi-natural conditions. Dose/response studies showed that the occurrence and the magnitude of hormesis depended on climatic conditions and the parameter measured. Within the tested dose range, stimulatory responses were only observed under less-stressful conditions and were most pronounced for leaf area growth [138 % of control; 13 days after treatment (DAT)]. Temporal assessment of leaf area development showed that doses causing a stimulatory response at the end of the experiment (< 0.42 +/- 0.04 kg/ha; 13 DAT) were initially inhibitory up to ED(50) values (2 DAT). This clearly demonstrated an over-compensatory response. Inhibition of leaf area at 13 DAT reached ED(50) values on average at 0.62 +/-0.12 kg/ha, and S. arvensis was completely inhibited at doses exceeding 1.81 +/-0.56 kg/ha (ED(90)). Based on these findings, implications of parthenin hormesis are discussed with respect to allelopathy of P. hysterophorus and exploitation of growth stimulatory responses in agriculture.
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.
2014-12-01
Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389
Wu, Yushan; Gong, Wanzhuo; Wang, Yangmei; Yong, Taiwen; Yang, Feng; Liu, Weigui; Wu, Xiaoling; Du, Junbo; Shu, Kai; Liu, Jiang; Liu, Chunyan; Yang, Wenyu
2018-03-29
Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.
Prediction of leaf area in individual leaves of cherrybark oak seedlings (Quercus pagoda Raf.)
Yanfei Guo; Brian Lockhart; John Hodges
1995-01-01
The prediction of leaf area for cherrybark oak (Quercus pagoda Raf.) seedlings is important for studying the physiology of the species. Linear and polynomial models involving leaf length, width, fresh weight, dry weight, and internodal length were tested independently and collectively to predict leaf area. Twenty-nine cherrybark oak seedlings were...
NASA Astrophysics Data System (ADS)
Kruijt, B.; Barton, C.; Rey, A.; Jarvis, P. G.
The 3-dimensional forest model MAESTRO was used to simulate daily and annual photosynthesis and transpiration fluxes of forest stands and the sensitivity of these fluxes to potential changes in atmospheric CO2 concentration ([CO2]), temperature, water stress and phenology. The effects of possible feed-backs from increased leaf area and limitations to leaf nutrition were simulated by imposing changes in leaf area and nitrogen content. Two different tree species were considered: Picea sitchensis (Bong.) Carr., a conifer with long needle longevity and large leaf area, and Betula pendula Roth., a broad-leaved deciduous species with an open canopy and small leaf area. Canopy photosynthetic production in trees was predicted to increase with atmospheric [CO2] and length of the growing season and to decrease with increased water stress. Associated increases in leaf area increased production further only in the B. pendula canopy, where the original leaf area was relatively small. Assumed limitations in N uptake affected B. pendula more than P. sitchensis. The effect of increased temperature was shown to depend on leaf area and nitrogen content. The different sensitivities of the two species were related to their very different canopy structure. Increased [CO2] reduced transpiration, but larger leaf area, early leaf growth, and higher temperature all led to increased water use. These effects were limited by feedbacks from soil water stress. The simulations suggest that, with the projected climate change, there is some increase in stand annual `water use efficiency', but the actual water losses to the atmosphere may not always decrease.
NASA Astrophysics Data System (ADS)
Lowman, L.; Barros, A. P.
2017-12-01
Data assimilation (DA) is the widely accepted procedure for estimating parameters within predictive models because of the adaptability and uncertainty quantification offered by Bayesian methods. DA applications in phenology modeling offer critical insights into how extreme weather or changes in climate impact the vegetation life cycle. Changes in leaf onset and senescence, root phenology, and intermittent leaf shedding imply large changes in the surface radiative, water, and carbon budgets at multiple scales. Models of leaf phenology require concurrent atmospheric and soil conditions to determine how biophysical plant properties respond to changes in temperature, light and water demand. Presently, climatological records for fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI), the modelled states indicative of plant phenology, are not available. Further, DA models are typically trained on short periods of record (e.g. less than 10 years). Using limited records with a DA framework imposes non-stationarity on estimated parameters and the resulting predicted model states. This talk discusses how uncertainty introduced by the inherent non-stationarity of the modeled processes propagates through a land-surface hydrology model coupled to a predictive phenology model. How water demand is accounted for in the upscaling of DA model inputs and analysis period serves as a key source of uncertainty in the FPAR and LAI predictions. Parameters estimated from different DA effectively calibrate a plant water-use strategy within the land-surface hydrology model. For example, when extreme droughts are included in the DA period, the plants are trained to uptake water, transpire, and assimilate carbon under favorable conditions and quickly shut down at the onset of water stress.
Coble, Adam P; Cavaleri, Molly A
2015-04-01
Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.
Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng
2012-12-01
This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.
Trybula, Elizabeth M.; Cibin, Raj; Burks, Jennifer L.; ...
2014-06-13
The Soil and Water Assessment Tool (SWAT) is increasingly used to quantify hydrologic and water quality impacts of bioenergy production, but crop-growth parameters for candidate perennial rhizomatous grasses (PRG) Miscanthus × giganteus and upland ecotypes of Panicum virgatum (switchgrass) are limited by the availability of field data. Crop-growth parameter ranges and suggested values were developed in this study using agronomic and weather data collected at the Purdue University Water Quality Field Station in northwestern Indiana. During the process of parameterization, the comparison of measured data with conceptual representation of PRG growth in the model led to three changes in themore » SWAT 2009 code: the harvest algorithm was modified to maintain belowground biomass over winter, plant respiration was extended via modified-DLAI to better reflect maturity and leaf senescence, and nutrient uptake algorithms were revised to respond to temperature, water, and nutrient stress. Parameter values and changes to the model resulted in simulated biomass yield and leaf area index consistent with reported values for the region. Code changes in the SWAT model improved nutrient storage during dormancy period and nitrogen and phosphorus uptake by both switchgrass and Miscanthus.« less
BOREAS Level-0 ER-2 Daedalus TMS Imagery Digital Counts in BIL Format
NASA Technical Reports Server (NTRS)
Newcomer, Jeffrey A.; Dominguez, Roseanne; Hall, Forrest G. (Editor)
2000-01-01
The level-0 Daedalus Thematic Mapper Simulator (TMS) imagery, along with the other remotely sensed images, was collected to provide spatially extensive information about radiant energy over the primary BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Two flights of the Daedalus TMS instrument were made onboard the ER-2 aircraft on 16-Sep-1994 and 17-Sep-1994.
Xu, Lan; Gao, Zhi-qang; An, Wei; Li, Yan-liang; Jiao, Xiong-fei; Wang, Chuang-yun
2016-01-01
With five good winter wheat cultivars selected from the middle and lower reaches of Yangtze River and Southwest China as test materials, a field experiment in Xinding basin area of Shanxi Province was conducted to study the photosynthetic characteristics, chlorophyll content, and chlorophyll fluorescence parameters of flag leaf at different sowing dates, as well as the correlations between these indices and yield for two years (2013-2014). The results showed that the difference in most fluorescence parameters except chlorophyll content among cultivars was significant. The correlations between these fluorescence parameters and yield were significant. The variation coefficient of chlorophyll (Chl) content was low (0.12-0.17), and that of performance index based on absorption (PIabs) was high (0.32-0.39), with the partial correlation coefficients of them with grain yield from 2013 to 2014 ranged in 0.70-0.81. Under the early sowing condition, the grain yield positively correlated with PIabs at flowering and filling stages and chlorophyll content at grain filling stage, but negatively correlated with the relative variable fluorescence at I point (Vi) at grain filling stage. About 81.1%-82.8% of grain yield were determined by the variations of PIabs, Chl, and Vi. Wheat cultivars had various performances in the treatments with different sowing dates and a consistent trend was observed in the two experimental years. Among these 5 cultivars, Yangmai 13 was suitable for early sowing, with the flag leaf photosynthetic rate (Pn), Chl, most fluorescence parame-ters, and grain yield showed obviously high levels. In conclusion, under early sowing condition chlorophyll content at grain filling stages, PIabs at flowering and filling stages, and Pn were important indices for selecting wheat cultivars with high photosynthetic efficiency.
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...
2016-06-09
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni
The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSE VIS = 0.0063, RMSE NIR-SWIR = 0.0098) and transmittance (RMSE VIS = 0.0404, RMSE NIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CV EWT = 18.8%, CV LMA = 24.5%), while estimates for conifer species were less accurate (CV EWT = 53.2%, CV LMA = 63.3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less
Comprehensive analysis of soil nitrogen removal by catch crops based on growth and water use
NASA Astrophysics Data System (ADS)
Yasutake, D.; Kondo, K.; Yamane, S.; Kitano, M.; Mori, M.; Fujiwara, T.
2016-07-01
A new methodology for comprehensive analysis of the characteristics of nitrogen (N) removal from greenhouse soil by catch crop was proposed in relation to its growth and water use. The N removal is expressed as the product of five parameters: net assimilation rate, specific leaf area, shoot dry weight, water use efficiency for N removal, and water requirement for growth. This methodology was applied to the data of a greenhouse experiment where corn was cultivated under three plant densities. We analyzed the effect of plant density and examined the effectiveness of the methodology. Higher plant densities are advantageous not only for total N removal but also for water use efficiency in N removal and growth because of the large specific leaf area, shoot dry weight, and decreased soil evaporation. On the other hand, significant positive or negative linear relationships were found between all five parameters and N removal. This should improve the understanding of the N removal mechanisms and the interactions among its components. We show the effectiveness of our analytical methodology, which can contribute to identifying the optimum plant density according to the field situations (available water amount, soil N quantity to be removed) for practical catch crop cultivation.
Validation of Leaf Area Index measurements based on the Wireless Sensor Network platform
NASA Astrophysics Data System (ADS)
Song, Q.; Li, X.; Liu, Q.
2017-12-01
The leaf area index (LAI) is one of the important parameters for estimating plant canopy function, which has significance for agricultural analysis such as crop yield estimation and disease evaluation. The quick and accurate access to acquire crop LAI is particularly vital. In the study, LAI measurement of corn crops is mainly through three kinds of methods: the leaf length and width method (LAILLW), the instruments indirect measurement method (LAII) and the leaf area index sensor method(LAIS). Among them, LAI value obtained from LAILLW can be regarded as approximate true value. LAI-2200,the current widespread LAI canopy analyzer,is used in LAII. LAIS based on wireless sensor network can realize the automatic acquisition of crop images,simplifying the data collection work,while the other two methods need person to carry out field measurements.Through the comparison of LAIS and other two methods, the validity and reliability of LAIS observation system is verified. It is found that LAI trend changes are similar in three methods, and the rate of change of LAI has an increase with time in the first two months of corn growth when LAIS costs less manpower, energy and time. LAI derived from LAIS is more accurate than LAII in the early growth stage,due to the small blade especially under the strong light. Besides, LAI processed from a false color image with near infrared information is much closer to the true value than true color picture after the corn growth period up to one and half months.
Estimation of vegetation parameters such as Leaf Area Index from polarimetric SAR data
NASA Astrophysics Data System (ADS)
Hetz, Marina; Blumberg, Dan G.; Rotman, Stanley R.
2010-05-01
This work presents the analysis of the capability to use the radar backscatter coefficient in semi-arid zones to estimate the vegetation crown in terms of Leaf Area Index (LAI). The research area is characterized by the presence of a pine forest with shrubs as an underlying vegetation layer (understory), olive trees, natural grove areas and eucalyptus trees. The research area was imaged by an airborne RADAR system in L-band during February 2009. The imagery includes multi-look radar images. All the images were fully polarized i.e., HH, VV, HV polarizations. For this research we used the central azimuth angle (113° ). We measured LAI using the ?T Sun Scan Canopy Analysis System. Verification was done by analytic calculations and digital methods for the leaf's and needle's surface area. In addition, we estimated the radar extinction coefficient of the vegetation volume by comparing point calibration targets (trihedral corner reflectors with 150cm side length) within and without the canopy. The radar extinction in co- polarized images was ~26dB and ~24dB for pines and olives respectively, compared to the same calibration target outside the vegetation. We used smaller trihedral corner reflectors (41cm side length) and covered them with vegetation to measure the correlation between vegetation density, LAI and radar backscatter coefficient for pines and olives under known conditions. An inverse correlation between the radar backscatter coefficient of the trihedral corner reflectors covered by olive branches and the LAI of those branches was observed. The correlation between LAI and the optical transmittance was derived using the Beer-Lambert law. In addition, comparing this law's principle to the principle of the radar backscatter coefficient production, we derived the equation that connects between the radar backscatter coefficient and LAI. After extracting the radar backscatter coefficient of forested areas, all the vegetation parameters were used as inputs for the MIMICS model that simulates the radar backscatter coefficient of pines. The model results show a backscatter of -18dB in HV polarization which is 13dB higher than the mean pines backscatter in the radar images, whereas the co-polarized images revealed a backscatter of -10dB which is 23dB higher than the actual backscatter value deriver from the radar images. Therefore, next step in the research will incorporate other vegetation parameters and attempt to understand the discrepancies between the simulation and the actual data.
Survival strategies in semi-arid climate for isohydric and anisohydric species
NASA Astrophysics Data System (ADS)
Guerin, M. F.; Gentine, P.; Uriarte, M.
2013-12-01
The understanding of survival strategies in dry land remains a challenging problem aiming at the interrelationship between local hydrology, plant physiology and climate. Carbon starvation and hydraulic failure are thought to be the two main factors leading to drought-induced mortality beside biotic perturbation. In order to better comprehend mortality the understanding of abiotic mechanisms triggering mortality is being studied in a tractable model for soil-plant-atmosphere continuum emphasizing the role of soil hydraulic properties, photosynthesis, embolism, leaf-gas exchange and climate. In particular the role of the frequency vs. the intensity of droughts is highlighted within such model. The analysis of the model included a differentiation between isohydric and anisohydric tree regulation and is supported by an extensive dataset of Pinion and Juniper growing in a semi-arid ecosystem. An objective of reduced number of parameters was approached with allometric equations to characterize tree's main traits and their hydraulic controls. Leaf area, sapwood area and tree's height are used to derive capacitance, conductance and photosynthetic abilities of the plant. A parameter sensitivity is performed highlighting the role of root:shoot ratio, rooting depth, photosynthetic capacity, quantum efficiency, and most importantly water use efficiency. Analytic development emphasizes two regimes of transpiration/photosynthesis denoted as stage-I (no embolism) and stage-II (embolism dominated) in analogy with stage I-stage II treminology for evaporation (Phillip,1957). Anisohydric species tend to remain in stage-I during which they still can assimilate carbon at full potential thus avoiding carbon starvation. Isohydric species tend to remain longer in stage-II. The effects of drought intensity/frequency on those 2 stages are described. Figure: sensitivity of Piñons stage 1 (top left), stage 2 (top right), and total cavitation duration (sum of stage 1 and stage 2 - bottom left) and time to carbon starvation (defined as 0-crossover of NSC content - bottom right) to Leaf Area Index (LAI) and root:shoot area.
Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary
2012-10-01
The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.
Biophysical and spectral modeling for crop identification and assessment
NASA Technical Reports Server (NTRS)
Goel, N. S. (Principal Investigator)
1984-01-01
The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.
Philip M. Wargo
1978-01-01
Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...
Phenological Versus Meteorological Controls on Land-atmosphere Water and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Koster, Randal D.; Cook, Benjamin I.
2013-01-01
Phenological dynamics and their related processes strongly constrain land-atmosphere interactions, but their relative importance vis-à-vis meteorological forcing within general circulation models (GCMs) is still uncertain. Using an off-line land surface model, we evaluate leaf area and meteorological controls on gross primary productivity, evapotranspiration, transpiration, and runoff at four North American sites, representing different vegetation types and background climates. Our results demonstrate that compared to meteorological controls, variation in leaf area has a dominant control on gross primary productivity, a comparable but smaller influence on transpiration, a weak influence on total evapotranspiration, and a negligible impact on runoff. Climate regime and characteristic variations in leaf area have important modulating effects on these relative controls, which vary depending on the fluxes and timescales of interest. We find that leaf area in energylimited evaporative regimes tends to exhibit greater control on annual gross primary productivity than in moisture-limited regimes, except when vegetation exhibits little interannual variation in leaf area. For transpiration, leaf area control is somewhat less in energylimited regimes and greater in moisture-limited regimes for maximum pentad and annual fluxes. These modulating effects of climate and leaf area were less clear for other fluxes and at other timescales. Our findings are relevant to land-atmosphere coupling in GCMs, especially considering that leaf area variations are a fundamental element of land use and land cover change simulations.
Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.
Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi
2015-10-01
Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.
NASA Astrophysics Data System (ADS)
Mayes, M. T.; Estes, L. D.; Gago, X.; Debats, S. R.; Caylor, K. K.; Manfreda, S.; Oudemans, P.; Ciraolo, G.; Maltese, A.; Nadal, M.; Estrany, J.
2016-12-01
Leaf area is an important ecosystem variable that relates to vegetation biomass, productivity, water and nutrient use in natural and agricultural systems globally. Since the 1980s, optical satellite image-based estimates of leaf area based on indices such as Normalized Difference Vegetation Index (NDVI) have greatly improved understanding of vegetation structure, function, and responses to disturbance at landscape (10^3 km2) to continental (10^6 km2) spatial scales. However, at landscape scales, satellites have failed to capture many leaf area patterns indicative of vegetation succession, crop types, stress and other conditions important for ecological processes. Small drones (UAS - unmanned aerial systems) offer new means for assessing leaf area and vegetation structure at higher spatial resolutions (<1 m) and land cover features such as substrate exposure that may affect estimates of vegetation structure in satellite data. Yet it is unclear how differences in spatial and spectral resolution between UAS and satellite data affect their relationships to each other, and to common field measurements of leaf area (e.g. LiCOR photosensors) and land cover. Constraining these relationships is important for leveraging UAS data to improve scaling of field data on leaf area and biomass to satellite data from Landsat, Sentinel-2, and increasing numbers of commercial sensors. Here, we quantify relationships among field, UAS and satellite estimates of vegetation leaf area and biomass in three case study landscapes spanning semi-arid Mediterranean (Matera, Southern Italy and Mallorca, Spain) and North American temperate ecosystems (New Jersey, USA). We assess how land cover and sensor spectral characteristics affect UAS and satellite-derived NDVI, leaf-area and biomass estimates. Then, we assess the fidelity of UAS, WorldView-2, and Landsat leaf-area and biomass estimates to field-measured landscape changes and variability, including vegetation recovery from fire (Mallorca), and leaf-area and biomass variability due to orchard type and agro-ecosystem management (Matera, New Jersey). Finally, we highlight promising ways forward for improving field data collection and the use of UAS observations to monitor vegetation leaf-area and biomass change at landscape scales in natural and agricultural systems.
Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G
2002-06-01
Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.
NASA Astrophysics Data System (ADS)
Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.
2015-12-01
Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.
Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.
Kataria, Sunita; Guruprasad, K N
2015-12-01
Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (<315 nm), UV-A/B (<400 nm) or transmitted ambient UV or lacked filters. The results indicated that solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Iiames, J. S., Jr.; Cooter, E. J.
2016-12-01
Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric conditions yielding sub-optimal values, or complete non-returns. The United States Environmental Protection Agency's Exposure Methods and Measurements and Computational Exposure Divisions are investigating the viability of supplemental modelled LAI inputs into satellite-derived data streams to support various regional and local scale air quality models for retrospective and future climate assessments. In this present study, one-year (2002) of plot level stand characteristics at four study sites located in Virginia and North Carolina (USA) are used to calibrate species-specific plant parameters in a semi-empirical biogeochemical model. The Environmental Policy Integrated Climate (EPIC) model was designed primarily for managed agricultural field crop ecosystems, but also includes managed woody species that span both xeric and mesic sites (e.g., mesquite, pine, oak, etc.). LAI was simulated using EPIC at a 4 km2 and 12 km2 grid coincident with the regional Community Multiscale Air Quality Model (CMAQ) grid. LAI comparisons were made between model-simulated and MODIS-derived LAI. Field/satellite-upscaled LAI was also compared to the corresponding MODIS LAI value. Preliminary results show field/satellite-upscaled LAI (1 km2) was 1.5 to 3 times smaller than that with the corresponding 1 km2 MODIS LAI for all four sites across all dates, with the largest discrepancies occurring at leaf-out and leaf senescence periods. Simulated LAI/MODIS LAI comparison results will be presented at the conference. Disclaimer: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S. Environmental Protection Agency funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use. * Primary author and presenter (Iiames.john@epa.gov)
Tianxiang Luo; Ji Luo; Yude Pan
2005-01-01
Knowledge of how leaf characteristics might be used to deduce information on ecosystem functioning and how this scaling task could be done is limited. In this study, we present field data for leaf lifespan, specific leaf area (SLA) and mass and area-based leaf nitrogen concentrations (Nmass, Narea) of dominant tree species...
Leaf mass area, Feb2016-May2016, PA-SLZ, PA-PNM, PA-BCI: Panama
Ely, Kim [Brookhaven National Lab; Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
Leaf mass per unit area measured on a monthly basis from Feb to April 2016 at SLZ and PNM. Data from BCI only available for March. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, leaf spectra, gas exchange and leaf chemistry.
Castagna, Antonella; Csepregi, Kristóf; Neugart, Susanne; Zipoli, Gaetano; Večeřová, Kristýna; Jakab, Gábor; Jug, Tjaša; Llorens, Laura; Martínez-Abaigar, Javier; Martínez-Lüscher, Johann; Núñez-Olivera, Encarnación; Ranieri, Annamaria; Schoedl-Hummel, Katharina; Schreiner, Monika; Teszlák, Péter; Tittmann, Susanne; Urban, Otmar; Verdaguer, Dolors; Jansen, Marcel A K; Hideg, Éva
2017-11-01
A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive β-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations. © 2017 John Wiley & Sons Ltd.
[Canopy interception characteristics of main vegetation types in Liupan Mountains of China].
Xu, Li-hong; Shi, Zhong-jie; Wang, Yan-hui; Xiong, Wei; Yu, Peng-tao
2010-10-01
Based on field observation and modeling analysis, this paper studied the canopy interception, interception capacity, and some parameters for interception modeling of main forest types in Liupan Mountains of China. For the test main forest types, the ratio of their canopy interception to precipitation ranged from 8.59% to 17.94%, throughfall was more than 80%, and stemflow ranged from 0.23% to 3.10%. The canopy interception capacity was 0.78-1.88 mm, among which, leaf interception capacity was 0.62-1.63 mm, and stem interception capacity was 0.13-0.29 mm. Conifer forest had a higher canopy interception capacity than broad-leaved forest. The modified model considering the change of leaf area index, which was used in this paper, had a higher simulating precision than the interception model used before. The simulation results for Betula albo-sinensis forest, Pinus armandii forest, Prunus shrub, and Quercus liaotungensis-Tilia paucicostata forest were good, but those for Quercus liaotungensis forest, Pinus tabulaeformis forest, and Acer tetramerum and Euonymus sanguineus shrub were bad, which might be related to the differences in canopy structure, leaf area index, and precipitation characteristics.
Effects of irrigation moisture regimes on yield and quality of paprika ( Capsicum annuum L)
NASA Astrophysics Data System (ADS)
Shongwe, Victor D.; Magongo, Bekani N.; Masarirambi, Michael T.; Manyatsi, Absalom M.
Although paprika ( Capsicum annuum L) is not widely grown in Swaziland it is becoming increasingly popular as a spice and food colourant. It is a crop that requires irrigation at specific stages of growth as this affects not only the yield but most importantly the quality of the crop. Yield of paprika has been found to increase with relative increase in moisture whereas the quality of fruits has not followed the same trend. The objective of this study was to find the effect of varying irrigation water regimes on the yield and quality of paprika at uniform fertiliser levels. The study was carried out in the 2006/2007 cropping season at the Luyengo campus of the University of Swaziland in a greenhouse. A randomised complete block design was used with four water treatments (0.40, 0.60, 0.80, and 1.00 × Field Capacity). Parameters measured included leaf number per plant, plant height, chlorophyll content, canopy size, leaf width, leaf length, stem girth, dry mass, fresh mass, fruit length, and brix content. There were significant ( P < 0.05) increases in leaf number, plant height, chlorophyll content, canopy size, fresh and dry mass tops and fruit length at the highest moisture level (1.00 × FC) followed by the second highest regime (0.80 × FC) whilst the lower water regimes resulted in lower increases in each of the parameters. Leaf area index did not differ significantly across all treatments. In increasing order the treatments 0.80 × FC and 1.00 × FC gave higher yields but in decreasing order lower brix and thus subsequent lower paprika quality. It is recommended that growers who are aiming for optimum yield and high quality of paprika may use the 0.8 × FC treatment when irrigating.
Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George
2012-01-01
Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073
Sumbele, Sally; Fotelli, Mariangela N; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A; Karabourniotis, George
2012-01-01
Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective-defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (A(max)) and TP and CT across species from different ecosystems in different continents? A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. The results revealed a negative relationship between TP and CT and A(max) among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, A(max) and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species.
Brestic, Marian; Zivcak, Marek; Hauptvogel, Pavol; Misheva, Svetlana; Kocheva, Konstantina; Yang, Xinghong; Li, Xiangnan; Allakhverdiev, Suleyman I
2018-05-01
Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/c i , light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO 2 assimilation rate [Formula: see text] electron transport rate (J max ) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (g m ) values indicated more limited CO 2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO 2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.
Zheng, Shu-xia; Shangguan, Zhou-ping
2007-01-01
With Yangling, Yongshou, Fuxian, Ansai, Mizhi and Shenmu, the s ix counties from the south to the north in the Loess Plateau as study sites, this paper studied thoe photosynthetic charac teristics and leaf traits of Pinus tabulaeformis and Robinia pseudoacacia. The results showed that among the six sites, there were significant differences in the photosynthetic rate (Pn), photosynthetic nitrogen use efficiency (PNUE), water use efficiency (WUE), leaf mass per area (LMA), nitrogen content (Nmass), and chlorophyll content (Chl) of P. tabulaeformis and R. pseudoacacia, suggesting that the photosynthetic capacity and leaf traits of the two species differed with sites. From the south to the north, the Pn, PNUE and WUE of P. tabulaeformis increased slightly while those of R. pseudoacacia decreased significantly, indicating that in drought habitat, P. tabulaef6rmis could still maintain high photosynthetic capacity, hut the photosynthetic capacity of R. pseudoacacia was greatly restrained. Also from the south to the north, the LMA of P. tabulaeformis and R. pseudoacacia had a slight increasing trend, while Nmass and Chl decreased slightly. The variation ranges of the three parameters were greater for R. pseudoacacia than for P. tabulaeformis, indicating that P. tabulaeformis had stronger drought-tolerant capability than R. pseudoacacia, which was not only exhibited in physiological metabolism, but also in leaf morphological acclimation. The correlation analysis between photosynthetic parameters and leaf traits of P. tabulaeformis and R. pseudoacacia in the six sites showed that there was a significant negative correlation between LMA and Nmass. The Pn and PNUE of both test species had no correlations with LMA and Nmass, but had significant positive correlation with Chl. The WUE of the species was negatively correlated with LMA, but positively correlated with Nmass.
Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae).
Nair, Shakunthala; Braman, S Kristine; Knauft, D A
2012-10-01
This study examines some of the potential mechanisms of resistance in selected Pieris (Ericaceae) taxa to the Andromeda lace bug, Stephanitis takeyai Drake and Maa, based on differences in resistance to lace bug feeding, and the possible role of leaf parameters such as leaf wax, toughness, nutrient composition, and stomatal characters in plant resistance. Experiments with extracts of leaf-surface lipids revealed that Pieris leaf wax did not have a role in resistance to lace bug feeding. Leaf wax extracts from a resistant species P. phillyreifolia (Hook.) DC. applied to leaves of a susceptible cultivar P. japonica (Thunb.) D.Don ex G.Don 'Temple Bells' did not affect feeding, oviposition, or survival of S. takeyai; and neither the extracts from Temple Bells induce susceptibility in P. phillyreifolia. Leaf penetrometer measurements indicated that significantly higher force was required to puncture P. phillyreifolia leaves, which also had higher fiber, lignin, and cellulose, and lower leaf moisture contents. Ultrastructural examination of leaves of Pieris taxa revealed significant differences in the number and size of stomata. P. phillyreifolia leaves had the highest number of stomata per unit area but these were the smallest in size, whereas P. japonica (Thunb.) D.Don ex G.Don Temple Bells leaves had the fewest and largest stomata. Resistance in Pieris taxa to S. takeyai may be attributed to a combination of different factors including leaf toughness, moisture, and stomatal characters. The type of resistance may be described as antixenosis combined with antibiosis, because reduced adult survival and reproduction were observed on the taxa resistant to lace bug feeding.
Convergence of tree water use within an arid-zone woodland.
O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D
2009-07-01
We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.
Kahlen, Katrin; Stützel, Hartmut
2011-10-01
Light quantity and quality affect internode lengths in cucumber (Cucumis sativus), whereby leaf area and the optical properties of the leaves mainly control light quality within a cucumber plant community. This modelling study aimed at providing a simple, non-destructive method to predict final internode lengths (FILs) using light quantity and leaf area data. Several simplifications of a light quantity and quality sensitive model for estimating FILs in cucumber have been tested. The direct simplifications substitute the term for the red : far-red (R : FR) ratios, by a term for (a) the leaf area index (LAI, m(2) m(-2)) or (b) partial LAI, the cumulative leaf area per m(2) ground, where leaf area per m(2) ground is accumulated from the top of each plant until a number, n, of leaves per plant is reached. The indirect simplifications estimate the input R : FR ratio based on partial leaf area and plant density. In all models, simulated FILs were in line with the measured FILs over various canopy architectures and light conditions, but the prediction quality varied. The indirect simplification based on leaf area of ten leaves revealed the best fit with measured data. Its prediction quality was even higher than of the original model. This study showed that for vertically trained cucumber plants, leaf area data can substitute local light quality data for estimating FIL data. In unstressed canopies, leaf area over the upper ten ranks seems to represent the feedback of the growing architecture on internode elongation with respect to light quality. This highlights the role of this domain of leaves as the primary source for the specific R : FR signal controlling the final length of an internode and could therefore guide future research on up-scaling local processes to the crop level.
Climate influences the leaf area/sapwood area ratio in Scots pine.
Mencuccini, M; Grace, J
1995-01-01
We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.
Misalová, A; Durkovic, J; Mamonová, M; Priwitzer, T; Lengyelová, A; Hladká, D; Lux, A
2009-09-01
Changes in anatomical organisation of the leaf, photosynthetic performance and wood formation were examined to evaluate the temporal and spatial patterns of acclimatisation of micropropagated slow-growing black mulberry (Morus nigra L.) plantlets to the ex vitro environment. Leaf structure differentiation, the rates of net photosynthesis (P(n)), transpiration (E) and stomatal conductance (g(s)), and secondary xylem growth were determined in the course of a 56-day acclimatisation. Differentiation of palisade parenchyma was observed 7 days after transfer. At this stage, the rates of P(n), E and g(s) reached maximum values, after which the rates of all three gas exchange parameters gradually decreased. The highest proportion of woody area occupied by vessels was also observed 7 days after transfer. An important feature of developing woody tissue is the difference in patterns of vessel distribution from the characteristic differentiation patterns of earlywood and latewood vessels in mature wood of ring-porous trees. Vessels with lumen areas over 3000 microm(2) were only differentiated in acclimatised plantlets, whereas vessels in stems sampled on days 0 and 7 had very small lumen areas of up to 560 microm(2). Full acclimatisation, observed 56 days after transfer to the ex vitro environment, was associated with the rapid growth of new in vivo formed leaves, very low rates of E and g(s), and much increased secondary xylem tissue within the stem area.
NASA Astrophysics Data System (ADS)
Boren, E. J.; Boschetti, L.; Johnson, D.
2016-12-01
With near-future droughts predicted to become both more frequent and more intense (Allen et al. 2015, Diffenbaugh et al. 2015), the estimation of satellite-derived vegetation water content would benefit a wide range of environmental applications including agricultural, vegetation, and fire risk monitoring. No vegetation water content thematic product is currently available (Yebra et al. 2013), but the successful launch of the Landsat 8 OLI and Sentinel 2A satellites, and the forthcoming Sentinel 2B, provide the opportunity for monitoring biophysical variables at a scale (10-30m) and temporal resolution (5 days) needed by most applications. Radiative transfer models (RTM) use a set of biophysical parameters to produce an estimated spectral response and - when used in inverse mode - provide a way to use satellite spectral data to estimate vegetation biophysical parameters, including water content (Zarco-Tejada et al. 2003). Using the coupled leaf and canopy level model PROSAIL5, and Landsat 8 OLI and Sentinel 2A MSI optical satellite data, the present research compares the results of three model inversion techniques: iterative optimization (OPT), look-up table (LUT), and artificial neural network (ANN) training. Ancillary biophysical data, needed for constraining the inversion process, were collected from various crop species grown in a controlled setting and under different water stress conditions. The measurements included fresh weight, dry weight, leaf area, and spectral leaf transmittance and reflectance in the 350-2500 nm range. Plot-level data, collected coincidently with satellite overpasses during three summer field campaigns in northern Idaho (2014 to 2016), are used to evaluate the results of the model inversion. Field measurements included fresh weight, dry weight, leaf area index, plant height, and top of canopy reflectance in the 350-2500 nm range. The results of the model inversion intercomparison exercised are used to characterize the uncertainties of vegetation water content estimation from Landsat 8 OLI and Sentinel 2A data.
USE OF NATIVE PLANTS FOR REMEDIATION OF TRICHLOROETHYLENE: I. DECIDUOUS TREES.
Strycharz, S; Newman, L
2009-02-01
Phytoremediation of trichloroethylene (TCE) can be accomplished using fast-growing, deep-rooting trees. The most commonly used tree for phytoremediation of TCE has been the hybrid poplar. This study looks at native southeastern trees of the United States as alternatives to the use of hybrid poplar. The use of native trees for phytoremediation allows for simultaneous restoration of contaminated sites. A 2-mo, greenhouse-based study was conducted to determine if sycamore (Plantanus L.), eastern cottonwood (Populus deltoides), sweetgum (Liquidambar styraciflua L.), and willow (Salix sachalinensis) trees possess the ability to degrade TCE by assessing TCE metabolite formation in the plant tissue. In addition to the metabolic capabilities of each tree species, growth parameters were measured including change in height, water usage, total fresh weight of each tissue type, and calculated total leaf surface area. Willow trees had the greatest increase in height among all trees tested; however, at higher concentrations TCE inhibits growth. Sycamore trees had the highest overall leaf surface area and total biomass, which correlated with sycamore trees also having the highest average water usage over the course of the experiment. Carbon tubes used to sample transpiration gases from sycamore, sweetgum, and cottonwood trees did not contain detectable levels of TCE. Tenex sample collection tubes used to sample willow trees during TCE exposure showed average TCE concentrations of up to 0.354 ng TCE cm -2 leaf tissue. All exposed trees contained TCE in the root, stem, and leaf tissues. The concentration of TCE remaining in tissues at the conclusion of the experiment varied, with the highest levels found in the roots and the lowest levels found in the leaves. Metabolites were also observed in different tissue types of all trees tested. The highest concentrations of trichloroacetic acid were observed in the leaves of the sycamore trees and cottonwood trees. Based on the growth parameters tested and the ability to metabolize TCE, sycamore and native cottonwood species are the best candidates for phytoremediation from this study.
Bowden, Joseph D; Bauerle, William L
2008-11-01
We investigated which parameters required by the MAESTRA model were most important in predicting leaf-area-based transpiration in 5-year-old trees of five deciduous hardwood species-yoshino cherry (Prunus x yedoensis Matsum.), red maple (Acer rubrum L. 'Autumn Flame'), trident maple (Acer buergeranum Miq.), Japanese flowering cherry (Prunus serrulata Lindl. 'Kwanzan') and London plane-tree (Platanus x acerifolia (Ait.) Willd.). Transpiration estimated from sap flow measured by the heat balance method in branches and trunks was compared with estimates predicted by the three-dimensional transpiration, photosynthesis and absorbed radiation model, MAESTRA. MAESTRA predicted species-specific transpiration from the interactions of leaf-level physiology and spatially explicit micro-scale weather patterns in a mixed deciduous hardwood plantation on a 15-min time step. The monthly differences between modeled mean daily transpiration estimates and measured mean daily sap flow ranged from a 35% underestimation for Acer buergeranum in June to a 25% overestimation for A. rubrum in July. The sensitivity of the modeled transpiration estimates was examined across a 30% error range for seven physiological input parameters. The minimum value of stomatal conductance as incident solar radiation tends to zero was determined to be eight times more influential than all other physiological model input parameters. This work quantified the major factors that influence modeled species-specific transpiration and confirmed the ability to scale leaf-level physiological attributes to whole-crown transpiration on a species-specific basis.
Limited acclimation in leaf anatomy to experimental drought in tropical rainforest trees.
Binks, Oliver; Meir, Patrick; Rowland, Lucy; da Costa, Antonio Carlos Lola; Vasconcelos, Steel Silva; de Oliveira, Alex Antonio Ribeiro; Ferreira, Leandro; Mencuccini, Maurizio
2016-12-01
Dry periods are predicted to become more frequent and severe in the future in some parts of the tropics, including Amazonia, potentially causing reduced productivity, higher tree mortality and increased emissions of stored carbon. Using a long-term (12 year) through-fall exclusion (TFE) experiment in the tropics, we test the hypothesis that trees produce leaves adapted to cope with higher levels of water stress, by examining the following leaf characteristics: area, thickness, leaf mass per area, vein density, stomatal density, the thickness of palisade mesophyll, spongy mesophyll and both of the epidermal layers, internal cavity volume and the average cell sizes of the palisade and spongy mesophyll. We also test whether differences in leaf anatomy are consistent with observed differential drought-induced mortality responses among taxa, and look for relationships between leaf anatomy, and leaf water relations and gas exchange parameters. Our data show that trees do not produce leaves that are more xeromorphic in response to 12 years of soil moisture deficit. However, the drought treatment did result in increases in the thickness of the adaxial epidermis (TFE: 20.5 ± 1.5 µm, control: 16.7 ± 1.0 µm) and the internal cavity volume (TFE: 2.43 ± 0.50 mm 3 cm -2 , control: 1.77 ± 0.30 mm 3 cm -2 ). No consistent differences were detected between drought-resistant and drought-sensitive taxa, although interactions occurred between drought-sensitivity status and drought treatment for the palisade mesophyll thickness (P = 0.034) and the cavity volume of the leaves (P = 0.025). The limited response to water deficit probably reflects a tight co-ordination between leaf morphology, water relations and photosynthetic properties. This suggests that there is little plasticity in these aspects of plant anatomy in these taxa, and that phenotypic plasticity in leaf traits may not facilitate the acclimation of Amazonian trees to the predicted future reductions in dry season water availability. © The Author 2016. Published by Oxford University Press.
Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana
Cassandra L. Kollenberg; Kevin L. O' Hara
1999-01-01
Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...
Craig A. Harper; David C. Guynn
1999-01-01
We used a terrestrial vacuum to sample known area plots in order to obtain density estimates of salamanders and their primary prey, invertebrates of the forest floor. We sampled leaf litter and measured various vegetative and topographic parameters within four forest types (oak-pine, oak-hickory, mixed mesophytic and northern hardwoods) and three age classes (0-12,13-...
Belz, Regina G.
2008-01-01
Parthenium hysterophorus L. is an invasive weed that biosynthesizes several phytochemi-cals. The sesquiterpene lactone parthenin receives most attention regarding allelopathy of the plant or potential herbicidal properties. Since parthenin exhibits dose-dependent phy-totoxicity with low dose stimulation, this study investigated the occurrence and temporal features of parthenin hormesis in Sinapis arvensis L. sprayed with parthenin under semi-natural conditions. Dose/response studies showed that the occurrence and the magnitude of hormesis depended on climatic conditions and the parameter measured. Within the tested dose range, stimulatory responses were only observed under less-stressful conditions and were most pronounced for leaf area growth [138 % of control; 13 days after treatment (DAT)]. Temporal assessment of leaf area development showed that doses causing a stimulatory response at the end of the experiment (< 0.42 ± 0.04 kg/ha; 13 DAT) were initially inhibitory up to ED50 values (2 DAT). This clearly demonstrated an over-compensatory response. Inhibition of leaf area at 13 DAT reached ED50 values on average at 0.62 ±0.12 kg/ha, and S. arvensis was completely inhibited at doses exceeding 1.81 ±0.56 kg/ha (ED90). Based on these findings, implications of parthenin hormesis are discussed with respect to allelopathy of P. hysterophorus and exploitation of growth stimulatory responses in agriculture. PMID:18648571
Archontoulis, S. V.; Yin, X.; Vos, J.; Danalatos, N. G.; Struik, P. C.
2012-01-01
Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model. PMID:22021569
Meinzer, Frederick C; Campanello, Paula I; Domec, Jean-Christophe; Genoveva Gatti, M; Goldstein, Guillermo; Villalobos-Vega, Randol; Woodruff, David R
2008-11-01
This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (A(L):A(S)) and wood density (rho(w)). We studied the upper crowns of individuals of 15 tropical forest tree species at two sites in Panama with contrasting moisture regimes and forest types. Transpiration and maximum photosynthetic electron transport rate (ETR(max)) per unit leaf area declined sharply with increasing A(L):A(S), as did the ratio of ETR(max) to leaf N content, an index of photosynthetic nitrogen-use efficiency. Midday leaf water potential, bulk leaf osmotic potential at zero turgor, branch xylem specific conductivity, leaf-specific conductivity and stem and leaf capacitance all declined with increasing rho(w). At the branch scale, A(L):A(S) and total leaf N content per unit sapwood area increased with rho(w), resulting in a 30% increase in ETR(max) per unit sapwood area with a doubling of rho(w). These compensatory adjustments in A(L):A(S), N allocation and potential photosynthetic capacity at the branch level were insufficient to completely offset the increased carbon costs of producing denser wood, and exacerbated the negative impact of increasing rho(w) on branch hydraulics and leaf water status. The suite of tree functional and architectural traits studied appeared to be constrained by the hydraulic and mechanical consequences of variation in rho(w).
Seasonal Dynamics in Leaf Area Index in Intensively Managed Loblolly Pine
Timothy B. Harrington; Jason A. Gatch; Bruce E. Borders
2002-01-01
Leaf area index (LAI; leaf area per ground area) was measured monthly or bimonthly for two years (March 1999 to February 2001) with the LAI-2000 in intensively managed plantations of loblolly pine (Pinus taeda L.) at Eatonton and Waycross GA. Since establishment of the three age classes at each site, the stands have received combinations of complete...
Rogers, Alistair [Brookhaven National Lab; Serbin, Shawn [Brookhaven National Lab; Ely, Kim [Brookhaven National Lab; Wu, Jin [BNL; Wolfe, Brett [Smithsonian; Dickman, Turin [Los Alamos National Lab; Collins, Adam [Los Alamos National Lab; Detto, Matteo [Princeton; Grossiord, Charlotte [Los Alamos National Lab; McDowell, Nate [Los Alamos National Lab; Michaletz, Sean
2017-01-01
CO2 response (ACi) gas exchange measured on leaves collected from sunlit canopy trees on a monthly basis from Feb to May 2016 at SLZ and PNM. Dataset includes calculated Vcmax and Jmax parameters. This data was collected as part of the 2016 ENSO campaign. See related datasets (existing and future) for further sample details, leaf water potential, LMA, leaf spectra, other gas exchange and leaf chemistry.
Structural adjustments in resprouting trees drive differences in post-fire transpiration.
Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J
2014-02-01
Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hér following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index.
Buitrago, Sindy; Vanegast, Leidy; Ramos, Carolina
2015-09-01
Espeletia paipana is an endangered giant caulescent rosette endemic to (Asteraceae), Boyacdi-Colombia. Espelelia paipana is an endangered giant caulescent rosette endemic to Boyacá department. In order to establish whether a plant disease, characterized by the loss of leaf pubescence (PPF) and attributed to the pathogenic action of endophytic microorganisms, is the cause of the increasing mortality of population, the physiological performance of the species was evaluated with and without PPF. The incidence (% leaves affected in each of the 27 individuals in the current population) and severity (% leaf area affected on 135 leaves) of the PPF were monitored over a period of nine months, in three topographic zones of different heights. During four consecutive days in both dry and wet season, physiological parameters as chlorophyll content index (ICC), stomatal conductance (Gs) and leaf temperature (Tfol) were measured in healthy and affected leaves. The study was complemented with isolations and pathogenicity tests to identify the causal agent of the PPF. Overall, although the disease incidence in E. paipana was constant over time, the severity progressed surpassing 60 % of the leaf area. The increasing of severity in the upper side of leaves was attributed to the photo-oxidative effect of high radiation between 11:00 h and 14:00 h of the day. The reduction of functional leaf area because of the PPF, led to low Gs with serious implications for carbon fixation and thus limiting growth and biomass renewal. The effect of season in Tfol varied according to the topographic zone, while the ICC did not present a defined pattern with respect to the PPF; its low values could be associated with the production of other pigments. Finally, although it is not possible to ensure that Botrytis sp. is the causative of the loss of leaf pubescence, it is postulated as the most probably causal agent due to its high representativeness in the isolates and its infectious potential during the pathogenicity tests. In general, the reduction of healthy leaf biomass and decrease of physiological performance suggest that PPF affect negatively the survival of E. paipana, which means that the use of biological controllers could be a strategy to mitigate its effect on the population.
Microscopic evaluation and physiochemical analysis of Dillenia indica leaf
Kumar, S; Kumar, V; Prakash, Om
2011-01-01
Objective To study detail microscopic evaluation and physiochemical analysis of Dillenia indica (D. indica) leaf. Methods Fresh leaf sample and dried power of the leaf were studied macroscopically and microscopically. Preliminary phytochemical investigation of plant material was done. Other WHO recommended parameters for standardizations were also performed. Results The detail microscopy revealed the presence of anomocytic stomata, unicellular trichome, xylem fibres, calcium oxalate crystals, vascular bundles, etc. Leaf constants such as stomatal number, stomatal index, vein-islet number and veinlet termination numbers were also measured. Physiochemical parameters such as ash values, loss on drying, extractive values, percentage of foreign matters, swelling index, etc. were also determined. Preliminary phytochemical screening showed the presence of steroids, terpenoids, glycosides, fatty acids, flavonoids, phenolic compounds and carbohydrates. Conclusions The microscopic and physiochemical analysis of the D. indica leaf is useful in standardization for quality, purity and sample identification. PMID:23569789
Costs of measuring leaf area index of corn
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Hollinger, S. E.
1984-01-01
The magnitude of plant-to-plant variability of leaf area of corn plants selected from uniform plots was examined and four representative methods for measuring leaf area index (LAI) were evaluated. The number of plants required and the relative costs for each sampling method were calculated to detect 10, 20, and 50% differences in LAI using 0.05 and 0.01 tests of significance and a 90% probability of success (beta = 0.1). The natural variability of leaf area per corn plant was nearly 10%. Additional variability or experimental error may be introduced by the measurement technique employed and by nonuniformity within the plot. Direct measurement of leaf area with an electronic area meter had the lowest CV, required that the fewest plants be sampled, but required approximately the same amount of time as the leaf area/weight ratio method to detect comparable differences. Indirect methods based on measurements of length and width of leaves required more plants but less total time than the direct method. Unless the coefficients for converting length and width to area are verified frequently, the indirect methods may be biased. When true differences in LAI among treatments exceed 50% of mean, all four methods are equal. The method of choice depends on the resources available, the differences to be detected, and what additional information, such as leaf weight or stalk weight, is also desired.
Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi
2002-02-01
Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.
NIINEMETS, ÜLO; PORTSMUTH, ANGELIKA; TRUUS, LAIMI
2002-01-01
Young trees 0·03–1·7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light‐saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (FL). Because the site effect was generally non‐significant in the analyses of variance with foliar nitrogen content per unit dry mass (NM) as a covariate, NM was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with NM and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing NM, whereas the effects were species‐specific. Increases in plant size led to a lower and increases in NM to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self‐shading probably increased with increasing NM and decreased with increasing H. Nevertheless, the whole‐plant average MA, as well as MA values of topmost fully exposed leaves, correlated with NM and H in a similar manner, indicating that scaling of MA with NM and H did not necessarily result from the modified degree of within‐plant shading. The rate of photosynthetic electron transport per unit dry mass (JM) scaled positively with NM, but decreased with increasing H and MA. Thus, increases in MA with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = FL/MA), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (JM, NM and MA) varied threefold, but the whole‐plant characteristic FL varied 20‐fold and LAR 30‐fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our results demonstrate that: (1) tree height and NM may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within‐plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H. PMID:12099350
A perspective on underwater photosynthesis in submerged terrestrial wetland plants
Colmer, Timothy D.; Winkel, Anders; Pedersen, Ole
2011-01-01
Background and aims Wetland plants inhabit flood-prone areas and therefore can experience episodes of complete submergence. Submergence impedes exchange of O2 and CO2 between leaves and the environment, and light availability is also reduced. The present review examines limitations to underwater net photosynthesis (PN) by terrestrial (i.e. usually emergent) wetland plants, as compared with submerged aquatic plants, with focus on leaf traits for enhanced CO2 acquisition. Scope Floodwaters are variable in dissolved O2, CO2, light and temperature, and these parameters influence underwater PN and the growth and survival of submerged plants. Aquatic species possess morphological and anatomical leaf traits that reduce diffusion limitations to CO2 uptake and thus aid PN under water. Many aquatic plants also have carbon-concentrating mechanisms to increase CO2 at Rubisco. Terrestrial wetland plants generally lack the numerous beneficial leaf traits possessed by aquatic plants, so submergence markedly reduces PN. Some terrestrial species, however, produce new leaves with a thinner cuticle and higher specific leaf area, whereas others have leaves with hydrophobic surfaces so that gas films are retained when submerged; both improve CO2 entry. Conclusions Submergence inhibits PN by terrestrial wetland plants, but less so in species that produce new leaves under water or in those with leaf gas films. Leaves with a thinner cuticle, or those with gas films, have improved gas diffusion with floodwaters, so that underwater PN is enhanced. Underwater PN provides sugars and O2 to submerged plants. Floodwaters often contain dissolved CO2 above levels in equilibrium with air, enabling at least some PN by terrestrial species when submerged, although rates remain well below those in air. PMID:22476500
McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A
2010-04-01
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN
Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica
2016-01-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.
M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica
2016-06-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.
Interpretation of the fluorescence signatures from vegetation
NASA Astrophysics Data System (ADS)
Buschmann, C.
Vegetation emits fluorescence as part of the energy taken up by absorption %of solar radiation from UV to the visible. This fluorescence consists of light with low intensity (only few percents of the reflected light) emitted from the leaves. The fluorescence emission of a green leaf is characterized by four bands with maxima in the blue (440 nm), green (520 nm), red (690 nm) and far red (740 nm) spectral region. The intensity of fluorescence in the maxima of the emission spectrum varies depending on the following six basic parameters which must be taken into account for the interpretation of fluorescence signatures from vegetation: (a) content of the fluorophores (ferulic acid, chlorophyll a), (b) temperature of the leaf, (c) penetration of excitation light into the leaf, (d) emission of fluorescence from the leaf (re-absorption inside the leaf tissue), (e) photosynthetic activity of the leaf, (f) non-radiative decay (heat production) parallel to the fluorescence The ratios between the intensities of the maxima (F440/F690, F440/F520, F690/F740) are used as characteristic fluorescence parameter. The wide range of changes of these ratios caused by differences in the leaf tissue (aerial interspaces, variegated/homogeneous green leaves), various types of stress (UV, photoinhibition, sun exposure, heat, water deficiency, N-deficiency) and chemicals (inhibitors, fertilizers) can be explained by changes of the six basic parameters. It will be shown that the interpretation of the fluorescence signatures, in most cases, must be based on a complex consideration of more than one of the basic parameters.
Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?
Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A
2008-05-01
Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D
1998-05-01
Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P < 0.0001). At any given SLA, R d-mass rises with increasing N mass and/or decreasing leaf life-span; and at any level of N mass , R d-mass rises with increasing SLA and/or decreasing leaf life-span. The relationships between R d and leaf traits observed in this study support the idea of a global set of predictable interrelationships between key leaf morphological, chemical and metabolic traits.
de Gaspi, Fernanda Oliveira de G.; Foglio, Mary Ann; de Carvalho, João Ernesto; Santos, Gláucia Maria T.; Testa, Milene; Passarini, José Roberto; de Moraes, Cristiano Pedroso; Esquisatto, Marcelo A. Marreto; Mendonça, Josué S.; Mendonça, Fernanda A. Sampaio
2011-01-01
This study evaluated the wound healing activity of hydroalcoholic leaf extract of Oncidium flexuosum Sims. (Orchidaceae), an important native plant of Brazil, combined or not with microcurrent stimulation. Wistar rats were randomly divided into four groups of nine animals: control (C), topical application of the extract (OF), treated with a microcurrent (10 μA/2 min) (MC), and topical application of the extract plus microcurrent (OF + MC). Tissue samples were obtained 2, 6, and 10 days after injury and submitted to structural and morphometric analysis. The simultaneous application of OF + MC was found to be highly effective in terms of the parameters analyzed (P < .05), with positive effects on the area of newly formed tissue, number of fibroblasts, number of newly formed blood vessels, and epithelial thickness. Morphometric data confirmed the structural findings. The O. flexuosum leaf extract contains active compounds that speed the healing process, especially when applied simultaneously with microcurrent stimulation. PMID:21716707
Leaf Area Adjustment As an Optimal Drought-Adaptation Strategy
NASA Astrophysics Data System (ADS)
Manzoni, S.; Beyer, F.; Thompson, S. E.; Vico, G.; Weih, M.
2014-12-01
Leaf phenology plays a major role in land-atmosphere mass and energy exchanges. Much work has focused on phenological responses to light and temperature, but less to leaf area changes during dry periods. Because the duration of droughts is expected to increase under future climates in seasonally-dry as well as mesic environments, it is crucial to (i) predict drought-related phenological changes and (ii) to develop physiologically-sound models of leaf area dynamics during dry periods. Several optimization criteria have been proposed to model leaf area adjustment as soil moisture decreases. Some theories are based on the plant carbon (C) balance, hypothesizing that leaf area will decline when instantaneous net photosynthetic rates become negative (equivalent to maximization of cumulative C gain). Other theories draw on hydraulic principles, suggesting that leaf area should adjust to either maintain a constant leaf water potential (isohydric behavior) or to avoid leaf water potentials with negative impacts on photosynthesis (i.e., minimization of water stress). Evergreen leaf phenology is considered as a control case. Merging these theories into a unified framework, we quantify the effect of phenological strategy and climate forcing on the net C gain over the entire growing season. By accounting for the C costs of leaf flushing and the gains stemming from leaf photosynthesis, this metric assesses the effectiveness of different phenological strategies, under different climatic scenarios. Evergreen species are favored only when the dry period is relatively short, as they can exploit most of the growing season, and only incur leaf maintenance costs during the short dry period. In contrast, deciduous species that lower maintenance costs by losing leaves are advantaged under drier climates. Moreover, among drought-deciduous species, isohydric behavior leads to lowest C gains. Losing leaves gradually so as to maintain a net C uptake equal to zero during the driest period in the growing season provides the highest gain. Since these strategies are all defined based on often-modeled quantities, they can be implemented in ecosystem models depending on plant functional type and climate.
Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M
2013-05-01
Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong
2016-05-01
Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.
2017-12-01
In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.
Saruhan, Neslihan; Terzi, Rabiye; Saglam, Aykut; Kadioglu, Asim
2009-01-01
The ascorbate-glutathione (ASC-GSH) cycle has an important role in defensive processes against oxidative damage generated by drought stress. In this study, the changes that take place in apoplastic and symplastic ASC-GSH cycle enzymes of the leaf and petiole were investigated under drought stress causing leaf rolling in Ctenanthe setosa (Rose.) Eichler (Marantaceae). Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate forms). Glutathione reductase (GR), a key enzyme in the GSH regeneration cycle, and ascorbate (ASC) were present in apoplastic spaces of the leaf and petiole, whereas dehydroascorbate reductase (DHAR), which uses glutathione as reductant, monodehydroascorbate reductase (MDHAR), which uses NAD(P)H as reductant, and glutathione were absent. GR, DHAR and MDHAR activities increased in the symplastic and apoplastic areas of the leaf. Apoplastic and symplastic ASC and dehydroascorbate (DHA), the oxidized form of ascorbate, rose at all scores except score 4 of symplastic ASC in the leaf. On the other hand, while reduced glutathione (GSH) content was enhanced, oxidized glutathione (GSSG) content decreased in the leaf during rolling. As for the petiole, GR activity increased in the apoplastic area but decreased in the symplastic area. DHAR and MDHAR activities increased throughout all scores, but decreased to the score 1 level at score 4. The ASC content of the apoplast increased during leaf rolling. Conversely, symplastic ASC content increased at score 2, however decreased at the later scores. While the apoplastic DHA content declined, symplastic DHA rose at score 2, but later was down to the level of score 1. While GSH content enhanced during leaf rolling, GSSG content did not change except at score 2. As well, there were good correlations between leaf rolling and ASC-GSH cycle enzyme activities in the leaf (GR and DHAR) and leaf rolling and GSSG. These results showed that in apoplastic and symplastic areas, ASC-GSH cycle enzymes leading ROS detoxification may have a role in controlling leaf rolling.
NASA Astrophysics Data System (ADS)
Hall, Carlton Raden
A major objective of remote sensing is determination of biochemical and biophysical characteristics of plant canopies utilizing high spectral resolution sensors. Canopy reflectance signatures are dependent on absorption and scattering processes of the leaf, canopy properties, and the ground beneath the canopy. This research investigates, through field and laboratory data collection, and computer model parameterization and simulations, the relationships between leaf optical properties, canopy biophysical features, and the nadir viewed above-canopy reflectance signature. Emphasis is placed on parameterization and application of an existing irradiance radiative transfer model developed for aquatic systems. Data and model analyses provide knowledge on the relative importance of leaves and canopy biophysical features in estimating the diffuse absorption a(lambda,m-1), diffuse backscatter b(lambda,m-1), beam attenuation alpha(lambda,m-1), and beam to diffuse conversion c(lambda,m-1 ) coefficients of the two-flow irradiance model. Data sets include field and laboratory measurements from three plant species, live oak (Quercus virginiana), Brazilian pepper (Schinus terebinthifolius) and grapefruit (Citrus paradisi) sampled on Cape Canaveral Air Force Station and Kennedy Space Center Florida in March and April of 1997. Features measured were depth h (m), projected foliage coverage PFC, leaf area index LAI, and zenith leaf angle. Optical measurements, collected with a Spectron SE 590 high sensitivity narrow bandwidth spectrograph, included above canopy reflectance, internal canopy transmittance and reflectance and bottom reflectance. Leaf samples were returned to laboratory where optical and physical and chemical measurements of leaf thickness, leaf area, leaf moisture and pigment content were made. A new term, the leaf volume correction index LVCI was developed and demonstrated in support of model coefficient parameterization. The LVCI is based on angle adjusted leaf thickness Ltadj, LAI, and h (m). Its function is to translate leaf level estimates of diffuse absorption and backscatter to the canopy scale allowing the leaf optical properties to directly influence above canopy estimates of reflectance. The model was successfully modified and parameterized to operate in a canopy scale and a leaf scale mode. Canopy scale model simulations produced the best results. Simulations based on leaf derived coefficients produced calculated above canopy reflectance errors of 15% to 18%. A comprehensive sensitivity analyses indicated the most important parameters were beam to diffuse conversion c(lambda, m-1), diffuse absorption a(lambda, m-1), diffuse backscatter b(lambda, m-1), h (m), Q, and direct and diffuse irradiance. Sources of error include the estimation procedure for the direct beam to diffuse conversion and attenuation coefficients and other field and laboratory measurement and analysis errors. Applications of the model include creation of synthetic reflectance data sets for remote sensing algorithm development, simulations of stress and drought on vegetation reflectance signatures, and the potential to estimate leaf moisture and chemical status.
NASA Astrophysics Data System (ADS)
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick
2016-11-01
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (A
Leaf traits in parental and hybrid species of Sorbus (Rosaceae).
Durkovic, Jaroslav; Kardosová, Monika; Canová, Ingrid; Lagana, Rastislav; Priwitzer, Tibor; Chorvát, Dusan; Cicák, Alojz; Pichler, Viliam
2012-09-01
Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.
Ge Sun; Peter V. Caldwell; Steven G. McNulty
2015-01-01
The goal of this study was to test the sensitivity of water yield to forest thinning and other forest management/disturbances and climate across the conterminous United States (CONUS). Leaf area index (LAI) was selected as a key parameter linking changes in forest ecosystem structure and functions. We used the Water Supply Stress Index model to examine water yield...
NASA Astrophysics Data System (ADS)
Liu, Q.
2011-09-01
At first, research advances on radiation transfer modeling on multi-scale remote sensing data are presented: after a general overview of remote sensing radiation transfer modeling, several recent research advances are presented, including leaf spectrum model (dPROS-PECT), vegetation canopy BRDF models, directional thermal infrared emission models(TRGM, SLEC), rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed. The land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation etc. are taken as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is designed and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China will be introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
NASA Astrophysics Data System (ADS)
Liu, Q.; Li, J.; Du, Y.; Wen, J.; Zhong, B.; Wang, K.
2011-12-01
As the remote sensing data accumulating, it is a challenge and significant issue how to generate high accurate and consistent land surface parameter product from the multi source remote observation and the radiation transfer modeling and inversion methodology are the theoretical bases. In this paper, recent research advances and unresolved issues are presented. At first, after a general overview, recent research advances on multi-scale remote sensing radiation transfer modeling are presented, including leaf spectrum model, vegetation canopy BRDF models, directional thermal infrared emission models, rugged mountains area radiation models, and kernel driven models etc. Then, new methodologies on land surface parameters inversion based on multi-source remote sensing data are proposed, taking the land surface Albedo, leaf area index, temperature/emissivity, and surface net radiation as examples. A new synthetic land surface parameter quantitative remote sensing product generation system is suggested and the software system prototype will be demonstrated. At last, multi-scale field experiment campaigns, such as the field campaigns in Gansu and Beijing, China are introduced briefly. The ground based, tower based, and airborne multi-angular measurement system have been built to measure the directional reflectance, emission and scattering characteristics from visible, near infrared, thermal infrared and microwave bands for model validation and calibration. The remote sensing pixel scale "true value" measurement strategy have been designed to gain the ground "true value" of LST, ALBEDO, LAI, soil moisture and ET etc. at 1-km2 for remote sensing product validation.
Murray, Brad R.; Hardstaff, Lyndle K.; Phillips, Megan L.
2013-01-01
The flammability of plant leaves influences the spread of fire through vegetation. Exotic plants invading native vegetation may increase the spread of bushfires if their leaves are more flammable than native leaves. We compared fresh-leaf and dry-leaf flammability (time to ignition) between 52 native and 27 exotic plant species inhabiting dry sclerophyll forest. We found that mean time to ignition was significantly faster in dry exotic leaves than in dry native leaves. There was no significant native-exotic difference in mean time to ignition for fresh leaves. The significantly higher fresh-leaf water content that was found in exotics, lost in the conversion from a fresh to dry state, suggests that leaf water provides an important buffering effect that leads to equivalent mean time to ignition in fresh exotic and native leaves. Exotic leaves were also significantly wider, longer and broader in area with significantly higher specific leaf area–but not thicker–than native leaves. We examined scaling relationships between leaf flammability and leaf size (leaf width, length, area, specific leaf area and thickness). While exotics occupied the comparatively larger and more flammable end of the leaf size-flammability spectrum in general, leaf flammability was significantly correlated with all measures of leaf size except leaf thickness in both native and exotic species such that larger leaves were faster to ignite. Our findings for increased flammability linked with larger leaf size in exotics demonstrate that exotic plant species have the potential to increase the spread of bushfires in dry sclerophyll forest. PMID:24260169
Evaluation of four methods for estimating leaf area of isolated trees
P.J. Peper; E.G. McPherson
2003-01-01
The accurate modeling of the physiological and functional processes of urban forests requires information on the leaf area of urban tree species. Several non-destructive, indirect leaf area sampling methods have shown good performance for homogenous canopies. These methods have not been evaluated for use in urban settings where trees are typically isolated and...
Vegetative leaf area is a critical input to models that simulate human and ecosystem exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically simulated, but all contain some inherent uncertainty that is passed to the exposure assessmen...
Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich
2014-04-11
Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Roberts, Dar A.
1995-01-01
Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper Ridge scene were transformed to apparent surface reflectance using a radiative transfer code-based inversion algorithm.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
A laser technique for characterizing the geometry of plant canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Silva, L. F.; Bauer, M. E.
1977-01-01
The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower.
NASA Astrophysics Data System (ADS)
Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian
2017-04-01
The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.
Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum).
Percival, Glynn C; Noviss, Kelly
2008-11-01
We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F(v)/F(m)), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% higher in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximately propiconazole > penconazole > paclobutrazol > myclobutanil.
Architectural mutation and leaf form, for the palmate series.
White, D A
2005-07-21
Palmate leaf form occurs in both the ferns and angiosperms. The palmate leaf form, and its variants, is present in distantly separated clades within both ferns and angiosperms. There tend not to be intermediate forms which link these palmate leaves to other leaf forms within the taxonomic groups in question. The recurrence of homoplasious leaf forms in separate taxonomic groups could be a consequence of the algorithmic like mode of leaf growth. Leaves develop through the reiteration of modular units. It is probable that the homoplasious leaf forms in different taxa are derived independently through re-combinations of the parameters in the basic leaf form development algorithm.
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Allen, W. A.; Wiegand, C. L.; Escobar, D. E.; Rodriguez, R. R.
1971-01-01
Review of research on radiation interactions within plant canopies and communities and interactions of various leaf structures (mesophyll arrangements) with electromagnetic radiation involved in the interpretation of data sensed from air or spacecraft. The hypothesis underlying the research reported is that leaf mesophyll arrangements influence spectral energy measurements of leaves.
Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo
2018-04-01
Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.
Interannual Variation in Stand Transpiration is Dependent Upon Tree Species
NASA Astrophysics Data System (ADS)
Ewers, B. E.; Mackay, D. S.; Burrows, S. N.; Ahl, D. E.; Samanta, S.
2003-12-01
In order to successfully predict transpirational water fluxes from forested watersheds, interannual variability in transpiration must be quantified and understood. In a heterogeneous forested landscape in northern Wisconsin, we quantified stand transpiration across four forest cover types representing more than 80 percent of the land area in order to 1) quantify differences in stand transpiration and leaf area over two years and 2) determine the mechanisms governing the changes in transpiration over two years. We measured sap flux in eight trees of each tree species in the four cover types. We found that in northern hardwoods, the leaf area of sugar maple increased between the two measurement years with transpiration per unit ground area increasing even more than could be explained by leaf area. In an aspen stand, tent caterpillars completely defoliated the stand for approximately a month until a new set of leaves flushed out. The new set of leaves resulted in a lower leaf area but the same transpiration per unit leaf area indicating there was no physiological compensation for the lower leaf area. At the same time, balsam fir growing underneath the aspen increased their transpiration rate in response to greater light penetration through the dominant aspen canopy Red pine had a thirty percent change in leaf area within a growing season due to multiple cohorts of leaves and transpiration followed this leaf area dynamic. In a forested wetland, white cedar transpiration was proportional to surface water depth between the two years. Despite the specific tree species' effects on stand transpiration, all species displayed a minimum water potential regulation resulting in a saturating response of transpiration to vapor pressure deficit that did not vary across the two years. This physiological set point will allow future water flux models to explain mechanistically interannual variability in transpiration of this and similar forests.
Effect of weed control treatments on total leaf area of plantation black walnut (Juglans nigra)
Jason Cook; Michael R. Saunders
2013-01-01
Determining total tree leaf area is necessary for describing tree carbon balance, growth efficiency, and other measures used in tree-level and stand-level physiological growth models. We examined the effects of vegetation control methods on the total leaf area of sapling-size plantation black walnut trees using allometric approaches. We found significant differences in...
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
NASA Astrophysics Data System (ADS)
Zheng, S. X.; Ren, H. Y.; Lan, Z. C.; Li, W. H.; Wang, K. B.; Bai, Y. F.
2010-03-01
Understanding the mechanistic links between environmental drivers, human disturbance, plant functional traits, and ecosystem properties is a fundamental aspect of biodiversity-ecosystem functioning research. Recent studies have focused mostly on leaf-level traits or community-level weighted traits to predict species responses to grazing and the consequent change in ecosystem functioning. However, studies of leaf-level traits or community-level weighted traits seldom identify the mechanisms linking grazing impact on leaf traits to ecosystem functioning. Here, using a multi-organization-level approach, we examined the effects of grazing on leaf traits (i.e., leaf area, leaf dry mass and specific leaf area) and ecosystem functioning across six communities of three vegetation types along a soil moisture gradient in the Xilin River Basin of Inner Mongolia grassland, China. Our results showed that the effects of grazing on leaf traits differed substantially when scaling up from leaf-level to species, functional group (i.e., life forms and water ecotype types), and community levels; and they also varied with vegetation type or site conditions. The effects of grazing on leaf traits diminished progressively along the hierarchy of organizational levels in the meadow, whereas the impacts were predominantly negative and the magnitude of the effects increased considerably at higher organizational levels in the typical steppe. Soil water and nutrient availability, functional trade-offs between leaf size and number of leaves per individual, and differentiation in avoidance and tolerance strategies among coexisting species are likely to be responsible for the observed responses of leaf traits to grazing at different levels of organization and among vegetation types. Our findings also demonstrate that, at both the functional group and community levels, standing aboveground biomass increased with leaf area and specific leaf area. Compared with the large changes in leaf traits and standing aboveground biomass, the soil properties were relatively unaffected by grazing. Our study indicates that a multi-organization-level approach provides more robust and comprehensive predictions of the effects of grazing on leaf traits and ecosystem functioning.
NASA Technical Reports Server (NTRS)
Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.
1996-01-01
Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.
Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.
Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki
2015-01-01
Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.
Psidium guajava as a bioaccumulator of nickel around an oil refinery, southern Brazil.
Trindade Perry, Carolina; Divan, Armando Molina; Raya Rodriguez, Maria Teresa; Lúcia Atz, Vera
2010-05-01
To evaluate the potential of Psidium guajava as a biological accumulator of air pollutants, saplings were exposed at nine sites receiving atmospheric emissions from an oil refinery (five within, four outside the industrial area) and another reference site located at the Federal University of Rio Grande do Sul, 27 km from the refinery. Exposures lasted about 3 months each, coincided with the seasons, and totaled five exposures between 2005 and 2006. The following parameters were evaluated: dry weight of leaves, stems, and roots, leaf area, rate of relative height increase, Ni and S contents, maximum assimilation rate, and carboxylation efficiency invivo. P. guajava was found to be an efficient accumulator of Ni, since highly significant differences were observed (P<0.001) between sites within the industrial area and the reference site for all periods of exposure and a significant negative correlation between distance from emission source and Ni content. The S content showed significant differences (P<0.05) only at sites within the industrial area for two exposures. The dry weight, leaf area, rate of relative height increase, maximum assimilation rate, and carboxylation efficiency did not present significant differences for any period of exposure. In view of the above, we conclude that P. guajava is a good bioaccumulator for Ni. Copyright 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Halimshah, Syamimi; Ismail B., S.; Ahmad, Wan Juliana Wan
2015-09-01
A study was conducted to determine the allelopathic potential of leaf and seed of Mucuna bracteata on the growth of E. indica through aqueous extract and debris (incorporated into the soil) experiment. Three concentrations of leaf and seed aqueous extract (16.7, 33.3 and 66.7 g/L) and debris (2.5, 5.0 and 10.0 g/500 g soil) of M. bracteata were used in the experiment. Complete randomized design (CRD) with three replications was applied in this experiment which was conducted twice. Results demonstrated that the leaf and seed extracts of M. bracteata exhibited higher suppression effect on the growth and germination of E. indica as the concentration increased. The leaf and seed extracts significantly reduced all measured parameters at all concentrations except for the shoot length and germination of E. indica by seed extract at 16.7 g/L which recorded insignificant reduction by 40.5% and 4% respectively. The leaf and seed debris significantly reduced the root length of E. indica at all treatments. Seed debris also showed significant reduction on the germination at all treatments and other seedling growth parameters (shoot length, fresh weight and dry weight) at 2.5 and 10.0 g/500 g soil. Meanwhile, the leaf debris demonstrated stimulation effect on the seedling growth parameters. As a whole, the leaf showed higher suppression effect in aqueous extract experiment while the seed recorded higher suppression effect in the debris experiment. Further studies need to be conducted to investigate the type of inhibition mechanism involved in both experiments.
Large seasonal swings in leaf area of Amazon rainforests
Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.
2007-01-01
Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tien, C; Brewer, M; Studenski, M
Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less
Temporal variation of intertidal seagrass in southern China (2008-2014)
NASA Astrophysics Data System (ADS)
Qiu, Guanglong; Short, Frederick T.; Fan, Hangqing; Liu, Guohua
2017-09-01
Understanding the temporal dynamics of seagrasses and the major influences on seagrass growth is critical for seagrass habitat conservation and administration. However, little work has been done regarding these issues in southern China. To examine inter-annual and seasonal variations of the intertidal Halophila ovalis community in southern China, we conducted quarterly sampling using the SeagrassNet methodology and assessed environmental conditions as well as direct anthropogenic impacts on the seagrass meadow from July 2008 to October 2014. Our study demonstrated strong inter-annual and seasonal dynamics of the intertidal seagrass meadow in the study area. Generally, the community performed best (highest seagrass cover, leaf area, shoot density, total biomass) in summer and worst in spring among the 4 seasons. The temporal variations in the seagrass community attributes (e.g. above-ground biomass) were significantly affected by precipitation, atmospheric visibility, and salinity, while leaf width was significantly negatively correlated with temperature, atmospheric visibility and salinity. Temperature was a major factor influencing the seagrass community (both macroalgae and seagrass), with temperature data showing an inverse relationship between seagrass and macroalgae. The above-ground: below-ground biomass ratio and leaf width of H. ovalis were the most sensitive plant parameters monitored when assessing environmental interactions. Human physical disturbances did not have a significant effect on seagrass dynamics in the study area. We concluded that long-term monitoring (like SeagrassNet) is valuable in understanding the relationship between environmental variables and seagrasses.
Methods for determining the physiological state of a plant
Kramer, David M.; Sacksteder, Colette
2003-09-23
The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.
NASA Technical Reports Server (NTRS)
Hall, F. G.; Huemmrich, K. F.; Strebel, D. E.; Goetz, S. J.; Nickeson, J. E.; Woods, K. D.
1992-01-01
Described here are the results of a NASA field experiment conducted in the Superior National Forest near Ely, Minnesota, during the summers of 1983 and 1984. The purpose of the experiment was to examine the use of remote sensing to provide measurements of biophysical parameters in the boreal forests. Leaf area index, biomass, net primary productivity, canopy coverage, overstory and understory species composition data are reported for about 60 sites, representing a range of stand density and age for aspen and spruce. Leaf, needle, and bark high-resolution spectral reflectance and transmittance data are reported for the major boreal forest species. Canopy bidirectional reflectance measurements are provided from a helicopter-mounted Barnes Multiband Modular Radiometer (MMR) and the Thematic Mapper Simulator (TMS) on the NASA C-130 aircraft.
Kebrom, Tesfamichael H.; Mullet, John E.
2014-12-12
Shoot branches or tillers develop from axillary buds. The dormancy versus outgrowth fates of buds depends on genetic, environmental and hormonal signals. Defoliation inhibits bud outgrowth indicating the role of leaf-derived metabolic factors such as sucrose in bud outgrowth. In this study, the sensitivity of bud outgrowth to selective defoliation was investigated. At 6 d after planting (6 DAP), the first two leaves of sorghum were fully expanded and the third was partially emerged. Therefore, the leaves were selectively defoliated at 6 DAP and the length of the bud in the first leaf axil was measured at 8 DAP. Budmore » outgrowth was inhibited by defoliation of only 2 cm from the tip of the second leaf blade. The expression of dormancy and sucrose-starvation marker genes was up-regulated and cell cycle and sucrose-inducible genes was down-regulated during the first 24 h postdefoliation of the second leaf.At 48 h, the expression of these genes was similar to controls as the defoliated plant recovers. Our results demonstrate that small changes in photosynthetic leaf area affect the propensity of tiller buds for outgrowth. Therefore, variation in leaf area and photosynthetic activity should be included when integrating sucrose into models of shoot branching.« less
Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display.
Lusk, Christopher H; Pérez-Millaqueo, Manuel M; Saldaña, Alfredo; Burns, Bruce R; Laughlin, Daniel C; Falster, Daniel S
2012-07-01
The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LAR(d)) was used to indicate plant light interception potential: LAR(d) is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LAR(d) was about twice that of conifers. Although specific leaf area was the most pervasive influence on LAR(d), differences in self-shading also significantly influenced LAR(d) of large seedlings. The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.
Seedlings of temperate rainforest conifer and angiosperm trees differ in leaf area display
Lusk, Christopher H.; Pérez-Millaqueo, Manuel M.; Saldaña, Alfredo; Burns, Bruce R.; Laughlin, Daniel C.; Falster, Daniel S.
2012-01-01
Background and Aims The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers. Methods This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle. Results Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings. Conclusions The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition. PMID:22585929
Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui
2017-01-01
The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.
Early detection of crop injury from herbicide glyphosate by leaf biochemical parameter inversion
USDA-ARS?s Scientific Manuscript database
Early detection of crop injury from glyphosate is of significant importance in crop management. In this paper, we attempt to detect glyphosate-induced crop injury by PROSPECT (leaf optical PROperty SPECTra model) inversion through leaf hyperspectral reflectance measurements for non-Glyphosate-Resist...
David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan
2008-01-01
Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...
The effect of leaf size on the microwave backscattering by corn
NASA Technical Reports Server (NTRS)
Paris, J. F.
1986-01-01
Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.
78 FR 72579 - Revisions to the Arizona State Implementation Plan, Maricopa County Area
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
....01 Leaf Blower Use Restrictions 07/02/07 05/25/12 and Training; Leaf Blowers Equipment Sellers... recommend stronger control of emissions from leaf blowers, expanding leaf blowers requirements beyond county employees, control of leaf blowers in vacuum mode, control of leaf blowers on permitted sites, and greater...
Yang, Cong; Tang, Dengguo; Qu, Jingtao; Zhang, Ling; Zhang, Lei; Chen, Zhengjie; Liu, Jian
2016-11-01
A set of RIL population was used to detect QTL associated with the sizes of eight consecutive leaves, across different environments, and ten QTL clusters were identified as main QTLs. One of the important parameters of the maize leaf architecture that affects light penetration into the canopy, leaf size, has long attracted breeders' attention for optimizing the plant type of maize and for maximizing the grain yield (GY). In this study, we used 253 RIL lines derived from a cross between B73 and SICAU1212 to investigate the leaf widths (LWs), leaf lengths (LLs), and leaf areas (LAs) of eight consecutive leaves of maize below the tassel and GY across different environments and to identify quantitative traits loci (QTLs) controlling the above-mentioned traits, using inclusive interval mapping for single-environment analysis plus a mixed-model-based composite interval mapping for joint analysis. A total of 171 and 159 putative QTLs were detected through these two mapping methods, respectively. Single-environment mapping revealed that 39 stable QTLs explained more than 10 % of the phenotypic variance, and 35 of the 39 QTLs were also detected by joint analysis. In addition, joint analysis showed that nine of the 159 QTLs exhibited significant QTL × environment interaction and 15 significant epistatic interactions were identified. Approximately 47.17 % of the QTLs for leaf architectural traits in joint analysis were concentrated in ten main chromosomal regions, namely, bins 1.07, 2.02, 3.06, 4.09, 5.01, 5.02, 5.03-5.04, 5.07, 6.07, and 8.05. This study should provide a basis for further fine-mapping of these main genetic regions and improvement of maize leaf architecture.
Radanielson, Ando M; Angeles, Olivyn; Li, Tao; Ismail, Abdelbagi M; Gaydon, Donald S
2018-05-01
Rice is the staple food for almost half of the world population. In South and South East Asia, about 40% of rice production is from deltaic regions that are vulnerable to salt stress. A quantitative approach was developed for characterizing genotypic variability in biomass production, leaf transpiration rate and leaf net photosynthesis responses to salinity during the vegetative stage, with the aim of developing efficient screening protocols to accelerate breeding varieties adapted to salt-affected areas. Three varieties were evaluated in pots under greenhouse conditions and in the field, with average soil salinity ranging from 2 to 12 dS m -1 . Plant biomass, net photosynthesis rate, leaf transpiration rate and leaf conductance were measured at regular intervals. Crop responses were fitted using a logistic function with three parameters: 1) maximum rate under control conditions (Y max ), 2) salinity level for 50% of reduction (b), and 3) rate of reduction ( a) . Variation in the three parameters correlated significantly with variation in plant biomass production under increasing salinity. Salt stress levels that caused 50% reduction in net leaf photosynthesis and transpiration rates were higher in the tolerant genotype BRRI Dhan47 (16.5 dS m -1 and 14.3 dS m -1 , respectively) than the sensitive genotype IR29 (11.1 dS m -1 and 6.8 dS m -1 ). In BRRI Dhan47, the threshold beyond which growth was significantly reduced was above 5 dS m -1 and the rate of growth reduction beyond this threshold was as low as 4% per unit increase in salinity. This quantitative approach to screening for salinity tolerance in rice offers a means to better understand rice growth under salt stress and, using simulation modelling, can provide an improved tool for varietal characterization.
Leaf Mass Area, Leaf Carbon and Nitrogen Content, Barrow, Alaska, 2012-2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Alistair; Ely, Kim; Serbin, Shawn
Carbon, Nitrogen and Leaf Mass Area of leaves sampled from the Barrow Environmental Observatory, Barrow, Alaska. Species measured; Arctophila fulva, Arctagrostis latifolia, Carex aquatilis, Dupontia fisheri, Eriophorum angustifolium, Petasites frigidus, Salix pulchra, Vaccinium vitis-idaea, Salix rotundifolia, Luzula arctica, Saxifraga punctata and Potentilla hyparctica.
He, Wei-Ming; Sun, Zhen-Kai
2016-02-08
Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints.
He, Wei-Ming; Sun, Zhen-Kai
2016-01-01
Green leaves face two fundamental challenges (i.e., carbon fixation and stress tolerance) during their lifespan. However, the relationships between leaf production potential and leaf tolerance potential have not been explicitly tested with a broad range of plant species in the same environment. To do so, we conducted a field investigation based on 107 woody plants grown in a common garden and complementary laboratory measurements. The values, as measured by a chlorophyll meter, were significantly related to the direct measurements of chlorophyll content on a leaf area basis. Area-based chlorophyll content was positively correlated with root surface area, whole-plant biomass, leaf mass per area (LMA), and force to punch. Additionally, LMA had a positive correlation with force to punch. Shrubs had a higher leaf chlorophyll content than trees; however, shrubs and trees exhibited a similar leaf lifespan, force to punch, and LMA. These findings suggest that the production potential of leaves and their tolerance to stresses may be convergent in woody species and that the leaf production potential may differ between shrubs and trees. This study highlights the possibility that functional convergence and divergence might be linked to long-term selection pressures and genetic constraints. PMID:26854019
Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong; ...
2014-07-25
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Beckerman, Andrew P.; Gu, Lianhong
Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between Vcmax and Jmax and leaf nitrogen (N) are typically derivedmore » from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between Vcmax and Jmax and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of Vcmax and Jmax with leaf N, P, and SLA. Vcmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of Vcmax to leaf N. Jmax was strongly related to Vcmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Lastly, we show that plants may employ a conservative strategy of Jmax to Vcmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.« less
2014-01-01
Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154
Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A
2016-09-01
Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
W. K. Smith; A. W. Schoettle; M. Cui
1991-01-01
Net CO(2) uptake in full sunlight, total leaf area (TLA), projected leaf area of detached leaves (PLA), and the silhouette area of attached leaves in their natural orientation to the sun at midday on June 1 (SLA) were measured for sun shoots of six conifer species. Among species, TLA/SLA ranged between 5.2 and 10.0 (x bar = 7.3), TLA/PLA ranged between 2.5 and 2.9 (x...
Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey
2011-01-01
Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...
Scott D. Roberts; Thomas J. Dean; David L. Evans; John W. McCombs; Richard L. Harrington; Partick A. Glass
2005-01-01
Accurate estimates of leaf area index (LAI) could provide useful information to forest managers, but due to difficulties in measurement, leaf area is rarely used in decision-making. A reliable approach to remotely estimating LA1 would greatly facilitate its use in forest management. This study investigated the potential for using small-footprint iDAR, a laser-based...
Schoonmaker, A S; Lieffers, V J; Landhäusser, S M
2016-07-01
In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.
Peer, W A; Briggs, W R; Langenheim, J H
1999-05-01
Shade-avoidance responses were examined for two species common to the coastal redwood forest, Sequoia sempervirens and Satureja douglasii. Sequoia seedlings demonstrated a shade-avoidance response when given end-of-day far-red light by increased hypocotyl, epicotyl, and first-node extension, and greater total number of needles and reduced anthocyanin concentration. Thus, Sequoia seedlings respond as sun-adapted plants. Satureja has several leaf monoterpene chemotypes that occur in different light environments including the redwood forest, and the types responded differently to the light treatments. The pulegone type responded to end-of-day far-red light as a sun-adapted plant with significant extension growth, increased leaf area and chlorophyll, and reduced anthocyanin. The isomenthone type responded as a shade-tolerant plant and did not exhibit extension growth nor a change in other parameters with end-of-day far-red light. However, the carvone and bicyclic types had variable responses depending on the parameter studied, which indicated genetic variation for these traits.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng
2007-10-01
Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.
Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng
2016-07-01
Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently, the PMS increased the SPAD values in flag leaves of spring wheat, and the capacity of flag leaves for photo energy assimilation and photosynthetic gas exchange were enhanced, caused more photosynthetic energy flowing into photochemical process, as well as decreased the heat dissipation, resulted in the increment of P n and WUE i . Based on the higher P n and LAI, the yield and WUE of PMS increased.
NASA Astrophysics Data System (ADS)
Runkle, B.; Sonnentag, O.; Detto, M.; Liang, X.; Dracup, J. A.; Baldocchi, D. D.
2009-12-01
Perennial pepperweed (Lepidium latifolium) is an ecological and economic nuisance to much of the western United States, where its invasion threatens a diverse set of land areas. We characterized the leaf-level parameters governing pepperweed’s photosynthesis through field measurements and determine through modelling simulations that it is well-adapted to resource procural in present and predicted future climates. These measurements are taken under field conditions for the duration of a long growing season (a nine month period in 2008) in a peatlands pasture in California’s Sacramento-San Juaquin River Delta. Through carbon and light response curves, pepperweed is found to have a high capacity for taking up carbon dioxide in either RuBP or Rubisco-limited situations, and its physiology is well-adapted to dry, hot and saline environments. Numerical modelling of the A-Ci curves suggests that internal (or mesophyll) conductance plays a negligible role in limiting carbon uptake. Pepperweed’s stomata are found to allow more conductance than predicted by models for periods of lower vapor pressure deficit, when it may be more water-use efficient to photosynthesize. Moreover, its high leaf nitrogen content (2-6% nitrogen by dry leaf mass), particularly at the start of the growing season, suggests a plant highly capable of out-competing native and economic species in acquisitioning local resources. These parameters are used in numerical exercises to move from the leaf to the field scale, where they are supported by eddy covariance measurements. This model is then used to evaluate and predict the response of pepperweed to seasonal and climatic change. The results presented here should provide a valuable point of comparison to ecologists and land managers interested in the spread of L. latifolium.
Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A
2010-06-01
Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.
El Zerey-Belaskri, Asma; Benhassaini, Hachemi
2016-04-01
The effect of bioclimate range on the variation in Pistacia atlantica Desf. subsp. atlantica leaf morphology was studied on 16 sites in Northwest Algeria. The study examined biometrically mature leaves totaling 3520 compound leaves. Fifteen characters (10 quantitative and 5 qualitative) were assessed on each leaf. For each quantitative character, the nested analysis of variance (ANOVA) was used to examine relative magnitude of variation at each level of the nested hierarchy. The correlation between the climatic parameters and the leaf morphology was examined. The statistical analysis applied on the quantitative leaf characters showed highly significant variation at the within-site level and between-site variation. The correlation coefficient (r) showed also an important correlation between climatic parameters and leaf morphology. The results of this study exhibited several values reported for the first time on the species, such as the length and the width of the leaf (reaching up to 24.5 cm/21.9 cm), the number of leaflets (up to 18 leaflets/leaf), and the petiole length of the terminal leaflet (reaching up to 3.4 cm). The original findings of this study are used to update the P. atlantica subsp. atlantica identification key.
Error analysis of leaf area estimates made from allometric regression models
NASA Technical Reports Server (NTRS)
Feiveson, A. H.; Chhikara, R. S.
1986-01-01
Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing).
Carter, Jennifer L; White, Donald A
2009-11-01
Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.
Concerning the relationship between evapotranspiration and soil moisture
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Chang, Jy-Tai
1987-01-01
The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Day, T.A.; Howells, B.W.; Ruhland, C.T.
1995-06-01
In growth-chamber and greenhouse studies, garden pea is typically quite sensitive to enhanced UV-B radiation (280-320 nm). We assessed whether growth of pea was reduced under more ecologically relevant UV-B enhancements by employing modulated field lampbanks simulating 0, 16 or 24% ozone depletion. We also examined if these UV-B treatments altered leaf anatomy and concentrations of chlorophyll and UV-B-absorbing compounds, and whether this was dependent on leaf age. We used Pisum sativum mutant Argenteum which has an easily detachable epidermis that allowed us to compare concentrations in epidermal and mesophyll tissues. There were no significant UV-B effects on whole-plant growth.more » Of the 15 leaf-level parameters we examined, UV-B had a strong effect on only two parameters: the ratio of UV-B-absorbing compounds to chlorophyll (which increased with UV-B dose), and stomatal density of the adaxial surface (which decreased with UV-B dose). Chlorophyll concentrations tended to decrease, while the proportion of UV-B-absorbing compounds in the adaxial epidermis tended to increase with UV-B dose (p = 0.11 for both). In contrast to UV-B effects, we found strong leaf-age effects on nearly all parameters except the ratio of UV-B-absorbing compounds to chlorophyll, which remained relatively constant with leaf age.« less
Tree ecophysiology research at Taylor Woods
Thomas E. Kolb; Nate G. McDowell
2008-01-01
We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...
NASA Astrophysics Data System (ADS)
Natyanun, S.; Unai, S.; Yu, L. D.; Tippawan, U.; Pussadee, N.
2017-09-01
This study was aimed at understanding elemental concentration distribution in local longan leaf for how the plant was affected by the environment or agricultural operation. The analysis applied the MeV-microbeam particle induced X-ray emission (PIXE) mapping technique using a home-developed tapered glass capillary microbeam system at Chiang Mai University. The microbeam was 2-MeV proton beam in 130 µm in diameter. The studying interest was in the difference in the elemental concentrations distributed between the leaf midrib and lamina areas. The micro proton beam analyzed the leaf sample across the leaf midrib edge to the leaf lamina area for total 9 data requisition spots. The resulting data were colored to form a 1D-map of the elemental concentration distribution. Seven dominant elements, Al, S, Cl, K, Ca, Sc and Fe, were identified, the first six of which were found having higher concentrations in the midrib area than in the lamina area, while the Fe concentration was in an opposite trend to that of the others.
NASA Astrophysics Data System (ADS)
Tucić, Branka; Tomić, Vladimir; Avramov, Stevan; Pemac, Danijela
1998-12-01
A multivariate selection analysis has been used to test the adaptiveness of several Iris pumila leaf traits that display plasticity to natural light conditions. Siblings of a synthetic population comprising 31 families of two populations from contrasting light habitats were grown at an open dune site and in the understory of a Pinus nigra stand in order to score variation in phenotypic expression of six leaf traits: number of senescent leaves, number of live leaves, leaf length, leaf width, leaf angle, and specific leaf area. The ambient light conditions affected the values of all traits studied except for specific leaf area. In accordance to ecophysiological expectations for an adaptive response to light, both leaf length and width were significantly greater while the angle between sequential leaves was significantly smaller in the woodland understory than at the exposed dune site. The relationship between leaf traits and vegetative fitness (total leaf area) differed across light habitats as predicted by functional hypotheses. The standardized linear selection gradient ( β') for leaf length and width were positive in sign in both environments, but their magnitude for leaf length was higher in the shade than under full sunlight. Since plasticity of leaf length in the woodland shade has been recognized as adaptive, fitness cost of producing plastic change in leaf length was assessed. In both of the available methods used, the two-step and the multivariate regression procedures, a rather high negative association between the fitness value and the plasticity of leaf length was obtained, indicating a cost of plasticity. The selection gradient for leaf angle was weak and significant only in the woodland understory. Genetic correlations between trait expressions in contrasting light environments were negative in sign and low in magnitude, implying a significant genetic variation for plasticity in these leaf traits. Furthermore, leaf length and leaf width were found to be genetically positively coupled, which indicates that there is a potential for these two traits to evolve toward their optimal phenotypic values even faster than would be expected if they were genetically independent.
NASA Astrophysics Data System (ADS)
Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet
2018-01-01
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.
Improved assessment of gross and net primary productivity of Canada's landmass
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien
2013-12-01
assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.
NASA Astrophysics Data System (ADS)
Salvucci, Guido D.; Gentine, Pierre
2013-04-01
The ability to predict terrestrial evapotranspiration (E) is limited by the complexity of rate-limiting pathways as water moves through the soil, vegetation (roots, xylem, stomata), canopy air space, and the atmospheric boundary layer. The impossibility of specifying the numerous parameters required to model this process in full spatial detail has necessitated spatially upscaled models that depend on effective parameters such as the surface vapor conductance (Csurf). Csurf accounts for the biophysical and hydrological effects on diffusion through the soil and vegetation substrate. This approach, however, requires either site-specific calibration of Csurf to measured E, or further parameterization based on metrics such as leaf area, senescence state, stomatal conductance, soil texture, soil moisture, and water table depth. Here, we show that this key, rate-limiting, parameter can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and E. The relation is that the vertical variance of the relative humidity profile is less than would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. It is found to hold over a wide range of climate conditions (arid-humid) and limiting factors (soil moisture, leaf area, energy). With this relation, estimates of E and Csurf can be obtained globally from widely available meteorological measurements, many of which have been archived since the early 1900s. In conjunction with precipitation and stream flow, long-term E estimates provide insights and empirical constraints on projected accelerations of the hydrologic cycle.
Salvucci, Guido D; Gentine, Pierre
2013-04-16
The ability to predict terrestrial evapotranspiration (E) is limited by the complexity of rate-limiting pathways as water moves through the soil, vegetation (roots, xylem, stomata), canopy air space, and the atmospheric boundary layer. The impossibility of specifying the numerous parameters required to model this process in full spatial detail has necessitated spatially upscaled models that depend on effective parameters such as the surface vapor conductance (C(surf)). C(surf) accounts for the biophysical and hydrological effects on diffusion through the soil and vegetation substrate. This approach, however, requires either site-specific calibration of C(surf) to measured E, or further parameterization based on metrics such as leaf area, senescence state, stomatal conductance, soil texture, soil moisture, and water table depth. Here, we show that this key, rate-limiting, parameter can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and E. The relation is that the vertical variance of the relative humidity profile is less than would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. It is found to hold over a wide range of climate conditions (arid-humid) and limiting factors (soil moisture, leaf area, energy). With this relation, estimates of E and C(surf) can be obtained globally from widely available meteorological measurements, many of which have been archived since the early 1900s. In conjunction with precipitation and stream flow, long-term E estimates provide insights and empirical constraints on projected accelerations of the hydrologic cycle.
Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.
Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P
2018-04-16
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Poeydebat, Charlotte; Carval, Dominique; Tixier, Philippe; Daribo, Marie-Odette; De Lapeyre De Bellaire, Luc
2018-05-04
Black leaf streak disease (BLSD), caused by the fungus Mycosphaerella fijiensis, is an important threat to banana production. Although its control relies on costly and unsustainable use of fungicides, ecological regulation of BLSD linked to field-scale plant diversity has received little attention. We monitored banana phytometers in plots in banana-based fields where no fungicides were applied. Within each plot, we measured plant richness in three strata, canopy openness, necrotic leaf removal, Musa abundance and richness. We quantified ecological regulation of five BLSD parameters (inoculum sources, spore abundance, lesion density, incubation time, and the area under the disease progression curve) and identified, using structural equation modeling, the characteristics of the plant community and the mechanisms likely responsible for the regulation. Regulation occurred, but most effectively before lesion formation, and was mainly related to plant richness between 1.5 and 5m high. A barrier effect, rather than a dilution effect, more likely limited spore abundance. Our results support the hypothesis that the potential effects of plant richness on leaf-scale microclimate variability and on the diversity of epiphyllic microorganisms are involved in the regulation of incubation time and lesion density. Field-scale management of plant diversity may be a promising lever to foster ecological regulation of BLSD.
Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai
2018-03-01
With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.
Uieda, V S; Carvalho, E M
2015-05-01
Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.
[Quantitative estimation of evapotranspiration from Tahe forest ecosystem, Northeast China].
Qu, Di; Fan, Wen-Yi; Yang, Jin-Ming; Wang, Xu-Peng
2014-06-01
Evapotranspiration (ET) is an important parameter of agriculture, meteorology and hydrology research, and also an important part of the global hydrological cycle. This paper applied the improved DHSVM distributed hydrological model to estimate daily ET of Tahe area in 2007 using leaf area index and other surface data extracted TM remote sensing data, and slope, aspect and other topographic indices obtained by using the digital elevation model. The relationship between daily ET and daily watershed outlet flow was built by the BP neural network, and a water balance equation was established for the studied watershed, together to test the accuracy of the estimation. The results showed that the model could be applied in the study area. The annual total ET of Tahe watershed was 234.01 mm. ET had a significant seasonal variation. The ET had the highest value in summer and the average daily ET value was 1.56 mm. The average daily ET in autumn and spring were 0.30, 0.29 mm, respectively, and winter had the lowest ET value. Land cover type had a great effect on ET value, and the broadleaf forest had a higher ET ability than the mixed forest, followed by the needle leaf forest.
Does citrus leaf miner impair hydraulics and fitness of citrus host plants?
Raimondo, Fabio; Trifilò, Patrizia; Gullo, Maria A Lo
2013-12-01
Gas exchange and hydraulic features were measured in leaves of three different Citrus species (Citrus aurantium L., Citrus limon L., Citrus × paradisii Macfad) infested by Phyllocnistis citrella Staiton, with the aim to quantify the impact of this pest on leaf hydraulics and, ultimately, on plant fitness. Infested leaves were characterized by the presence on the leaf blade of typical snake-shaped mines and, in some cases, of a crumpled leaf blade. Light microscopy showed that leaf crumpling was induced by damage to the cuticular layer. In all three Citrus species examined: (a) the degree of infestation did not exceed 10% of the total surface area of infested plants; (b) control and infested leaves showed similar values of minimum diurnal leaf water potential, leaf hydraulic conductance and functional vein density; and (c) maximum diurnal values of stomatal conductance to water vapour, transpiration rate and photosynthetic rate (An) were similar in both control leaves and the green areas of infested leaves. A strong reduction of An was recorded only in mined leaf areas. Our data suggest that infestation with P. citrella does not cause conspicuous plant productivity reductions in young Citrus plants, at least not in the three Citrus species studied here.
C. Song; M.B. Dickinson
2008-01-01
Leaves are the primary interface where energy, water and carbon exchanges occur between the forest ecosystems and the atmosphere. Leaf area index (LAI) is a measure of the amount of leaf area in a stand, and the tree crown size characterizes how leaves are clumped in the canopy. Both LAI and tree crown size are of essential ecological and management value. There is a...
Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner
2014-01-01
Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283
NASA Astrophysics Data System (ADS)
Puglielli, Giacomo; Fiore Crescente, Maria; Frattaroli, Anna Rita; Gratani, Loretta
2016-04-01
Plant and leaf traits directly affect ecosystem processes ensuring carbon, nutrient and water exchanges between soil and atmosphere through the photosynthetic activity. Nevertheless, a great within sites variation in plant and leaf traits can be found resulting in different adaptive strategies in coexisting species. Leaf mass per unit of leaf area (LMA) is an important trait to understand plant functional ecology being the outcome of leaf anatomy and related to photosynthesis. We hypothesized that LMA was the main predictor of the adaptive strategies of Sesleria nitida (S1) and Sesleria juncifolia (S2), growing on the screes and on the crests of the summit area, respectively, on Mount Terminillo (Central Apennines, Loc. Sella di Leonessa, 1895 m a.s.l.). To test our hypothesis we broke LMA down into anatomical components, leaf tissue density (LTD) and thickness (LT) and then relating them to gas exchange parameters on twenty plants per species cultivated ex situ. LTD explained 69% of LMA variations in S1 while the relationship with LT was not significant. Moreover, LTD was negatively correlated with LT in S1 driving to a 17% higher volume of the intercellular air spaces, which increases the CO2 partial pressure at the carboxylation sites. This result was also attested by the significant relationship between LTD and both net photosynthesis per unit leaf area (Aa) and mass (Am) (R= 0.56 and -0.49, respectively), highlighting the role of LTD in determining the photosynthetic process in S1. LMA scaled with both LTD and LT explaining 82% and 70% of LMA variations in S2. Moreover, the positive relationship between LTD and LT (R2 = 0.52) highlighted a coordination between the variables in controlling the photosynthetic process. In particular, LTD and LT controlled the transactions of carbon and water through the leaf surface, being positively related to Aa (R= 0.93 and 0.79 for LTD and LT, respectively). Nevertheless, an increase in LT and LTD decreased Am (R = -0.9 and -0.8, respectively). This could be justified by the stronger control of water losses in S2 through a reduction of CO2 diffusion due to the increase in LT and LTD, attested by 6% and 30% lower sub stomatal CO2 concentration (Ci) and stomatal conductance (gs) compared to S1. By analyzing variations in LMA components we demonstrated that S. nitida maximizes carbon uptake mainly by LTD reduction while S. juncifolia reduces photosynthetic capacity and maximize water storage by increasing both LTD and LT. The analysis of the components for LMA provide better insight on uptake and storage strategies of resources such as CO2 and water by allowing the analysis of the relationship between physiological processes, leaf anatomy and environmental conditions.
Coupled hydraulic and photosynthetic feedbacks on forest transpiration throughout the growing season
NASA Astrophysics Data System (ADS)
Mackay, D. S.; Ewers, B. E.
2007-12-01
Ecosystem models account for vegetative controls on water fluxes using environmental drivers and hydraulic and/or biochemical limits on canopy stomatal conductance (Gs), variations in space and time of leaf area index (L), and species or biome specific parameters. However, some parameters, such as maximum stomatal conductance or its reference proxy at vapor pressure deficit of 1 kPa (Gsref), may not be strictly time-independent suggesting as yet undefined mechanisms in the models. We developed a model of coupled canopy water and carbon exchange, which allowed us to examine photosynthetic and hydraulic feedbacks on Gsref spanning the whole growing season for several dominant tree species in wetland and upland positions that collectively account for most a 1600 square km region centered on the WLEF AmeriFlux tower in Wisconsin, USA. The model assimilated half-hourly sap flux and micrometeorological data to quantify and explain temporal variations in Gsref for trembling aspen, sugar maple, and red pine in upland sites, and speckled alder and white cedar in wetland sites. Results show (1) phenological effects on photosynthetic activity with feedback on Gsref in all species, and (2) lags of up to two months between maximum per unit leaf area photosynthetic rates for conifer versus deciduous species. These results show that for given environmental conditions canopy transpiration depends on both L and timing of biochemical activation, both of which have implications for regional ecosystem water cycling.
Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter
2015-01-01
Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122
Leaf-on canopy closure in broadleaf deciduous forests predicted during winter
Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.
2015-01-01
Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.
The Derivation of Sink Functions of Wheat Organs using the GREENLAB Model
Kang, Mengzhen; Evers, Jochem B.; Vos, Jan; de Reffye, Philippe
2008-01-01
Background and Aims In traditional crop growth models assimilate production and partitioning are described with empirical equations. In the GREENLAB functional–structural model, however, allocation of carbon to different kinds of organs depends on the number and relative sink strengths of growing organs present in the crop architecture. The aim of this study is to generate sink functions of wheat (Triticum aestivum) organs by calibrating the GREENLAB model using a dedicated data set, consisting of time series on the mass of individual organs (the ‘target data’). Methods An experiment was conducted on spring wheat (Triticum aestivum, ‘Minaret’), in a growth chamber from, 2004 to, 2005. Four harvests were made of six plants each to determine the size and mass of individual organs, including the root system, leaf blades, sheaths, internodes and ears of the main stem and different tillers. Leaf status (appearance, expansion, maturity and death) of these 24 plants was recorded. With the structures and mass of organs of four individual sample plants, the GREENLAB model was calibrated using a non-linear least-square-root fitting method, the aim of which was to minimize the difference in mass of the organs between measured data and model output, and to provide the parameter values of the model (the sink strengths of organs of each type, age and tiller order, and two empirical parameters linked to biomass production). Key Results and Conclusions The masses of all measured organs from one plant from each harvest were fitted simultaneously. With estimated parameters for sink and source functions, the model predicted the mass and size of individual organs at each position of the wheat structure in a mechanistic way. In addition, there was close agreement between experimentally observed and simulated values of leaf area index. PMID:18045794
Yin, Xinyou
2012-01-01
To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131
Berghuijs, Herman N. C.; Yin, Xinyou; Ho, Q. Tri; Verboven, Pieter; Nicolaï, Bart M.
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters. PMID:28880924
Berghuijs, Herman N C; Yin, Xinyou; Ho, Q Tri; Retta, Moges A; Verboven, Pieter; Nicolaï, Bart M; Struik, Paul C
2017-01-01
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Sjölin, Maria; Edmund, Jens Morgenthaler
2016-07-01
Dynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect. 16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated. The change in PTV and organs at risk DVH parameters were 0.4-4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3mm (per beam and composite plan) and 3%G/2mm (composite plan) for the diode array phantom and 2%G/2mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6. A DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3mm per beam gamma setting. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, R. T.; Coops, N. C.; Parlange, M. B.
2017-08-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on turbulence, aerodynamic parameters, and momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighborhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Data from airborne light detection and ranging (LiDAR) are used to represent both buildings and vegetation at the LES resolution. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed including and excluding vegetation from the considered urban areas, varying wind direction and leaf area density. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI /λfb < 3 parameter, where LAI is the leaf area index and λfb is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI / λfSUP>b = 0.74 , leaves-on LAI /λfb = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI / λfb increases, due in large part to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. LES and measurements both predict an increase in the ratio of turbulent to mean kinetic energy (TKE/MKE) at the tower sampling height going from winter to summer, and LES also show how including vegetation results in a more (positive) negatively skewed (horizontal) vertical velocity distribution - reflecting a more intermittent velocity field which favors sweep motions when compared to ejections. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.
Effect of acid mist and air pollutants on yellow-poplar seedling height and leaf growth
Leon S. Dochinger; Keith F. Jensen; Keith F. Jensen
1985-01-01
One-year-old yellow-poplar seedlings were treated with acid mist at pH 2.5, 3.5, 4.5, and 5.5 either alone or in combination with 0.1 ppm 03, S02, and NO2 or NO2 plus S02. After 4 and 8 weeks of treatment, height, leaf area, and leaf and new shoot weight were determined and growth analysis variables calculated. Height, leaf area, and dry weight decreased with...
Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe
2015-01-01
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096
Tree ecophysiology research at Taylor Woods (P-53)
Thomas E. Kolb; Nate G. McDowell
2008-01-01
We summarize the key findings of tree ecophysiology studies performed at Taylor Woods, Fort Valley Experimental Forest, Arizona between 1994 and 2003 that provide unique insight on impacts of long-term stand density management in ponderosa pine forests on tree water relations, leaf gas exchange, radial growth, leaf area-to-sapwood-area ratio, growth efficiency, leaf...
Leaf area and net photosynthesis during development of Prunus serotina seedlings
Stephen B. Horsley; Kurt W. Gottschalk
1993-01-01
We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...
Sapwood area as an estimator of leaf area and foliar weight in cherrybark oak and green ash
James S. Meadows; John D. Hodges
2002-01-01
The relationships between foliar weight/leaf area and four stem dimensions (d.b.h., total stem cross-sectional area, total sapwood area, and current sapwood area at breast height) were investigated in two important bottomland tree species of the Southern United States, cherrybark oak (Quercus falcata var. pagodifolia ...
Temporal relationships between spectral response and agronomic variables of a corn canopy
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III
1981-01-01
Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.
Effects of trees on momentum exchange within and above a real urban environment
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Christen, A.; Egli, P. E.; Schmid, M. F.; Tooke, T. R.; Coops, N. C.; Parlange, M. B.
2017-12-01
Large-eddy simulations (LES) are used to gain insight into the effects of trees on momentum transfer rates characterizing the atmosphere within and above a real urban canopy. Several areas are considered that are part of a neighbourhood in the city of Vancouver, BC, Canada where a small fraction of trees are taller than buildings. In this area, eight years of continuous wind and turbulence measurements are available from a 30 m meteorological tower. Buildings and vegetation geometries are obtained from airborne light detection and ranging (LiDAR) data. In the LES algorithm, buildings are accounted through an immersed boundary method, whereas vegetation is parameterized via a location-specific leaf area density. LES are performed varying wind direction and leaf area densities. Surface roughness lengths (z0) from both LES and tower measurements are sensitive to the 0 ≤ LAI/λ < 3 parameter, where LAI is the leaf area index and λ is the frontal area fraction of buildings characterizing a given canopy. For instance, tower measurements predict a 19% seasonal increase in z0, slightly lower than the 27% increase featured by LES for the most representative canopy (leaves-off LAI/λ = 0.74, leaves-on LAI/λ = 2.24). Removing vegetation from such a canopy would cause a dramatic drop of approximately 50% in z0 when compared to the reference summer value. The momentum displacement height (d) from LES also consistently increases as LAI/λ increases, due to the disproportionate amount of drag that the (few) relatively taller trees exert on the flow. Within the urban canopy, the effects of trees are twofold: on one hand, they act as a direct momentum sink for the mean flow; on the other, they reduce downward turbulent transport of high-momentum fluid, significantly reducing the wind intensity at the heights where people live and buildings consume energy.
Gspaltl, Martin; Bauerle, William; Binkley, Dan; Sterba, Hubert
2013-01-01
Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis). PMID:25540477
Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang
2016-01-01
Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048
Size-dependent enhancement of water relations during post-fire resprouting.
Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A
2014-04-01
In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, K; Alopoor, H
Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less
Higher Plants in life support systems: design of a model and plant experimental compartment
NASA Astrophysics Data System (ADS)
Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles
The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi-ronmental control of plant behavior: this requires an extended knowledge of plant response to environment variations. This needs a large number of experiments, which would be easier to perform in a high-throughput system.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd
2017-08-01
Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large dataset of δDwax from trees and grasses that aimed to mirror the variability of environmental factors over geological time frames showed the lapse rates were significant, but much smaller than in previous studies. Most importantly our result demonstrated that the lapse rate significantly differed for both transects (p = 0.0068), i.e. 0.87 ± 0.71‰/100 m (R2 = 0.28, p = 0.2841, n = 6) and 2.28 ± 0.82‰/100 m (R2 = 0.34, p = 0.0135, n = 17) for Indian monsoon and Westerly dominated areas, respectively. This suggests that different moisture sources might strongly affected the observed lapse rates. In consequences altitude reconstructions are strongly complicated in areas with likely changing air masses like the Tibetan Plateau.
Pasquet-Kok, Jessica; Creese, Christine; Sack, Lawren
2010-12-01
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts. © 2010 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less
Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...
2016-11-24
Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less
Sánchez-Blanco, Ma Jesús; Alvarez, Sara; Navarro, Alejandra; Bañón, Sebastián
2009-03-15
Geranium plants are an important part of urban green areas but suffer from drought, especially when grown in containers with a limited volume of medium. In this experiment, we examined the response of potted geraniums to different irrigation levels. Geranium (Pelargoniumxhortorum L.) seedlings were grown in a growth chamber and exposed to three irrigation treatments, whereby the plants were irrigated to container capacity (control), 60% of the control (moderate deficit irrigation, MDI), or 40% of the control (severe deficit irrigation, SDI). Deficit irrigation was maintained for 2 months, and then all the plants were exposed to a recovery period of 112 month. Exposure to drought induced a decrease in shoot dry weight and leaf area and an increase in the root/shoot ratio. Height and plant width were significantly inhibited by the SDI, while flower color parameters were not affected by deficit treatment. The number of wilting and yellow leaves increased, coinciding with the increase in the number of inflorescences and open flowers. Deficit irrigation led to a leaf water potential of about -0.8MPa at midday, which could have caused an important decrease in stomatal conductance, affecting the photosynthetic rate (Pn). Chlorophyll fluorescence (Fvm) values of 0.80 in all treatments throughout the experiment demonstrate the lack of drought-induced damage to PSII photochemistry. Pressure-volume analysis revealed low osmotic adjustment values of 0.2MPa in the SDI treatment, accompanied by increases in the bulk tissue elastic modulus (epsilon, wall rigidity) and resulting in turgor loss at lower leaf water potential values (-1.38MPa compared with -1.0MPa for the control). Leaf water potential values throughout the experiment below those for Psitlp were not found at any sampling time. By the end of the recovery period, the leaf water potential, stomatal conductance and net photosynthesis had recovered. We infer from these results that moderate deficit irrigation in geranium reduced the consumption of water, while maintaining the good overall quality of plants. However, when SDI was applied, a reduction in the number of flowers per plant was observed.
Grubb, Peter J.; Jackson, Robyn V.; Barberis, Ignacio M.; Bee, Jennie N.; Coomes, David A.; Dominy, Nathaniel J.; De La Fuente, Marie Ann S.; Lucas, Peter W.; Metcalfe, Daniel J.; Svenning, Jens-Christian; Turner, Ian M.; Vargas, Orlando
2008-01-01
Background and Aims In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion. Methods At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants. Key Results At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots. Conclusions The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed. PMID:18387972
Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd
2013-01-01
Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941
Synthesis and antimicrobial activity of palladium nanoparticles from Prunus × yedoensis leaf extract
USDA-ARS?s Scientific Manuscript database
The eco-friendly production of palladium nanoparticles (PdNPs) by Prunus × yedoensis tree leaf extract was studied for the first time. Initial confirmation of PdNP production was confirmed by a color change from light yellow to dark brown. The optimization parameters show that pH 7, 8% leaf extract,...
NASA Astrophysics Data System (ADS)
Geist, Simon Joscha; Nordhaus, Inga; Hinrichs, Saskia
2012-01-01
Diversity and composition of the intertidal brachyuran crab community in the Segara Anakan Lagoon (SAL), Java, Indonesia, during the dry season of 2005 and the rainy season of 2006, shows that crab community composition and structure alone appeared to be poor indicators for the state of a forest in terms of tree diversity and wood-cutting intensity. The lagoon is surrounded by the largest mangrove stand in Java and is under constant anthropogenic pressure, mainly due to logging, land conversion for agriculture, overfishing and industrial pollution. This study aims to determine the crab community composition at different sites of the lagoon in relation to vegetation composition and sediment parameters. In addition it investigates if mangrove crabs can be used as bioindicators to describe the environmental state of mangrove forests (tree diversity, degree of logging). It was assumed to find a low crab diversity and species richness and a strong dominance of a single species at highly disturbed forest sites compared to moderately disturbed sites. A stratified, hierarchical design was used to sample the crab fauna at 13 stations distributed over the entire lagoon. Additionally, abiotic parameters and vegetation composition were recorded. In total 6463 crabs were caught belonging to 49 species, 5 superfamilies and 10 families, with Ocypodidae and Sesarmidae being the families of most note. Mean density of adult crabs was 27.7 individuals*m -2 and mean biomass was 12.8 g wet mass*m -2 or 1.3 g ash free dry mass*m -2. Density and biomass varied strongly within and between stations but they where within the range reported for other mangrove forests of the Indo-West-Pacific. Species composition was significantly different between stations. The distribution of facultatively leaf-feeding grapsid crabs was related to vegetation parameters (tree, seedling and undergrowth density), but the occurrence of single crab and tree species was not correlated. The distribution of ocypodid crabs, feeding on detritus and microphytobenthos, correlated with sediment characteristics like median grain size and organic content. The crab community was strongly dominated by one species at six stations, however, this was not correlated to the degree of logging. Leaf-feeding crab and mangrove tree diversity was correlated at areas of one hectare (stations), but not at a lower spatial scale (areas of 100 m 2, "zone"). Species richness of leaf-feeding crabs was not linked to forest diversity. Hence a functional relation between leaf-feeding crab and tree species diversity could not be proven.
SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, X; Zhu, T
2014-06-01
Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less
Durkovic, Jaroslav; Canová, Ingrid; Lagana, Rastislav; Kucerová, Veronika; Moravcík, Michal; Priwitzer, Tibor; Urban, Josef; Dvorák, Milon; Krajnáková, Jana
2013-02-01
Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids 'Groeneveld' and 'Dodoens' which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of 'Groeneveld' and 'Dodoens' grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. 'Dodoens' had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. 'Groeneveld' had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of 'Dodoens' were unaffected by the DED fungus. 'Dodoens' proved to be a valuable elm germplasm for further breeding strategies.
Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L
2007-10-01
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.
Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G
2017-03-01
Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
[Quantitative relationships between hyper-spectral vegetation indices and leaf area index of rice].
Tian, Yong-Chao; Yang, Jie; Yao, Xia; Zhu, Yan; Cao, Wei-Xing
2009-07-01
Based on field experiments with different rice varieties under different nitrogen application levels, the quantitative relationships of rice leaf area index (LAI) with canopy hyper-spectral parameters at different growth stages were analyzed. Rice LAI had good relationships with several hyper-spectral vegetation indices, the correlation coefficient being the highest with DI (difference index), followed by with RI (ratio index), and NI (normalized index), based on the spectral reflectance or the first derivative spectra. The two best spectral indices for estimating LAI were the difference index DI (854, 760) (based on two spectral bands of 850 nm and 760 nm) and the difference index DI (D676, D778) (based on two first derivative bands of 676 nm and 778 nm). In general, the hyper-spectral vegetation indices based on spectral reflectance performed better than the spectral indices based on the first derivative spectra. The tests with independent dataset suggested that the rice LAI monitoring models with difference index DI (854,760) as the variable could give an accurate LAI estimation, being available for estimation of rice LAI.
Free-space optical communication through a forest canopy.
Edwards, Clinton L; Davis, Christopher C
2006-01-01
We model the effects of the leaves of mature broadleaf (deciduous) trees on air-to-ground free-space optical communication systems operating through the leaf canopy. The concept of leaf area index (LAI) is reviewed and related to a probabilistic model of foliage consisting of obscuring leaves randomly distributed throughout a treetop layer. Individual leaves are opaque. The expected fractional unobscured area statistic is derived as well as the variance around the expected value. Monte Carlo simulation results confirm the predictions of this probabilistic model. To verify the predictions of the statistical model experimentally, a passive optical technique has been used to make measurements of observed sky illumination in a mature broadleaf environment. The results of the measurements, as a function of zenith angle, provide strong evidence for the applicability of the model, and a single parameter fit to the data reinforces a natural connection to LAI. Specific simulations of signal-to-noise ratio degradation as a function of zenith angle in a specific ground-to-unmanned aerial vehicle communication situation have demonstrated the effect of obscuration on performance.
Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-01-01
The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856
Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model
NASA Astrophysics Data System (ADS)
Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.
2015-12-01
A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawn Serbin; Alistair Rogers; Kim Ely
Carbon, Nitrogen and Leaf Mass Area of leaves sampled from locations on the Kougarok Rd (transect A) and Teller Rd NGEE Arctic study sites, Seward Peninsula, Alaska. Species include: Alnus viridis spp. fruticosa, Arctostaphylos rubra, Betula glandulosa, Chamerion latifolium, Petasites frigidus, Salix alaxensis, Salix glauca, Salix pulchra, Salix richardsonii and Vaccinium uliginosum.
Multi-temporal UAV-borne LiDAR point clouds for vegetation analysis - a case study
NASA Astrophysics Data System (ADS)
Mandlburger, Gottfried; Wieser, Martin; Hollaus, Markus; Pfennigbauer, Martin; Riegl, Ursula
2016-04-01
In the recent past the introduction of compact and lightweight LiDAR (Light Detection And Ranging) sensors together with progress in UAV (Unmanned Aerial Vehicle) technology allowed the integration of laser scanners on remotely piloted multicopter, helicopter-type and even fixed-wing platforms. The multi-target capabilities of state-of-the-art time-of-flight full-waveform laser sensors operated from low flying UAV-platforms has enabled capturing of the entire 3D structure of semi-transparent objects like deciduous forests under leaf-off conditions in unprecedented density and completeness. For such environments it has already been demonstrated that UAV-borne laser scanning combines the advantages of terrestrial laser scanning (high point density, short range) and airborne laser scanning (bird's eye perspective, homogeneous point distribution). Especially the oblique looking capabilities of scanners with a large field of view (>180°) enable capturing of vegetation from different sides resulting in a constantly high point density also in the sub canopy domain. Whereas the findings stated above were drawn based on a case study carried out in February 2015 with the Riegl VUX-1UAV laser scanner system mounted on a Riegl RiCopter octocopter UAV-platform over an alluvial forest at the Pielach River (Lower Austria), the site was captured a second time with the same sensor system and mission parameters at the end of the vegetation period on October 28th, 2015. The main goal of this experiment was to assess the impact of the late autumn foliage on the achievable 3D point density. Especially the entire understory vegetation and certain tree species (e.g. willow) were still in full leaf whereas the bigger trees (poplar) where already partly defoliated. The comparison revealed that, although both campaigns featured virtually the same laser shot count, the ground point density dropped from 517 points/m2 in February (leaf-off) to 267 points/m2 end of October (leaf-on). The decrease of ca. 50% is compensated by an increase in the upper canopy area (>20 m a.g.l.; Feb: 348 points/m2, Oct: 757 points/m2, increase rate: 118%). The greater leaf area in October results in more laser echoes from the canopy but the density decrease on the ground is not entirely attributed to shadowing from the upper canopy as the point distribution is nearly constant in the medium (10-20 m) and lower (0-10 m) sub-canopy area. The lower density on the ground is rather caused by a densely foliated shrub layer (0.15-3 m; Feb: 178 points/m2, Oct: 259 points/m2, increase rate: 46%). A sharp ground point density drop could be observed in areas covered by an invasive weed species (Fallopia japonica) which keeps its extremely dense foliage till late in the year. In summary, the preliminary point density study has shown the potential of UAV-borne, multi-temporal LiDAR for characterization of seasonal vegetation changes in deciduous environments. It is remarkable that even under leaf-on conditions a very high terrain point density is achievable. Except for the dense shrub layer, the case study has shown a similar 3D point distribution in the sub-canopy area for leaf-off and leaf-on data acquisition.
Wuyts, Nathalie; Massonnet, Catherine; Dauzat, Myriam; Granier, Christine
2012-09-01
Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively. © 2012 Blackwell Publishing Ltd.
Vasfilov, S P
2011-01-01
The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.
Hao, Guang-You; Hoffmann, William A; Scholz, Fabian G; Bucci, Sandra J; Meinzer, Frederick C; Franco, Augusto C; Cao, Kun-Fang; Goldstein, Guillermo
2008-03-01
Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna habitats were studied. Most stem traits, including wood density, the xylem water potential at 50% loss of hydraulic conductivity, sapwood area specific conductivity, and leaf area specific conductivity did not differ significantly between savanna and forest species. However, maximum leaf hydraulic conductance (K (leaf)) and leaf capacitance tended to be higher in savanna species. Predawn leaf water potential and leaf mass per area were also higher in savanna species in all congeneric pairs. Hydraulic vulnerability curves of stems and leaves indicated that leaves were more vulnerable to drought-induced cavitation than terminal branches regardless of genus. The midday K (leaf) values estimated from leaf vulnerability curves were very low implying that daily embolism repair may occur in leaves. An electric circuit analog model predicted that, compared to forest species, savanna species took longer for their leaf water potentials to drop from predawn values to values corresponding to 50% loss of K (leaf) or to the turgor loss points, suggesting that savanna species were more buffered from changes in leaf water potential. The results of this study suggest that the relative success of savanna over forest species in savanna is related in part to their ability to cope with drought, which is determined more by leaf than by stem hydraulic traits. Variation among genera accounted for a large proportion of the total variance in most traits, which indicates that, despite different selective pressures in savanna and forest habitats, phylogeny has a stronger effect than habitat in determining most hydraulic traits.
2010-01-01
Background Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (ρw) images and spin-spin relaxation time (T2) maps. Results ρw images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. Conclusions The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress. PMID:20735815
Sardans, Jordi; Peñuelas, Josep; Lope-Piedrafita, Silvia
2010-08-24
Drought is a common stressor in many regions of the world and current climatic global circulation models predict further increases in warming and drought in the coming decades in several of these regions, such as the Mediterranean basin. The changes in leaf water content, distribution and dynamics in plant tissues under different soil water availabilities are not well known. In order to fill this gap, in the present report we describe our study withholding the irrigation of the seedlings of Quercus ilex, the dominant tree species in the evergreen forests of many areas of the Mediterranean Basin. We have monitored the gradual changes in water content in the different leaf areas, in vivo and non-invasively, by 1H magnetic resonance imaging (MRI) using proton density weighted (rhow) images and spin-spin relaxation time (T2) maps. Rhow images showed that the distal leaf area lost water faster than the basal area and that after four weeks of similar losses, the water reduction was greater in leaf veins than in leaf parenchyma areas and also in distal than in basal leaf area. There was a similar tendency in all different areas and tissues, of increasing T2 values during the drought period. This indicates an increase in the dynamics of free water, suggesting a decrease of cell membranes permeability. The results indicate a non homogeneous leaf response to stress with a differentiated capacity to mobilize water between its different parts and tissues. This study shows that the MRI technique can be a useful tool to follow non-intrusively the in vivo water content changes in the different parts of the leaves during drought stress. It opens up new possibilities to better characterize the associated physiological changes and provides important information about the different responses of the different leaf areas what should be taken into account when conducting physiological and metabolic drought stress studies in different parts of the leaves during drought stress.
Parameterization of Forest Canopies with the PROSAIL Model
NASA Astrophysics Data System (ADS)
Austerberry, M. J.; Grigsby, S.; Ustin, S.
2013-12-01
Particularly in forested environments, arboreal characteristics such as Leaf Area Index (LAI) and Leaf Inclination Angle have a large impact on the spectral characteristics of reflected radiation. The reflected spectrum can be measured directly with satellites or airborne instruments, including the MASTER and AVIRIS instruments. This particular project dealt with spectral analysis of reflected light as measured by AVIRIS compared to tree measurements taken from the ground. Chemical properties of leaves including pigment concentrations and moisture levels were also measured. The leaf data was combined with the chemical properties of three separate trees, and served as input data for a sequence of simulations with the PROSAIL Model, a combination of PROSPECT and Scattering by Arbitrarily Inclined Leaves (SAIL) simulations. The output was a computed reflectivity spectrum, which corresponded to the spectra that were directly measured by AVIRIS for the three trees' exact locations within a 34-meter pixel resolution. The input data that produced the best-correlating spectral output was then cross-referenced with LAI values that had been obtained through two entirely separate methods, NDVI extraction and use of the Beer-Lambert law with airborne LiDAR. Examination with regressive techniques between the measured and modeled spectra then enabled a determination of the trees' probable structure and leaf parameters. Highly-correlated spectral output corresponded well to specific values of LAI and Leaf Inclination Angle. Interestingly, it appears that varying Leaf Angle Distribution has little or no noticeable effect on the PROSAIL model. Not only is the effectiveness and accuracy of the PROSAIL model evaluated, but this project is a precursor to direct measurement of vegetative indices exclusively from airborne or satellite observation.
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R
1995-09-01
We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.
Rodríguez-Calcerrada, J; Reich, P B; Rosenqvist, E; Pardos, J A; Cano, F J; Aranda, I
2008-05-01
We investigated light acclimation in seedlings of the temperate oak Quercus petraea (Matt.) Liebl. and the co-occurring sub-Mediterranean oak Quercus pyrenaica Willd. Seedlings were raised in a greenhouse for 1 year in either 70 (HL) or 5.3% (LL) of ambient irradiance of full sunlight, and, in the following year, subsets of the LL-grown seedlings were transferred to HL either before leaf flushing (LL-HLBF plants) or after full leaf expansion (LL-HLAF plants). Gas exchange, chlorophyll a fluorescence, nitrogen fractions in photosynthetic components and leaf anatomy were examined in leaves of all seedlings 5 months after plants were moved from LL to HL. Differences between species in the acclimation of LL-grown plants to HL were minor. For LL-grown plants in HL, area-based photosynthetic capacity, maximum rate of carboxylation, maximum rate of electron transport and the effective photochemical quantum yield of photosystem II were comparable to those for plants grown solely in HL. A rapid change in nitrogen distribution among photosynthetic components was observed in LL-HLAF plants, which had the highest photosynthetic nitrogen-use efficiency. Increases in mesophyll thickness and dry mass per unit area governed leaf acclimation in LL-HLBF plants, which tended to have less nitrogen in photosynthetic components and a lower assimilation potential per unit of leaf mass or nitrogen than LL-HLAF plants. The data indicate that the phenological state of seedlings modified the acclimatory response of leaf attributes to increased irradiance. Morphological adaptation of leaves of LL-HLBF plants enhanced photosynthetic capacity per unit leaf area, but not per unit leaf dry mass, whereas substantial redistribution of nitrogen among photosynthetic components in leaves of LL-HLAF plants enhanced both mass- and area-based photosynthetic capacity.
Correlated variation of floral and leaf traits along a moisture availability gradient.
Lambrecht, Susan C; Dawson, Todd E
2007-04-01
Variation in flower size is an important aspect of a plant's life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (delta(13)C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in delta(13)C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of delta(13)C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and delta(13)C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size.
Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S
2017-07-01
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Adam P. Coble; Alisha Autio; Molly A. Cavaleri; Dan Binkley; Michael G. Ryan
2014-01-01
Across sites in Brazil and Hawaii, LMA and Nmass were strongly correlated with height and shade index, respectively, which may help simplify canopy function modeling of Eucalyptus plantations. Abstract Within tree canopies, leaf mass per area (LMA) and leaf nitrogen per unit area (Narea) commonly increase with height. Previous research has suggested that these patterns...
Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
Gregory P. Asner; Roberta E. Martin; Raul Tupayachi; Ruth Emerson; Paola Martinez; Felipe Sinca; George V.N. Powell; S. Joseph Wright; Ariel E. Lugo
2011-01-01
Leaf mass per area (LMA) is a trait of central importance to plant physiology and ecosystem function, but LMA patterns in the upper canopies of humid tropical forests have proved elusive due to tall species and high diversity. We collected top-of-canopy leaf samples from 2873 individuals in 57 sites spread across the Neotropics, Australasia, and Caribbean and Pacific...
Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki
2016-08-01
Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D
2007-05-01
Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.
BOREAS Level-3s Landsat TM Imagery Scaled At-sensor Radiance in LGSOWG Format
NASA Technical Reports Server (NTRS)
Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef; Hall, Forrest G. (Editor)
2000-01-01
For BOReal Ecosystem-Atmosphere Study (BOREAS),the level-3s Landsat Thematic Mapper (TM) data, along with the other remotely sensed images,were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy,detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf area Index (LAI). CCRS collected and supplied the level-3s images to BOREAS for use in the remote sensing research activities. Geographically,the bulk of the level-3s images cover the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA) with a few images covering the area between the NSA and SSA. Temporally,the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary,image-format files.
CEOS Land Surface Imaging Constellation Mid-Resolution Optical Guidelines
NASA Technical Reports Server (NTRS)
Keyes, Jennifer P.; Killough, B.
2011-01-01
The LSI community of users is large and varied. To reach all these users as well as potential instrument contributors this document has been organized by measurement parameters of interest such as Leaf Area Index and Land Surface Temperature. These measurement parameters and the data presented in this document are drawn from multiple sources, listed at the end of the document, although the two primary ones are "The Space-Based Global Observing System in 2010 (GOS-2010)" that was compiled for the World Meteorological Organization (WMO) by Bizzarro Bizzarri, and the CEOS Missions, Instruments, and Measurements online database (CEOS MIM). For each measurement parameter the following topics will be discussed: (1) measurement description, (2) applications, (3) measurement spectral bands, and (4) example instruments and mission information. The description of each measurement parameter starts with a definition and includes a graphic displaying the relationships to four general land surface imaging user communities: vegetation, water, earth, and geo-hazards, since the LSI community of users is large and varied. The vegetation community uses LSI data to assess factors related to topics such as agriculture, forest management, crop type, chlorophyll, vegetation land cover, and leaf or canopy differences. The water community analyzes snow and lake cover, water properties such as clarity, and body of water delineation. The earth community focuses on minerals, soils, and sediments. The geo-hazards community is designed to address and aid in emergencies such as volcanic eruptions, forest fires, and large-scale damaging weather-related events.
A 3D Joint Simulation Platform for Multiband_A Case Study in the Huailai Soybean and Maize Field
NASA Astrophysics Data System (ADS)
Zhang, Y.; Qinhuo, L.; Du, Y.; Huang, H.
2016-12-01
Canopy radiation and scattering signal contains abundant vegetation information. One can quantitatively retrieve the biophysical parameters by building canopy radiation and scattering models and inverting them. Joint simulation of the 3D models for different spectral (frequency) domains may produce complementary advantages and improves the precision. However, most of the currently models were based on one or two spectral bands (e.g. visible and thermal inferred bands, or visible and microwave bands). This manuscript established a 3D radiation and scattering simulation system which can simulate the BRDF, DBT, and backscattering coefficient based on the same structural description. The system coupled radiosity graphic model, Thermal RGM model and coherent microwave model by Yang Du for VIS/NIR, TIR, and MW, respectively. The models simulating the leaf spectral characteristics, component temperatures and dielectric properties were also coupled into the joint simulation system to convert the various parameters into fewer but more unified parameters. As a demonstration of our system, we applied the established system to simulate a mixed field with soybeans and maize based on the Huailai experiment data in August, 2014. With the help of Xfrog software, we remodeled soybean and maize in ".obj" and ".mtl" format. We extracted the structure information of the soybean and maize by statistics of the ".obj" files. We did simulations on red, NIR, TIR, C and L band. The simulation results were validated by the multi-angular observation data of Huailai experiment. Also, the spacial distribution (horizontal and vertical), leaf area index (LAI), leaf angle distribution (LAD), vegetation water content (VWC) and the incident observation geometry were analyzed in details. Validated by the experiment data, we indicate that the simulations of multiband were quite well. Because the crops were planted in regular rows and the maize and soybeans were with different height, different LAI, different LAD and different VWC, we did the sensitive analysis by changing on one of them and fixed the other parameters. The analysis showed that the parameters influenced the radiation and scattering signal of different spectral (frequency) with varying degrees.
Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T
2016-08-01
Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Takahashi, Koichi; Tanaka, Saeka
2016-11-01
This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.
Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M
2006-05-01
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.
Martorell, Sebastian; Medrano, Hipolito; Tomàs, Magdalena; Escalona, José M; Flexas, Jaume; Diaz-Espejo, Antonio
2015-03-01
Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf . We measured leaf hydraulic conductance (K leaf ), K leaf vulnerability [50 and 80% loss of K leaf (P50 and P80 ); |Ψ leaf | at 50 and 80% loss of K leaf , respectively), bulk leaf water relations, leaf gas exchange and sap flow in two Vitis vinifera cultivars (Tempranillo and Grenache), under two water treatments. We found that P50 , P80 and maximum K leaf decreased seasonally by more than 20% in both cultivars and watering treatments. However, K leaf at 2 MPa increased threefold, while osmotic potential at full turgor and turgor loss point decreased. Our results indicate that leaf resistance to hydraulic dysfunction is seasonally plastic, and this plasticity may be mediated by osmotic adjustment. © 2014 Scandinavian Plant Physiology Society.
Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu
2017-01-01
Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Fatichi, S.; Frasson, R. P. M.; Schafer, K. V.
2015-12-01
The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) simulates water flow through the tree using the porous media analogy. Empirical equations relate water potential within the stem to stomatal conductance at the leaf level. Leaves are connected to the stem at each height. While still simplified, this approach brings realism to the simulation of transpiration compared with models where stomatal conductance is directly linked to soil moisture. The FETCH2 model accounts for plant hydraulic traits such as xylem conductivity, area of hydro-active xylem, vertical distribution of leaf area, and maximal and minimal xylem water content, and their effect on the dynamics of water flow in the tree system. Such a modeling tool enhances our understanding of the role of hydraulic limitations and allows us to incorporate the effects of short-term water stresses on transpiration. Here, we use FETCH2 parameterized and evaluated with a large sap-flow observations data set, collected from 21 trees of two genera (oak/pine) at Silas Little Experimental Forest, NJ. The well-drained deep sandy soil leads to water stress during many days throughout the growing season. We conduct a set of tree-level transpiration simulations, and use the results to evaluate the effects of different hydraulic strategies on daily transpiration and water use efficiency. We define these "hydraulic strategies" through combinations of multiple sets of parameters in the model that describe the root, stem and leaf hydraulics. After evaluating the performance of the model, we use the results to shed light on the future trajectory of the forest in terms of species-specific transpiration responses. Application of the model on the two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam) shows that the applied modeling approach was successfully captures the differences in water-use strategy through optimizing multiple physiological and hydraulic parameters.
NASA Astrophysics Data System (ADS)
Verrelst, Jochem; Rivera, J. P.; Alonso, L.; Guanter, L.; Moreno, J.
2012-04-01
ESA’s upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT- 5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms could be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from the ESA-led field campaign SPARC (Barrax, Spain), it was recently found [1] that Gaussian processes regression (GPR) outperformed competitive machine learning algorithms such as neural networks, support vector regression) and kernel ridge regression both in terms of accuracy and computational speed. For various Sentinel configurations (S2-10m, S2- 20m, S2-60m and S3-300m) three important biophysical parameters were estimated: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). GPR was the only method that reached the 10% precision required by end users in the estimation of Chl. In view of implementing the regressor into operational monitoring applications, here the portability of locally trained GPR models to other images was evaluated. The associated confidence maps proved to be a good indicator for evaluating the robustness of the trained models. Consistent retrievals were obtained across the different images, particularly over agricultural sites. To make the method suitable for operational use, however, the poorer confidences over bare soil areas suggest that the training dataset should be expanded with inputs from various land cover types.
NASA Astrophysics Data System (ADS)
Bonan, Gordon B.; Oleson, Keith W.; Fisher, Rosie A.; Lasslop, Gitta; Reichstein, Markus
2012-06-01
The Community Land Model version 4 overestimates gross primary production (GPP) compared with estimates from FLUXNET eddy covariance towers. The revised model of Bonan et al. (2011) is consistent with FLUXNET, but values for the leaf-level photosynthetic parameterVcmaxthat yield realistic GPP at the canopy-scale are lower than observed in the global synthesis of Kattge et al. (2009), except for tropical broadleaf evergreen trees. We investigate this discrepancy betweenVcmaxand canopy fluxes. A multilayer model with explicit calculation of light absorption and photosynthesis for sunlit and shaded leaves at depths in the canopy gives insight to the scale mismatch between leaf and canopy. We evaluate the model with light-response curves at individual FLUXNET towers and with empirically upscaled annual GPP. Biases in the multilayer canopy with observedVcmaxare similar, or improved, compared with the standard two-leaf canopy and its lowVcmax, though the Amazon is an exception. The difference relates to light absorption by shaded leaves in the two-leaf canopy, and resulting higher photosynthesis when the canopy scaling parameterKn is low, but observationally constrained. Larger Kndecreases shaded leaf photosynthesis and reduces the difference between the two-leaf and multilayer canopies. The low modelVcmaxis diagnosed from nitrogen reduction of GPP in simulations with carbon-nitrogen biogeochemistry. Our results show that the imposed nitrogen reduction compensates for deficiency in the two-leaf canopy that produces high GPP. Leaf trait databases (Vcmax), within-canopy profiles of photosynthetic capacity (Kn), tower fluxes, and empirically upscaled fields provide important complementary information for model evaluation.
Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut
Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry
2002-01-01
The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773
Calvo-Alvarado, J C; McDowell, N G; Waring, R H
2008-11-01
We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.
Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress
Bhatt, Laxit; Joshi, Viraj
2017-01-01
Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627
Li, Chunyan; Liu, Biao; Li, Chunhua; Zeng, Qing; Hao, Mingzhuo; Han, Zhengmin; Zhu, Jianguo; Li, Xiaogang; Shen, Wenjing
2013-01-01
Background Elevated tropospheric ozone severely affects not only yield but also the morphology, structure and physiological functions of plants. Because of concerns regarding the potential environmental risk of transgenic crops, it is important to monitor changes in transgenic insect-resistant rice under the projected high tropospheric ozone before its commercial release. Methodology/Principal Findings Using a free-air concentration enrichment (FACE) system, we investigated the changes in leaf morphology and leaf ultrastructure of two rice varieties grown in plastic pots, transgenic Bt Shanyou 63 (Bt-SY63, carrying a fusion gene of cry1Ab and cry1Ac) and its non-transgenic counterpart (SY63), in elevated O3 (E-O3) versus ambient O3 (A-O3) after 64-DAS (Days after seeding), 85-DAS and 102-DAS. Our results indicated that E-O3 had no significant effects on leaf length, leaf width, leaf area, stomatal length and stomatal density for both Bt-SY63 and SY63. E-O3 increased the leaf thickness of Bt-SY63, but decreased that of SY63. O3 stress caused early swelling of the thylakoids of chloroplasts, a significant increase in the proportion of total plastoglobule area in the entire cell area (PCAP) and a significant decrease in the proportion of total starch grain area in the entire cell area (SCAP), suggesting that E-O3 accelerated the leaf senescence of the two rice genotypes. Compared with SY63, E-O3 caused early swelling of the thylakoids of chloroplasts and more substantial breakdown of chloroplasts in Bt-SY63. Conclusions/Significance Our results suggest that the incorporation of cry1Ab/Ac into SY63 could induce unintentional changes in some parts of plant morphology and that O3 stress results in greater leaf damage to Bt-SY63 than to SY63, with the former coupled with higher O3 sensitivity in CCAP (the proportions of total chloroplast area in the entire cell area), PCAP and SCAP. This study provides valuable baseline information for the prospective commercial release of transgenic crops under the projected future climate. PMID:24324764
Galmés, Jeroni; Ochogavía, Joan Manuel; Gago, Jorge; Roldán, Emilio José; Cifre, Josep; Conesa, Miquel Àngel
2013-05-01
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water-use efficiency through modifications in both stomatal (g(s)) and mesophyll conductances (g(m)). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (S(c)). In addition, the lower g(m) /S(c) ratio for a given porosity in drought-acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought-associated changes in the morphological properties of stomata, in an accession and treatment-dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level. © 2012 Blackwell Publishing Ltd.
Yendrek, Craig R.; Tomaz, Tiago; Montes, Christopher M.; Cao, Youyuan; Morse, Alison M.; Brown, Patrick J.; McIntyre, Lauren M.; Leakey, Andrew D.B.
2017-01-01
High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500–2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress. PMID:28049858
Renninger, Heidi J; Meinzer, Frederick C; Gartner, Barbara L
2007-01-01
We compared hydraulic architecture, photosynthesis and growth in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), a shade-intolerant species, and western hemlock (Tsuga heterophylla (Raf.) Sarg.), a shade-tolerant species, to study the temporal pattern of release from suppressive shade. In particular, we sought to determine whether hydraulic architecture or photosynthetic capacity is most important in constraining release. The study was conducted at two sites with mixed stands of 10- to 20-year-old Douglas-fir and western hemlock. At one site, the stand had been thinned allowing release of the understory trees, whereas at the other site, the stand remained unthinned. Douglas-fir had lower height growth (from 1998-2003) and lower relative height growth (height growth from 1998 to 2003/height in 1998) than western hemlock. However, relative height growth of released versus suppressed trees was higher in Douglas-fir (130%) than in western hemlock (65%), indicating that, although absolute height growth was less, Douglas-fir did release from suppression. Release seemed to be constrained initially by a limited photosynthetic capacity in both species. Five years after release, Douglas-fir trees had 14 times the leaf area and 1.5 times the leaf nitrogen concentration (N (area)) of suppressed trees. Needles of released western hemlock trees had about twice the maximum assimilation rate (A (max)) at ambient [CO(2)] as needles of suppressed trees and exhibited no photoinhibition at the highest irradiances. After release, trees increased in leaf area, leaf N concentration and overall photosynthetic capacity. Subsequently, hydraulic architecture appeared to constrain release in Douglas-fir and, to a lesser extent, in western hemlock. Released trees had significantly less negative foliar delta(13)C values than suppressed trees and showed a positive relationship between leaf area:sapwood area ratio (A (L)/A (S)) and delta(13)C, suggesting that trees with more leaf area for a given sapwood area experienced a stomatal limitation on carbon gain. Nonetheless, these changes had no significant effects on leaf specific conductivities of suppressed versus released trees of either species, but leaf specific root conductance was significantly lower in released Douglas-fir.
Use of plant trait data in the ISBA-A-gs model
NASA Astrophysics Data System (ADS)
Calvet, Jean-Christophe
2014-05-01
ISBA-A-gs is a CO2-responsive LSM (Calvet et al., 1998; Gibelin et al., 2006), able to simulate the diurnal cycle of carbon and water vapour fluxes, together with LAI and soil moisture evolution. The various components of ISBA-A-gs are based to a large extent on meta-analyses of trait data. (1) Photosynthesis: ISBA-A-gs uses the model of Goudriaan et al. (1985) modified by Jacobs (1994) and Jacobs et al. (1996). The main parameter is mesophyll conductance (gm). Leaf-level photosynthesis observations were used together with canopy level flux observations to derive gm together with other key parameters of the Jacobs model, including in drought conditions. This permitted implementing detailed representations of the soil moisture stress. Two different types of drought responses are distinguished for both herbaceous vegetation (Calvet, 2000) and forests (Calvet et al., 2004), depending on the evolution of the water use efficiency (WUE) under moderate stress: WUE increases in the early soil water stress stages in the case of the drought-avoiding response, whereas WUE decreases or remains stable in the case of the drought-tolerant response. (2) Plant growth: the leaf biomass is provided by a growth model (Calvet et al., 1998; Calvet and Soussana, 2001) driven by photosynthesis. In contrast to other land surface models, no GDD-based phenology model is used in ISBA-A-gs, as the vegetation growth and senescence are entirely driven by photosynthesis. The leaf biomass is supplied with the carbon assimilated by photosynthesis, and decreased by a turnover and a respiration term. Turnover is increased by a deficit in photosynthesis. The leaf onset is triggered by sufficient photosynthesis levels and a minimum LAI value is prescribed. The maximum annual value of LAI is prognostic, i.e. it can be predicted by the model. LAI is derived from leaf biomass using SLA values. The latter are derived from the leaf nitrogen concentration using plasticity parameters. (3) CO2 effect: the photosynthesis model is able to represent the antitranspirant effect of CO2. The plant growth model represents the fertilization effect of CO2. However, the nitrogen dilution triggered by the CO2 increase has to be represented. A pragmatic solution consists in decreasing the leaf nitrogen concentration parameter in response to CO2, using existing meta-analyses of this parameter (Calvet et al., 2008). The TRY database could be used to improve the current parameterizations, together with the mapping of the model parameters.
Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J
2013-01-01
Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.
Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata
2017-05-04
The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.
Light-Induced Indeterminacy Alters Shade-Avoiding Tomato Leaf Morphology1[OPEN
Chitwood, Daniel H.; Kumar, Ravi; Ranjan, Aashish; Pelletier, Julie M.; Townsley, Brad T.; Ichihashi, Yasunori; Martinez, Ciera C.; Zumstein, Kristina; Harada, John J.; Maloof, Julin N.; Sinha, Neelima R.
2015-01-01
Plants sense the foliar shade of competitors and alter their developmental programs through the shade-avoidance response. Internode and petiole elongation, and changes in overall leaf area and leaf mass per area, are the stereotypical architectural responses to foliar shade in the shoot. However, changes in leaf shape and complexity in response to shade remain incompletely, and qualitatively, described. Using a meta-analysis of more than 18,000 previously published leaflet outlines, we demonstrate that shade avoidance alters leaf shape in domesticated tomato (Solanum lycopersicum) and wild relatives. The effects of shade avoidance on leaf shape are subtle with respect to individual traits but are combinatorially strong. We then seek to describe the developmental origins of shade-induced changes in leaf shape by swapping plants between light treatments. Leaf size is light responsive late into development, but patterning events, such as stomatal index, are irrevocably specified earlier. Observing that shade induces increases in shoot apical meristem size, we then describe gene expression changes in early leaf primordia and the meristem using laser microdissection. We find that in leaf primordia, shade avoidance is not mediated through canonical pathways described in mature organs but rather through the expression of KNOTTED1-LIKE HOMEOBOX and other indeterminacy genes, altering known developmental pathways responsible for patterning leaf shape. We also demonstrate that shade-induced changes in leaf primordium gene expression largely do not overlap with those found in successively initiated leaf primordia, providing evidence against classic hypotheses that shaded leaf morphology results from the prolonged production of juvenile leaf types. PMID:26381315
Zhang, Haicheng; Liu, Shuguang; Regnier, Pierre; Yuan, Wenping
2018-05-01
Constraints of temperature on spring plant phenology are closely related to plant growth, vegetation dynamics, and ecosystem carbon cycle. However, the effects of temperature on leaf onset, especially for winter chilling, are still not well understood. Using long-term, widespread in situ phenology observations collected over China for multiple plant species, this study analyzes the quantitative response of leaf onset to temperature, and compares empirical findings with existing theories and modeling approaches, as implemented in 18 phenology algorithms. Results show that the growing degree days (GDD) required for leaf onset vary distinctly among plant species and geographical locations as well as at organizational levels (species and community), pointing to diverse adaptation strategies. Chilling durations (CHD) needed for releasing bud dormancy decline monotonously from cold to warm areas with very limited interspecies variations. Results also reveal that winter chilling is a crucial component of phenology models, and its effect is better captured with an index that accounts for the inhomogeneous effectiveness of low temperature to chilling rate than with the conventional CHD index. The impact of spring warming on leaf onset is nonlinear, better represented by a logistical function of temperature than by the linear function currently implemented in biosphere models. The optimized base temperatures for thermal accumulation and the optimal chilling temperatures are species-dependent and average at 6.9 and 0.2°C, respectively. Overall, plants' chilling requirement is not a constant, and more chilling generally results in less requirement of thermal accumulation for leaf onset. Our results clearly demonstrate multiple deficiencies of the parameters (e.g., base temperature) and algorithms (e.g., method for calculating GDD) in conventional phenology models to represent leaf onset. Therefore, this study not only advances our mechanistic and quantitative understanding of temperature controls on leaf onset but also provides critical information for improving existing phenology models. © 2017 John Wiley & Sons Ltd.
On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests
NASA Astrophysics Data System (ADS)
Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.
2011-12-01
The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.
Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants
Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan
2014-01-01
Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a novel environment commonly results in a reduction in the top-down constraint imposed by herbivores on growth, allowing plants to shift towards a faster growth strategy which may result in an increase in population size and spread and consequently to invasive success. PMID:25558090
NASA Technical Reports Server (NTRS)
Cheng, Yen-Ben; Middleton, Elizabeth M.; Huemmrich, Karl F.; Zhang, Qingyuan; Campbell, Petya K. E.; Corp, Lawrence A.; Russ, Andrew L.; Kustas, William P.
2010-01-01
Two radiative transfer canopy models, SAIL and the two-layer Markov-Chain Canopy Reflectance Model (MCRM), were coupled with in situ leaf optical properties to simulate canopy-level spectral band ratio vegetation indices with the focus on the photochemical reflectance index in a cornfield. In situ hyperspectral measurements were made at both leaf and canopy levels. Leaf optical properties were obtained from both sunlit and shaded leaves. Canopy reflectance was acquired for eight different relative azimuth angles (psi) at three different view zenith angles (Theta (sub v)), and later used to validate model outputs. Field observations of photochemical reflectance index (PRI) for sunlit leaves exhibited lower values than shaded leaves, indicating higher light stress. Canopy PRI expressed obvious sensitivity to viewing geometry, as a function of both Theta (sub v) and psi . Overall, simulations from MCRM exhibited better agreements with in situ values than SAIL. When using only sunlit leaves as input, the MCRM-simulated PRI values showed satisfactory correlation and RMSE, as compared to in situ values. However, the performance of the MCRM model was significantly improved after defining a lower canopy layer comprised of shaded leaves beneath the upper sunlit leaf layer. Four other widely used band ratio vegetation indices were also studied and compared with the PRI results. MCRM simulations were able to generate satisfactory simulations for these other four indices when using only sunlit leaves as input; but unlike PRI, adding shaded leaves did not improve the performance of MCRM. These results support the hypothesis that the PRI is sensitive to physiological dynamics while the others detect static factors related to canopy structure. Sensitivity analysis was performed on MCRM in order to better understand the effects of structure related parameters on the PRI simulations. Leaf area index (LAI) showed the most significant impact on MCRM-simulated PRI among the parameters studied. This research shows the importance of hyperspectral and narrow band sensor studies, and especially the necessity of including the green wavelengths (e.g., 531 nm) on satellites proposing to monitor carbon dynamics of terrestrial ecosystems.
Seasonal soybean crop reflectance
NASA Technical Reports Server (NTRS)
Lemaster, E. W. (Principal Investigator); Chance, J. E.
1983-01-01
Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.
Leaf spring made of fiber-reinforced resin
NASA Technical Reports Server (NTRS)
Hori, J.
1986-01-01
A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.
Li, Ya Ni; Lu, Lei; Liu, Yong
2017-12-01
The tasseled cap triangle (TCT)-leaf area index (LAI) isoline is a model that reflects the distribution of LAI isoline in the spectral space constituted by reflectance of red and near-infrared (NIR) bands, and the LAI retrieval model developed on the basis of this is more accurate than the commonly used statistical relationship models. This study used ground-based measurements of the rice field, validated the applicability of PROSAIL model in simulating canopy reflectance of rice field, and calibrated the input parameters of the model. The ranges of values of PROSAIL input parameters for simulating rice canopy reflectance were determined. Based on this, the TCT-LAI isoline model of rice field was established, and a look-up table (LUT) required in remote sensing retrieval of LAI was developed. Then, the LUT was used for Landsat 8 and WorldView 3 data to retrieve LAI of rice field, respectively. The results showed that the LAI retrieved using the LUT developed from TCT-LAI isoline model had a good linear relationship with the measured LAI R 2 =0.76, RMSE=0.47. Compared with the LAI retrieved from Landsat 8, LAI values retrieved from WorldView 3 va-ried with wider range, and data distribution was more scattered. Resampling the Landsat 8 and WorldView 3 reflectance data to 1 km to retrieve LAI, the result of MODIS LAI product was significantly underestimated compared to that of retrieved LAI.
NASA Astrophysics Data System (ADS)
Lafont, Sebastien; Barbu, Alina; Calvet, Jean-Christophe
2013-04-01
A Land Data Assimilation System (LDAS) is an off-line data assimilation system featuring uncoupled land surface model which is driven by observation-based atmospheric forcing. In this study the experiments were conducted with a surface externalized (SURFEX) modelling platform developed at Météo-France. It encompasses the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The photosynthetic activity depends on the vegetation types. The input soil and vegetation parameters are provided by the ECOCLIMAP II global database which assigns the ecosystem classes in several plant functional types as grassland, crops, deciduous forest and coniferous forest. New versions of the model have been recently developed in order to better describe the agricultural plant functional types. We present a set of observing system simulation experiments (OSSE) which asses leaf area index (LAI) and soil moisture assimilation for improving the land surface estimates in a controlled synthetic environment. Synthetic data were assimilated into ISBA-A-gs using an Extended Kalman Filter (EKF). This allows for an understanding of model responses to an augmentation of the number of crop types and different parameters associated to this modification. In addition, the interactions between uncertainties in the model and in the observations were investigated. This study represents the first step of a process that envisages the extension of LDAS to the new versions of the ISBA-A-gs model in order to assimilate remote sensing observations.
L.S. Santiago; G. Goldstein; F.C. Meinzer; J.B. Fisher; K. Maehado; D. Woodruff; T. Jones
2004-01-01
We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2, assimilation per unit leaf area (Aarea...
Luo, Jun; Pan, Yong-Bao; Xu, Liping; Zhang, Yuye; Zhang, Hua; Chen, Rukai
2014-01-01
During sugarcane growth, the Early Elongation stage is critical to cane yield formation. In this study, parameters of 17 sugarcane varieties were determined at the Early Elongation stage using CI-301 photosynthesis measuring system and CI-100 digital plant canopy imager. The data analysis showed highly significant differences in leaf area index (LAI), mean foliage inclination angle (MFIA), transmission coefficient for diffused light penetration (TD), transmission coefficient for solar beam radiation penetration (TR), leaf distribution (LD), net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (GS) among sugarcane varieties. Based on the photosynthetic or canopy parameters, the 17 sugarcane varieties were classified into four categories. Through the factor analysis, nine parameters were represented by three principal factors, of which the cumulative rate of variance contributions reached 85.77%. A regression for sugarcane yield, with relative error of yield fitting less than 0.05, was successfully established: sugarcane yield = −27.19 − 1.69 × PN + 0.17 × E + 90.43 × LAI − 408.81 × LD + 0.0015 × NSH + 101.38 × D (R 2 = 0.928**). This study helps provide a theoretical basis and technical guidance for the screening of new sugarcane varieties with high net photosynthetic rate and ideal canopy structure. PMID:25045742
Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K
2009-09-01
Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.
Representing winter wheat in the Community Land Model (version 4.5)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
Representing winter wheat in the Community Land Model (version 4.5)
NASA Astrophysics Data System (ADS)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; Torn, Margaret S.; Kueppers, Lara M.
2017-05-01
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land-atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange of CO2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.
Representing winter wheat in the Community Land Model (version 4.5)
Lu, Yaqiong; Williams, Ian N.; Bagley, Justin E.; ...
2017-05-05
Winter wheat is a staple crop for global food security, and is the dominant vegetation cover for a significant fraction of Earth's croplands. As such, it plays an important role in carbon cycling and land–atmosphere interactions in these key regions. Accurate simulation of winter wheat growth is not only crucial for future yield prediction under a changing climate, but also for accurately predicting the energy and water cycles for winter wheat dominated regions. We modified the winter wheat model in the Community Land Model (CLM) to better simulate winter wheat leaf area index, latent heat flux, net ecosystem exchange ofmore » CO 2, and grain yield. These included schemes to represent vernalization as well as frost tolerance and damage. We calibrated three key parameters (minimum planting temperature, maximum crop growth days, and initial value of leaf carbon allocation coefficient) and modified the grain carbon allocation algorithm for simulations at the US Southern Great Plains ARM site (US-ARM), and validated the model performance at eight additional sites across North America. We found that the new winter wheat model improved the prediction of monthly variation in leaf area index, reduced latent heat flux, and net ecosystem exchange root mean square error (RMSE) by 41 and 35 % during the spring growing season. The model accurately simulated the interannual variation in yield at the US-ARM site, but underestimated yield at sites and in regions (northwestern and southeastern US) with historically greater yields by 35 %.« less
NASA Astrophysics Data System (ADS)
Karlik, J.
Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.
Chmura, Daniel J; Tjoelker, Mark G
2008-05-01
Crown architecture and size influence leaf area distribution within tree crowns and have large effects on the light environment in forest canopies. The use of selected genotypes in combination with silvicultural treatments that optimize site conditions in forest plantations provide both a challenge and an opportunity to study the biological and environmental determinants of forest growth. We investigated tree growth, crown development and leaf traits of two elite families of loblolly pine (Pinus taeda L.) and one family of slash pine (P. elliottii Mill.) at canopy closure. Two contrasting silvicultural treatments -- repeated fertilization and control of competing vegetation (MI treatment), and a single fertilization and control of competing vegetation treatment (C treatment) -- were applied at two experimental sites in the West Gulf Coastal Plain in Texas and Louisiana. At a common tree size (diameter at breast height), loblolly pine trees had longer and wider crowns, and at the plot-level, intercepted a greater fraction of photosynthetic photon flux than slash pine trees. Leaf-level, light-saturated assimilation rates (A(max)) and both mass- and area-based leaf nitrogen (N) decreased, and specific leaf area (SLA) increased with increasing canopy depth. Leaf-trait gradients were steeper in crowns of loblolly pine trees than of slash pine trees for SLA and leaf N, but not for A(max). There were no species differences in A(max), except in mass-based photosynthesis in upper crowns, but the effect of silvicultural treatment on A(max) differed between sites. Across all crown positions, A(max) was correlated with leaf N, but the relationship differed between sites and treatments. Observed patterns of variation in leaf properties within crowns reflected acclimation to developing light gradients in stands with closing canopies. Tree growth was not directly related to A(max), but there was a strong correlation between tree growth and plot-level light interception in both species. Growth efficiency was unaffected by silvicultural treatment. Thus, when coupled with leaf area and light interception at the crown and canopy levels, A(max) provides insight into family and silvicultural effects on tree growth.
Ďurkovič, Jaroslav; Čaňová, Ingrid; Lagaňa, Rastislav; Kučerová, Veronika; Moravčík, Michal; Priwitzer, Tibor; Urban, Josef; Dvořák, Miloň; Krajňáková, Jana
2013-01-01
Background and Aims Previous studies have shown that Ophiostoma novo-ulmi, the causative agent of Dutch elm disease (DED), is able to colonize remote areas in infected plants of Ulmus such as the leaf midrib and secondary veins. The objective of this study was to compare the performances in leaf traits between two Dutch elm hybrids ‘Groeneveld’ and ‘Dodoens’ which possess a contrasting tolerance to DED. Trait linkages were also tested with leaf mass per area (LMA) and with the reduced Young's modulus of elasticity (MOE) as a result of structural, developmental or functional linkages. Methods Measurements and comparisons were made of leaf growth traits, primary xylem density components, gas exchange variables and chlorophyll a fluorescence yields between mature plants of ‘Groeneveld’ and ‘Dodoens’ grown under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to reveal nanomechanical properties of the cell walls of tracheary elements such as MOE, adhesion and dissipation. Key Results ‘Dodoens’ had significantly higher values for LMA, leaf tissue thickness variables, tracheary element lumen area (A), relative hydraulic conductivity (RC), gas exchange variables and chlorophyll a fluorescence yields. ‘Groeneveld’ had stiffer cell walls of tracheary elements, and higher values for water-use efficiency and leaf water potential. Leaves with a large carbon and nutrient investment in LMA tended to have a greater leaf thickness and a higher net photosynthetic rate, but LMA was independent of RC. Significant linkages were also found between the MOE and some vascular traits such as RC, A and the number of tracheary elements per unit area. Conclusions Strong dissimilarities in leaf trait performances were observed between the examined Dutch elm hybrids. Both hybrids were clearly separated from each other in the multivariate leaf trait space. Leaf growth, vascular and gas exchange traits in the infected plants of ‘Dodoens’ were unaffected by the DED fungus. ‘Dodoens’ proved to be a valuable elm germplasm for further breeding strategies. PMID:23264236
Functional Groups Based on Leaf Physiology: Are they Spatially and Temporally Robust?
NASA Technical Reports Server (NTRS)
Foster, Tammy E.; Brooks, J. Renee; Quincy, Charles (Technical Monitor)
2002-01-01
The functional grouping hypothesis, which suggests that complexity in function can be simplified by grouping species with similar responses, was tested in the Florida scrub habitat. Functional groups were identified based on how species in fire maintained FL scrub function in terms of carbon, water and nitrogen dynamics. The suite of physiologic parameters measured to determine function included both instantaneous gas exchange measurements obtained from photosynthetic light response curves and integrated measures of function. Using cluster analysis, five distinct physiologically-based functional groups were identified. Using non-parametric multivariate analyses, it was determined that these five groupings were not altered by plot differences or by the three different management regimes; prescribed burn, mechanically treated and burn, and fire-suppressed. The physiological groupings also remained robust between the two years 1999 and 2000. In order for these groupings to be of use for scaling ecosystem processes, there needs to be an easy-to-measure morphological indicator of function. Life form classifications were able to depict the physiological groupings more adequately than either specific leaf area or leaf thickness. THe ability of life forms to depict the groupings was improved by separating the parasitic Ximenia americana from the shrub category.
Santos, Leonardo D T; Da Cruz, Leandro R; Dos Santos, Samuel A; Sant'anna-Santos, Bruno F; Dos Santos, Izabela T; De Oliveira, Ariane M; Barros, Rodrigo E; Santos, Márcia V; Faria, Rodrigo M
2015-03-01
Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii and Pueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloides plants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity of N. wightii and P. phaseoloides, no effects on biomass accumulation were observed in response to light.
Haque, Md Moinul; Pramanik, Habibur Rahman; Biswas, Jiban Krishna; Iftekharuddaula, K M; Hasanuzzaman, Mirza
2015-01-01
Hybrid rice varieties have higher yield potential over inbred varieties. This improvement is not always translated to the grain yield and its physiological causes are still unclear. In order to clarify it, two field experiments were conducted including two popular indica hybrids (BRRI hybrid dhan2 and Heera2) and one elite inbred (BRRI dhan45) rice varieties. Leaf area index, chlorophyll status, and photosynthetic rate of flag leaf, postheading crop growth rate, shoot reserve translocation, source-sink relation and yield, and its attributes of each variety were comprehensively analyzed. Both hybrid varieties outyielded the inbred. However, the hybrids and inbred varieties exhibited statistically identical yield in late planting. Both hybrids accumulated higher amount of biomass before heading and exhibited greater remobilization of assimilates to the grain in early plantings compared to the inbred variety. Filled grain (%) declined significantly at delayed planting in the hybrids compared to elite inbred due to increased temperature impaired-inefficient transport of assimilates. Flag leaf photosynthesis parameters were higher in the hybrid varieties than those of the inbred variety. Results suggest that greater remobilization of shoot reserves to the grain rendered higher yield of hybrid rice varieties.
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.
2014-05-01
The empirical Ball-Berry stomatal conductance model is commonly used in Earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must both be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA) to numerically optimize photosynthetic carbon gain per unit water loss while preventing leaf water potential dropping below a critical minimum level. We evaluated two alternative optimization algorithms: intrinsic water-use efficiency (Δ An/Δ gs, the marginal carbon gain of stomatal opening) and water-use efficiency (Δ An/Δ El, the marginal carbon gain of water loss). We implemented the stomatal models in a multi-layer plant canopy model, to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using: (1) leaf analyses; (2) canopy net radiation, sensible heat flux, latent heat flux, and gross primary production at six AmeriFlux sites spanning 51 site-years; and (3) parameter sensitivity analyses. Without soil moisture stress, the performance of the SPA stomatal conductance model was generally comparable to or somewhat better than the Ball-Berry model in flux tower simulations, but was significantly better than the Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from the physiological theory linking leaf water-use efficiency and water flow to and from the leaf along the soil-to-leaf pathway rather than being imposed a priori, as in the Ball-Berry model. Similar functional dependence of gs on Ds emerged from the water-use efficiency optimization. Sensitivity analyses showed that two parameters (stomatal efficiency and root hydraulic conductivity) minimized errors with the SPA stomatal conductance model. The critical stomatal efficiency for optimization (ι) was estimated from leaf trait datasets and is related to the slope parameter (g1) of the Ball-Berry model. The optimized parameter value was consistent with this estimate. Optimized root hydraulic conductivity was consistent with estimates from literature surveys. The two central concepts embodied in the stomatal model, that plants account for both water-use efficiency and for hydraulic safety in regulating stomatal conductance, imply a notion of optimal plant strategies and provide testable model hypotheses, rather than empirical descriptions of plant behavior.
Barima, Yao Sadaiou Sabas; Angaman, Djédoux Maxime; N'gouran, Kobenan Pierre; Koffi, N'guessan Achille; Kardel, Fatemeh; De Cannière, Charles; Samson, Roeland
2014-02-01
Particulate matter (PM) emissions, and the associated human health risks, are likely to continue increasing in urban environments of developing countries like Abidjan (Ivory Cost). This study evaluated the potential of leaves of several herbaceous and tree species as bioindicators of urban particulate matter pollution, and its variation over different land use classes, in a tropical area. Four species well distributed (presence frequencies >90%) over all land use classes, easy to harvest and whose leaves are wide enough to be easily scanned were selected, i.e.: Amaranthus spinosus (Amaranthaceae), Eleusine indica (Poaceae), Panicum maximum (Poaceae) and Ficus benjamina (Moraceae). Leaf sampling of these species was carried out at 3 distances from the road and at 3 height levels. Traffic density was also noted and finally biomagnetic parameters of these leaves were determined. Results showed that Saturation Isothermal Remanent Magnetization (SIRM) of leaves was at least 4 times higher (27.5×10(-6)A) in the vicinity of main roads and industrial areas than in parks and residential areas. The main potential sources of PM pollution were motor vehicles and industries. The slightly hairy leaves of the herbaceous plant A. spinosus and the waxy leaves of the tree F. benjamina showed the highest SIRM (25×10(-6)A). Leaf SIRM increased with distance to road (R(2)>0.40) and declined with sampling height (R(2)=0.17). The distance between 0 and 5m from the road seemed to be the most vulnerable in terms of PM pollution. This study has showed that leaf SIRM of herbaceous and tree species can be used to assess PM exposure in tropical urban environments. © 2013.
Coate, Jeremy E; Luciano, Amelia K; Seralathan, Vasu; Minchew, Kevin J; Owens, Tom G; Doyle, Jeff J
2012-01-01
Previous studies have shown that polyploidy has pronounced effects on photosynthesis. Most of these studies have focused on synthetic or recently formed autopolyploids, and comparatively little is known about the integrated effects of natural allopolyploidy, which involves hybridity and genome doubling and often incorporates multiple genotypes through recurrent origins and lineage recombination. Glycine dolichocarpa (designated T2) is a natural allotetraploid with multiple origins. We quantified 21 anatomical, biochemical, and physiological phenotypes relating to photosynthesis in T2 and its diploid progenitors, G. tomentella (D3) and G. syndetika (D4). To assess how direction of cross affects these phenotypes, we included three T2 accessions having D3-like plastids (T2(D3)) and two accessions having D4-like plastids (T2(D4)). T2 accessions were transgressive (more extreme than any diploid accession) for 17 of 21 phenotypes, and species means differed significantly in T2 vs. both progenitors for four of 21 phenotypes (higher for guard cell length, electron transport capacity [J(max)] per palisade cell, and J(max) per mesophyll cell; lower for palisade cells per unit leaf area). Within T2, four of 21 parameters differed significantly between T2(D3) and T2(D4) (palisade cell volume; chloroplast number and volume per unit leaf area; and J(max) per unit leaf area). T2 is characterized by transgressive photosynthesis-related phenotypes (including an ca. 2-fold increase in J(max) per cell), as well as by significant intraspecies variation correlating with plastid type. These data indicate prominent roles for both nucleotypic effects and cytoplasmic factors in photosynthetic responses to allopolyploidy.
NASA Astrophysics Data System (ADS)
Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.
2013-12-01
Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense stands. These data correspond to 4.8 and 2.2 respectively from in situ Licor LAI 2200 measurements (Wilcoxon signed rank p value of 0.25, indicating there is no significant difference between LAIC and field measurements). Imagery over plots indicates about 12% canopy cover from standing dead vegetation within plots, which corresponds to about a 10% estimate of standing dead measured in the field. The next steps for analysis include calculating NDVI and CWC for plot-level vegetation, and scaling to the surrounding forested landscape. These high resolution estimates from UAS imagery will provide forest stand-to- landscape level biophysical data for forest health assessments, management, drought and disturbance monitoring and climate change modeling. Chen, J. M., and J. Cihlar. 1996. Retrieving LAI of boreal conifer forests using Landsat TM images. RSE 55:153-162. Córcoles, J., J. Ortega, D. Hernández, and M. Moreno. 2013. Use of digital photography from unmanned aerial vehicles for estimation of LAI in onion. EJoA. 45:96-104.
QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).
Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun
2018-04-01
QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.
Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
Ohtsuka, Akihiro; Sack, Lawren; Taneda, Haruhiko
2018-02-01
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower-order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher-order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (K leaf ). We further hypothesized that BS lignification would mediate the relationship of K leaf to vein length per area. We analysed the dependence of K leaf , and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside-xylem pathways and lower K leaf . K leaf could be strongly predicted by vein length per area and highest lignified vein order (R 2 = .69). The light-response of K leaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport. © 2017 John Wiley & Sons Ltd.
Distribution of leaf characteristics in relation to orientation within the canopy of woody species
NASA Astrophysics Data System (ADS)
Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia
2013-04-01
Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Miller, J. R.; Chen, J. M.
2009-05-01
Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation
A new image segmentation method based on multifractal detrended moving average analysis
NASA Astrophysics Data System (ADS)
Shi, Wen; Zou, Rui-biao; Wang, Fang; Su, Le
2015-08-01
In order to segment and delineate some regions of interest in an image, we propose a novel algorithm based on the multifractal detrended moving average analysis (MF-DMA). In this method, the generalized Hurst exponent h(q) is calculated for every pixel firstly and considered as the local feature of a surface. And then a multifractal detrended moving average spectrum (MF-DMS) D(h(q)) is defined by the idea of box-counting dimension method. Therefore, we call the new image segmentation method MF-DMS-based algorithm. The performance of the MF-DMS-based method is tested by two image segmentation experiments of rapeseed leaf image of potassium deficiency and magnesium deficiency under three cases, namely, backward (θ = 0), centered (θ = 0.5) and forward (θ = 1) with different q values. The comparison experiments are conducted between the MF-DMS method and other two multifractal segmentation methods, namely, the popular MFS-based and latest MF-DFS-based methods. The results show that our MF-DMS-based method is superior to the latter two methods. The best segmentation result for the rapeseed leaf image of potassium deficiency and magnesium deficiency is from the same parameter combination of θ = 0.5 and D(h(- 10)) when using the MF-DMS-based method. An interesting finding is that the D(h(- 10)) outperforms other parameters for both the MF-DMS-based method with centered case and MF-DFS-based algorithms. By comparing the multifractal nature between nutrient deficiency and non-nutrient deficiency areas determined by the segmentation results, an important finding is that the gray value's fluctuation in nutrient deficiency area is much severer than that in non-nutrient deficiency area.
Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus
NASA Technical Reports Server (NTRS)
Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.
1998-01-01
Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown to increase following a gradient of increasing LAI ranging from grasslands to coniferous forests. In that study, it was observed that forests, which showed little variation in NDVI, showed significant variation in liquid water. In order to test this hypothesis, we analyzed field spectra measured over Populus resprouts of known LAI and monitored changes in liquid water in young Populus stands as they aged over a 4-year time span. The study was conducted in south-central Washington, in a clonal Populus fiber farm owned and operated by Boise-Cascade near the town of Wallula.
Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav
2016-01-01
To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in ‘Dodoens’, a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of ‘Dodoens’ trees. PMID:26843210
NASA Astrophysics Data System (ADS)
Yusoff, Nornasuha; Ismail B., S.
2015-09-01
Laboratory and greenhouse experiments were conducted to study the allelopathic potential of the aqueous leaf extract and leaf debris (incorporated into the soil) of Chromolaena odorata and Mikania micrantha on the germination indices and growth as well as the allelopathic effect response index of Brassica chinensis. Three concentrations each of the aqueous leaf extract (12.5, 25.0 and 50.0 g/L) and leaf debris (2.5, 5.0 and 10.0 g/500 g soil) were used in the experiments. The treatments were arranged in a Completely Randomized Design (CRD) with three replications, and the experiment was conducted twice. The aqueous leaf extracts of both species significantly inhibited all growth parameters of B. chinensis at 50.0 g/L concentration by more than 50% (compared to that by the control). In contrast, the leaf debris of both species at most of the concentrations showed significant stimulatory effects on all growth parameters of B. chinensis. However, M. micrantha leaf debris showed no significant effect on the fresh weight of B. chinensis at all concentrations. The total germination percentage of B. chinensis was significantly decreased as concentration of the aqueous leaf extracts of both species increased. The aqueous leaf extract of both species at concentrations higher than 25.0 g/L, significantly reduced the initial speed of germination as well as the cumulative speed of germination of B. chinensis. The allelopathic effect response index was negative for both species, indicating that the extracts of both species have inhibitory effects on the germination and seedling growth of B. chinensis. Results from the study suggested that the leaves of C. odorata and M. micrantha have phytotoxic properties and have potential for use directly or indirectly on susceptible weeds, and thereby reducing the use of chemical pesticides.
Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.
Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita
2011-06-01
Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media. Copyright © 2011 Elsevier B.V. All rights reserved.
Nauš, Jan; Šmecko, Slavomír; Špundová, Martina
2016-08-01
In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoran, Maria; Savastru, Roxana; Savastru, Dan
Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forestmore » areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.« less
NASA Astrophysics Data System (ADS)
Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter
2014-05-01
Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are lumped into a single effective resistance parameter, the present approach enables derivation of nuanced insights and offers predictive capabilities that link changes in stomata structure and geometrical attributes to quantifying environmental influences and feedbacks on leaf structure and function.
Leal-Ramirez, Cecilia
2014-01-01
Despite the ecological importance of eelgrass, nowadays anthropogenic influences have produced deleterious effects in many meadows worldwide. Transplantation plots are commonly used as a feasible remediation scheme. The characterization of eelgrass biomass and its dynamics is an important input for the assessment of the overall status of both natural and transplanted populations. Particularly, in restoration plots it is desirable to obtain nondestructive assessments of these variables. Allometric models allow the expression of above ground biomass and productivity of eelgrass in terms of leaf area, which provides cost effective and nondestructive assessments. Leaf area in eelgrass can be conveniently obtained by the product of associated length and width. Although these variables can be directly measured on most sampled leaves, digital image methods could be adapted in order to simplify measurements. Nonetheless, since width to length ratios in eelgrass leaves could be even negligible, noise induced by leaf humidity content could produce misidentification of pixels along the peripheral contour of leaves images. In this paper, we present a procedure aimed to produce consistent estimations of eelgrass leaf area in the presence of the aforementioned noise effects. Our results show that digital image procedures can provide reliable, nondestructive estimations of eelgrass leaf area. PMID:24892089
Wei, Haixia; Luo, Tianxiang; Wu, Bo
2016-09-01
In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert-steppe ecotone in northern China. Along rainfall gradients with a moisture index (MI) of 0·17-0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ(13)C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ(13)C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ(13)C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wei, Haixia; Luo, Tianxiang; Wu, Bo
2016-01-01
Background and Aims In arid environments, a high nitrogen content per leaf area (Narea) induced by drought can enhance water use efficiency (WUE) of photosynthesis, but may also lead to high leaf construction cost (CC). Our aim was to investigate how maximizing Narea could balance WUE and CC in an arid-adapted, widespread species along a rainfall gradient, and how such a process may be related to the drought threshold of the desert–steppe ecotone in northern China. Methods Along rainfall gradients with a moisture index (MI) of 0·17–0·41 in northern China and the northern Tibetan Plateau, we measured leaf traits and stand variables including specific leaf area (SLA), nitrogen content relative to leaf mass and area (Nmass, Narea) and construction cost (CCmass, CCarea), δ13C (indicator of WUE), leaf area index (LAI) and foliage N-pool across populations of Artemisia ordosica. Key Results In samples from northern China, a continuous increase of Narea with decreasing MI was achieved by a higher Nmass and constant SLA (reduced LAI and constant N-pool) in high-rainfall areas (MI > 0·29), but by a lower SLA and Nmass (reduced LAI and N-pool) in low-rainfall areas (MI ≤ 0·29). While δ13C, CCmass and CCarea continuously increased with decreasing MI, the low-rainfall group had higher Narea and δ13C at a given CCarea, compared with the high-rainfall group. Similar patterns were also found in additional data for the same species in the northern Tibetan Plateau. The observed drought threshold where MI = 0·29 corresponded well to the zonal boundary between typical and desert steppes in northern China. Conclusions Our data indicated that below a climatic drought threshold, drought-resistant plants tend to maximize their intrinsic WUE through increased Narea at a given CCarea, which suggests a linkage between leaf functional traits and arid vegetation zonation. PMID:27443298
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
J.B. St. Clair
1993-01-01
Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...
Allometric method to estimate leaf area index for row crops
USDA-ARS?s Scientific Manuscript database
Leaf area index (LAI) is critical for predicting plant metabolism, biomass production, evapotranspiration, and greenhouse gas sequestration, but direct LAI measurements are difficult and labor intensive. Several methods are available to measure LAI indirectly or calculate LAI using allometric method...
NASA Astrophysics Data System (ADS)
Tanaka, N.; Levia, D. F., Jr.; Igarashi, Y.; Nanko, K.; Yoshifuji, N.; Tanaka, K.; Chatchai, T.; Suzuki, M.; Kumagai, T.
2014-12-01
Teak (Tectona grandis Linn. f.) plantations cover vast areas throughout Southeast Asia and are of great economic importance. This study has sought to increase our understanding of throughfall inputs under teak by analyzing the abiotic and biotic factors governing throughfall amounts and throughfall ratios in relation to three canopy phenophases (leafless, leafing, and leafed). There is no rain during the brief leaf senescence phenophase. Daily data was available for both throughfall volumes and depths as well as leaf area index. Detailed meteorological data were available in situ every ten minutes. Leveraging this high-resolution field data, we employed boosted regression trees (BRT) analysis to identify the primary controls on throughfall amount and ratio during each of the three canopy phenophases. Whereas throughfall amounts were always dominated by the magnitude of rainfall (as expected), throughfall ratios were governed by a suite of predictor variables during each phenophase. The BRT analysis demonstrated that throughfall ratio in the leafless phase was most influenced (in descending order of importance) by air temperature, rainfall amount, maximum wind speed, and rainfall intensity. Throughfall ratio in the leafed phenophase was dominated by rainfall amount which exerted 54.0% of the relative influence. The leafing phenophase was an intermediate case where rainfall amount, air temperature, and vapor pressure deficit were most important. Our results highlight the fact that throughfall ratios are differentially influenced by a suite of meteorological variables during leafless, leafing, and leafed phenophases. Abiotic variables (rainfall amount, air temperature, vapor pressure deficit, and maximum wind speed) trumped leaf area index and stand density in their effect on throughfall ratio. The leafing phenophase, while transitional in nature and short in duration, has a detectable and unique impact on water inputs to teak plantations. Further work is clearly needed to better gauge the importance of the leaf emergence period to the stemflow hydrology and forest biogeochemistry of teak plantations.
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
Essential climatic variables estimation with satellite imagery
NASA Astrophysics Data System (ADS)
Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.
2016-12-01
According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Tahara, N.; Iwata, H.; Nagano, H.; Harazono, Y.
2014-12-01
For better understanding high-latitude carbon and water cycles, parameters of a coupled photosynthesis and stomatal conductance big-leaf model (Farquhar et al., 1980; Ball and Berry, 1987; Baldocchi, 1994) were inversely estimated using gross primary productivity (GPP) and evapotranspiration by eddy covariance measurements at a black spruce forest in interior Alaska (Iwata et al., 2012; Ueyama et al., 2014). We developed a sequential optimization method based on a global optimization technique; shuffled complex evolution (SCE-UA) method (Duan et al., 1993). First, photosynthetic parameters (maximum carboxylation and maximum electron transfer rate at 25oC; Vcmax25 and Jmax25) were optimized for GPP, and then stomatal conductance parameters (m and b in the Ball-Berry model) were optimized for evapotranspiration. Based on our optimization, Vcmax25, Jmax25, and m varied seasonally, but b value was almost constant throughout seasons. Vcmax25 and Jmax25 were higher in summer months than other months, which related to understory leaf area index. m was higher in winter months than other months, but did not significantly change throughout the growing season. Our results indicated that simulations using constant ecophysiological parameters could underestimate photosynthesis and evapotranspiration of high-latitude ecosystems. References Ball and Berry, 1987: Progress in Photosynthesis Research, pp 221-224. Baldocchi, 1994: Tree Physiol., 14, 1069-1079. Duan et al., 1993: J. Optimization Theory and Applications, 76, 501-521. Farquhar et al., 1980: Planta, 149, 78-90. Iwata et al., 2012: Agric. For. Meteorol., 161, 107-115. Ueyama et al., 2014: Global Change Biol., 20, 1161-1173.
Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu
2018-01-24
Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.
NASA Technical Reports Server (NTRS)
Arain, Altaf M.; Shuttleworth, W. James; Yang, Z-Liang; Michaud, Jene; Dolman, Johannes
1997-01-01
A coupled model, which combines the Biosphere-Atmosphere Transfer Scheme (BATS) with an advanced atmospheric boundary-layer model, was used to validate hypothetical aggregation rules for BATS-specific surface cover parameters. The model was initialized and tested with observations from the Anglo-Brazilian Amazonian Climate Observational Study and used to simulate surface fluxes for rain forest and pasture mixes at a site near Manaus in Brazil. The aggregation rules are shown to estimate parameters which give area-average surface fluxes similar to those calculated with explicit representation of forest and pasture patches for a range of meteorological and surface conditions relevant to this site, but the agreement deteriorates somewhat when there are large patch-to-patch differences in soil moisture. The aggregation rules, validated as above, were then applied to remotely sensed 1 km land cover data set to obtain grid-average values of BATS vegetation parameters for 2.8 deg x 2.8 deg and 1 deg x 1 deg grids within the conterminous United States. There are significant differences in key vegetation parameters (aerodynamic roughness length, albedo, leaf area index, and stomatal resistance) when aggregate parameters are compared to parameters for the single, dominant cover within the grid. However, the surface energy fluxes calculated by stand-alone BATS with the 2-year forcing, data from the International Satellite Land Surface Climatology Project (ISLSCP) CDROM were reasonably similar using aggregate-vegetation parameters and dominant-cover parameters, but there were some significant differences, particularly in the western USA.
Puckett, Sarah L.; van Riper, Charles
2014-01-01
We examined the effects of a biologic control agent, the tamarisk leaf beetle (Diorhabda carinulata), on native avifauna in southwestern Colorado, specifically, addressing whether and to what degree birds eat tamarisk leaf beetles. In 2010, we documented avian foraging behavior, characterized the arthropod community, sampled bird diets, and undertook an experiment to determine whether tamarisk leaf beetles are palatable to birds. We observed that tamarisk leaf beetles compose 24.0 percent (95-percent-confidence interval, 19.9-27.4 percent) and 35.4 percent (95-percent-confidence interval, 32.4-45.1 percent) of arthropod abundance and biomass in the study area, respectively. Birds ate few tamarisk leaf beetles, despite a superabundance of D. carinulata in the environment. The frequency of occurrence of tamarisk leaf beetles in bird diets was 2.1 percent (95-percent-confidence interval, 1.3- 2.9 percent) by abundance and 3.4 percent (95-percent-confidence interval, 2.6-4.2 percent) by biomass. Thus, tamarisk leaf beetles probably do not contribute significantly to the diets of birds in areas where biologic control of tamarisk is being applied.
NASA Astrophysics Data System (ADS)
Majasalmi, Titta; Korhonen, Lauri; Korpela, Ilkka; Vauhkonen, Jari
2017-07-01
We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer's law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the triangulation approach may be preferred.
Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth
2013-01-01
Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The results suggest that these parameters could improve the sensitivity of the standard assays. PMID:23565165
Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen
2018-01-01
It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization. PMID:29472939
Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen
2018-01-01
It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.
Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.
Feller, Urs
2016-09-20
Global change is characterized by increased CO 2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO 2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Sears, Edie Seldon
2000-12-01
A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using stereoscopic digital cameras to quantify leaf area index, leaf shape, and leaf orientation as well as reflectance. Given this additional information fluorescence emission may also prove a more useful biological assay of freestanding vegetation.
Wind shear, sensible heat flux and atmospheric stability within a forest canopy
NASA Astrophysics Data System (ADS)
Piringer, M.; Polreich, E.
2009-09-01
The scientific project "ROSALIA”, carried out in co-operation between ZAMG and the Austrian Federal Research and Training Centre for Forests, Natural Hazards, and Landscape, investigated the meteorological impacts on pollen emission and spread in a typical Central European forest of mixed deciduous and coniferous trees. The study area is the "Lehrforst Rosalia” of BOKU University approx. 60 km south of the city of Vienna in undulating terrain (300 - 750 m altitude). In this area, two meteorological towers of similar construction, one at crest height, the other in the small valley of the river "Ofenbach” near a meteorological ground station, have been equipped with 3D ultrasonic anemometers: one has been placed on top of the upper tower to representatively measure the gradient flow; the tower in the valley has been equipped with 3 instruments, one at the lowermost platform near ground, the second in the middle of the forest canopy, the third on top of the tower situated within the transition zone between the canopy and the "free” boundary layer where the gradient winds dominate. The sonic anemometers measure the three-dimensional wind vector; in addition, the sound velocity is derived, from which the so-called "sonic temperature” is calculated to derive the sensible heat flux. Other quantities are the means, standard deviations, and covariances of the wind components and the momentum flux, the Monin-Obukhov stability parameter, and the friction velocity. In the sloping dense forest canopy surrounding the tower, complex meteorological conditions and frequent decoupling of above-canopy and within-canopy flow has to be expected. The presence of a thick leaf canopy results in a stronger decoupling between the flow above and inside the canopy. As the investigation period covers April and May 2009, this gives the opportunity to discern between leaf-off (at the beginning) and leaf-on periods, with a proposed increase in decoupling with time. The aim of the study is to derive characteristic patterns of wind and atmospheric stability within the forest canopy for leaf-off and leaf-on periods as well as for days of intense versus negligible pollen production.
MODIS Measures Total U.S. Leaf Area
NASA Technical Reports Server (NTRS)
2002-01-01
This composite image over the continental United States was produced with data acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS) during the period March 24 - April 8, 2000. The image is a map of the density of the plant canopy covering the ground. It is the first in a series of images over the continental U.S. produced by the MODIS Land Discipline Group (refer to this site June 2 and 5 for the next two images in the series). The image is a MODIS data product called 'Leaf Area Index,' which is produced by radiometrically measuring the visible and near infrared energy reflected by vegetation. The Leaf Area Index provides information on the structure of plant canopy, showing how much surface area is covered by green foliage relative to total land surface area. In this image, dark green pixels indicate areas where more than 80 percent of the land surface is covered by green vegetation, light green pixels show where leaves cover about 10 to 50 percent of the land surface, and brown pixels show virtually no leaf coverage. The more leaf area a plant has, the more sunlight it can absorb for photosynthesis. Leaf Area Index is one of a new suite of measurements that scientists use to understand how the Earth's land surfaces are changing over time. Their goal is to use these measurements to refine computer models well enough to simulate how the land biosphere influences the natural cycles of water, carbon, and energy throughout the Earth system. This image is the first of its kind from the MODIS instrument, which launched in December 1999 aboard the Terra spacecraft. MODIS began acquiring scientific data on February 24, 2000, when it first opened its aperture door. The MODIS instrument and Terra spacecraft are both managed by NASA's Goddard Space Flight Center, Greenbelt, MD. Image courtesy Steven Running, MODIS Land Group Member, University of Montana
The Thermal Infrared Sensor on the Landsat Data Continutiy Mission
USDA-ARS?s Scientific Manuscript database
The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...
Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M
2016-11-01
The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Environmental modification of yield and food composition of cowpea and leaf lettuce
NASA Technical Reports Server (NTRS)
Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.
1990-01-01
Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.
Papoti, Vassiliki T; Tsimidou, Maria Z
2009-05-13
The impact of sampling parameters, that is, cultivar, leaf age, and sampling date, on the radical scavenging potential of olive leaf extracts was examined via the DPPH(*) and other assays. Total phenol content was estimated colorimetrically and by fluorometry, whereas phenol composition was assessed by RP-HPLC coupled with diode array, fluorometric, and MS detection systems. Oleuropein was not always the major leaf constituent. Considerable differences noted in individual phenol levels (hydroxytyrosol, oleuropein and other secoiridoids, verbascoside, and flavonoids) among samples were not reflected either in the total phenol content or in the radical scavenging potential of the extracts. It can be suggested that olive leaf is a robust source of radical scavengers throughout the year and that differentiation in the levels of individual components depends rather on sampling period than on cultivar or age. The latter does not present predictable regularity. Exploitation of all types of leaves expected in an olive tree shoot for the extraction of bioactive compounds is feasible.
Effect of drinking parsley leaf tea on urinary composition and urinary stones' risk factors.
Alyami, Fahad A; Rabah, Danny M
2011-05-01
To investigate the effect of parsley leaf tea on urine composition and the inhibitors of urinary tract stones formation, we studied 20 healthy volunteers who were divided into two groups: the first group of 10 subjects drank daily 1,200 mL of parsley leaf tea for 2 weeks, while the second group drank at least 1,200 mL daily of bottled water for the same period. This was followed by a 2-week "washout" period before the two groups were crossed over for another 2 weeks. During the experimental phase, 24-h urine samples were collected at baseline, on day 14, and at the end of the 6-week period and different urinary parameters were measured and analyzed statistically. We found no significant difference in the urine volume, pH, sodium, potassium, chloride, urea, creatinine, phosphorus, magnesium, uric acid, cystine, or citric acid. Further research is needed to evaluate the effects of parsley leaf tea on urinary parameters in healthy and stone-forming patients.
New dimension analyses with error analysis for quaking aspen and black spruce
NASA Technical Reports Server (NTRS)
Woods, K. D.; Botkin, D. B.; Feiveson, A. H.
1987-01-01
Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.
NASA Astrophysics Data System (ADS)
González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.
2016-11-01
In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.
da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes
2018-04-24
This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.
Martorell, Carlos; Ezcurra, Exequiel
2007-04-01
Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.
Zinc deficiency in field-grown pecan trees: changes in leaf nutrient concentrations and structure.
Ojeda-Barrios, Dámaris; Abadía, Javier; Lombardini, Leonardo; Abadía, Anunciación; Vázquez, Saúl
2012-06-01
Zinc (Zn) deficiency is a typical nutritional disorder in pecan trees [Carya illinoinensis (Wangenh.) C. Koch] grown under field conditions in calcareous soils in North America, including northern Mexico and south-western United States. The aim of this study was to assess the morphological and nutritional changes in pecan leaves affected by Zn deficiency as well as the Zn distribution within leaves. Zinc deficiency led to decreases in leaf chlorophyll concentrations, leaf area and trunk cross-sectional area. Zinc deficiency increased significantly the leaf concentrations of K and Ca, and decreased the leaf concentrations of Zn, Fe, Mn and Cu. All nutrient values found in Zn-deficient leaves were within the sufficiency ranges, with the only exception of Zn, which was approximately 44, 11 and 9 µg g(-1) dry weight in Zn-sufficient, moderately and markedly Zn-deficient leaves, respectively. Zinc deficiency led to decreases in leaf thickness, mainly due to a reduction in the thickness of the palisade parenchyma, as well as to increases in stomatal density and size. The localisation of Zn was determined using the fluorophore Zinpyr-1 and ratio-imaging technique. Zinc was mainly localised in the palisade mesophyll area in Zn-sufficient leaves, whereas no signal could be obtained in Zn-deficient leaves. The effects of Zn deficiency on the leaf characteristics of pecan trees include not only decreases in leaf chlorophyll and Zn concentrations, but also a reduction in the thickness of the palisade parenchyma, an increase in stomatal density and pore size and the practical disappearance of Zn leaf pools. These characteristics must be taken into account to design strategies to correct Zn deficiency in pecan tree in the field. Copyright © 2012 Society of Chemical Industry.
Plichta, Roman; Urban, Josef; Gebauer, Roman; Dvořák, Miloň; Ďurkovič, Jaroslav
2016-03-01
To better understand the long-term impact of Ophiostoma novo-ulmi Brasier on leaf physiology in 'Dodoens', a Dutch elm disease-tolerant hybrid, measurements of leaf area, leaf dry mass, petiole anatomy, petiole hydraulic conductivity, leaf and branch water potential, and branch sap flow were performed 3 years following an initial artificial inoculation. Although fungal hyphae were detected in fully expanded leaves, neither anatomical nor morphological traits were affected, indicating that there was no impact from the fungal hyphae on the leaves during leaf expansion. In contrast, however, infected trees showed both a lower transpiration rate of branches and a lower sap flow density. The long-term persistence of fungal hyphae inside vessels decreased the xylem hydraulic conductivity, but stomatal regulation of transpiration appeared to be unaffected as the leaf water potential in both infected and non-infected trees was similarly driven by the transpirational demands. Regardless of the fungal infection, leaves with a higher leaf mass per area ratio tended to have a higher leaf area-specific conductivity. Smaller leaves had an increased number of conduits with smaller diameters and thicker cell walls. Such a pattern could increase tolerance towards hydraulic dysfunction. Measurements of water potential and theoretical xylem conductivity revealed that petiole anatomy could predict the maximal transpiration rate. Three years following fungal inoculation, phenotypic expressions for the majority of the examined traits revealed a constitutive nature for their possible role in Dutch elm disease tolerance of 'Dodoens' trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.
Eyles, Alieta; Worledge, Dale; Sands, Peter; Ottenschlaeger, Maria L; Paterson, Steve C; Mendham, Daniel; O'Grady, Anthony P
2012-08-01
Early weed control may improve the growth of forest plantations by influencing soil water and nutrient availability. To understand eucalypt growth responses to weed control, we examined the temporal responses of leaf gas-exchange, leaf nitrogen concentration (N) and water status of 7-month-old Eucalyptus globulus L. trees in a paired-plot field trial. In addition, we monitored the growth, leaf N and water status of the competing vegetation in the weed treatment. By the end of the 11-month experiment, complete weed control (WF treatment) of largely woody competitors increased the basal diameter of E. globulus by 14%. As indicated by pre-dawn water potentials of > - 0.05 MPa, interspecies competition for water resources was minimal at this site. In contrast, competition for N appeared to be the major factor limiting growth. Estimations of total plot leaf N (g m(-2) ground) showed that competing vegetation accounted for up to 70% of the total leaf N at the start of the trial. This value fell to 15% by the end of the trial. Despite increased leaf N(area) in WF trees 5 months after imposition of weed control, the photosynthetic capacity (A(1500)) of E. globulus was unaffected by treatment suggesting that the growth gains from weed control were largely unrelated to changes in leaf-level photosynthesis. Increased nutrient availability brought about by weed control enabled trees to increase investment into leaf-area production. Estimates of whole-tree carbon budget based on direct measurements of dark respiration and A(1500) allowed us to clearly demonstrate the importance of leaf area driving greater productivity following early weed control in a nutrient-limited site.
Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song
2017-01-01
Seedlings of “Xuegan” (Citrus sinensis) and “Sour pummelo” (Citrus grandis) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H2O2 production and electrolyte leakage in roots and leaves. This was done (a) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and (b) to understand the mechanisms by which low pH may cause a decrease in leaf CO2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H+-toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H+-toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H2O2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis. In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO2 assimilation. PMID:28270819
Long, An; Zhang, Jiang; Yang, Lin-Tong; Ye, Xin; Lai, Ning-Wei; Tan, Ling-Ling; Lin, Dan; Chen, Li-Song
2017-01-01
Seedlings of "Xuegan" ( Citrus sinensis ) and "Sour pummelo" ( Citrus grandis ) were irrigated daily with a nutrient solution at a pH of 2.5, 3, 4, 5, or 6 for 9 months. Thereafter, the following responses were investigated: seedling growth; root, stem, and leaf concentrations of nutrient elements; leaf gas exchange, pigment concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and chlorophyll a fluorescence; relative water content, total soluble protein level, H 2 O 2 production and electrolyte leakage in roots and leaves. This was done ( a ) to determine how low pH affects photosynthesis, related physiological parameters, and mineral nutrient profiles; and ( b ) to understand the mechanisms by which low pH may cause a decrease in leaf CO 2 assimilation. The pH 2.5 greatly inhibited seedling growth, and many physiological parameters were altered only at pH 2.5; pH 3 slightly inhibited seedling growth; pH 4 had almost no influence on seedling growth; and seedling growth and many physiological parameters reached their maximum at pH 5. No seedlings died at any given pH. These results demonstrate that citrus survival is insensitive to low pH. H + -toxicity may directly damage citrus roots, thus affecting the uptake of mineral nutrients and water. H + -toxicity and a decreased uptake of nutrients (i.e., nitrogen, phosphorus, potassium, calcium, and magnesium) and water were likely responsible for the low pH-induced inhibition of growth. Leaf CO 2 assimilation was inhibited only at pH 2.5. The combinations of an impaired photosynthetic electron transport chain, increased production of reactive oxygen species, and decreased uptake of nutrients and water might account for the pH 2.5-induced decrease in CO 2 assimilation. Mottled bleached leaves only occurred in the pH 2.5-treated C. grandis seedlings. Furthermore, the pH 2.5-induced alterations of leaf CO 2 assimilation, water-use efficiency, chlorophylls, polyphasic chlorophyll a fluorescence (OJIP) transients and many fluorescence parameters, root and leaf total soluble proteins, H 2 O 2 production, and electrolyte leakage were all slightly greater in C. grandis than in C. sinensis seedlings. Hence, C. sinensis was slightly more tolerant to low pH than C. grandis . In conclusion, our findings provide novel insight into the causes of low pH-induced inhibition of seedling growth and leaf CO 2 assimilation.
A comparison of physiological indicators of sublethal cadmium stress in wetland plants
Mendelssohn, I.A.; McKee, K.L.; Kong, T.
2001-01-01
Physiological indices, including photosynthesis, chlorophyll fluorescence, adenylate energy charge (AEC) ratio, and leaf reflectance, were determined for Typha domingensis and Spartina alterniflora in response to increasing concentrations of Cd and compared with the growth responses of these species. Leaf expansion, the live/total ratio of plant aboveground biomass, and the aboveground regrowth rate after the initial harvests were significantly reduced with increasing Cd concentration in the growth medium. Of the four physiological responses measured, only photosynthesis and AEC responded to the Cd treatment before damage was visually apparent. Also, these indices were significantly correlated with leaf expansion rate and live/total ratio in most instances. Except at the end of the experiment, when the most stressed plants began to die, the Fv/Fm ratio was not significantly affected by the Cd treatment. The leaf spectral reflectance parameters showed no significant change during the entire treatment period. The significant correlation between the stress indicators and plant growth supported the findings that photosynthesis and AEC were the most responsive of the indicators tested, however, further research investigating other chlorophyll fluorescence and leaf reflectance parameters may demonstrate as well the value of these indicators in quantifying sublethal stress. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry
2016-04-01
Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in spring. In order to obtain a more comprehensive estimate of the model uncertainty, a second CLM ensemble was set up, where initial conditions and atmospheric forcings were perturbed in addition to the parameter estimates. This resulted in very high standard deviations (STD) of the modeled annual NEE sums for C3-grass and C3-crop PFTs, ranging between 24.1 and 225.9 gC m-2 y-1, compared to STD = 0.1 - 3.4 gC m-2 y-1 (effect of parameter uncertainty only, without additional perturbation of initial states and atmospheric forcings). The higher spread of modeled NEE for the C3-crop and C3-grass indicated that the model uncertainty was notably higher for those PFTs compared to the forest-PFTs. Our findings highlight the potential of parameter and uncertainty estimation to support the understanding and further development of land surface models such as CLM.
Fusion of AIRSAR and TM Data for Parameter Classification and Estimation in Dense and Hilly Forests
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Dungan, J. L.; Coughlan, J. C.
2000-01-01
The expanded remotely sensed data space consisting of coincident radar backscatter and optical reflectance data provides for a more complete description of the Earth surface. This is especially useful where many parameters are needed to describe a certain scene, such as in the presence of dense and complex-structured vegetation or where there is considerable underlying topography. The goal of this paper is to use a combination of radar and optical data to develop a methodology for parameter classification for dense and hilly forests, and further, class-specific parameter estimation. The area to be used in this study is the H. J. Andrews Forest in Oregon, one of the Long-Term Ecological Research (LTER) sites in the US. This area consists of various dense old-growth conifer stands, and contains significant topographic relief. The Andrews forest has been the subject of many ecological studies over several decades, resulting in an abundance of ground measurements. Recently, biomass and leaf-area index (LAI) values for approximately 30 reference stands have also become available which span a large range of those parameters. The remote sensing data types to be used are the C-, L-, and P-band polarimetric radar data from the JPL airborne SAR (AIRSAR), the C-band single-polarization data from the JPL topographic SAR (TOPSAR), and the Thematic Mapper (TM) data from Landsat, all acquired in late April 1998. The total number of useful independent data channels from the AIRSAR is 15 (three frequencies, each with three unique polarizations and amplitude and phase of the like-polarized correlation), from the TOPSAR is 2 (amplitude and phase of the interferometric correlation), and from the TM is 6 (the thermal band is not used). The range pixel spacing of the AIRSAR is 3.3m for C- and L-bands and 6.6m for P-band. The TOPSAR pixel spacing is 10m, and the TM pixel size is 30m. To achieve parameter classification, first a number of parameters are defined which are of interest to ecologists for forest process modeling. These parameters include total biomass, leaf biomass, LAI, and tree height. The remote sensing data from radar and TM are used to formulate a multivariate analysis problem given the ground measurements of the parameters. Each class of each parameter is defined by a probability density function (pdf), the spread of which defines the range of that class. High classification accuracy results from situations in which little overlap occurs between pdfs. Classification results provide the basis for the future work of class-specific parameter estimation using radar and optical data. This work was performed in part by the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, and in part by the NASA Ames Research Center, Moffett Field, CA, both under contract from the National Aeronautics and Space Administration.
Koh, Jason L; Yi, Seung Jin; Ren, Yupeng; Zimmerman, Todd A; Zhang, Li-Qun
2016-11-02
The meniscus is known to increase the contact area and decrease contact pressure in the tibiofemoral compartments of the knee. Radial tears of the meniscal root attachment along with partial resections of the torn meniscal tissue decrease the contact area and increase pressure; however, there is a lack of information on the effects of a horizontal cleavage tear (HCT) and partial leaf meniscectomy of such tears on tibiofemoral contact pressure and contact area. Twelve fresh-frozen human cadaveric knees were tested under 10 conditions: 5 serial conditions of posterior medial meniscectomy (intact meniscus, HCT, repaired HCT, inferior leaf resection, and resection of both inferior and superior leaves), each at 2 knee flexion angles (0° and 60°) under an 800-N axial load. Tekscan sensors (model 4000) were used to measure the contact pressure and contact area. HCT and HCT repair resulted in small changes in the contact area and an increase in contact pressure compared with the intact condition. Resection of the inferior leaf resulted in significantly decreased contact area (to a mean 82.3% of the intact condition at 0° of flexion and 81.8% at 60° of flexion; p < 0.05) and increased peak contact pressure (a mean 36.3% increase at 0° flexion and 43.2% increase at 60° flexion; p < 0.05) in the medial compartment. Further resection of the remaining superior leaf resulted in additional significant decreases in contact area (to a mean 60.1% of the intact condition at 0° of flexion and 49.7% at 60° of flexion; p < 0.05) and increases in peak contact pressure (a mean 79.2% increase at 0° of flexion and 74.9% increase at 60° of flexion; p < 0.05). Resection of meniscal tissue forming the inferior leaf of an HCT resulted in substantially decreased contact area and increased contact pressure. Additional resection of the superior leaf resulted in a further significant decrease in contact area and increase in contact pressure in the medial compartment. Repair or minimal resection of meniscal tissue of an HCT may be preferred to complete leaf resection to maintain knee tibiofemoral contact mechanics. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping
2013-01-01
In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.
Sims, Neil C; De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J
2018-01-01
This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high-resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five-level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
De Barro, Paul; Newnham, Glenn J; Kalyebi, Andrew; Macfadyen, Sarina; Malthus, Tim J
2017-01-01
Abstract BACKGROUND This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high‐resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five‐level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data. RESULTS Leaves exhibiting severe CBSD and CMD were spectrally indistinguishable from leaves without any symptoms. Severe SM was spectrally distinctive but is likely to be difficult to map because of its occurrence in the lower crown. SPAD measurements were highly correlated with most foliar chemistry measurements and field scores of disease severity. Regression models between simulated Sentinel 2 bands, field scores and SPAD measurements were strongest using wavelengths with high importance weightings in random forest models. CONCLUSION SPAD measurements are highly correlated to many foliar chemistry parameters, and should be considered for use in mapping disease severity over larger areas. Remaining challenges for mapping relate to the subtle expression of symptoms, the spatial distribution of disease severity within fields, and the small size and complex structure of the cassava fields themselves. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28851022
Ludewigt, Bernhard; Bercovitz, John; Nyman, Mark; Chu, William
1995-01-01
A method is disclosed for selecting the minimum width of individual leaves of a multileaf adjustable collimator having sawtooth top and bottom surfaces between adjacent leaves of a first stack of leaves and sawtooth end edges which are capable of intermeshing with the corresponding sawtooth end edges of leaves in a second stack of leaves of the collimator. The minimum width of individual leaves in the collimator, each having a sawtooth configuration in the surface facing another leaf in the same stack and a sawtooth end edge, is selected to comprise the sum of the penetration depth or range of the particular type of radiation comprising the beam in the particular material used for forming the leaf; plus the total path length across all the air gaps in the area of the joint at the edges between two leaves defined between lines drawn across the peaks of adjacent sawtooth edges; plus at least one half of the length or period of a single sawtooth. To accomplish this, in accordance with the method of the invention, the penetration depth of the particular type of radiation in the particular material to be used for the collimator leaf is first measured. Then the distance or gap between adjoining or abutting leaves is selected, and the ratio of this distance to the height of the sawteeth is selected. Finally the number of air gaps through which the radiation will pass between sawteeth is determined by selecting the number of sawteeth to be formed in the joint. The measurement and/or selection of these parameters will permit one to determine the minimum width of the leaf which is required to prevent passage of the beam through the sawtooth joint.
Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang
2016-01-01
Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.
Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang
2016-01-01
Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285
Win, Khin Thuzar; Oo, Aung Zaw; Bellingrath-Kimura, Sonoko Dorothea
2017-04-01
A pot experiment was conducted to study the effects of soil types and osmotic levels on growth and 137 Cs accumulation in two blackgram varieties differing in salinity tolerance grown in Fukushima contaminated soils. The contamination levels of the sandy clay loam and clay soil were 1084 and 2046 Bq kg -1 DW, respectively. The 137 Cs activity was higher in both plants grown on the sandy clay loam than on the clay soil regardless of soil 137 Cs activity concentration. No significant differences were observed in all measured growth parameters between the two varieties under optimal water conditions for both types of soil. However, the growth, leaf water contents and 137 Cs activity concentrations in both plants were lower in both soil types when there was water stress induced by addition of polyethylene glycol. Water stress-induced reduction in total leaf area and total biomass, in addition to leaf relative water content, were higher in salt sensitive 'Mut Pe Khaing To' than in salt tolerant 'U-Taung-2' plants for both soil types. Varietal difference in decreased 137 Cs uptake under water stress was statically significant in the sandy clay loam soil, however, it was not in the clay soil. The transfer of 137 Cs from soil to plants (i.e., root, stem and leaf) was higher for the sandy clay loam for both plants when compared with those of the clay soil. The decreased activity of 137 Cs in the above ground samples (leaf and stem) in both plants in response to osmotic stress suggested that plant available 137 Cs decreased when soil water is limited by osmotic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sources of Uncertainty in the Prediction of LAI / fPAR from MODIS
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Ganapol, Barry D.; Brass, James A. (Technical Monitor)
2002-01-01
To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, P; Olaciregui-Ruiz, I; Mijnheer, B
2016-06-15
Purpose: To investigate the sensitivity of an EPID-based 3D dose verification system to detect delivery errors in VMAT treatments. Methods: For this study 41 EPID-reconstructed 3D in vivo dose distributions of 15 different VMAT plans (H&N, lung, prostate and rectum) were selected. To simulate the effect of delivery errors, their TPS plans were modified by: 1) scaling of the monitor units by ±3% and ±6% and 2) systematic shifting of leaf bank positions by ±1mm, ±2mm and ±5mm. The 3D in vivo dose distributions where then compared to the unmodified and modified treatment plans. To determine the detectability of themore » various delivery errors, we made use of a receiver operator characteristic (ROC) methodology. True positive and false positive rates were calculated as a function of the γ-parameters γmean, γ1% (near-maximum γ) and the PTV dose parameter ΔD{sub 50} (i.e. D{sub 50}(EPID)-D{sub 50}(TPS)). The ROC curve is constructed by plotting the true positive rate vs. the false positive rate. The area under the ROC curve (AUC) then serves as a measure of the performance of the EPID dosimetry system in detecting a particular error; an ideal system has AUC=1. Results: The AUC ranges for the machine output errors and systematic leaf position errors were [0.64 – 0.93] and [0.48 – 0.92] respectively using γmean, [0.57 – 0.79] and [0.46 – 0.85] using γ1% and [0.61 – 0.77] and [ 0.48 – 0.62] using ΔD{sub 50}. Conclusion: For the verification of VMAT deliveries, the parameter γmean is the best discriminator for the detection of systematic leaf position errors and monitor unit scaling errors. Compared to γmean and γ1%, the parameter ΔD{sub 50} performs worse as a discriminator in all cases.« less
Zhao, Jun; Dong, Shu-ting; Liu, Peng; Zhang, Ji-wang; Zhao, Bin
2015-08-01
A field experiment was conducted using the winter wheat (Triticum aestivum) variety Shimai 15. The source of organic nitrogen was cow manure, and four fertilization treatments were included, i.e., no N fertilizer application, single application of urea, single application of cow manure, and mixed application of urea and cow manure. The effects of different applications of inorganic and organic nitrogen on canopy apparent photosynthesis (CAP), photosynthetic rate of flag leaves (Pn), leaf area index (LAI), florescence parameters and grain yield of winter wheat were determined. The results showed that urea had the largest effect on the early growth period, as at this stage the CAP, Pn and LAI of the single application of urea were the highest, which was followed by the mixed application and the single application of cow manure. However, 10 days after anthesis, the single application of cow manure and the mixed application delayed the leaf senescence process when compared with the single application of urea. This could be due to the two treatments having higher anti-oxidant enzyme activity and promoting a longer green leaf duration, which could maintain a higher photosynthetic capability. What' s more, the mixed application had a better performance and got the highest grain yield. Consequently, the mixed application of organic and inorganic fertilizers could delay leaf senescence and maintain a better canopy structure and higher photosynthesis capability at the late grain filling stage, which resulted in a higher grain yield.
Shimizu, Michiru; Ishida, Atsushi; Tange, Takeshi; Yagi, Hisayoshi
2006-04-01
We tested the hypothesis that sapling growth following a sudden increase in solar irradiance is related to recovery from photoinhibition and the balance between rate of production of new leaves and rate of abscision of old leaves. Leaf gas exchange, chlorophyll fluorescence and relative growth rate (RGR) of stem basal area were measured following the sudden exposure of shade-grown (7% of full sunlight) saplings of four Shorea species to full sunlight. Sudden exposure to full sunlight resulted in an immediate and substantial reduction in dark-adapted quantum yield of photosystem II (Fv/Fm), followed by a gradual recovery in all species. Near light-saturated net assimilation rate (A max) and area-based leaf chlorophyll concentration ([Chl area]) also declined immediately after exposure. Eleven days after exposure, A max had recovered to pre-exposure values in all species, whereas [Chl area] had not recovered. Across species, RGR of stem basal area increased with increasing RGR of the number of leaves following exposure to full sunlight. The interspecific variations in RGR of stem basal area suggest that new leaf production is crucial for determining the potential growth of saplings following gap formation.