Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J
2015-02-01
Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.
Immunomodulatory effects of temperature and pH of water in an Indian freshwater sponge.
Mukherjee, Soumalya; Bhunia, Anindya Sundar; Bhunia, Niladri Sekhar; Ray, Mitali; Ray, Sajal
2016-07-01
Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40°C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported "living fossil". Copyright © 2016 Elsevier Ltd. All rights reserved.
Lourenço, Felipe Rebello; Botelho, Túlia De Souza; Pinto, Terezinha De Jesus Andreoli
2012-01-01
The limulus amebocyte lysate (LAL) test is the simplest and most widely used procedure for detection of endotoxin in parenteral drugs. The LAL test demands optimal pH, ionic strength, temperature, and time of incubation. Slight changes in these parameters may increase the frequency of false-positive responses and the estimated uncertainty of the LAL test. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. LAL tests were performed in nominal conditions (37 °C, 60 min, and pH 7) and in different conditions of temperature (36 °C and 38 °C), time of incubation (58 and 62 min), and pH (6 and 8). Slight differences in pH increase the frequency of false-positive responses 5-fold (relative risk 5.0), resulting in an estimated of uncertainty 7.6%. Temperature and time of incubation affect the LAL test less, showing relative risks of 1.5 and 1.0, respectively. Estimated uncertainties in 36 °C or 38 °C temperatures and 58 or 62 min of incubation were found to be 2.0% and 1.0%, respectively. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses. The limulus amebocyte lysate (LAL) gel-clot test is a simple test for detection of endotoxin from Gram-negative bacteria. The test is based on a gel formation when a certain amount of endotoxin is present; it is a pass/fail test. The LAL test requires optimal pH, ionic strength, temperature, and time of incubation. Slight difference in these parameters may increase the frequency of false-positive responses. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. We find that slight differences in pH increase the frequency of false-positive responses 5-fold. Temperature and time of incubation affect the LAL test less. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses.
Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.
Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove
2015-01-01
Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687
Hinz, Katharina; Huppertz, Thom; Kelly, Alan L
2012-11-01
The susceptibility of total casein and the individual caseins in reconstituted skim milk to transglutaminase (TGase)-induced cross-linking was studied as a function of incubation temperature (5-40 °C), pH (5·0-7·0) and mineral addition. Within the ranges studied, the level of total casein cross-linked increased with increasing temperature, pH and concentration of added trisodium citrate, whereas adding calcium chloride had the opposite effect. These effects can be largely related to the effects of these parameters on TGase activity. In addition, the parameters were also found to influence the susceptibility of κ-casein, and to a lesser extent β-casein, to cross-linking, whereas the susceptibility of αs1-casein was not affected. The susceptibility of κ-casein to cross-linking increased with increasing temperature and calcium chloride addition, but decreased with increasing pH and citrate content, whereas the susceptibility of β-casein to TGase-induced cross-linking decreased with increasing temperature, but was not affected by other parameters. These findings highlight the fact that selection of environmental conditions during cross-linking can be applied to tailor the surface, and hence possibly colloidal stability, of casein micelles in TGase-treated milk.
NASA Astrophysics Data System (ADS)
Azis, Raba'ah Syahidah; Sulaiman, Sakinah; Ibrahim, Idza Riati; Zakaria, Azmi; Hassan, Jumiah; Muda, Nor Nadhirah Che; Nazlan, Rodziah; Saiden, Norlaily M.; Fen, Yap Wing; Mustaffa, Muhammad Syazwan; Matori, Khamirul Amin
2018-05-01
Synthesis of nanocrystalline strontium ferrite (SrFe12O19) via sol-gel is sensitive to its modification parameters. Therefore, in this study, an attempt of regulating the pH as a sol-gel modification parameter during preparation of SrFe12O19 nanoparticles sintered at a low sintering temperature of 900 °C has been presented. The relationship of varying pH (pH 0 to 8) on structural, microstructures, and magnetic behaviors of SrFe12O19 nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning microscope (FESEM), and vibrating sample magnetometer (VSM). Varying the pH of precursor exhibited a strong effect on the sintered density, crystal structure and magnetic properties of the SrFe12O19 nanoparticles. As the pH is 0, the SrFe12O19 produced relatively largest density, saturation magnetization, M s, and coercivity, H c, at a low sintering temperature of 900 °C. The grain size of SrFe12O19 is obtained in the range of 73.6 to 133.3 nm. The porosity of the sample affected the density and the magnetic properties of the SrFe12O19 ferrite. It is suggested that the low-temperature sintered SrFe12O19 at pH 0 displayed M s of 44.19 emu/g and H c of 6403.6 Oe, possessing a significant potential for applying in low-temperature co-fired ceramic permanent magnet.
Lorget, Florence; Parenteau, Audrey; Carrier, Michel; Lambert, Daniel; Gueorguieva, Ana; Schuetz, Chris; Bantseev, Vlad; Thackaberry, Evan
2016-09-06
Many long-acting delivery strategies for ocular indications rely on pH- and/or temperature-driven release of the therapeutic agent and degradation of the drug carrier. Yet, these physiological parameters are poorly characterized in ocular animal models. These strategies aim at reducing the frequency of dosing, which is of particular interest for the treatment of chronic disorders affecting the posterior segment of the eye, such as macular degeneration that warrants monthly or every other month intravitreal injections. We used anesthetized white New Zealand rabbits, Yucatan mini pigs, and cynomolgus monkeys to characterize pH and temperature in several vitreous locations and the central aqueous location. We also established post mortem pH changes in the vitreous. Our data showed regional and species differences, which need to be factored into strategies for developing biodegradable long-acting delivery systems.
Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs
Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan
2015-01-01
Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214
NASA Astrophysics Data System (ADS)
Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Younes, Rached ben
2018-05-01
The broadening, shifting and mixing coefficients of the doublet spectral lines in the ν2 and ν4 bands of PH3 perturbed by H2 have been determined at room temperature. Indeed, the collisional spectroscopic parameters: intensities, line widths, line shifts and line mixing parameters, are all grouped together in the collisional relaxation matrix. To analyse the collisional process and physical effects on spectra of phosphine (PH3), we have used the measurements carried out using a tunable diode-laser spectrometer in the ν2 and ν4 bands of PH3 perturbed by hydrogen (H2) at room temperature. The recorded spectra are fitted by the Voigt profile and the speed-dependent uncorrelated hard collision model of Rautian and Sobelman. These profiles are developed in the studies of isolated lines and are modified to account for the line mixing effects in the overlapping lines. The line widths, line shifts and line mixing parameters are given for six A1 and A2 doublet lines with quantum numbers K = 3n, (n = 1, 2, …) and overlapped by collisional broadening at pressures of less than 50 mbar.
Tang, Jiahuan; Liu, Ting; Yuan, Yong
2014-01-01
In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343
The monitoring method of water quality in Ciliwung River for post restoration
NASA Astrophysics Data System (ADS)
Diyanti; Saleh Pallu, Muh.; Tahir Lopa, Rita; Arsyad Thaha, M.
2018-04-01
Ciliwung River is the biggest river which flows across DKI Jakarta, where the river flows through the city, the settlements, and slums in Jakarta. Problems that occur in the Ciliwung River in Jakarta one of which is the quality of water. This research using some datas, there are secondary and primary data like river dimension and visualization of water quality of Ciliwung River. This research using a descriptive method which describes the comparison between a physical and chemical parameter for the durationn of three (3) years post-restoration. The physical parameters used in this reasearch are temperature and TDS, the chemical parameters are pH dan DO. Based on the result of data analyzing, we get the temperature average parameter pre-restoration is 28.30°C and TDS level is 151.96 mg/L, so the logical of standard quality criteria match with class 3. Post-restoration got the temperature 22.06°C and TDS level 224.20mg/L, so that water quality criteria match with class 2. For the chemical parameters the average pH and DO values pre-restoration are 6.84 and 4mg/L, respectively which match with class 2 category. Post-restoration, the chemical parameter about pH level is 7.41 and DO 8.4 mg/L, so the standard quality criteria match with class 1.
Passive Biobarrier for Treating Co-mingled Perchlorate and RDX in Groundwater at an Active Range
2016-05-12
and Groundwater Temperature ............................. 102 6.1.2 Dissolved Oxygen (DO) and Oxidation Reduction Potential (ORP...22 or equivalent). Parameters, including temperature , conductivity, dissolved oxygen , oxidation-reduction potential (ORP), turbidity, and pH were...3% for temperature and specific conductivity, and % for dissolved oxygen , ORP, and turbidity. When parameters were stable according to the above
Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise
2016-03-01
Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.
Sitta, Elton; Nagao, Raphael; Varela, Hamilton
2013-01-01
We report a comprehensive study of the electro-oxidation of ethylene glycol (EG) on platinum with emphasis on the effects exerted by the electrolyte pH, the EG concentration, and temperature, under both regular and oscillatory conditions. We extracted and discussed parameters such as voltammetric activity, reaction orders (with respect to [EG]), oscillation’s amplitude, frequency and waveform, and the evolution of the mean electrode potential at six pH values from 0 to 14. In addition, we obtained the apparent activation energies under several different conditions. Overall, we observed that increasing the electrolyte pH results in a discontinuous transition in most properties studied under both voltammetric and oscillatory regimes. As a relevant result in this direction, we found that the increase in the reaction order with pH is mediated by a minimum (~ 0) at pH = 12. Furthermore, the solution pH strongly affects all features investigated, c.f. the considerable increase in the oscillatory frequency and the decrease in the, oscillatory, activation energy as the pH increase. We suggest that adsorbed CO is probably the main surface-blocking species at low pH, and its absence at high pH is likely to be the main reason behind the differences observed. The size of the parameter region investigated and the amount of comparable parameters and properties presented in this study, as well as the discussion that followed illustrate the strategy of combining investigations under conventional and oscillatory regimes of electrocatalytic systems. PMID:24058650
Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.
Kaisermayer, Christian; Reinhart, David; Gili, Andreas; Chang, Martina; Aberg, Per-Mikael; Castan, Andreas; Kunert, Renate
2016-06-10
In biphasic cultivations, the culture conditions are initially kept at an optimum for rapid cell growth and biomass accumulation. In the second phase, the culture is shifted to conditions ensuring maximum specific protein production and the protein quality required. The influence of specific culture parameters is cell line dependent and their impact on product quality needs to be investigated. In this study, a biphasic cultivation strategy for a Chinese hamster ovary (CHO) cell line expressing an erythropoietin fusion protein (Epo-Fc) was developed. Cultures were run in batch mode and after an initial growth phase, cultivation temperature and pH were shifted. Applying a DoE (Design of Experiments) approach, a fractional factorial design was used to systematically evaluate the influence of cultivation temperature and pH as well as their synergistic effect on cell growth as well as on recombinant protein production and aggregation. All three responses were influenced by the cultivation temperature. Additionally, an interaction between pH and temperature was found to be related to protein aggregation. Compared with the initial standard conditions of 37°C and pH 7.05, a parameter shift to low temperature and acidic pH resulted in a decrease in the aggregate fraction from 75% to less than 1%. Furthermore, the synergistic effect of temperature and pH substantially lowered the cell-specific rates of glucose and glutamine consumption as well as lactate and ammonium production. The optimized culture conditions also led to an increase of the cell-specific rates of recombinant Epo-Fc production, thus resulting in a more economic bioprocess. Copyright © 2016. Published by Elsevier B.V.
Regularities in Low-Temperature Phosphatization of Silicates
NASA Astrophysics Data System (ADS)
Savenko, A. V.
2018-01-01
The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.
Qin, Chunfu; Bu, Dengpan; Sun, Peng; Zhao, Xiaowei; Zhang, Peihua; Wang, Jiaqi
2017-02-01
The objective of this study was to evaluate the effect of two different forage types on rumen fermentation parameters and profiles using a wireless data logger. Eight lactating cows were randomly assigned to one of two dietary treatments with a low forage diet with corn straw (CS) or a high forage diet with mixed forage (MF) as the forage source, respectively. Dietary physically effective neutral detergent fiber (peNDF) content was 11.3% greater in CS. Dry matter intake and milk fatty acid content decreased upon CS (P < 0.05). Ruminal pH, temperature and oxidation reduction potential (ORP) were monitored for 14 weeks. The CS group had significantly higher pH but lower temperature and ORP compared to MF (P < 0.01). With the CS diet regime, pH at the time before morning feeding, rumination and post-ingestion were significantly higher than those in the MF group (P < 0.05). However, times with the ruminal pH below 6.0 and 5.8 were significantly reduced (P < 0.05), whereas ruminal pH below 5.6 tended to be lower (P = 0.07). The results indicated that rumen fermentation parameters were affected by forage types and dietary peNDF content might be predominant in ruminal pH regulation. © 2016 Japanese Society of Animal Science.
Sperm motility in fishes. I. Effects of temperature and pH: a review.
Alavi, Sayyed Mohammad Hadi; Cosson, Jacky
2005-02-01
Sperm motility is a key factor in allowing us to determine semen quality and fertilizing capacity. Motility in semen is mainly controlled by K+ in salmonids, and probably also in sturgeons, and by osmotic pressure in other freshwater and seawater fish species, but other factors, such as concentration of surrounding metabolites and ions (Ca2+, Mg2+, etc.), pH and temperature also influence motility characteristics. In the present study, we have mainly reviewed and summarized the effects of temperature and pH on the motility of spermatozoa in three fish species: salmonids, cyprinids and sturgeons. Data in the literature show that motility, fertilizing ability and velocity of spermatozoa, as well as the duration of the motility period, depend on the temperature of the assay medium and also of that of the brood fish holding tank. In contrast, the pH of the swimming medium, and thus the intracellular pH of spermatozoa, has less influence on sperm motility parameters in cyprinids, salmonids and sturgeons.
NASA Astrophysics Data System (ADS)
H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan
2016-07-01
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz-5 MHz and the temperature range of 290-443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-07-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
NASA Astrophysics Data System (ADS)
Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.
2015-03-01
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.
Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.
Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia
2010-12-31
Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.
de Moura Bell, Juliana M L N; Aquino, Leticia F M C; Liu, Yan; Cohen, Joshua L; Lee, Hyeyoung; de Melo Silva, Vitor L; Rodrigues, Maria I; Barile, Daniela
2016-08-01
Enzymatic hydrolysis of lactose has been shown to improve the efficiency and selectivity of membrane-based separations toward the recovery of bioactive oligosaccharides. Achieving maximum lactose hydrolysis requires intrinsic process optimization for each specific substrate, but the effects of those processing conditions on the target oligosaccharides are not well understood. Response surface methodology was used to investigate the effects of pH (3.25-8.25), temperature (35-55°C), reaction time (6 to 58 min), and amount of enzyme (0.05-0.25%) on the efficiency of lactose hydrolysis by β-galactosidase and on the preservation of biologically important sialyloligosaccharides (3'-siallylactose, 6'-siallylactose, and 6'-sialyl-N-acetyllactosamine) naturally present in bovine colostrum whey permeate. A central composite rotatable design was used. In general, β-galactosidase activity was favored at pH values ranging from 3.25 to 5.75, with other operational parameters having a less pronounced effect. A pH of 4.5 allowed for the use of a shorter reaction time (19 min), lower temperature (40°C), and reduced amount of enzyme (0.1%), but complete hydrolysis at a higher pH (5.75) required greater values for these operational parameters. The total amount of sialyloligosaccharides was not significantly altered by the reaction parameters evaluated, suggesting specificity of β-galactosidase from Aspergillus oryzae toward lactose as well as the stability of the oligosaccharides at pH, temperature, and reaction time evaluated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Xu, Wenqing; Wu, Changqing
2014-03-01
Ozonated water washing is one of the emerging techniques to inactivate foodborne pathogens on produce, and limited information is available to optimize processing parameters (treatment time, temperature, and pH) to improve ozone efficacy on Salmonella inactivation for different produce. The efficacy of ozonated water washing for inactivation of Salmonella enterica Typhimurium on green onions, grape tomatoes and green leaf lettuces were studied in our research. Surface inoculated fresh produce were washed by ozonated water for 1, 5, or 10 min at room temperature and pH 5.60 ± 0.03. Then efficacy of ozonated water washing at mild heated (50 °C) and refrigerated (4 °C) temperature for 5 min with pH 5.60 ± 0.03 was investigated. Salmonella inactivation efficacy under pH 5.60 ± 0.03 and 2.64 ± 0.02 with 5 min washing at room temperature were also compared. Our results showed that Salmonella inactivation by ozonated water was time-dependent for 3 fresh produce. Mild heated temperature (50 °C) and pH 2.64 ± 0.02 improved efficacy of ozonated water to inactivate Salmonella on tomatoes and lettuces, but not on green onions. It is suggested that different surface structures of fresh produce significantly impact the antimicrobial efficacy of ozonated water washing operated under various parameters (time, temperature, and pH). Washing is the essential step for green onions and lettuces in the packinghouse and grape tomatoes in the restaurants and grocery stores having salad bars. Ozonated water can be used as disinfectant to reduce microbial contamination (FDA). The effectiveness of this disinfectant depends on the type of product and treatment conditions, such as water temperature, acidity, contact time. Our study showed that Salmonella inactivation by ozonated water washing was time-dependent. Mild heat and low pH improved inactivation efficacy on tomatoes and lettuces, but not on green onions. Processors should consider adjustments that are most appropriate for their produce. © 2014 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Manning, Charles R., Jr.; Price, Howard L.
1961-01-01
Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.
Ng, Ka Ying Bonnie; Mingels, Roel; Morgan, Hywel; Macklon, Nick; Cheong, Ying
2018-01-01
Despite advances in ART, implantation and pregnancy rates per embryo transfer still remain low. IVF laboratories strive to ensure that the process of handling gametes in vitro closely mimics the in vivo environment. However, there remains a lack of knowledge regarding the in vivo regulation and dynamic variation in biophysical parameters such as oxygen concentration, pH and temperature within the reproductive tract. To undertake a systematic review of the current understanding of the physico-chemical parameters of oxygen tension (pO2), pH and temperature within the female reproductive tract, and their potential implications in clinical and pathological processes related to fertility and those pertaining to limited reproductive capacity. A comprehensive literature search was performed using electronic databases including Medline, Embase, Cochrane Library and Pubmed to identify original and review articles addressing the biophysical parameters (pO2, pH and temperature) in the female reproductive tract of any species. The search included all studies published between 1946 and November 2015. Search terms included 'oxygen', 'pH', 'hydrogen ion concentration', 'acid base' and others terms. We also used special features and truncations to identify synonyms and broaden the search. Studies were excluded if they only assessed embryo culture conditions, fetal acid-base status, oxidative stress, outcomes of pregnancy and measurements of these parameters in non-reproductive organs. Our search generated 18 685 records and 60 articles were included. pO2 within the female reproductive tract shows cyclical variation and minute-to-minute oscillations, which may be influenced by uterine contractility, hormones, the autonomic system, cardiac pulsatility, and myometrial and smooth muscle integrity. Fine balanced control of pO2 and avoidance of overwhelming oxidative stress is crucial for embryogenesis and implantation. The pH in the female reproductive tract is graduated, with lowest pH in the vagina (~pH 4.42) increasing toward the Fallopian tubes (FTs) (~pH 7.94), reflecting variation in the site-specific microbiome and acid-base buffering at the tissue/cellular level. The temperature variation in humans is cyclical by day and month. In humans, it is biphasic, increasing in the luteal phase; with the caudal region of the oviduct 1-2 degrees cooler than the cranial portion. Temperature variation is influenced by hormones, density of pelvic/uterine vascular beds and effectiveness of heat exchange locally, crucial for sperm motility and embryo development. We have identified significant deficiencies and inconsistencies in the methods used to assess these biophysical factors within the reproductive tract. We have suggested that the technological solutions including the development of methods and models for real time, in vivo recordings of biophysical parameters. The notion of 'back to nature' in assisted conception suggested 20 years ago has yet to be translated into clinical practice. While the findings from this systematic review do not provide evidence to change current in vitro protocols, it highlights our current inability to assess the in vivo reproductive tract environment in real time. Data made available through future development of sensing technology in utero may help to provide new insights into how best to optimize the in vitro embryo environment and allow for more precise and personalized fertility treatment. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg.
Jakočiūnė, Džiuginta; Bisgaard, Magne; Hervé, Gaëlle; Protais, Jocelyne; Olsen, John Elmerdahl; Chemaly, Marianne
2014-08-01
This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert uniform shell design was employed to choose conditions for trials and data was fitted to polynomial models and were presented as estimated response surfaces. A model for prediction of reduction of S. Enteritidis in PWE within temperatures between 50 and 58°C, NaCl concentrations of 0-12%, and heating times between 30 and 210s and a model for prediction of growth rate of S. Enteritidis in PWE in the temperature range of 1-25°C, NaCl concentration of 0-12%, pH between 5 and 9, and lysozyme concentrations of 107-1007 U/mg proteins were developed. The maximum reduction condition was 58°C, 0% of NaCl at a fixed heating time of 120s, while maximum growth rate was estimated at 25°C and 0% of NaCl. pH and lysozyme concentration were shown not to influence growth performance significantly in the range of values studied. Results inform industry of the optimal pasteurization and storage parameters for liquid whole egg. Copyright © 2014 Elsevier B.V. All rights reserved.
Hashemi, Mohadeseh; Yadegari, Amir; Yazdanpanah, Ghasem; Omidi, Meisam; Jabbehdari, Sayena; Haghiralsadat, Fatemeh; Yazdian, Fatemeh; Tayebi, Lobat
2017-05-01
Graphene oxide (GO) has been recently introduced as a suitable anticancer drug carrier, which could be loaded with doxorubicin (DOX) as a general chemotherapy agent. Herein, the attempts were made to optimize the effective parameters on both loading and release of DOX on GO. GO and GO-DOX were characterized using transition electron microscopy , zeta potential, Raman spectroscopy, UV-visible spectroscopy, and Fourier transform infrared spectroscopy. In addition, loading and releasing behaviors of DOX on GO were studied in terms of different temperature and pH values. The primary optimized values of pH and temperature for best-loaded amount of DOX were 8.9 and 309 K, respectively. Moreover, we found that the smallest amount of released DOX, in pH of cancer microenvironment (5.4), occurs when DOX had been previously loaded in pH 7.8 and 310 K. Although the highest amount of loaded DOX was in basic pH, the results of efficient release of DOX from the GO-DOX complex and also cellular toxicity assay revealed that the best pH for loading of DOX on GO was 7.8. Therefore, in addition to optimization of parameters for efficient loading of DOX on GO, this study suggested that normalization of a released drug compared with the amount of a loaded drug could be a new approach for optimization of drug loading on nanocarriers. © 2016 International Union of Biochemistry and Molecular Biology, Inc.
Jones, Rhys J.; Rajabi-Siahboomi, Ali; Levina, Marina; Perrie, Yvonne; Mohammed, Afzal R.
2011-01-01
Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. PMID:24310589
NASA Astrophysics Data System (ADS)
Szewczyk-Nykiel, Aneta; Kazior, Jan
2017-07-01
The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.
Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S
2013-01-01
This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.
Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio
2007-08-08
The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.
Study on micro-hardness of electroless composite plating of Ni-P with SiC Nano-particles
NASA Astrophysics Data System (ADS)
Sun, Yong; Zhang, Zhaoguo; Li, Jiamin; Xu, Donghui
2007-07-01
In this paper, a Ni-P electroless composite coating containing nano SiC particles was produced. The wearability of the composite coating was studied. Temperature, PH of the plating liquid and the concentration of SiC nanoparticles in the plating liquid were taken as parameters and the experiment with three factors and five levels was designed through the method of quadratic orthogonal rotation combination. SiC nanoparticles were dispersed by ultrasonic. The influence of the testing parameters on the hardness of the coating was studied intensively. The optimal parameters were obtained when the temperature is 86+/-1°C, PH is 6+/-0.5 and the concentration of SiC nanoparticles is 6g/L. The maximal hardness of the coating is over 1700HV after heat treatment.
Micro CSI: A Microbial Citizen Science Initiative in Urban Watersheds
Across the Nation, a number of citizen science efforts have been conducted to monitor water quality. Efforts have included monitoring of bacteriological parameters (E. coli, enterococci, and fecal coliforms) and/or physicochemical parameters (temperature, turbidity, pH, conducti...
Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun
2011-01-01
Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695
Production of fibrinolytic protease from Streptomyces lusitanus isolated from marine sediments
NASA Astrophysics Data System (ADS)
SudeshWarma, S.; Merlyn keziah, S.; Subathra Devi, C.
2017-11-01
This study aim was to isolate, screen, characterize and optimize marine Streptomyces for fibrinolytic enzyme production. The potent actinomycete isolate was subjected to optimization. The parameters for optimization included pH, temperature, carbon, nitrogen sources. The crude supernatant produced was purified using size exclusion gel filtration chromatography. The optimized parameters for maximum productivity were found to be pH 7, 37°C, maltose and peptone respectively. The molecular weight of the purified enzyme was found to be 21kDa.
NASA Astrophysics Data System (ADS)
Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean
2016-03-01
The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.
Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh
2016-01-01
The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day.
Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.
Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard
2013-02-01
The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.
Modeling hot spring chemistries with applications to martian silica formation
NASA Astrophysics Data System (ADS)
Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.
2011-04-01
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.
Modeling hot spring chemistries with applications to martian silica formation
Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.
2011-01-01
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.
Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi
2010-06-15
Central events of the ultrasonic action are the cavitation bubbles that can be considered as microreactors. Adiabatic collapse of cavitation bubbles leads to the formation of reactive species such as hydroxyl radicals (*OH), hydrogen peroxide (H(2)O(2)) and hydroperoxyl radicals (HOO*). Several chemical methods were used to detect the production of these reactive moieties in sonochemistry. In this work, the influence of several operational parameters on the sonochemistry dosimetries namely KI oxidation, Fricke reaction and H(2)O(2) production using 300 kHz ultrasound was investigated. The main experimental parameters showing significant effect in KI oxidation dosimetry were initial KI concentration, acoustic power and pH. The solution temperature showed restricted influence on KI oxidation. The acoustic power and liquid temperature highly affected Fricke reaction dosimetry. Operational conditions having important influence on H(2)O(2) formation were acoustic power, solution temperature and pH. For the three tested dosimetries, the sonochemical efficiency was independent of liquid volume. Copyright 2010 Elsevier B.V. All rights reserved.
Effect of various pH values, ionic strength, and temperature on papain hydrolysis of salivary film.
Yao, Jiang-Wu; Xiao, Yin; Lin, Feng
2012-04-01
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength, and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency caused by enzyme hydrolysis of WS films, and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing-angle Fourier transform infrared (GA-FTIR ) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength-, and temperature-dependent. The WS films were partially removed by the action of papain, resulting in thinner and smoother surfaces. The infrared data suggested that hydrolysis-induced deformation did not occur on the remnants of salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength, and temperature. © 2012 Eur J Oral Sci.
Chea, F P; Chen, Y; Montville, T J; Schaffner, D W
2000-08-01
The germination kinetics of proteolytic Clostridium botulinum 56A spores were modeled as a function of temperature (15, 22, 30 degrees C), pH (5.5, 6.0, 6.5), and sodium chloride (0.5, 2.0, 4.0%). Germination in brain heart infusion (BHI) broth was followed with phase-contrast microscopy. Data collected were used to develop the mathematical models. The germination kinetics expressed as cumulated fraction of germinated spores over time at each environmental condition were best described by an exponential distribution. Quadratic polynomial models were developed by regression analysis to describe the exponential parameter (time to 63% germination) (r2 = 0.982) and the germination extent (r2 = 0.867) as a function of temperature, pH, and sodium chloride. Validation experiments in BHI broth (pH: 5.75, 6.25; NaCl: 1.0, 3.0%; temperature: 18, 26 degrees C) confirmed that the model's predictions were within an acceptable range compared to the experimental results and were fail-safe in most cases.
Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D
2017-01-01
Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO 2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO 2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.
Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda
2016-01-01
The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.
Removal of fluoride from water with powdered corn cobs.
Parmar, S; Patel, Jignesh B; Sudhakar, Padmaja; Koshy, V J
2006-04-01
The adsorption of fluoride on corn cobs powder was investigated in the present study. Neat powdered corn cobs did not show remarkable adsorption but aluminium treated corn cobs had good adsorption capacity. The parameters studied include the contact time, concentration, temperature and pH. Near neutral pH was identified as the optimum condition of the medium, and 90 to 120 minutes was the best contact time for maximum fluoride adsorption. The adsorption process was found to follow Freundlich isotherm. The adsorption process was found to be exothermic as adsorption decreased with increasing temperature.
Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry
NASA Technical Reports Server (NTRS)
Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)
1995-01-01
The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh
2016-01-01
Background: The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Materials and Methods: Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. Results: A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. Conclusion: There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day. PMID:27904203
NASA Astrophysics Data System (ADS)
Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.
2016-04-01
Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
Andrade, Denis V; Brito, Simone P; Toledo, Luís Felipe; Abe, Augusto S
2004-05-20
Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO-(3)]pl) and an elevation of arterial CO2 partial pressure (PaCO2) and CO2 content in the plasma (CplCO2). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O2 partial pressure (PaO2) and O2 content (CaO2) were not affected by season and tended to increase with temperature. Arterial pH (pHa) of dormant animals is reduced compared to active lizards at body temperatures below 15 degrees C, while no significant difference was noticed at higher temperatures. Copyright 2003 Elsevier B.V.
Gupta, Shikha; Basant, Nikita
2017-11-01
Designing of advanced oxidation process (AOP) requires knowledge of the aqueous phase hydroxyl radical ( ● OH) reactions rate constants (k OH ), which are strictly dependent upon the pH and temperature of the medium. In this study, pH- and temperature-dependent quantitative structure-property relationship (QSPR) models based on the decision tree boost (DTB) approach were developed for the prediction of k OH of diverse organic contaminants following the OECD guidelines. Experimental datasets (n = 958) pertaining to the k OH values of aqueous phase reactions at different pH (n = 470; 1.4 × 10 6 to 3.8 × 10 10 M -1 s -1 ) and temperature (n = 171; 1.0 × 10 7 to 2.6 × 10 10 M -1 s -1 ) were considered and molecular descriptors of the compounds were derived. The Sanderson scale electronegativity, topological polar surface area, number of double bonds, and halogen atoms in the molecule, in addition to the pH and temperature, were found to be the relevant predictors. The models were validated and their external predictivity was evaluated in terms of most stringent criteria parameters derived on the test data. High values of the coefficient of determination (R 2 ) and small root mean squared error (RMSE) in respective training (> 0.972, ≤ 0.12) and test (≥ 0.936, ≤ 0.16) sets indicated high generalization and predictivity of the developed QSPR model. Other statistical parameters derived from the training and test data also supported the robustness of the models and their suitability for screening new chemicals within the defined chemical space. The developed QSPR models provide a valuable tool for predicting the ● OH reaction rate constants of emerging new water contaminants for their susceptibility to AOPs.
Conformal self-assembled thin films for optical pH sensors
NASA Astrophysics Data System (ADS)
Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung
2016-04-01
Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.
Zhang, Ai-Hua; An, Ning-Bo; Lei, Feng-Jie; Ma, Wen-Li; Chi, Kun; Zhang, Lian-Xue
2016-11-01
The chemotaxis response of Erwinia carotovora to different sugars and amino acids in four kinds of chemotactic parameters (concentration, time, temperature and pH ) was determined by capillary method. The results showed that when pH was 8, concentration was 0.025 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of lysine was 2.509,when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of arginine was 2.218 8,when pH was 7, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of L-rhamnose was 3.091 2, when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 45 minutes, the optimal chemotaxis rate of D-arabinose was 3.026 3. Sugars and amino acids had obvious chemotaxis with E. carotovora,the high concentration of carbohydrate and amino acid exited an inhibitory effect on chemotaxis response of E. carotovora, and the chemotaxis response decreased with the increase of concentration of carbohydrates and amino acids. Copyright© by the Chinese Pharmaceutical Association.
Bissett, Andrew; Reimer, Andreas; de Beer, Dirk; Shiraishi, Fumito; Arp, Gernot
2008-01-01
Ex situ microelectrode experiments, using cyanobacterial biofilms from karst water creeks, were conducted under various pH, temperature, and constant-alkalinity conditions to investigate the effects of changing environmental parameters on cyanobacterial photosynthesis-induced calcification. Microenvironmental chemical conditions around calcifying sites were controlled by metabolic activity over a wide range of photosynthesis and respiration rates, with little influence from overlying water conditions. Regardless of overlying water pH levels (from 7.8 to 8.9), pH at the biofilm surface was approximately 9.4 in the light and 7.8 in the dark. The same trend was observed at various temperatures (4°C and 17°C). Biological processes control the calcium carbonate saturation state (Ω) in these and similar systems and are able to maintain Ω at approximately constant levels over relatively wide environmental fluctuations. Temperature did, however, have an effect on calcification rate. Calcium flux in this system is limited by its diffusion coefficient, resulting in a higher calcium flux (calcification and dissolution) at higher temperatures, despite the constant, biologically mediated pH. The ability of biological systems to mitigate the effects of environmental perturbation is an important factor that must be considered when attempting to predict the effects of increased atmospheric partial CO2 pressure on processes such as calcification and in interpreting microfossils in the fossil record. PMID:18689512
Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
Najah, A; El-Shafie, A; Karim, O A; El-Shafie, Amr H
2014-02-01
We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events.
Bhatt, Darshak R; Maheria, Kalpana C; Parikh, Jigisha K
2015-12-30
A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
... physical and chemical water quality parameters (such as temperature, dissolved oxygen, pH, and conductivity... unknown. High temperatures can reduce dissolved oxygen concentrations in the water, which slows growth... encystment, increase oxygen consumption, reduce the speed in which they orient themselves in the substrate...
NASA Astrophysics Data System (ADS)
Gnanasundaram, N.; Loganathan, M.; Singh, A.
2017-06-01
Modeling of adsorption of Cr6+ on to activated carbon prepared from Sterculia foetida dried seed shells under different drying techniques namely sun, oven, and microwave drying (450W, 600W, 900W power). Optimization of process parameters such as pH, adsorbent dosage (g/ml), temperature (°C), contact time (min) were evaluated using Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). For batch adsorption studies at pH 3, adsorbent dosage of 1.5 g/ml, temperature 35°C and contact time 90 min were found to be optimum for the system under consideration and Microwave Activated Carbonized Sterculia foetida (MACSF) at 450W was found to be best suited for the adsorption of Cr+6 ions. The system was found to follow Langmuir type monolayer adsorption for the given operational parameters. SEM analysis was used to study the surface morphology of the carbon samples and the effect of pretreatment on carbonization.
Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.
Wang, Lei; Huang, Rui; Gu, Guanbin; Fang, Hongying
2008-10-01
Trehalose production by a novel strain of Brevibacterium sp. SY361 was optimized in submerged fermentation. Different chemical and physical parameters such as carbon and nitrogen sources, inoculum level, initial pH, incubation temperature, aeration and time-course of fermentation, were studied in order to increase trehalose productivity. An optimal production medium containing 3% (w/v) glucose, 0.9% (v/v) corn steep liquor, 0.5% (w/v) KH(2)PO(4) and 0.4% (w/v) MgSO(4).7 H(2)O was found suitable for trehalose production. An optimal volume of medium in a 500 ml flask was 80 ml. The optimal levels of other parameters were 4.0% (v/v) of inoculum, initial pH of 6.0, incubation temperature of 28-32 degrees C and time-course of 60 h. Optimized parameters gave a maximum trehalose of 12.2 mg/ml with a conversion rate of 58.4%. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Happi Emaga, Thomas; Ronkart, Sébastien N; Robert, Christelle; Wathelet, Bernard; Paquot, Michel
2008-05-15
An experimental design was used to study the influence of pH (1.5 and 2.0), temperature (80 and 90°C) and time (1 and 4h) on extraction of pectin from banana peels (Musa AAA). Yield of extracted pectins, their composition (neutral sugars, galacturonic acid, and degree of esterification) and some macromolecular characteristics (average molecular weight, intrinsic viscosity) were determined. It was found that extraction pH was the most important parameter influencing yield and pectin chemical composition. Lower pH values negatively affected the galacturonic acid content of pectin, but increased the pectin yield. The values of degree of methylation decreased significantly with increasing temperature and time of extraction. The average molecular weight ranged widely from 87 to 248kDa and was mainly influenced by pH and extraction time. Copyright © 2007 Elsevier Ltd. All rights reserved.
Liu, Tao; Li, Li; Li, Baishu; Zhan, Guoping; Wang, Yuejin
2018-05-28
Oriental fruit fly, Bactrocera dorsalis (Hendel; Diptera: Tephritidae), is recognized as a quarantine pest and a threat to Chinese loquat (Eriobotrya japonica Lindl.) fruit exports. Since loquat fruit is very sensitive to methyl bromide (MB) fumigation and cold treatment, in this study, low-temperature phosphine (PH3) fumigation was investigated to develop an alternative phytosanitary treatment method. Tolerance tests showed that the third instar was the most tolerant of all life stages of B dorsalis to PH3 gas at 8°C. Toxicity assay with 500-3000 ppm PH3 and subsequent probit analysis showed that 2000 ppm PH3 was optimal for fumigation and 152.75 h of treatment duration were required to achieve 99.9968% mortality. In the verification test, 144 and 168 h of treatment duration with 2000 ppm PH3 completely killed 35,277 and 35,134 B. dorsalis third instars, respectively. However, 13 live larvae were found after 120 h of treatment. Furthermore, these treatments reduced fruit respiration rates while causing no adverse effects on other fruit quality parameters, including firmness, soluble solid content, and titratable acidity over 192 h storage at 8°C. The results strongly suggest that low-temperature PH3 fumigation could be used for the postharvest control of B. dorsalis in loquat fruit.
Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal
2016-01-01
Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.
Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd
2015-09-01
Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chapter A6. Section 6.1. Temperature
Revised by Wilde, Franceska D.
2006-01-01
Accurate temperature measurements are required for accurate determinations of important environmental parameters such as pH, specific electrical conductance, and dissolved oxygen, and to the determination of chemical reaction rates and equilibria, biological activity, and physical fluid properties. This section of the National Field Manual (NFM) describes U.S. Geological Survey (USGS) guidance and protocols for measurement of temperature in air, ground water, and surface water and calibration of the equipment used.
Macro-/micro-environment-sensitive chemosensing and biological imaging.
Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung
2014-07-07
Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.
Silla Santos, M H; Torres Zarzo, J
1995-04-01
The heat resistance of Clostridium sporogenes PA 3679 spores has been studied to establish the influence of acidification with glucono-delta-lactone (GDL) and citric acid on the thermal resistance parameters (DT and z) of this microorganism and to compare their effect with phosphate buffer and natural asparagus as reference substrates. A reduction in DT values was observed in asparagus purée as the acidification level increased with both acidulants although this effect was more evident at the lower treatment temperatures studied (121-127 degrees C). Citric acid was more effective for reducing the heat resistance of spores than GDL at all of the temperatures. The reduction in pH diminished the value of the z parameter, although it was necessary to lower the pH to 4.5 to obtain a significant reduction.
Maldonado, María C; Belfiore, Carolina; Navarro, Antonio R
2008-02-01
Alicyclobacillus acidoterrestris is a thermoacidophilic, non-pathogenic, spore-forming bacterium detected in spoiled commercial pasteurized fruit juice. Apple, white grape and tomato are particularly susceptible. A. acidoterrestris spores are resistant to lemon juice pasteurization (2 min at 82 degrees C), and they can germinate and grow causing spoilage. This contamination is characterized by a medicinal or disinfectant smell attributed to guaiacol (o-dihydroxybenzene) production and other taint chemicals. The aim of this work was to study the influence of temperature (82, 86, 92 and 95 degrees C), total soluble solids (SS) (6.20, 9.8, 50 and 68 degrees Brix) and pH (2.28, 2.45, 2.80, 3.25, 3.5) on decimal reduction time (D) of the A. acidoterrestris in clarified and non-clarified concentrated lemon juice. Once D-value was determined, the resistance of A. acidoterrestris at the assayed temperatures was confirmed. SS and pH influence spore viability, because spore resistance increases with higher SS (50 degrees Brix 22 min 82 degrees C-68 degrees Brix 28 min 82 degrees C) and pH values (pH 2.28, 17 min-pH 4.00, 22 min). Bacterial growth was lower in clarified lemon juice, 26 min at 82 degrees C, than in non-clarified lemon juice, 51 min at 82 degrees C. Temperature was the parameter that had the greatest influence on the D value.
Water quality parameters response to temperature change in small shallow lakes
NASA Astrophysics Data System (ADS)
Xu, Lei; Li, Hua; Liang, Xinqiang; Yao, Yuxin; Zhou, Li; Cui, Xinyi
Effects of temperature (T) on water quality of three small shallow lakes in Taihu Lake region of China were investigated. The annual temperature was classified into three levels: low temperature (LT, 4 °C < T ⩽ 10 °C), middle temperature (MT, 10 °C < T ⩽ 20 °C), and high temperature (HT, 20 °C < T ⩽ 30 °C). Results showed that total nitrogen (TN) and total phosphorus (TP) concentrations might go to a fixed value (or range) in small shallow lakes receiving domestic sewage and farm drainage water. Nitrogen concentrations in the lakes were mainly in the form of nitrate (NO3-) at above concerned three temperature levels, and nitrogen concentrations in the forms of TN, TIN, and NO3- were increased with the increase of nutrient input. At the LT and MT levels, there was a series of good cubic curve relationships between temperatures and three N forms (TN, NO3- and NH4+). The temperatural inflexion change points in the curves were nearly at 7 °C and 14 °C, respectively. However, no significant relationship between temperature and any water quality parameter was observed at the HT level. The significant relationship of TIN to TN, NO3- to TN and NH4+ to dissolve oxygen (DO) was exist in three temperature portions, and TP to Chemical oxygen demand (COD, determined by potassium permanganate oxidation methods) in LT and MT, TP to pH or DO in HT also exist. COD were less than 6 mg L-1 at each temperature level, and pH values were the largest in HT than it in LT or MT. Thus, changes between temperature and water quality parameters (TN, NO3-, NH4+ and TP) obviously nearly in 7 °C or 14 °C in lakes show that water self-purification of natural small shallow lakes were obviously with temperature changed.
Brinda, S; Bragadeeswaran, S
2005-01-01
Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.
Evaluation of eutrophication of Ostravice river depending on the chemical and physical parameters
NASA Astrophysics Data System (ADS)
Hlavac, A.; Melcakova, I.; Novakova, J.; Svehlakova, H.; Slavikova, L.; Klimsa, L.; Bartkova, M.
2017-10-01
The main objective of this study was to evaluate which selected environmental parameters in rivers affect the concentration of chlorophyll a and the distribution of macrozoobenthos. The data were collected on selected profiles of the Ostravice mountain river in the Moravian-Silesian Region. The examined chemical and physical parameters include dissolved oxygen (DO), flow rate, oxidation-reduction potential (ORP), conductivity, temperature, pH, total nitrogen and phosphorus concentration.
Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.
Anufriieva, Elena V; Shadrin, Nickolai V
2015-11-18
Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.
Local uniqueness solution of illuminated solar cell intrinsic electrical parameters.
Jarray, Abdennaceur; Abdelkrim, Mahdi; Bouchiba, Mohamed; Boukricha, Abderrahman
2014-01-01
Starting from an electrical dissipative illuminated one-diode solar cell with a given model data at room temperature (I sc , V oc , R s0 , R sh0 , I max ); we present under physical considerations a specific mathematical method (using the Lambert function) for unique determination of the intrinsic electrical parameters (n, I s , I ph , R s , R sh ). This work proves that for a given arbitrary fixed shunt resistance R sh , the saturation current I S and the ideality factor n are uniquely determined as a function of the photocurrent I ph , and the series resistance R s . The correspondence under the cited physical considerations: R s does not exceed ]0, 20[Ω and n is between ]0, 3[ and I ph and I s are arbitrary positive [Formula: see text] , is biunivocal. This study concludes that for both considered solar cells, the five intrinsic electrical parameters that were determined numerically are unique.
Dini, Valentina; Kirchhain, Arno; Janowska, Agata; Oranges, Teresa; Di Francesco, Fabio
2017-01-01
Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring. PMID:29257113
Quality Parameters of Six Cultivars of Blueberry Using Computer Vision
Celis Cofré, Daniela; Silva, Patricia; Enrione, Javier; Osorio, Fernando
2013-01-01
Background. Blueberries are considered an important source of health benefits. This work studied six blueberry cultivars: “Duke,” “Brigitta”, “Elliott”, “Centurion”, “Star,” and “Jewel”, measuring quality parameters such as °Brix, pH, moisture content using standard techniques and shape, color, and fungal presence obtained by computer vision. The storage conditions were time (0–21 days), temperature (4 and 15°C), and relative humidity (75 and 90%). Results. Significant differences (P < 0.05) were detected between fresh cultivars in pH, °Brix, shape, and color. However, the main parameters which changed depending on storage conditions, increasing at higher temperature, were color (from blue to red) and fungal presence (from 0 to 15%), both detected using computer vision, which is important to determine a shelf life of 14 days for all cultivars. Similar behavior during storage was obtained for all cultivars. Conclusion. Computer vision proved to be a reliable and simple method to objectively determine blueberry decay during storage that can be used as an alternative approach to currently used subjective measurements. PMID:26904598
NASA Astrophysics Data System (ADS)
Yudhanto, F.; Jamasri; Rochardjo, Heru S. B.
2018-05-01
The characterized agave cantala fiber in this research came from Sumenep, Madura, Indonesia was chemically processed using sodium hydroxide (NaOH) and hydrogen peroxide (H2O2) solution. The treatment with both solutions is called bleaching process. Tensile strength test of single fiber was used to get mechanical properties from selecting process of the various parameter are temperature, PH and concentration of H2O2 with an L9 orthogonal array by Taguchi method. The results indicate that PH is most significant parameter influencing the tensile strength followed by temperature and concentration H2O2. The influence of bleaching treatment on tensile strength showed increasing of crystallinity index of fiber by 21%. It showed by lost of hemicellulose and lignin layers of fiber can be seen from waveforms changes of 1735 (C=O), 1627 (OH), 1319 (CH2), 1250 (C-O) by FTIR graph. The photo SEM showed that the bleaching of fibers causes the fibers more roughly and clearly than untreated fibers.
Smoot, L M; Pierson, M D
1998-10-01
Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.
Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid
2015-04-15
Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.
Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao
2010-12-15
Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.
Dupras, J; Vachon, P; Cuvelliez, S; Blais, D
2001-01-01
In this study, anesthesia levels obtained with tiletamine-zolazepam (TZ) and ketamine-midazolam (KM) with or without xylazine (X) were compared in rabbits. Reflexes (corneal, palpebral and withdrawal), blood parameters (PaO2, PaCO2, pH and ions HCO3-), cardiovascular function (heart rate and mean arterial blood pressure) and body temperature were evaluated before and after the injections of the anesthetic combination in the same rabbits (n = 10). With KM and TZ, no suppression of reflexes occurred. The body temperature and pH decreased and HCO3- increased similarly to KMX et TZX. Some physiological and blood parameters were less (PAM, PaCO2) and not (PaO2) affected comparatively to KMX et TZX. These protocols were of short duration of action and did not offer any anesthesia or analgesia. Therefore, their utilization should be restricted to short procedures where no painful manipulations are performed. Ketamine-midazolam-xylazine and tiletamine-zolazepam-xylazine on the other hand are indicated for interventions that require anesthesia. With these combinations, all reflexes were absent for 30-45 and 60-90 min following injections of KMX et TZX, respectively. However, these combinations induce cardiac depression, as well as a decrease of all measured blood parameters and body temperature and a reduction of PaO2. Supplementation with oxygen is recommended with the introduction of xylazine in the protocol. PMID:11424577
NASA Astrophysics Data System (ADS)
Alizadeh Nomeli, M.; Riaz, A.
2016-12-01
A new model is developed for geochemical reactions to access dissolution rate of minerals in saline aquifers with respect to saturated concentration of dissolved CO2 as a function of parameters that are dynamically available during computer program execution such as pressure, temperature, and salinity. A general Arrhenius-type equation, with an explicit dependence on the pH of brine, is employed to determine the rates of mineral dissolution. The amount of dissolved CO2 is determined with the help of an accurate PVTx model for the temperature range of 50-100C and pressures up to 600 bar relevant to the geologic sequestration of CO2. We show how activity coefficients for a given salinity condition alters solubility, pH, and reaction rates. We further evaluate the significance of the pre-exponential factor and the reaction order associated with the modified Arrhenius equation to determine the sensitivity of the reaction rates as a function to the pH of the system. It is found that the model can reasonably reproduce experimental data with new parameters that we obtain from sensitivity studies. Using the new rate equation, we investigate geochemically induced alterations of fracture geometry due to mineral dissolution. Finally, we use our model to evaluate the effects of temperature, pressure, and salinity on the actual efficiency of CO2 storage.
Water quality of Tampa Bay, Florida, June 1972-May 1976
Goetz, Carole L.; Goodwin, Carl R.
1980-01-01
A comprehensive assessment of the water quality of Tampa Bay, Florida, was initiated in 1970 to provide background information to evaluate the effects of widening and deepening the ship channel to the port of Tampa. This report provides results of water-quality sampling in the bay from 1972 to 1976, prior to dredging. Measurements of temperature, dissolved oxygen, pH, turbidity, specific conductance, biochemical oxygen demand, and total organic carbon were made as well as measurements for several nutrient, metal, and pesticide parameters. Many parameters were measured at as many as three points in the vertical. These data indicate that Tampa Bay is well-mixed vertically with little density stratification. Time histories of average temperature, dissolved oxygen, pH, turbidity, specific conductance and nutrient values within four subareas of Tampa Bay are given to reveal seasonal or other trends during the period of record. Temperature, dissolved oxygen, pH, turbidity, specific conductance, nutrient, biochemical oxygen demand, total organic carbon, and metal data are also presented as areal distributions. Nutrient concentrations were generally higher in Hillsborough Bay than in other sub-areas of Tampa Bay. Biochemical oxygen demand, total organic carbon, and total organic nitrogen distribution patterns show regions of highest concentrations to be along bay shorelines near population centers. Of the metals analyzed, all were present in concentrations of less than 1 milligram per liter. (USGS)
Production of cellulase from Pestalotiopsis versicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, M.N.A.; Mithal, B.M.; Thakur, R.N.
1983-01-01
Production of cellulase from Pestalotiopsis versicolor was studied in a shake flask culture. The cellulase system was found to be rich in beta-glucosidase. Kinetic parameters such as pH and temperature have been optimized for the various enzyme components. 9 references.
Empirical algorithms to estimate water column pH in the Southern Ocean
NASA Astrophysics Data System (ADS)
Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.
2016-04-01
Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.
Ozcan, Ali; Sahin, Yücel; Koparal, A Savaş; Oturan, Mehmet A
2008-06-01
This study aims the removal of a carbamate herbicide, propham, from aqueous solution by direct electrochemical advanced oxidation process using a boron-doped diamond (BDD) anode. This electrode produces large quantities of hydroxyl radicals from oxidation of water, which leads to the oxidative degradation of propham up to its total mineralization. Effect of operational parameters such as current, temperature, pH and supporting electrolyte on the degradation and mineralization rate was studied. The applied current and temperature exert a prominent effect on the total organic carbon (TOC) removal rate of the solutions. The mineralization of propham can be performed at any pH value between 3 and 11 without any loss in oxidation efficiency. The propham decay and its overall mineralization reaction follows a pseudo-first-order kinetics. The apparent rate constant value of propham oxidation was determined as 4.8 x 10(-4)s(-1) at 100 mA and 35 degrees C in the presence of 50mM Na(2)SO(4) in acidic media (pH: 3). A general mineralization sequence was proposed considering the identified oxidation intermediates.
Abdul Manap, Mohd Yazid; Zohdi, Norkhanani
2014-01-01
The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403
Charoensakdi, Ratiya; Murakami, Shuichiro; Aoki, Kenji; Rimphanitchayakit, Vichien; Limpaseni, Tipaporn
2007-05-31
Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower K(m) for coupling reaction using cellobiose and cyclodextrins as substrates.
The ExoMol pressure broadening diet: H2 and He line-broadening parameters
NASA Astrophysics Data System (ADS)
Barton, Emma J.; Hill, C.; Czurylo, M.; Li, H. Y.; Hyslop, A.; Yurchenko, Sergei N.; Tennyson, Jonathan
2017-12-01
In a variety of astronomical objects including gas giant (exo-)planets, brown dwarfs and cool stars, molecular hydrogen and helium are the major line broadeners. However, there is currently no systematic source for these parameters, particularly at the elevated temperatures encountered in many of these objects. The ExoMol project provides comprehensive molecular line lists for exoplanet and other hot atmospheres. The ExoMol database has recently been extended to provide additional data including temperature-dependent, pressure-broadening parameters. Here we assemble H2 and He pressure-broadening datasets for the molecules H2O, NH3, SO2, CH4, PH3, HCN and H2CO using available experimental and theoretical studies.
Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria
2013-09-01
Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.
Armstrong, J K; Chowdhry, B Z; Snowden, M J; Dong, J; Leharne, S A
2001-10-23
Thermally induced aggregation transitions have been investigated for aqueous solutions of the poloxamine block copolymer T701-(OE(4)OP(13))(2)NCH(2)CH(2)N(OP(13)OE(4))(2)-using differential scanning calorimetry. The calorimetric signals obtained were fitted to a mass action model description of aggregation using a previously reported analytical procedure (Patterson et al., Langmuir 13 (1997) 2219). The presence of a central ethylene diamine moiety in the molecular structure renders the T701 molecule basic; this was confirmed and measured by acid/base titration. Basicity is shown to have an important impact upon aggregation. At low pH (2.5), the poloxamine exists in its protonated form and the bulk solution proton concentration is sufficient to suppress de-protonation, aggregation-as a consequence-is shifted to a higher temperature range. Any increase in pH reduces the temperature range over which aggregation occurs. The derived experimental calorimetric parameters, obtained from model fitting procedures, can be used to compute the fraction of poloxamine existing in an aggregated form, at any particular temperature. The data sets obtained were interpolated to show that at human body temperature (310.6 K) the fraction of poloxamine found in its aggregated form is zero at a pH of 2.5. However at a pH of 6.8, the percentage aggregation increases to about 85%. These aggregation characteristics of T701 have important implications for the design of drug delivery systems, which incorporate poloxamines.
NASA Astrophysics Data System (ADS)
Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.
The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to hinder the effectiveness of the coagulation process. The higher the temperature the more effective was the coagulation. It was also found that the age of the seeds, up to 18 months, did not have any noticeable effect on dose level and percentage reduction in turbidity, although at 18 months the seeds had a narrower dosing range to produce near-optimum reduction. Seeds aged 24 months showed a significant decline in coagulant efficiency.
Monitoring the startup of a wet detention pond equipped with sand filters and sorption filters.
Vollertsen, J; Lange, K H; Pedersen, J; Hallager, P; Bruus, A; Laustsen, A; Bundesen, V W; Brix, H; Nielsen, A H; Nielsen, N H; Wium-Andersen, T; Hvitved-Jacobsen, T
2009-01-01
The startup of a wet retention pond designed for extended stormwater treatment was monitored by more than one year of continual measurement of hydraulic parameters, nutrients and quality parameters in the pond itself (pH, temperature, dissolved oxygen, turbidity). The data revealed that photosynthesis played an important role for dissolved oxygen and pH for most of the year. Another important observation was that the pond behaved more like a completely mixed reactor than like a plug flow reactor--even though the length to width ratio was as high as 4.5:1. The pond was equipped with sand filters and sorption filters whereby very good nutrient removal efficiencies were achieved.
Combined effects of acidification and hypoxia on the estuarine ctenophore, Mnemiopsis leidyi
Estuaries are transitive zones which experience large fluctuations in environmental parameters (temperature, dissolved oxygen, pH, etc.). The interactive effects of reduced dissolved oxygen (DO) and elevated pCO2 on estuarine organisms is not currently well understood. Ctenophore...
Carvajal, Guido; Roser, David J; Sisson, Scott A; Keegan, Alexandra; Khan, Stuart J
2017-02-01
Chlorine disinfection of biologically treated wastewater is practiced in many locations prior to environmental discharge or beneficial reuse. The effectiveness of chlorine disinfection processes may be influenced by several factors, such as pH, temperature, ionic strength, organic carbon concentration, and suspended solids. We investigated the use of Bayesian multilayer perceptron (BMLP) models as efficient and practical tools for compiling and analysing free chlorine and monochloramine virus disinfection performance as a multivariate problem. Corresponding to their relative susceptibility, Adenovirus 2 was used to assess disinfection by monochloramine and Coxsackievirus B5 was used for free chlorine. A BMLP model was constructed to relate key disinfection conditions (CT, pH, turbidity) to observed Log Reduction Values (LRVs) for these viruses at constant temperature. The models proved to be valuable for incorporating uncertainty in the chlor(am)ination performance estimation and interpolating between operating conditions. Various types of queries could be performed with this model including the identification of target CT for a particular combination of LRV, pH and turbidity. Similarly, it was possible to derive achievable LRVs for combinations of CT, pH and turbidity. These queries yielded probability density functions for the target variable reflecting the uncertainty in the model parameters and variability of the input variables. The disinfection efficacy was greatly impacted by pH and to a lesser extent by turbidity for both types of disinfections. Non-linear relationships were observed between pH and target CT, and turbidity and target CT, with compound effects on target CT also evidenced. This work demonstrated that the use of BMLP models had considerable ability to improve the resolution and understanding of the multivariate relationships between operational parameters and disinfection outcomes for wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liger, V V; Bolshov, M A; Kuritsyn, Yu A; Krivtsun, V M; Zybin, A V; Niemax, K
2007-04-01
A method of diode laser differential absorption spectrometry (DLDAS) is proposed. The method is based on the detection of absorption spectra variations caused by the changes of a parameter of a condensed media (temperature, composition of the components of a mixture, pH, etc.). Some simple theoretical background of the proposed technique is presented. The potentialities of the method are demonstrated in the experiments on remote contactless measurement of the temperature of aqueous solutions and measurement of the deviations of the composition of a mixture of dyes from the equilibrium state.
Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.
Hüsler, P L; Klump, H H
1994-08-15
We have designed three oligonucleotides (33 mers) which when mixed in a 1:1:1 ratio form double-helical DNA three-way junctions with triple helical ends in the pH interval pH 4 to 5.5. The triplex to coil transition is initiated by raising the temperature and was recorded by temperature gradient gel electrophoresis, uv melting, and differential scanning calorimetry. The transitions can be deconvoluted into three subtransitions representing the independent thermal denaturation of each of the arms. We have proposed a model for the unfolding pathway and give the thermodynamic parameters for each step as calculated using the formalism outlined in the appendix.
Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar
2013-12-01
Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.
Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region
ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.
2015-01-01
Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation. PMID:26646569
Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Cardozo-Bernal, Ángela M; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M; Díaz-Rincón, Dennis J; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J; Cuervo-Patiño, Claudia L
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZ α A- GlucPost -Stop in Pichia pastoris . Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL -1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a V max of 6.87 × 10 -5 mM s -1 , with an apparent K m of 5.36 × 10 -2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges.
Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Cardozo-Bernal, Ángela M.; Pedroza-Rodríguez, Aura M.; Díaz-Rincón, Dennis J.; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Cuervo-Patiño, Claudia L.
2017-01-01
Laccases are multicopper oxidases that catalyze aromatic and nonaromatic compounds with concomitant reduction of molecular oxygen to water. They are of great interest due to their potential biotechnological applications. In this work we statistically improved culture media for recombinant GILCC1 (rGILCC1) laccase production at low scale from Ganoderma lucidum containing the construct pGAPZαA-GlucPost-Stop in Pichia pastoris. Temperature, pH stability, and kinetic parameter characterizations were determined by monitoring concentrate enzyme oxidation at different ABTS substrate concentrations. Plackett-Burman Design allowed improving enzyme activity from previous work 36.08-fold, with a laccase activity of 4.69 ± 0.39 UL−1 at 168 h of culture in a 500 mL shake-flask. Concentrated rGILCC1 remained stable between 10 and 50°C and retained a residual enzymatic activity greater than 70% at 60°C and 50% at 70°C. In regard to pH stability, concentrated enzyme was more stable at pH 4.0 ± 0.2 with a residual activity greater than 90%. The lowest residual activity greater than 55% was obtained at pH 10.0 ± 0.2. Furthermore, calculated apparent enzyme kinetic parameters were a Vmax of 6.87 × 10−5 mM s−1, with an apparent Km of 5.36 × 10−2 mM. Collectively, these important stability findings open possibilities for applications involving a wide pH and temperature ranges. PMID:28421142
Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas
2017-01-01
This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L -1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L -1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin
2014-09-01
The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Haushild, W.L.; Prych, Edmund A.
1976-01-01
Total- and fecal-coliform bacteria, plus pH, alkalinity, and dissolved inorganic carbon are water-quality parameters that have been added to an existing numerical model of water quality in the salt-wedge reach of the Duwamish River estuary in Washington. The coliform bacteria are modeled using a first-order decay (death) rate, which is a function of the local salinity, temperature, and daily solar radiation. The pH is computed by solving a set of chemical-equilibrium equations for carbonate-bicarbonate buffered aqueous solutions. Concentrations of total- and fecal-coliform bacteria computed by the model for the Duwamish River estuary during June-September 1971 generally agreed with observed concentrations within about 40 and 60 percent, respectively. The computed pH generally agreed with observed pH within about a 0.2 pH unit; however, for one 3-week period the computed pH was about a 0.4 unit lower than the observed pH. (Woodard-USGS)
Sheng, Guodong; Dong, Huaping; Li, Yimin
2012-11-01
Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar
NASA Astrophysics Data System (ADS)
Kołodyńska, D.; Bąk, J.; Kozioł, M.; Pylypchuk, L. V.
2017-06-01
Magnetic biochar nanocomposites were obtained by modification of biochar by zero-valent iron. The article provides information on the impact of contact time, initial Cd(II), Co(II), Zn(II), and Pb(II) ion concentrations, dose of the sorbents, solution pH and temperature on the adsorption capacity. On the basis of experiments, it was found that the optimum parameters for the sorption process are phase contact time 360 min (after this time, the equilibrium of all concentrations is reached), the dose of sorbent equal to 5 g/dm3, pH 5 and the temperature 295 K. The values of parameters calculated from the kinetic models and isotherms present the best match to the pseudo second order and Langmuir isotherm models. The calculated thermodynamic parameters ΔH 0, ΔS 0 and ΔG 0 indicate that the sorption of heavy metal ions is an exothermic and spontaneous process as well as favoured at lower temperatures, suggesting the physical character of sorption. The solution of nitric acid(V) at the concentration 0.1 mol/dm3 was the best acidic desorbing agent used for regeneration of metal-loaded magnetic sorbents. The physicochemical properties of synthesized composites were characterized by FTIR, SEM, XRD, XPS and TG analyses. The point characteristics of the double layer for biochar pHPZC and pHIEP were designated.
Nitrogen removal via nitrite from seawater contained sewage.
Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing
2004-01-01
Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).
NASA Astrophysics Data System (ADS)
Tibin, El Mubarak Musa; Al-Shorgani, Najeeb Kaid Naseer; Abuelhassan, Nawal Noureldaim; Hamid, Aidil Abdul; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan
2013-11-01
The cellulase production using sorghum straw as substrate by fungal culture of Aspergillus terreus SUK-1 was investigated in solid substrate fermentation (SSF). The optimum CMCase was achieved by testing most effective fermentation parameters which were: incubation temperature, pH and moisture content using Response Surface Methodology (RSM) based on Central Composite Design (CCD). The carboxymethyl cellulase activity (CMCase) was measured as the defining factor. The results were analysed by analysis of variance (ANOVA) and the regression quadratic model was obtained. The model was found to be significant (p<0.05) and the effect of temperature (25-40°C) and pH (4-7) was found to be not significant on CMCase activity whereas the moisture content was significant in the SSF conditions employed. The high yield of predicted CMCase activity (0.2 U/ml) was obtained under the optimized conditions (temperature 40 □C, pH 5.4 and moisture content of 80%). The model was validated by applying the optimized conditions and it was found that the model was valid.
Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.
Atar, Necip; Olgun, Asim
2007-07-19
Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; ...
2018-02-10
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
The dissolution behavior of borosilicate glasses in far-from equilibrium conditions
NASA Astrophysics Data System (ADS)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; Ryan, Joseph V.; Asmussen, R. Matthew
2018-04-01
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH (22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. The higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
Žoldák, Gabriel; Jancura, Daniel; Sedlák, Erik
2017-06-01
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady-state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high-throughput drug screening campaigns. © 2017 The Protein Society.
Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids
NASA Astrophysics Data System (ADS)
Naafs, B. D. A.; Inglis, G. N.; Zheng, Y.; Amesbury, M. J.; Biester, H.; Bindler, R.; Blewett, J.; Burrows, M. A.; del Castillo Torres, D.; Chambers, F. M.; Cohen, A. D.; Evershed, R. P.; Feakins, S. J.; Gałka, M.; Gallego-Sala, A.; Gandois, L.; Gray, D. M.; Hatcher, P. G.; Honorio Coronado, E. N.; Hughes, P. D. M.; Huguet, A.; Könönen, M.; Laggoun-Défarge, F.; Lähteenoja, O.; Lamentowicz, M.; Marchant, R.; McClymont, E.; Pontevedra-Pombal, X.; Ponton, C.; Pourmand, A.; Rizzuti, A. M.; Rochefort, L.; Schellekens, J.; De Vleeschouwer, F.; Pancost, R. D.
2017-07-01
Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 °C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me‧ - 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate.
Pavlaki, Maria D; Morgado, Rui G; van Gestel, Cornelis A M; Calado, Ricardo; Soares, Amadeu M V M; Loureiro, Susana
2017-11-01
mMarine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd 2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd 2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd 2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium. Copyright © 2017 Elsevier Inc. All rights reserved.
Quantifying the spoilage and shelf-life of yoghurt with fruits.
Mataragas, M; Dimitriou, V; Skandamis, P N; Drosinos, E H
2011-05-01
The aim of the present study was to develop a predictive model to quantify the spoilage of yoghurt with fruits. Product samples were stored at various temperatures (5-20 °C). Samples were subjected to microbiological (total viable counts, lactic acid bacteria-LAB, yeasts and moulds) and physico-chemical analysis (pH, titratable acidity and sugars). LAB was the dominant micro-flora. Yeasts population increased at all temperatures but a delay was observed during the first days of storage. Titratable acidity and pH remained almost constant at low temperatures (5 and 10 °C). However, at higher temperatures (>10 °C), an increase in titratable acidity and reduction in pH was observed. Sugar concentration (fructose, lactose and glucose) decreased during storage. A mathematical model was developed for shelf-life determination of the product. It was successfully validated at a temperature (17 °C) not used during model development. The results showed that shelf-life of this product could not be established based only on microbiological data and use of other parameters such as sensory or/and physico-chemical analysis is required. Shelf-life determination by spoilage tests is time-consuming and the need for new rapid techniques has been raised. The developed model could help dairy industries to establish shelf-life predictions on yoghurt with fruits stored under constant temperature conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment.
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-14
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (-67.60 mV/pH) and good linearity (R² = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μ S / cm to 1.99 mS / cm , and the electrode constant was 1.566 cm -1 . Sensitivity of the temperature sensor was 5.46 Ω / ° C . The results indicate that the developed sensor chip has potential application in water quality measurements.
Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.
Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam
2013-01-01
A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.
del Pozo, R; Diez, V; Salazar, G
2002-01-01
A pilot-scale anaerobic fixed film reactor (AFFR) with vertically arranged PVC tubes as biomass carrier, treating poultry slaughterhouse wastewater was started-up in 74 days at temperatures between 20-24 degrees C. The start-up process consisted of a long acclimatization phase followed by a low loaded growth phase, a gradual increase of OLR upto 9.2 kg COD/m3d, and a final maturation phase at moderated loads of 2.7 kg COD/m3d at which total COD removal efficiencies of 57% were achieved. Alkalinity ratio IA:PA was found to be the best control parameter to avoid VFA accumulation. OLR increase based on pH control was not satisfactory because changes in CO2 solubility caused daily by temperature and flow variations led to pH oscillations of 0.2 units. The low wastewater alkalinity, 260 mg/l CaCO3 was insufficient to buffer the pH system, therefore the pH decrease associated with the VFA accumulation was not easily detected and could not be used as a way of OLR control. Organic matter removal took place by accumulation and biodegradation processes. Limitation in the reactor hydrodynamics and particulate fraction hydrolysis was detected at high flow rates.
Citric acid production by Koji fermentation using banana peel as a novel substrate.
Karthikeyan, Alagarsamy; Sivakumar, Nallusamy
2010-07-01
The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Prevalence and distribution of Aeromonas hydrophila in the United States.
Hazen, T C; Fliermans, C B; Hirsch, R P; Esch, G W
1978-11-01
The abundance of Aeromonas hydrophila was measured in 147 natural aquatic habitats in 30 states and Puerto Rico. Viable cell counts were used to estimate density at all sites by using Rimler-Shotts medium, a differential presumptive medium for A. hydrophila. Temperature, pH, conductivity, salinity, and turbidity were measured simultaneously with water sample collection. The density of A. hydrophila was higher in lotic than in lentic systems. Saline systems had higher densities of A. hydrophila than did freshwater systems. A. hydrophila could not be isolated from extremely saline, thermal, or polluted waters, even though it was found over wide ranges of salinity, conductivity, temperature, pH, and turbidity. Of the water quality parameters measured, only conductivity was significantly regressed with density of A. hydrophila.
Fluid inclusion geothermometry
Cunningham, C.G.
1977-01-01
Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Q.H.
1994-09-12
This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Saraswat, Chitresh; Mishra, Binaya Kumar; Avtar, Ram; Patel, Hiral; Patel, Asha; Sharma, Tejal; Patel, Roshni
2017-09-01
Fluoride pollution (with concentration >1.0 mg/L) in groundwater has become a global threat in the recent past due to the lesser availability of potable groundwater resource. In between several defluoridation techniques discovered so far, the adsorption process proved to be most economic and efficient. This study is an effort to evaluate defluoridation efficiency of powdered rice husk, fine chopped rice husk and sawdust by the batch adsorption process. Optimum defluoridation capacity is achieved by optimizing various parameters, viz. dose of adsorbent, pH, contact time and initial concentration. It was found that all three materials can be employed for the defluoridation technique, but powdered rice husk is the best adsorbent in the midst of all three. Powdered rice husk showed fluoride removal efficiency ranging between 85 and 90 % in the contact period of 7 h only in conditions of all optimized parameter. Following this parameter optimization, adsorption efficiency was also evaluated at natural pH of groundwater to minimize the cost of defluoridation. No significant difference was found between fluoride adsorption at optimized pH (pH = 4) and natural one (pH = 7), which concludes that powdered rice husk can be efficiently used for the defluoridation technique at field scale. The adsorption isotherm using this adsorbent perfectly followed Langmuir isotherms. The value of calculated separation factor also suggests the favourable adsorption of fluoride onto this adsorbent under the conditions used for the experiments. The field application for defluoridation of groundwater using this adsorbent (based on pH of natural groundwater there and seasonal variation of temperature) showed the high success rate.
Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L
2018-04-12
The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.
Samandoulgou, Idrissa; Fliss, Ismaïl; Jean, Julie
2015-09-01
Although the spread of human norovirus reportedly depends on its ability to bind to food materials, the mechanism of the phenomenon remains unknown. Since protein size and electrical charge are reportedly important parameters in their adsorption, the current work is focused on determining human noroviruses isoelectric point (IEP), electrical charge and aggregate size at different pH, ionic strength (IS), and temperature. Using the baculovirus expression vector system, we produced and purified virus-like particles (VLPs) of GI.1 and GII.4 noroviruses and feline calicivirus, determined their IEP, and examined their size and electrical charge using a Zetasizer Nano ZS apparatus. Shape and size were also visualized using transmission electron microscopy. IEPs were found close to pH 4. Net charge increased as the pH deviated from the IEP. VLPs were negatively charged at all IS tested and showed a gradual decrease in charge with increasing IS. At low temperature, VLPs were 20-45 nm in diameter at pH far from their IEP and under almost all IS conditions, while aggregates appeared at or near the IEP. At increased temperatures, aggregates appeared at or near the IEP and at high IS. Aggregation at the IEP was also confirmed by microscopy. This suggests that electrostatic interactions would be the predominant factor in VLPs adhesion at pH far from 4 and at low ionic strength. In contrast, non-electrostatic interactions would prevail at around pH 4 and would be reinforced by aggregates, since size generally favors multiple bonding with sorbents.
NASA Astrophysics Data System (ADS)
Mondal, Sandip; Aikat, Kaustav; Halder, Gopinath
2017-12-01
The present investigation emphasizes on the biosorptive removal of toxic pentavalent arsenic from water using steam activated carbon prepared from mung bean husk (SAC-MBH). Characterization of the synthesized sorbent was done using different instrumental techniques, i.e., SEM, BET and point of zero charge. Sorptive uptake of As(V) over steam activated MBH as a function of pH (3-9), agitation speed (40-200 rpm), dosage (50-1000 mg) and temperature (298-313 K) was studied by batch process at arsenic concentration of 2 mg L-1. Lower pH increases the arsenic removal over the pH range of 3-9. Among three adsorption isotherm models examined, Langmuir model was observed to show superior results over Freundlich model. The mean sorption energy (E) estimated by Dubinin-Radushkevich model suggested that the process of adsorption was chemisorption. Thermodynamic parameters confer that the sorption process was spontaneous, exothermic and feasible in nature. The pseudo-second-order rate kinetics of arsenic gave better correlation coefficients as compared to pseudo-first-order kinetics equation. Three process parameters, viz. adsorbent dosage, agitation speed and pH were opted for optimizing As(V) elimination using central composite design matrix of response surface methodology (RSM). The identical design setup was used for artificial neural network (ANN) for comparing its prediction capability with RSM towards As(V) removal. Maximum arsenic removal was observed to be 98.75% at sorbent dosage 0.75 gm L-1, pH 3.0, agitation speed 160 rpm and temperature 308 K. The study concluded that SAC-MBH could be a competent adsorbent for As(V) removal and ANN model was better in arsenic removal predictability results than RSM model.
Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric
2013-09-10
The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.
Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas
Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.
2014-01-01
Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.
Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan
2014-05-01
The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.
Czebe, Krisztina; Barta, Imre; Antus, Balázs; Valyon, Márta; Horváth, Ildikó; Kullmann, Tamás
2008-05-01
Exhaled breath condensate analysis is an attractive but still not fully standardised method for investigating airway pathology. Adherence of biomarkers to various condensing surfaces and changes in condensing temperature has been considered to be responsible for the variability of the results. Our aims were to compare the efficacy of different types of condensers and to test the influence of condensing temperature on condensate composition. Breath condensates from 12 healthy persons were collected in two settings: (1) by using three condensers of different type (EcoScreen, R-Tube, Anacon) and (2) by using R-Tube condenser either cooled to -20 or -70 degrees C. Condensate pH at standardised CO(2) level was determined; protein content was measured by the Bradford method and leukotrienes by EIA. Breath condensates collected using EcoScreen were more alkaline (6.45+/-0.20 vs. 6.19+/-0.23, p<0.05 and 6.10+/-0.26, p<0.001) and contained more protein (3.89+/-2.03 vs. 2.65+/-1.98, n.s. and 1.88+/-1.99 microg/ml, p<0.004) as compared to the other devices. Only parameters obtained with R-Tube and Anacon correlated. Condensing temperature affected condensate pH (5.99+/-0.20 at -20 degrees C and 5.82+/-0.07 at -70 degrees C, p<0.05) but not protein content. Leukotriene B(4) was not found in any sample and cysteinyl-leukotriene was not found in condensates collected with R-Tube or Anacon. Condenser type influences sample pH, total protein content and cysteinyl-leukotriene concentration. Condensing temperature influences condensate pH but not total protein content. These results suggest that adherence of the biomarkers to condenser surface and condensing temperature may play a role but does not fully explain the variability of EBC biomarker levels.
Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers
NASA Astrophysics Data System (ADS)
Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan
2018-04-01
Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.
Renewable Energy Production from DoD Installation Solid Wastes By Anaerobic Digestion
2016-08-06
favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67
Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion
2016-06-01
favorable environmental conditions including a mesophilic (37 oC) or thermophilic (55 oC) temperature , the absence of oxygen , and a pH between 6.5...a high temperature process that uses oxygen -starved combustion to convert dry organic matter to a syngas. Syngas is a low BTU fuel that can be used...production rates are at the 36.7 °C digester temperature . Parameter Units 7gCOD/L-d 12gCOD/L-d Effective SRT days 18.5 10.8 COD Conversion Efficiency % 67
Effect of pH of spray solution on the electrical properties of cadmium oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodlur, R. M.; Gunnagol, Raghu M.; Rabinal, M. K., E-mail: mkrabinal@yahoo.com
2015-06-24
Highly conducting transparent cadmium oxide thin films were prepared by conventional spray pyrolysis technique on glass at 375 °C substrate temperature. The pH of the spray solution was varied by adding ammonia/hydrochloric acid in the spray solution. The XRD pattern showed cubic phase. A lowest resistivity of 9.9 × 10{sup −4} Ω cm (with carrier concentration (n) = 5.1 × 10{sup 20} cm{sup −3}, mobility (µ)=12.4 cm{sup 2}/Vs) is observed for pH ∼12. The resistivity is tuned almost by three orders of magnitude by controlling the bath pH with optical transmittance more than 70 %. Thus, without any doping, the electricalmore » conductivity of CdO films could be easily tuned by simply varying the pH of spray solution without compromising the transparency and keeping the other deposition parameters fixed.« less
Silva, Tony Márcio; de Oliveira, Maurício; Somera, Alexandre Favarin; Jorge, João Atílio; Terenzi, Héctor Francico; de Lourdes T M Polizeli, Maria; Guimarães, Luis Henrique Souza
2011-07-01
The effect of several nutritional and environmental parameters on Penicillium purpurogenum growth and sacharogenic amylase production was analyzed. High enzyme levels (68.2 U mg(-1)) were obtained with Khanna medium at initial pH 6.0, incubated at 30°C for 144 hours. The optimum pH and temperature activities were 5.0 and 65°C, respectively. The enzyme presented a half-life (t50) of 60 min, at 65°C. Only glucose was detected after 24 hours of reaction using soluble starch as substrate.
Sensitivity of cell-based biosensors to environmental variables.
Gilchrist, Kristin H; Giovangrandi, Laurent; Whittington, R Hollis; Kovacs, Gregory T A
2005-01-15
Electrically active living cells cultured on extracellular electrode arrays are utilized to detect biologically active agents. Because cells are highly sensitive to environmental conditions, environmental fluctuations can elicit cellular responses that contribute to the noise in a cell-based biosensor system. Therefore, the characterization and control of environmental factors such as temperature, pH, and osmolarity is critical in such a system. The cell-based biosensor platform described here utilizes the measurement of action potentials from cardiac cells cultured on electrode arrays. A recirculating fluid flow system is presented for use in dose-response experiments that regulates temperature within +/-0.2 degrees C, pH to within +/-0.05 units, and allows no significant change in osmolarity. Using this system, the relationship between the sensor output parameters and environmental variation was quantified. Under typical experimental conditions, beat rate varied approximately 10% per degree change in temperature or per 0.1 unit change in pH. Similar relationships were measured for action potential amplitude, duration, and conduction velocity. For the specific flow system used in this work, the measured environmental sensitivity resulted in an overall beat rate variation of +/-4.7% and an overall amplitude variation of +/-3.3%. The magnitude of the noise due to environmental sensitivity has a large impact on the detection capability of the cell-based system. The significant responses to temperature, pH, and osmolarity have important implications for the use of living cells in detection systems and should be considered in the design and evaluation of such systems.
Simulation of stimuli-triggered release of molecular species from halloysite nanotubes
NASA Astrophysics Data System (ADS)
Elumalai, Divya Narayan; Tully, Joshua; Lvov, Yuri; Derosa, Pedro A.
2016-10-01
A Monte Carlo model is used to study the effect of environmental variables (pH and temperature) on the transport and release of dexamethasone molecules from Halloysite Nanotubes (HNTs) in a dielectric fluid medium. The model used for this study was introduced elsewhere and it is based on basic physics interactions without experimental parameters for these interactions. An intermediate phase between the burst and saturation phase is found and explained. Molecules experience a 1-D diffusion process that is different from the diffusion in the burst phase or the surface diffusion experienced by molecules attached to the wall. It is predicted that this phase exists when the molecule-wall interaction is attractive but not always noticeable in the release profile. In this work, it is shown that an agreement with the experiment better than previously reported is obtained when simulated delivery curves are produced by the weighted average of the release profiles from a collection of HNTs with diameters and lengths distributed according to the experimental sample, highlighting the relevance of HNTs' morphology in the release. HNTs are suitable for environment-triggered release and thus the effect of temperature, molecule zeta potential, and pH is studied. It is observed that for temperatures that significantly differ from room temperature (by 100's of degrees), the release profile changes significantly, increasing the delivery speed at high temperature and reducing that speed at low temperature. Finally, it is observed that as the pH becomes more acidic, both the molecule and inner wall surface become more positive (or less negative) with both eventually becoming positive leading to a repulsive interaction; thus, molecules are pushed out by electrostatic repulsion. On the contrary, as the pH becomes more basic, positive molecules become more positive while the wall becomes less negative, but even at pH 12, the wall remains negative and the interaction is attractive. Changes in pH between different regions may act as a trigger for delivery or as a control in the delivery rate.
Sowers, L C; Sedwick, W D; Shaw, B R
1989-11-01
Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.
Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii
Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin
2016-01-01
Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties. PMID:27467884
Analysis of the spatio-temporal variability of seawater quality in the southeastern Arabian Gulf.
Mezhoud, Nahla; Temimi, Marouane; Zhao, Jun; Al Shehhi, Maryam Rashed; Ghedira, Hosni
2016-05-15
In this study, seawater quality measurements, including salinity, sea surface temperature (SST), chlorophyll-a (Chl-a), Secchi disk depth (SDD), pH, and dissolved oxygen (DO), were made from June 2013 to November 2014 at 52 stations in the southeastern Arabian Gulf. Significant variability was noticed for all collected parameters. Salinity showed a decreasing trend, and Chl-a, DO, pH, and SDD demonstrated increasing trends from shallow onshore stations to deep offshore ones, which could be attributed to variations of ocean circulation and meteorological conditions from onshore to offshore waters, and the likely effects of desalination plants along the coast. Salinity and temperature were high in summer and low in winter while Chl-a, SDD, pH, and DO indicated an opposite trend. The CTD profiles showed vertically well-mixed structures. Qualitative analysis of phytoplankton showed a high diversity of species without anomalous species found except in Ras Al Khaimah stations where diatoms were the dominating ones. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii.
Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin
2016-01-01
Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties.
Hassan, Maizom; Maarof, Nur Diyana; Ali, Zainon Mohd; Noor, Normah Mohd; Othman, Roohaida; Mori, Nobuhiro
2012-01-01
NADP(+)-dependent geraniol dehydrogenase (EC 1.1.1.183) is an enzyme that catalyzes the oxidation of geraniol to geranial. Stable, highly active cell-free extract was obtained from Polygonum minus leaves using polyvinylpolypyrrolidone, Amberlite XAD-4, glycerol, 2-mercaptoethanol, thiourea, and phenylmethylsulfonylfluoride in tricine-NaOH buffer (pH 7.5). The enzyme preparation was separated into two activity peaks, geraniol-DH I and II, by DEAE-Toyopearl 650M column chromatography at pH 7.5. Both isoenzymes were purified to homogeneity in three chromatographic steps. The geraniol-DH isoenzymes were similar in molecular mass, optimal temperature, and pH, but the isoelectric point, substrate specificity, and kinetic parameters were different. The K(m) values for geraniol of geraniol-DH I and II appeared to be 0.4 mM and 0.185 mM respectively. P. minus geraniol-DHs are unusual among geraniol-DHs in view of their thermal stability and optimal temperatures, and also their high specificity for allylic alcohols and NADP(+).
Pyrite oxidation under simulated acid rain weathering conditions.
Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou
2017-09-01
We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
A holistic approach towards defined product attributes by Maillard-type food processing.
Davidek, Tomas; Illmann, Silke; Rytz, Andreas; Blank, Imre
2013-07-01
A fractional factorial experimental design was used to quantify the impact of process and recipe parameters on selected product attributes of extruded products (colour, viscosity, acrylamide, and the flavour marker 4-hydroxy-2,5-dimethyl-3(2H)-furanone, HDMF). The study has shown that recipe parameters (lysine, phosphate) can be used to modulate the HDMF level without changing the specific mechanical energy (SME) and consequently the texture of the product, while processing parameters (temperature, moisture) impact both HDMF and SME in parallel. Similarly, several parameters, including phosphate level, temperature and moisture, simultaneously impact both HDMF and acrylamide formation, while pH and addition of lysine showed different trends. Therefore, the latter two options can be used to mitigate acrylamide without a negative impact on flavour. Such a holistic approach has been shown as a powerful tool to optimize various product attributes upon food processing.
Environmental Monitoring of Microbe Metabolic Transformation
NASA Technical Reports Server (NTRS)
Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)
2013-01-01
Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.
Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder
NASA Astrophysics Data System (ADS)
Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.
2017-11-01
In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.
Hernroth, Bodil; Sköld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne
2012-11-01
Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18°C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18°C versus 5°C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yinjie J.; Laidlaw, David; Gani, Kishen
2006-03-16
The growth and Cr(VI) reduction by Shewanella oneidensisMR-1 was examined using a mini-bioreactor system that independentlymonitors and controls pH, dissolved oxygen, and temperature for each ofits 24, 10-mL reactors. Independent monitoring and control of eachreactor in the cassette allows the exploration of a matrix ofenvironmental conditions known to influence S. oneidensis chromiumreduction. S. oneidensis MR-1 grew in minimal medium without amino acidor vitamin supplementation under aerobic conditions but required serineand glycine supplementation under anaerobic conditions. Growth wasinhibited by dissolved oxygen concentrations>80 percent. Lactatetransformation to acetate was enhanced by low concentration of dissolvedoxygen during the logarithmic growth phase. Between 11 andmore » 35oC, thegrowth rate obeyed the Arrhenius reaction rate-temperature relationship,with a maximum growth rate occurring at 35oC. S. oneidensis MR-1 was ableto grow over a wide range of pH (6-9). At neutral pH and temperaturesranging from 30-35oC, S. oneidensis MR-1 reduced 100 mu M Cr(VI) toCr(III) within 20 minutes in the exponential growth phase, and the growthrate was not affected by the addition of chromate; it reduced chromateeven faster at temperatures between 35 and 39oC. At low temperatures(<25oC), acidic (pH<6.5), or alkaline (pH>8.5) conditions, 100mu M Cr(VI) strongly inhibited growth and chromate reduction. Themini-bioreactor system enabled the rapid determination of theseparameters reproducibly and easily by performing very few experiments.Besides its use for examining parameters of interest to environmentalremediation, the device will also allow one to quickly assess parametersfor optimal production of recombinant proteins or secondarymetabolites« less
Mtimet, Narjes; Guégan, Stéphanie; Durand, Lucile; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier
2016-05-01
Thermophilic spore-forming bacteria are potential contaminants in several industrial sectors involving high temperatures (40-65 °C) in the manufacturing process. Among those thermophilic spore-forming bacteria, Thermoanaerobacterium thermosaccharolyticum, called "the swelling canned food spoiler", has generated interest over the last decade in the food sector. The aim of this study was to investigate and to model pH effect on growth, heat resistance and recovery abilities after a heat-treatment of T. thermosaccharolyticum DSM 571. Growth and sporulation were conducted on reinforced clostridium media and liver broth respectively. The highest spore heat resistances and the greatest recovery ability after a heat-treatment were obtained at pH condition allowing maximal growth rate. Growth and sporulation boundaries were estimated, then models using growth limits as main parameters were extended to describe and quantify the effect of pH on recovery of injured spores after a heat-treatment. So, cardinal values were used as a single set of parameters to describe growth, sporulation and recovery abilities. Besides, this work suggests that T. thermosaccharolyticum preserve its ability for germination and outgrowth after a heat-treatment at a low pH where other high resistant spore-forming bacteria like Geobacillus stearothermophilus are unable to grow. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electro deposition of cuprous oxide for thin film solar cell applications
NASA Astrophysics Data System (ADS)
Shahrestani, Seyed Mohammad
p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.
Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J
2017-06-14
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.
Zhou, Xian-Jiao; Guo, Wan-Qian; Yang, Shan-Shan; Ren, Nan-Qi
2012-02-01
This research set up an ultrasonic-assisted ozone oxidation process (UAOOP) to decolorize the triphenylmethane dyes wastewater. Five factors - temperature, initial pH, reaction time, ultrasonic power (low frequency 20 kHz), and ozone concentration - were investigated. Response surface methodology was used to find out the major factors influencing color removal rate and the interactions between these factors, and optimized the operating parameters as well. Under the experimental conditions: reaction temperature 39.81 °C, initial pH 5.29, ultrasonic power 60 W and ozone concentration 0.17 g/L, the highest color removals were achieved with 10 min reaction time and the initial concentration of the MG solution was 1000 mg/L. The optimal results indicated that the UAOOP was a rapid, efficient and low energy consumption technique to decolorize the high concentration MG wastewater. The predicted model was approximately in accordance with the experimental cases with correlation coefficients R(2) and R(adj)(2) of 0.9103 and 0.8386. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.
2017-01-01
The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054
NASA Astrophysics Data System (ADS)
Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu
2017-07-01
Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.
Shi, Xuejia; Xie, Jingcong; Liao, Shiyong; Wu, Tao; Zhao, Lin-Guo; Ding, Gang; Wang, Zhenzhong; Xiao, Wei
2017-10-01
In the fermentation progress, fermentation parameters including the feed rate, induction temperature, and induction pH evidently regulate the accumulation of acetic acid generated by recombinant E. coli in the medium. The production of thermostable β-glucosidase (Tpebgl3) was increased by optimizing the parameters mentioned step by step. The optimal conditions were obtained with the highest enzyme expression (560.4U/mL) and the maximum DCW (65g/L) at the pre-induction specific growth rate of 0.2h -1 followed by a post-induction specific growth rate (0.18h -1 ); induction temperature is 39°C; the pH is 7.2; the concentration of acetic acid was maintained all along below 0.9g/L. Results show it is necessary for the synthesis of Tpebgl3 to regulate the accumulation of acetic acid at the premise of feeding to meet the normal growth of E. coli. The production of Tpebgl3 by recombinant E. coli is the highest reported to date. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water quality assessment of sacred glacial Lake Satopanth of Garhwal Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, Ramesh C.; Kumar, Rahul
2017-12-01
Satopanth Lake is a glacial lake, located at an altitude of 4600 m above sea level in Garhwal Himalaya of Uttarakhand state in India where an attempt was made to assess the water quality. A total of sixteen physico-chemical parameters including temperature, hardness, alkalinity, dissolved oxygen, conductivity, pH, calcium, magnesium, chlorides, nitrates, sulphates and phosphates were recorded during 2014 and 2015 between June and August in ice-free period. The mean values of pH ranged from 6.85 to 7.10; water temperature fluctuated from 0.1 to 0.3 °C; dissolved oxygen varied from 5.90 to 6.0 mg.L-1; free CO2 varied from 8.40 to 8.60 mg.L-1; total dissolved solids varied from 88.0 to 89.5 mg.L-1; calcium from 7.88 to 7.95 mg.L-1; magnesium from 0.53 to 0.66 mg.L-1. All the physico-chemical values were within the prescribed WHO/BIS limit for drinking water. Water Quality Index (WQI) calculated based on these parameters also revealed the excellent quality of lake water.
Porous silicon powder as an adsorbent of heavy metal (nickel)
NASA Astrophysics Data System (ADS)
Nabil, Marwa; Motaweh, Hussien A.
2018-04-01
New and inexpensive nanoporous silicon (NPS) powder was prepared by alkali chemical etching using sonication technique and was subsequently investigated as an adsorbent in batch systems for the adsorption Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the NPS powder were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and contact time. The results indicated that the maximum adsorption capacity and the maximum removal percent of Ni(II) reached 2665.33 mg/g and 82.6%, respectively, at an initial Ni(II) concentration of 100 mg/L, adsorption time of 30 min and no effect of the solution pH and adsorption temperature.
NASA Astrophysics Data System (ADS)
Yadav, Vijay D.; Akhil Krishnan, R.; Borade, Lalit; Shirolikar, Seema; Jain, Ratnesh; Dandekar, Prajakta
2017-07-01
Localized surface plasmon resonance has been a unique and intriguing feature of silver nanoparticles (AgNPs) that has attracted immense attention. This has led to an array of applications for AgNPs in optics, sensors, plasmonic imaging etc. Although numerous applications have been reported consistently, the importance of buffer and reaction parameters during the synthesis of AgNPs, is still unclear. In the present study, we have demonstrated the influence of parameters like pH, temperature and buffer conditions (0.1 M citrate buffer) on the plasmonic resonance of AgNPs. We found that neutral and basic pH (from alkali metal) provide optimum interaction conditions for nucleation of plasmon resonant AgNPs. Interestingly, this was not observed in the non-alkali metal base (ammonia). Also, when the nanoparticles synthesized from alkali metal base were incorporated in different buffers, it was observed that the nanoparticles dissolved in the acidic buffer and had reduced plasmonic resonance intensity. This, however, was resolved in the basic buffer, increasing the plasmonic resonance intensity and confirming that nucleation of nanoparticles required basic conditions. The above inference has been supported by characterization of AgNPs using UV-Vis spectrophotometer, Fluorimetry analysis, Infrared spectrometer and TEM analysis. The study concluded that the plasmonic resonance of AgNPs occurs due to the interaction of alkali (Na) and transition metal (Ag) salt in basic/neutral conditions, at a specific temperature range, in presence of a capping agent (citric acid), providing a pH tune to the overall system.
Fabrication of a Miniature Multi-Parameter Sensor Chip for Water Quality Assessment
Zhou, Bo; Bian, Chao; Tong, Jianhua; Xia, Shanhong
2017-01-01
Water contamination is a main inducement of human diseases. It is an important step to monitor the water quality in the water distribution system. Due to the features of large size, high cost, and complicated structure of traditional water determination sensors and devices, it is difficult to realize real-time water monitoring on a large scale. In this paper, we present a multi-parameter sensor chip, which is miniature, low-cost, and robust, to detect the pH, conductivity, and temperature of water simultaneously. The sensor chip was fabricated using micro-electro-mechanical system (MEMS) techniques. Iridium oxide film was electrodeposited as the pH-sensing material. The atomic ratio of Ir(III) to Ir(IV) is about 1.38 according to the X-ray photoelectron spectroscopy (XPS) analysis. The pH sensing electrode showed super-Nernstian response (−67.60 mV/pH) and good linearity (R2 = 0.9997), in the range of pH 2.22 to pH 11.81. KCl-agar and epoxy were used as the electrolyte layer and liquid junction for the solid-state reference electrode, respectively, and its potential stability in deionized water was 56 h. The conductivity cell exhibited a linear determination range from 21.43 μS/cm to 1.99 mS/cm, and the electrode constant was 1.566 cm−1. Sensitivity of the temperature sensor was 5.46 Ω/°C. The results indicate that the developed sensor chip has potential application in water quality measurements. PMID:28098824
Karmakar, Moumita; Ray, Rina Rani
2011-01-01
The production cost of β-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of β-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum β-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source. PMID:21687577
Boopathy, Naidu Ramachandra; Indhuja, Devadas; Srinivasan, Krishnan; Uthirappan, Mani; Gupta, Rishikesh; Ramudu, Kamini Numbi; Chellan, Rose
2013-04-01
Proteases are shown to have greener mode of application in leather processing for dehairing of goat skins and cow hides. Production of protease by submerged fermentation with potent activity is reported using a new isolate P. aeruginosa MTCC 10501. The production parameters were optimized by statistical methods such as Plackett-Burman and response surface methodology. The optimized production medium contained (g/L); tryptone, 2.5; yeast extract, 3.0; skim milk 30.0; dextrose 1.0; inoculum concentration 4%: initial pH 6.0; incubation temperature 30 degrees C and optimum production at 48 h with protease activity of 7.6 U/mL. The protease had the following characteristics: pH optima, 9.0; temperature optima 50 degrees C; pH stability between 5.0-10.0 and temperature stability between 10-40 degrees C. The protease was observed to have high potential for dehairing of goat skins in the pre- tanning process comparable to that of the chemical process as evidenced by histology. The method offers cleaner processing using enzyme only instead of toxic chemicals in the pre-tanning process of leather manufacture.
Rapid development of xylanase assay conditions using Taguchi methodology.
Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath
2016-11-01
The present investigation is mainly concerned with the rapid development of extracellular xylanase assay conditions by using Taguchi methodology. The extracellular xylanase was produced from Aspergillus niger (KP874102.1), a new strain isolated from a soil sample of the Baramura forest, Tripura West, India. Four physical parameters including temperature, pH, buffer concentration and incubation time were considered as key factors for xylanase activity and were optimized using Taguchi robust design methodology for enhanced xylanase activity. The main effect, interaction effects and optimal levels of the process factors were determined using signal-to-noise (S/N) ratio. The Taguchi method recommends the use of S/N ratio to measure quality characteristics. Based on analysis of the S/N ratio, optimal levels of the process factors were determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors. ANOVA results showed that temperature contributed the maximum impact (62.58%) on xylanase activity, followed by pH (22.69%), buffer concentration (9.55%) and incubation time (5.16%). Predicted results showed that enhanced xylanase activity (81.47%) can be achieved with pH 2, temperature 50°C, buffer concentration 50 Mm and incubation time 10 min.
Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less
Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.
2016-04-01
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less
Fravolini, Giulia; Egli, Markus; Derungs, Curdin; Cherubini, Paolo; Ascher-Jenull, Judith; Gómez-Brandón, María; Bardelli, Tommaso; Tognetti, Roberto; Lombardi, Fabio; Marchetti, Marco
2016-11-01
Deadwood is known to significantly contribute to global terrestrial carbon stocks and carbon cycling, but its decay dynamics are still not thoroughly understood. Although the chemistry of deadwood has been studied as a function of decay stage in temperate to subalpine environments, it has generally not been related to time. We therefore studied the decay (mass of deadwood, cellulose and lignin) of equal-sized blocks of Picea abies wood in soil-mesocosms over two years in the Italian Alps. The 8 sites selected were along an altitudinal sequence, reflecting different climate zones. In addition, the effect of exposure (north- and south-facing slopes) was taken into account. The decay dynamics of the mass of deadwood, cellulose and lignin were related to soil parameters (pH, soil texture, moisture, temperature) and climatic data. The decay rate constants of Picea abies deadwood were low (on average between 0.039 and 0.040y(-1)) and of lignin close to zero (or not detectable), while cellulose reacted much faster with average decay rate constants between 0.110 and 0.117y(-1). Our field experiments showed that local scale factors, such as soil parameters and topographic properties, influenced the decay process: higher soil moisture and clay content along with a lower pH seemed to accelerate wood decay. Interestingly, air temperature negatively correlated with decay rates or positively with the amount of wood components on south-facing sites. It exerted its influence rather on moisture availability, i.e. the lower the temperature the higher the moisture availability. Topographic features were also relevant with generally slower decay processes on south-facing sites than on north-facing sites owing to the drier conditions, the higher pH and the lower weathering state of the soils (less clay minerals). This study highlights the importance of a multifactorial consideration of edaphic parameters to unravel the complex dynamics of initial wood decay. Copyright © 2016 Elsevier B.V. All rights reserved.
Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao
2014-05-01
Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malathy Devi, V.; Benner, D. Chris; Kleiner, Isabelle; Sams, Robert L.; Fletcher, Leigh N.
2014-08-01
Accurate knowledge of spectroscopic line parameters of PH3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν4, ν2 + ν4, ν1 and ν3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH3 pressures (∼2-50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν4, ν1 and ν3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν1 and ν3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν2 and ν4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C3v symmetry in general, and of PH3 in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathy Devi, V.; Benner, D. C.; Kleiner, Isabelle
2014-08-01
Accurate knowledge of spectroscopic line parameters of PH 3 is important for remote sensing of the outer planets, especially Jupiter and Saturn. In a recent study, line positions and intensities for the Pentad bands of PH 3 have been reported from analysis of high-resolution, high signal-to noise room-temperature spectra recorded with two Fourier transform spectrometers (2014) [1]. The results presented in this study were obtained during the analysis of positions and intensities, but here we focus on the measurements of spectral line shapes (e.g. widths, shifts, line mixing) for the 2ν 4, ν 2 + ν 4, ν 1 andmore » ν 3 bands. A multispectrum nonlinear least squares curve fitting technique employing a non-Voigt line shape to include line mixing and speed dependence of the Lorentz width was employed to fit the spectra simultaneously. The least squares fittings were performed on five room-temperature spectra recorded at various PH 3 pressures (~2–50 Torr) with the Bruker IFS-125HR Fourier transform spectrometer (FTS) located at the Pacific Northwest National Laboratory (PNNL), in Richland, Washington. Over 840 Lorentz self-broadened half-width coefficients, 620 self-shift coefficients and 185 speed dependence parameters were measured. Line mixing was detected for transitions in the 2ν 4, ν 1 and ν 3 bands, and their values were quantified for 10 A+A- pairs of transitions via off-diagonal relaxation matrix element formalism. The dependences of the measured half-width coefficients on the J and K rotational quanta of the transitions are discussed. The self-width coefficients for the ν 1 and ν 3 bands from this study are compared to the self-width coefficients for transitions with the same rotational quanta (J, K) reported for the Dyad (ν 2 and ν 4) bands. The measurements from present study should be useful for the development of a reliable theoretical modeling of pressure-broadened widths, shifts and line mixing in symmetric top molecules with C 3v symmetry in general, and of PH 3 in particular.« less
Line positions and intensities of the phosphine (PH 3) Pentad near 4.5μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malathy Devi, V.; Kleiner, Isabelle; Sams, Robert L.
2014-04-01
In order to improve the spectroscopic database for remote sensing of the giant planets, line positions and intensities are determined for the five bands (2ν 2, ν 2 + ν 4, 2ν 4, ν 1 and ν 3) that comprise the Pentad of PH 3 between 1950 and 2450 cm -1. Knowledge of PH 3 spectral line parameters in this region is important for the exploration of dynamics and chemistry on Saturn, (using existing Cassini/VIMS observations) and future near-IR data of Jupiter from Juno and ESA’s Jupiter Icy Moons Explorer (JUICE). For this study, spectra of pure PH 3 frommore » two Fourier transform spectrometers were obtained: (a) five high-resolution (0.00223 cm -1), high signal-to-noise (~1800) spectra recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer (FTS) at the Pacific Northwest National Laboratory (PNNL), Richland, Washington and (b) four high-resolution (at 0.0115 cm -1 resolution), high signal-to-noise (~700) spectra recorded at room temperature in the region 1800–5200 cm -1 using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory (NSO) on Kitt Peak. Individual line parameters above 2150 cm -1 were retrieved by simultaneous multispectrum fittings of all five Bruker spectra, while retrievals with the four Kitt Peak spectra were done in the 1938–2168 cm -1 range spectrum by spectrum and averaged. In all, positions and intensities were obtained for more than 4400 lines. These included 53 A+A- split pairs of transitions (arising due to vibration–rotation interactions (Coriolis-type interaction) between the ν 3 and ν 1 fundamental bands) for K" = 3, 6, and 9. Over 3400 positions and 1750 intensities of these lines were ultimately identified as relatively unblended and modeled up to J = 14 and K = 12 with rms values of 0.00133 cm -1 and 7.7%, respectively. The PH 3 line parameters (observed positions and measured intensities with known quantum assignments) and Hamiltonian constants are reported. Finally, comparisons with other recent studies are discussed.« less
Conditions of viscosity measurement for detecting irradiated peppers
NASA Astrophysics Data System (ADS)
Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru
1995-04-01
Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.
NASA Astrophysics Data System (ADS)
Branland, Nadege
2002-04-01
The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.
The solubility of hen egg-white lysozyme
NASA Technical Reports Server (NTRS)
Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.
1988-01-01
The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.
Seo, Myung-Ji
2013-01-01
L-Arabinose isomerase from Bacillus thermoglucosidasius KCTC 1828 (BTAI) was expressed in Escherichia coli. The optimal temperature and pH for the activity of the purified BTAI were 40 °C and pH 7.0. The Mn(2+) ion was an activator of BTAI activity. The kinetic parameters of BTAI for D-galactose were a K(m) of 175 mM and a k(cat)/K(m) of 2.8 mM(-1)min(-1). The conversion ratio by BTAI to D-tagatose reached 45.6% at 40 °C.
Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.
Namasivayam, C; Kavitha, D
2003-03-17
Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. Copyright 2003 Elsevier Science B.V.
Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.
2015-01-01
Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837
Effect of environmental factors on the complexation of iron and humic acid.
Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou
2015-01-01
A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.
Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung
2015-01-01
The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dagnas, Stéphane; Onno, Bernard; Membré, Jeanne-Marie
2014-09-01
The objective of this study was to quantify the effect of water activity, pH and storage temperature on the growth of Eurotium repens, Aspergillus niger and Penicillium corylophilum, isolated from spoiled bakery products. Moreover, the behaviors of these three mold species were compared to assess whether a general modeling framework may be set and re-used in future research on bakery spoilage molds. The mold growth was modeled by building two distinct Gamma-type secondary models: one on the lag time for growth and another one on the radial growth rate. A set of 428 experimental growth curves was generated. The effect of temperature (15-35 °C), water activity (0.80-0.98) and pH (3-7) was assessed. Results showed that it was not possible to apply the same set of secondary model equations to the three mold species given that the growth rate varied significantly with the factors pH and water activity. In contrast, the temperature effect on both growth rate and lag time of the three mold species was described by the same equation. The equation structure and model parameter values of the Gamma models were also compared per mold species to assess whether a relationship between lag time and growth rate existed. There was no correlation between the two growth responses for E. repens, but a slight one for A. niger and P. corylophilum. These findings will help in determining bakery product shelf-life and guiding future work in the predictive mycology field. Copyright © 2014 Elsevier B.V. All rights reserved.
Technical Note: Artificial coral reef mesocosms for ocean acidification investigations
NASA Astrophysics Data System (ADS)
Leblud, J.; Moulin, L.; Batigny, A.; Dubois, P.; Grosjean, P.
2014-11-01
The design and evaluation of replicated artificial mesocosms are presented in the context of a thirteen month experiment on the effects of ocean acidification on tropical coral reefs. They are defined here as (semi)-closed (i.e. with or without water change from the reef) mesocosms in the laboratory with a more realistic physico-chemical environment than microcosms. Important physico-chemical parameters (i.e. pH, pO2, pCO2, total alkalinity, temperature, salinity, total alkaline earth metals and nutrients availability) were successfully monitored and controlled. Daily variations of irradiance and pH were applied to approach field conditions. Results highlighted that it was possible to maintain realistic physico-chemical parameters, including daily changes, into artificial mesocosms. On the other hand, the two identical artificial mesocosms evolved differently in terms of global community oxygen budgets although the initial biological communities and physico-chemical parameters were comparable. Artificial reef mesocosms seem to leave enough degrees of freedom to the enclosed community of living organisms to organize and change along possibly diverging pathways.
Physiological changes induced in bacteria following pH stress as a model for space research
NASA Astrophysics Data System (ADS)
Baatout, Sarah; Leys, Natalie; Hendrickx, Larissa; Dams, Annik; Mergeay, Max
2007-02-01
The physiology of the environmental bacterium Cupriavidus metallidurans CH34 (previously Ralstonia metallidurans) is being studied in comparison to the clinical model bacterium Escherichia coli in order to understand its behaviour and resistance under extreme conditions (pH, temperature, etc.). This knowledge is of importance in the light of the potential use and interest of this strain for space biology and bioremediation. Flow cytometry provides powerful means to measure a wide range of cell characteristics in microbiological research. In order to estimate physiological changes associated with pH stress, flow cytometry was employed to estimate the extent of damage on cell size, membrane integrity and potential, and production of superoxides in the two bacterial strains. Suspensions of C. metallidurans and E. coli were submitted to a 1-h pH stress (2 to 12). For flow cytometry, fluorochromes, including propidium iodide, 3, 3'-dihexyloxacarbocyanine iodide and hydroethidine were chosen as analytical parameters for identifying the physiological state and the overall fitness of individual cells. A physiologic state of the bacterial population was assessed with a Coulter EPICS XL analyser based on the differential uptakes of these fluorescent stains. C. metallidurans cells exhibited a different staining intensity than E. coli cells. For both bacterial strains, the physiological status was only slightly affected between pH 6 and 8 in comparison with pH 7 which represents the reference pH. Moderate physiological damage could be observed at pH 4 and 5 as well as at pH 9 in both strains. At pH 2, 10 and 12, membrane permeability and potential and superoxide anion production were increased to high levels showing dramatic physiological changes. It is apparent that a range of significant physiological alterations occurs after pH stress. Fluorescent staining methods coupled with flow cytometry are useful and complementary for monitoring physiological changes induced not only by pH stress but also temperature and oxidative stress, radiation, pressure as well as space stress.
Nayak, Ashish Kumar; Pal, Anjali
2018-07-01
In this research, the performance of naturally abundant lignocellulosic by-product, Abelmoschus esculentus, and its processed seed powder referred as AESP, as a potential biosorbent for the removal of acridine orange (AO) from the aqueous environment was examined. The AESP biosorbent was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) and pH ZPC analyses. The average size of the biosorbent according to particle size distribution analysis was found to be ∼132 μm. The batch adsorption experiments were conducted by altering the parameters such as contact time, solution pH, biosorbent dosage, initial dye concentration, stirring speed and temperature. Sorption of cationic AO dye onto AESP was found to be rapid, and the equilibrium condition reached within 30 min. The isotherms (Langmuir, Freundlich, Redlich-Peterson and Sips), kinetic models (pseudo-first order, pseudo-second order, Elovich, intra-particle diffusion, Bangham and modified-Freundlich models) and thermodynamic parameters were also evaluated. High values of determination coefficients (R 2 ) and minimal values of non-linear error functions (i.e. HYBRD, RMSE, MPSD, ARE, APE and χ 2 ) indicated that experimental data were best fitted with Sips isotherm and pseudo-second order kinetic model. Accordingly, the maximum loading capacity of AESP was found to be 259.4, 284.3 and 346.5 mg/g for the temperatures of 15, 30 and 45 °C, respectively. The thermodynamic parameters showed that the adsorption of AO onto the AESP surface was an endothermic and spontaneous process. Besides these, the central composite experimental design (CCD) superimposed with response surface methodology (RSM) modeling was also employed to investigate the effect of four significant parameters (solution pH, contact time, initial AO concentration and AESP dosage) and their interaction-term effects on the adsorption capacity of AESP and to formulate the mathematical model for the experimental data using multi-variate statistical analysis. Maximum dye uptake capacity under the optimum conditions of variables (pH 8.96, contact time 32.06 min, initial dye concentration 867.71 mg/L and AESP dosage 1.89 g/L) was 312.1 mg/g at temperature 30 °C, and it was found to be very close to the experimentally determined values (313.4 ± 0.057 mg/g). The promising reusability potential of AESP using 0.1 M HCl, implied that, the lignocellulosic biosorbent AESP might be helpful for the appropriate designing of the environmental-friendly purification systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction
NASA Astrophysics Data System (ADS)
Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi
2016-11-01
The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.
Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402
Anvari, Maesomeh; Safari Motlagh, Mohammad Reza
2011-01-01
Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v), respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L), 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%. PMID:21318172
Alfaro-Cuevas-Villanueva, Ruth; Hidalgo-Vázquez, Aura Roxana; Cortés Penagos, Consuelo de Jesús; Cortés-Martínez, Raúl
2014-01-01
The sorption of cadmium (Cd) and lead (Pb) by calcium alginate beads (CAB) from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K 2) for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F) and Dubinin-Radushkevich (D-R) models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7. PMID:24587740
Optical pH detector based on LTCC and sol-gel technologies
NASA Astrophysics Data System (ADS)
Tadaszak, R. J.; Łukowiak, A.; Golonka, L. J.
2013-01-01
This paper presents an investigation on using sol-gel thin film as a material for sensors application in LTCC (Low Temperature Co-fired Ceramics) technology. This material gives the opportunity to make new, low-cost highly integrated optoelectronic devices. Sensors with optical detection are a significant part of these applications. They can be used for quick and safe diagnostics of some parameters. Authors present a pH detector with the optical detection system made of the LTCC material. The main part of the device is a flow channel with the chamber and sol-gel active material. The silica sol-gel with bromocresol green indicator was used. As the absorbance of sol-gel layer changes with the pH value of a measured medium, the transmitted light power was measured. The pH detector was integrated with the electronic components on the LTCC substrate.
Biocompatibility of 17-4 PH stainless steel foam for implant applications.
Mutlu, Ilven; Oktay, Enver
2011-01-01
In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.
Swimming Three Ice Miles within Fifteen Hours.
Stjepanovic, Mirko; Nikolaidis, Pantelis T.; Knechtle, Beat
2017-08-31
Ice Mile swimming (1608 m in water of below 5 °Celsius) is becoming increasingly popular. This case study aimed to identify body core temperature and selected haematological and biochemical parameters before and after repeated Ice Miles. An experienced ice swimmer completed three consecutive Ice Miles within 15 h. Swim times, body core temperatures, and selected urinary and haematological parameters were recorded. Body core temperature reached its maximum between 5, 8 and 15 min after immersion (37.7°C, 38.1°C, and 38.0°C, respectively). The swimmer suffered hypothermia during the first Ice Mile (35.4°C) and body core temperature dropped furthermore to 34.5°C during recovery after the first Ice Mile. He developed a metabolic acidosis in both the first and the last Ice Mile (pH 7.31 and pH 7.34, respectively). We observed hyperkalaemia ([K⁺] > 5.5 mM) after the second Ice Mile (6.9 mM). This was followed by a drop in [K⁺] to3.7 mM after the third Ice Mile. Anticipatory thermogenesis (i.e. an initial increase of body core temperature after immersion in ice cold water) seems to be a physiological response in a trained athlete. The results suggest that swimming in ice-cold water leads to a metabolic acidosis, which the swimmer compensates with hyperventilation (i.e. leading to respiratory alkalosis). The shift of serum [K⁺] could increase the risk of a cardiac arrhythmia. Further studies addressing the physiology and potential risks of Ice Mile swimming are required to substantiate this finding.
Baliarsingh, S K; Srichandan, S; Naik, S; Sahu, K C; Lotliker, Aneesh A; Kumar, T S
2013-08-15
The hydro-biological parameters of coastal waters off Rushikulya estuary was investigated during premonsoon 2011. Important hydro-biological parameters such as water temperature, salinity, pH, DO, NO2, NO3, NH4, PO4, SiO4, TSM, Chl-a, phytoplankton and zooplankton were measured during the present study. Temperature established a strong positive correlation with salinity and pH during the present study. Chl-a found in positive relation with NO3, SiO, and TSM. Analysis of variance revealed significant monthly variation in pH, salinity and TSM. Significant station wise variation was observed in DO and most of the nutrients i.e., NO3, NH4, PO4, SiO4. A total of 119 species of phytoplankton were identified of which 84 species are of diatoms, 22 species of dinoflagellates, 7 species of green algae, 5 species of cyanobacteria (blue green algae) and 1 species of cocolithophore. Phytoplankton abundance varied between 25543 (Nos. L(-1)) and 36309 (Nos. L(-1)). Diatoms dominated the phytoplankton community followed by dinoflagellates in all the months. Diatoms contributed to 82-89% of the total phytoplankton population density whereas dinoflagellates contributed to 6-12%. The regression between Chl-a and phytoplankton abundance resulted with weak relation (R(2) = 0.042). Zooplankton fauna composed of 134 species of holoplankton and 20 types of meroplankton were encountered during the study period. Zooplankton population dominated by copepod during all months and accounted for 74 to 85% to the total zooplankton. The population density ranged from 6959 to 35869 Nos./10 m(3). Analysis of variance explained no significant variation in total zooplankton abundance and also for different groups of zooplankton.
NASA Astrophysics Data System (ADS)
Pranoto; Masykur, A.; Nugroho, Y. A.
2018-03-01
Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.
Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus.
Souza, Paula Monteiro; Aliakbarian, Bahar; Filho, Edivaldo Ximenes Ferreira; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa; Converti, Attilio; Perego, Patrizia
2015-11-01
The kinetics of a thermostable extracellular acid protease produced by an Aspergillus foetidus strain was investigated at different pH, temperatures and substrate concentrations. The enzyme exhibited maximal activity at pH 5.0 and 55°C, and its irreversible deactivation was well described by first-order kinetics. When temperature was raised from 55 to 70°C, the deactivation rate constant increased from 0.018 to 5.06h(-1), while the half-life decreased from 37.6 to 0.13h. The results of activity collected at different temperatures were then used to estimate, the activation energy of the hydrolysis reaction (E*=19.03kJ/mol) and the standard enthalpy variation of reversible enzyme unfolding (ΔH°U=19.03kJ/mol). The results of residual activity tests carried out in the temperature range 55-70°C allowed estimating the activation energy (E(*)d=314.12kJ/mol), enthalpy (311.27≤(ΔH°d≤311.39kJ/mol), entropy (599.59≤ΔS(*)d≤610.49kJ/mol K) and Gibbs free energy (103.18≤ΔG(*)d≤113.87kJ/mol) of the enzyme irreversible denaturation. These thermodynamic parameters suggest that this new protease is highly thermostable and could be important for industrial applications. To the best of our knowledge, this is the first report on thermodynamic parameters of an acid protease produced by A. foetidus. Copyright © 2015 Elsevier B.V. All rights reserved.
Validation of the i-STAT system for the analysis of blood parameters in fish
Harter, T. S.; Shartau, R. B.; Brauner, C. J.; Farrell, A. P.
2014-01-01
Portable clinical analysers, such as the i-STAT system, are increasingly being used for blood analysis in animal ecology and physiology because of their portability and easy operation. Although originally conceived for clinical application and to replace robust but lengthy techniques, researchers have extended the use of the i-STAT system outside of humans and even to poikilothermic fish, with only limited validation. The present study analysed a range of blood parameters [pH, haematocrit (Hct), haemoglobin (Hb), HCO3−, partial pressure of CO2 (PCO2), partial pressure of O2 (PO2), Hb saturation (sO2) and Na+ concentration] in a model teleost fish (rainbow trout, Oncorhynchus mykiss) using the i-STAT system (CG8+ cartridges) and established laboratory techniques. This methodological comparison was performed at two temperatures (10 and 20°C), two haematocrits (low and high) and three PCO2 levels (0.5, 1.0 and 1.5%). Our results indicate that pH was measured accurately with the i-STAT system over a physiological pH range and using the i-STAT temperature correction. Haematocrit was consistently underestimated by the i-STAT, while the measurements of Na+, PCO2, HCO3− and PO2 were variably inaccurate over the range of values typically found in fish. The algorithm that the i-STAT uses to calculate sO2 did not yield meaningful results on rainbow trout blood. Application of conversion factors to correct i-STAT measurements is not recommended, due to significant effects of temperature, Hct and PCO2 on the measurement errors and complex interactions may exist. In conclusion, the i-STAT system can easily generate fast results from rainbow trout whole blood, but many are inaccurate values. PMID:27293658
Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong
2017-01-01
Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086
Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong
2017-03-01
Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.
Temperature-independent zero-birefringence polymer for liquid crystal displays
NASA Astrophysics Data System (ADS)
Shikanai, M. D.; Tagaya, A.; Koike, Y.
2016-03-01
A polymer film that shows almost no orientational birefringence even when the polymer main chain is in an oriented state and almost no temperature dependence of orientational birefringence in the temperature range from around -40 to 85 °C was prepared. This temperature range is important because it is where in-car liquid crystal displays (LCDs) are generally used; therefore, it is desirable to have constant orientational birefringence over this range. We suggest a method to compensate for the intrinsic birefringence and temperature coefficient of intrinsic birefringence of individual polymers by copolymerizing monomers of homopolymers that display opposite signs of the two parameters described above. Analysis of four types of polymers, methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate, benzyl methacrylate (BzMA), and phenyl methacrylate (PhMA), reveal that they possess both positive and negative signs of their temperature coefficient of intrinsic birefringence. Using this approach, we prepare P(MMA/PhMA/BzMA) (39:23:38 wt. %), which exhibits almost no intrinsic birefringence and almost no temperature dependence of intrinsic birefringence. The retardation of this polymer film when drawn uniaxially scarcely changed (between 0.3 and 0.8 nm) between 12 and 70 °C, which is small enough not to cause image degradation in LCDs.
Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo
2013-01-01
The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH < 5, but decreased at pH ≥ 5. The presence of C60(C(COOH)2)n inhibited the adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683
Removal of phosphate from greenhouse wastewater using hydrated lime.
Dunets, C Siobhan; Zheng, Youbin
2014-01-01
Phosphate (P) contamination in nutrient-laden wastewater is currently a major topic of discussion in the North American greenhouse industry. Precipitation of P as calcium phosphate minerals using hydrated lime could provide a simple, inexpensive method for retrieval. A combination of batch experiments and chemical equilibrium modelling was used to confirm the viability of this P removal method and determine lime addition rates and pH requirements for greenhouse wastewater of varying nutrient compositions. Lime: P ratio (molar ratio of CaMg(OH)₄: PO₄‒P) provided a consistent parameter for estimating lime addition requirements regardless of initial P concentration, with a ratio of 1.5 providing around 99% removal of dissolved P. Optimal P removal occurred when lime addition increased the pH from 8.6 to 9.0, suggesting that pH monitoring during the P removal process could provide a simple method for ensuring consistent adherence to P removal standards. A Visual MINTEQ model, validated using experimental data, provided a means of predicting lime addition and pH requirements as influenced by changes in other parameters of the lime-wastewater system (e.g. calcium concentration, temperature, and initial wastewater pH). Hydrated lime addition did not contribute to the removal of macronutrient elements such as nitrate and ammonium, but did decrease the concentration of some micronutrients. This study provides basic guidance for greenhouse operators to use hydrated lime for phosphate removal from greenhouse wastewater.
Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa
NASA Astrophysics Data System (ADS)
Howes, Ella L.; Kaczmarek, Karina; Raitzsch, Markus; Mewes, Antje; Bijma, Nienke; Horn, Ingo; Misra, Sambuddha; Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
In order to fully constrain paleo-carbonate systems, proxies for two out of seven parameters, plus temperature and salinity, are required. The boron isotopic composition (δ11B) of planktonic foraminifera shells is a powerful tool for reconstructing changes in past surface ocean pH. As B(OH)4- is substituted into the biogenic calcite lattice in place of CO32-, and both borate and carbonate ions are more abundant at higher pH, it was suggested early on that B / Ca ratios in biogenic calcite may serve as a proxy for [CO32-]. Although several recent studies have shown that a direct connection of B / Ca to carbonate system parameters may be masked by other environmental factors in the field, there is ample evidence for a mechanistic relationship between B / Ca and carbonate system parameters. Here, we focus on investigating the primary relationship to develop a mechanistic understanding of boron uptake. Differentiating between the effects of pH and [CO32-] is problematic, as they co-vary closely in natural systems, so the major control on boron incorporation remains unclear. To deconvolve the effects of pH and [CO32-] and to investigate their impact on the B / Ca ratio and δ11B, we conducted culture experiments with the planktonic foraminifer Orbulina universa in manipulated culture media: constant pH (8.05), but changing [CO32-] (238, 286 and 534 µmol kg-1 CO32-) and at constant [CO32-] (276 ± 19.5 µmol kg-1) and varying pH (7.7, 7.9 and 8.05). Measurements of the isotopic composition of boron and the B / Ca ratio were performed simultaneously using a femtosecond laser ablation system coupled to a MC-ICP-MS (multiple-collector inductively coupled plasma mass spectrometer). Our results show that, as expected, δ11B is controlled by pH but it is also modulated by [CO32-]. On the other hand, the B / Ca ratio is driven by [HCO3-], independently of pH. This suggests that B / Ca ratios in foraminiferal calcite can possibly be used as a second, independent, proxy for complete paleo-carbonate system reconstructions. This is discussed in light of recent literature demonstrating that the primary relationship between B / Ca and [HCO3-] can be obscured by other environmental parameters.
Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad
2014-01-01
This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378
Monkos, Karol
2013-03-01
The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.
Namasivayam, C; Sangeetha, D
2005-09-01
The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.
Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.
Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I
1997-10-01
There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 < 10 mm Hg; PCO2 > 60 mm Hg, and pH < 6.8. We have had no complications with this device; the risks are similar to those of placing a parenchymal intracranial pressure monitor. We believe that assessment of interstitial cerebral oxygen saturation can be of great value both intraoperatively and postoperatively. In our experience, the Paratrend 7 system is an effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Cocke, D.L.
Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less
Rashid, Abdul Ahid; Huma, Nuzhat; Zahoor, Tahir; Asgher, Muhammad
2017-02-01
The recovery of milk constituents from cheese whey is affected by various processing conditions followed during production of Ricotta cheese. The objective of the present investigation was to optimize the temperature (60-90 °C), pH (3-7) and CaCl2 concentration (2·0-6·0 mm) for maximum yield/recovery of milk constituents. The research work was carried out in two phases. In 1st phase, the influence of these processing conditions was evaluated through 20 experiments formulated by central composite design (CCD) keeping the yield as response factor. The results obtained from these experiments were used to optimize processing conditions for maximum yield using response surface methodology (RSM). The three best combinations of processing conditions (90 °C, pH 7, CaCl2 6 mm), (100 °C, pH 5, CaCl2 4 mm) and (75 °C, pH 8·4, CaCl2 4 mm) were exploited in the next phase for Ricotta cheese production from a mixture of Buffalo cheese whey and skim milk (9 : 1) to determine the influence of optimized conditions on the cheese composition. Ricotta cheeses were analyzed for various physicochemical (moisture, fat, protein, lactose, total solids, pH and acidity indicated) parameters during storage of 60 d at 4 ± 2 °C after every 15 d interval. Ricotta cheese prepared at 90 °C, pH 7 and CaCl2 6 mm exhibited the highest cheese yield, proteins and total solids, while high fat content was recorded for cheese processed at 100 °C, pH 5 and 4 mm CaCl2 concentration. A significant storage-related increase in acidity and NPN was recorded for all cheese samples.
Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans.
Maurice, S; Coroller, L; Debaets, S; Vasseur, V; Le Floch, G; Barbier, G
2011-12-01
To predict the risk factors for building infestation by Serpula lacrymans, which is one of the most destructive fungi causing timber decay in buildings. The growth rate was assessed on malt extract agar media at temperatures between 1.5 and 45°C, at water activity (a(w)) over the range of 0.800-0.993 and at pH ranges from 1.5 to 11.0. The radial growth rate (μ) and the lag phase (λ) were estimated from the radial growth kinetics via the plots radius vs time. These parameters were then modelled as a function of the environmental factors tested. Models derived from the cardinal model (CM) were used to fit the experimental data and allowed an estimation of the optimal and limit values for fungal growth. Optimal growth rate occurred at 20°C, at high a(w) level (0.993) and at a pH range between 4.0 and 6.0. The strain effect on the temperature parameters was further evaluated using 14 strains of S. lacrymans. The robustness of the temperature model was validated on data sets measured in two different wood-based media (Quercus robur L. and Picea abies). The two-step procedure of exponential model with latency followed by the CM with inflection gives reliable predictions for the growth conditions of a filamentous fungus in our study. The procedure was validated for the study of abiotic factors on the growth rate of S. lacrymans. This work describes the usefulness of evaluating the effect of physico-chemical factors on fungal growth in predictive building mycology. Consequently, the developed mathematical models for predicting fungal growth on a macroscopic scale can be used as a tool for risk assessment of timber decay in buildings. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.
2017-01-01
Summary Thirty isolated fungal strains were screened for lipase production using Phenol Red plates, containing tributyrin as lipidic substrate, and a novel fungus identified genetically as Curvularia sp. DHE 5 was found as the most prominent strain. Various agro-industrial substrates were evaluated as inert supports for lipase production in solid-state fermentation. The highest yield of lipase ((83.4±2.2) U/g on dry mass basis) was reported with wheat bran medium after seven days of fermentation at pH=7.0, temperature of 30 °C, 70% moisture content, inoculum size of 1.27·107 spore/mL and 2% olive oil as an inducer. Supplementation of the medium with 0.05% KCl as an ion source further increased lipase production to (88.9±1.2) U/g on dry mass basis. The enzyme was partially purified through ammonium sulphate fractionation (40%) followed by dialysis, and its optimum pH and temperature were reported at 8.0 and 50 °C, respectively, with remarkable pH and thermal stability. PMID:28867950
Alves, Claudete; Fernandes, Christian; Dos Santos Neto, Alvaro José; Rodrigues, José Carlos; Costa Queiroz, Maria Eugênia; Lanças, Fernando Mauro
2006-07-01
Solid-phase microextraction (SPME)-liquid chromatography (LC) is used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. Extraction conditions are optimized using a 2(3) factorial design plus a central point to evaluate the influence of the time, temperature, and matrix pH. A Polydimethylsiloxane-divinylbenzene (60-mum film thickness) fiber is selected after the assessment of different types of coating. The chromatographic separation is realized using a C(18) column (150 x 4.6 mm, 5-microm particles), ammonium acetate buffer (0.05 mol/L, pH 5.50)-acetonitrile (55:45 v/v) with 0.1% of triethylamine as mobile phase and UV-vis detection at 214 nm. Among the factorial design conditions evaluated, the best results are obtained at a pH 11.0, temperature of 30 degrees C, and extraction time of 45 min. The proposed method, using a lab-made SPME-LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.
Design of a Water Environment Monitoring System Based on Wireless Sensor Networks
Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming
2009-01-01
A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects. PMID:22454592
Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian
2012-01-01
Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983
Bio-logging of physiological parameters in higher marine vertebrates
NASA Astrophysics Data System (ADS)
Ponganis, Paul J.
2007-02-01
Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (P) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed.
VizieR Online Data Catalog: Supernova matter EOS (Buyukcizmeci+, 2014)
NASA Astrophysics Data System (ADS)
Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N.
2017-03-01
The Statistical Model for Supernova Matter (SMSM) was developed in Botvina & Mishustin (2004, PhLB, 584, 233 ; 2010, NuPhA, 843, 98) as a direct generalization of the Statistical Multifragmentation Model (SMM; Bondorf et al. 1995, PhR, 257, 133). We treat supernova matter as a mixture of nuclear species, electrons, and photons in statistical equilibrium. The SMSM EOS tables cover the following ranges of control parameters: 1. Temperature: T = 0.2-25 MeV; for 35 T values. 2. Electron fraction Ye: 0.02-0.56; linear mesh of Ye = 0.02, giving 28 Ye values. It is equal to the total proton fraction Xp, due to charge neutrality. 3. Baryon number density fraction {rho}/{rho}0 = (10-8-0.32), giving 31 {rho}/{rho}0 values. (2 data files).
Olmez, Hülya Kaptan; Aran, Necla
2005-02-01
Mathematical models describing the growth kinetic parameters (lag phase duration and growth rate) of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations were obtained in this study. In order to get a residual distribution closer to a normal distribution, the natural logarithm of the growth kinetic parameters were used in modeling. For reasons of parsimony, the polynomial models were reduced to contain only the coefficients significant at a level of p
Nickel(II) biosorption by Rhodotorula glutinis.
Suazo-Madrid, Alicia; Morales-Barrera, Liliana; Aranda-García, Erick; Cristiani-Urbina, Eliseo
2011-01-01
The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g(-1) at 25°C, and 63.53 mg g(-1) at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.
Impact of Red Water System (RWS) application on water quality of catfish culture using aquaponics
NASA Astrophysics Data System (ADS)
Zahidah; Dhahiyat, Y.; Andriani, Y.; Sahidin, A.; Farizi, I.
2018-03-01
This study aim was to analyze the effect of Red Water System (RWS) probiotics application on water quality in aquaponic system. The research used experimental method using Completely Randomized Design (CRD) with five treatments and three replications. Treatment A: RWS 7.5 μL·L-1/week without aquaponic probiotic, Treatment B: aquaponic without RWS probiotics, treatment C: RWS probiotic addition in aquaponic media at 7.5 μL·L-1/week, treatment D: addition of RWS probiotics in aquaponic media at 10 μL·L-1/week and treatment E: addition of RWS probiotics in in aquaponic media at 12.8 μL·L-1/week. Parameters measured were pH, temperature, ammonia, nitrate and phosphate. The results showed that water temperature and pH relatively unchanged in all treatments. The addition of RWS probiotics did not improve the concentration of ammonia, nitrate and phosphate. In fact, the catfish culture with only aquaponic resulted lower concentration of ammonia, nitrate and phosphate than other treatment. The lowest value of ammonia, nitrate and phosphates was obtained in the experimental groups of aquaponic with RWS of 10 μL·L-1/week (Treatment D). Treatment D has the lowest average ammonia of 0.50 ppm, reduced nitrate up to 60.78 % and temperature and pH relatively unchanged.
Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.
Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros
2014-08-01
Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Origone, A C; Del Mónaco, S M; Ávila, J R; González Flores, M; Rodríguez, M E; Lopes, C A
2017-08-01
Evaluating the winemaking stress tolerance of a set of both Saccharomyces eubayanus and Saccharomyces uvarum strains from diverse Patagonian habitats. Yeast strains growth was analysed under increasing ethanol concentrations; all of them were able to grow until 8% v/v ethanol. The effect of different temperature and pH conditions as well as at SO 2 and hexose concentrations was evaluated by means of a central composite experimental design. Only two S. uvarum strains (NPCC 1289 and 1321) were able to grow in most stress conditions. Kinetic parameters analysed (μ max and λ) were statistically affected by temperature, pH and SO 2 , but not influenced by sugar concentration. The obtained growth model was used for predicting optimal growth conditions for both strains: 20°C, 0% w/v SO 2 and pH 4·5. Strains from human-associated environments (chichas) presented the highest diversity in the response to different stress factors. Two S. uvarum strains from chichas demonstrated to be the most tolerant to winemaking conditions. This work evidenced the potential use of two S. uvarum yeast strains as starter cultures in wines fermented at low temperatures. Saccharomyces eubayanus was significantly affected by winemaking stress conditions, limiting its use in this industry. © 2017 The Society for Applied Microbiology.
Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal
2016-01-01
Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581
Kishore, Devesh; Kundu, Suman; Kayastha, Arvind M.
2012-01-01
Background In this case study, we analysed the properties of unfolded states and pathways leading to complete denaturation of a multimeric chick pea β-galactosidase (CpGAL), as obtained from treatment with guanidium hydrochloride, urea, elevated temperature and extreme pH. Methodology/Principal Findings CpGAL, a heterodimeric protein with native molecular mass of 85 kDa, belongs to α+β class of protein. The conformational stability and thermodynamic parameters of CpGAL unfolding in different states were estimated and interpreted using circular dichroism and fluorescence spectroscopic measurements. The enzyme was found to be structurally and functionally stable in the entire pH range and upto 50°C temperature. Further increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were irreversible, non-coincidental and sigmoidal. Free energy of protein unfolding (ΔG0) and unfolding constant (Kobs) were also calculated for chemically denatured CpGAL. Significance The protein seems to use different pathways for unfolding in different environments and is a classical example of how the environment dictates the path a protein might take to fold while its amino acid sequence only defines its final three-dimensional conformation. The knowledge accumulated could be of immense biotechnological significance as well. PMID:23185611
Stirring effect on kaolinite dissolution rate
NASA Astrophysics Data System (ADS)
Metz, Volker; Ganor, Jiwchar
2001-10-01
Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.
Method of saccharifying cellulose
Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin
1985-09-10
A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.
1985-01-01
the equilibrium fluctuations and functional motions in different proteins as function of external parameters (pH, viscosity , temperature, pressure) and...For example, let us consider the perturbation of an integrable non-linear conservative system with N degrees of freedom. In the absence of the field...in integrable systems. If one 9 tries to influence soliton propagation by an external field, for example, is the predominately integrable behavior of
Sasidharan Pillai, Indu M; Gupta, Ashok K
2016-07-01
Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber
Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao
2015-01-01
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265
NASA Astrophysics Data System (ADS)
Pashai Gatabi, Maliheh; Milani Moghaddam, Hossain; Ghorbani, Mohsen
2016-07-01
Adsorptive potential of maghemite decorated multiwalled carbon nanotubes (MWCNTs) for the removal of cadmium ions from aqueous solution was investigated. The magnetic nanoadsorbent was synthesized using a versatile and cost effective chemical route. Structural, magnetic and surface charge properties of the adsorbent were characterized using FTIR, XRD, TEM, VSM analysis and pHPZC determination. Batch adsorption experiments were performed under varied system parameters such as pH, contact time, initial cadmium concentration and temperature. Highest cadmium adsorption was obtained at pH 8.0 and contact time of 30 min. Adsorption behavior was kinetically studied using pseudo first-order, pseudo second-order, and Weber-Morris intra particle diffusion models among which data were mostly correlated to pseudo second-order model. Adsorbate-adsorbent interactions as a function of temperature was assessed by Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models from which Freundlich model had the highest consistency with the data. The adsorption capacity increased with increasing temperature and maximum Langmuir's adsorption capacity was found to be 78.81 mg g-1 at 298 K. Thermodynamic parameters and activation energy value suggest that the process of cadmium removal was spontaneous and physical in nature, which lead to fast kinetics and high regeneration capability of the nanoadsorbent. Results of this work are of great significance for environmental applications of magnetic MWCNTs as promising adsorbent for heavy metals removal from aqueous solutions.
Chang, Xiaoyan; Li, Dong; Liang, Yuhai; Yang, Zhuo; Cui, Shaoming; Liu, Tao; Zeng, Huiping; Zhang, Jie
2013-04-01
The stability and parameters of a bio-ceramic filter for completely autotrophic nitrogen removal were investigated. The completely autotrophic nitrogen removal over nitrite (CANON) reactor was fed with different concentrations of ammonia (400, 300, and 200 mg N/L) but constant influent ammonia load. The results showed that the CANON system can achieve good treatment performance at ambient temperature (15-23 degrees C). The average removal rate and removal loading of NH4(+)-N and TN was 83.90%, 1.26 kg N/(m3 x day), and 70.14%, 1.09 kg N/(m3 x day), respectively. Among the influencing factors like pH, dissolved oxygen and alkalinity, it was indicated that the pH was the key parameter of the performance of the CANON system. Observing the variation of pH would contribute to better control of the CANON system in an intuitive and fast way. Denaturing gradient gel electrophoresis analysis of microorganisms further revealed that there were some significant changes in the community structure of ammonium oxidizing bacteria, which had low diversity in different stages, while the species of anaerobic ammonium oxidizing (anammox) bacteria were fewer and the community composition was relatively stable. These observations showed that anaerobic ammonia oxidation was more stable than the aerobic ammonia oxidation, which could explain that why the CANON system maintained a good removal efficiency under the changing substrate conditions.
Mustafa, Yasmen A; Jaid, Ghydaa M; Alwared, Abeer I; Ebrahim, Mothana
2014-06-01
The application of advanced oxidation process (AOP) in the treatment of wastewater contaminated with oil was investigated in this study. The AOP investigated is the homogeneous photo-Fenton (UV/H2O2/Fe(+2)) process. The reaction is influenced by the input concentration of hydrogen peroxide H2O2, amount of the iron catalyst Fe(+2), pH, temperature, irradiation time, and concentration of oil in the wastewater. The removal efficiency for the used system at the optimal operational parameters (H2O2 = 400 mg/L, Fe(+2) = 40 mg/L, pH = 3, irradiation time = 150 min, and temperature = 30 °C) for 1,000 mg/L oil load was found to be 72%. The study examined the implementation of artificial neural network (ANN) for the prediction and simulation of oil degradation in aqueous solution by photo-Fenton process. The multilayered feed-forward networks were trained by using a backpropagation algorithm; a three-layer network with 22 neurons in the hidden layer gave optimal results. The results show that the ANN model can predict the experimental results with high correlation coefficient (R (2) = 0.9949). The sensitivity analysis showed that all studied variables (H2O2, Fe(+2), pH, irradiation time, temperature, and oil concentration) have strong effect on the oil degradation. The pH was found to be the most influential parameter with relative importance of 20.6%.
Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M
2016-05-30
The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Zeng, Dezhi; Yan, Jing; Fan, Hongyuan
2013-04-01
The effects of process parameters on the microstructure, microhardness, and dry-sliding wear behavior of plasma nitrided 17-4PH stainless steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and wear testing. The results show that a wear-resistant nitrided layer was formed on the surface of direct current plasma nitrided 17-4PH martensitic stainless steel. The microstructure and thickness of the nitrided layer is dependent on the treatment temperature rather than process pressure. XRD indicated that a single α N phase was formed during nitriding at 623 K (350 °C). When the temperature increased, the α N phase disappeared and CrN transformed in the nitrided layer. The hardness measurement demonstrated that the hardness of the stainless substrate steel increased from 320 HV0.1 in the untreated condition increasing to about 1275HV0.1 after nitriding 623 K (350 °C)/600 pa/4 hours. The extremely high values of the microhardness achieved by the great misfit-induced stress fields associated with the plenty of dislocation group and stacking fault. Dry-sliding wear resistance was improved by DC plasma nitriding. The best wear-resistance performance of a nitrided sample was obtained after nitriding at 673 K (350 °C), when the single α N-phase was produced and there were no CrN precipitates in the nitrided layer.
Characterization, kinetic, and thermodynamic studies of marine pectinase from Bacillus subtilis.
Joshi, Manasi; Nerurkar, Madhura; Adivarekar, Ravindra
2015-01-01
Characterization, kinetic and thermodynamic parameters of purified pectinase from Bacillus subtilis, isolated from a marine sediment sample collected from Chinchani beach at Tarapore, India, were studied. Marine pectinase produced under submerged growth conditions was purified by ammonium sulfate precipitation followed by gel filtration chromatography using DEAE cellulose. Partial characterization of the marine pectinase was carried out in terms of effect of pH, temperature, substrate concentration, and metal ions. It was found that pectinase from marine B. subtilis showed maximal activity in alkaline buffer at pH 9.0 and at 40°C. It was also found that metal ions, namely, Mn(2+) and Fe(2+), stimulate pectinase activity. Marine pectinase followed Michaelis-Menten kinetics. The kinetics and thermodynamic parameters of the purified marine pectinase from B. subtilis were studied as the characterization of the enzyme is vital for its use in industrial processes.
Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.
Joshi, Ravi K; Gogate, Parag R
2012-05-01
The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aneesh Kumar, K. S.; Bhowmik, R. N.
2017-12-01
The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.
Impact of pH on Urine Chemistry Assayed on Roche Analyzers.
Cohen, R; Alkouri, R; Tostivint, I; Djiavoudine, S; Mestari, F; Dever, S; Atlan, G; Devilliers, C; Imbert-Bismut, F; Bonnefont-Rousselot, D; Monneret, D
2017-10-01
The pH may impact the concentration of certain urinary parameters, making urine pre-treatment questionable. 1) Determining the impact of pH in vitro on the urinary concentration of chemistry parameters assayed on Roche Modular analyzers. 2) Evaluating whether concentrations depended on pH in non-pretreated urines from patients. 1) The optimal urinary pH values for each measurement were: 6.3 ± 0.8 (amylase), < 5.5 (calcium and magnesium), < 6.5 (phosphorus), > 6.5 (uric acid). Urinary creatinine, sodium and urea concentrations were not pH-dependent. 2) In urines from patients, the pH was negatively associated with the concentration of some urinary parameters. However, concentrations of all the parameters were strongly and positively correlated with urinary creatinine, and relationships with pH were no longer evidenced after creatinine-normalization. The need for urine pH adjustment does not seem necessary when considering renal function. However, from an analytical and accreditation standpoint, the relationship between urine pH and several parameters justifies its measurement.
Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho
2010-04-01
Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.
Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a.
Malheiros, Patrícia S; Sant'Anna, Voltaire; Todorov, Svetoslav D; Franco, Bernadette D G M
2015-01-01
Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 2(4) factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R (2) = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L(-1) and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL(-1)) occurred in the MRS broth supplemented with 5.5 g L(-1) glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL(-1).
Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei2a
Malheiros, Patrícia S.; Sant’Anna, Voltaire; Todorov, Svetoslav D.; Franco, Bernadette D.G.M.
2015-01-01
Lactobacillus sakei subsp. sakei 2a is a bacteriocinogenic lactic acid bacterium isolated from Brazilian pork sausage, capable of inhibiting the growth of microbial pathogens, mainly Listeria monocytogenes. In order to optimize bacteriocin production for industrial applications, this study evaluated the effect of supplementation of MRS broth with glucose, Tween 20, Tween 80, sodium citrate, potassium chloride and cysteine, and effect of the initial pH and temperature of incubation of the medium on production of bacteriocins by L. sakei 2a. Adding glucose and Tween 20 to the medium, an initial pH of 5.0 or 5.5, and incubation temperatures of 25 °C or 30 °C resulted to the highest bacteriocin yields. Thus, a 24 factorial design with the four variables was performed, and statistical analysis showed that it was an adequate model (R 2 = 0.8296). In the studied range, the four parameters significantly influenced bacteriocin production, with the maximum yield produced at an initial pH between 5.5 and 7.0, a temperature between 25 and 30 °C and supplementation of the MRS broth with glucose from 3.25 to 6.0 g L−1 and Tween 20 from 0.575 to 1.15% (v/v). Response Surface Methodology analysis indicated that the highest bacteriocin production (12800 AU mL−1) occurred in the MRS broth supplemented with 5.5 g L−1 glucose and 1.05% Tween 20 at an initial pH of 6.28 and an incubation temperature of 25 °C. The amount of bacteriocin produced in commercial MRS broths under the same conditions was only 5600AU mL−1. PMID:26413066
Processed dairy beverages pH evaluation: consequences of temperature variation.
Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha
2009-01-01
This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.
Awasthi, Mukesh Kumar; Wong, Jonathan W C; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Zhang, Zengqiang
2018-01-01
The aim of this work was to study the biodegradation of food waste employing thermostable α-amylase and cellulase enzymes producing bacteria. Four potential isolates were identified which were capable of producing maximum amylase and cellulase and belong to the amylolytic strains, Brevibacillus borstelensis and Bacillus licheniformis; cellulolytic strains, Bacillus thuringiensis and Bacillus licheniformis, respectively. These strains were selected based on its higher cell density, enzymatic activities and stability at a wide range of pH and temperature compared to other strains. The results indicated that 1:1 ratio of pre and post consumed food wastes (FWs) were helpful to facilitate the degradation employing bacterial consortium. In addition, organic matter decomposition and chemical parameters of the end product quality also indicated that bacterial consortium was very effective for 1:1 ratio of FWs degradation as compared to the other treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M
2004-11-01
A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.
Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.
Wang, Xikui; Zhang, Yong
2009-01-15
The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.
Lactic acid production from xylose by Geobacillus stearothermophilus strain 15
NASA Astrophysics Data System (ADS)
Kunasundari, B.; Naresh, S.; Chu, J. E.
2017-09-01
Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Culture conditions affect cytotoxin production by Serratia marcescens.
Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M
1996-12-31
Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.
[Effect of thermal treatments on the chemical characteristics of mora crab meat (Homalaspis plana)].
Quitral Robles, Vilma; Abugoch, Lilian; Vinagre, Julia; Guarda, Abel; Larraín, M Angélica; Santana, Gabriela
2003-03-01
Marine species muscles present non-proteins nitrogenated compounds, used as quality index. They are total volatile basis (NBVT), trimethylamine oxide (TMAO) and trimethylamine (TMA). pH is considered too as a quality index. The aim of this work was to evaluate these parameters in a fresh and canned marine product from the V region, corresponding to mora crab (Homalaspis plana). Fresh pincer meat from mora crab was extracted and kept in ice until theits analysis and thermal process of the canned product. A 3(2) statistical design was applied, considering two variables with 3 levels: 15, 30 y 45 minutes time levels: 80 degrees, 100 degrees y 121 degrees C temperature levels. Nine conditions of time-temperature were obtained. The thermal treatment caused an increase in pH and BVT. The TMA was increased since reduction of TMAO.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-05-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.
Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing
2007-01-01
The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067
NASA Astrophysics Data System (ADS)
Umam, F.; Budiarto, H.
2018-01-01
Shrimp farming becomes the main commodity of society in Madura Island East Java Indonesia. Because of Madura island has a very extreme weather, farmers have difficulty in keeping the balance of pond water. As a consequence of this condition, there are some farmers experienced losses. In this study an adaptive control system was developed using ANFIS method to control pH balance (7.5-8.5), Temperature (25-31°C), water level (70-120 cm) and Dissolved Oxygen (4-7,5 ppm). Each parameter (pH, temperature, level and DO) is controlled separately but can work together. The output of the control system is in the form of pump activation which provides the antidote to the imbalance that occurs in pond water. The system is built with two modes at once, which are automatic mode and manual mode. The manual control interface based on android which is easy to use.
HIF evaluation of In-Situ Aqua TROLL 400
Tillman, Evan F.
2017-10-18
The In-Situ Aqua TROLL 400 (Aqua TROLL 400) was tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the Aqua TROLL 400’s operating temperature to verify the manufacturer’s stated accuracy specifications and the USGS recommendations for pH, dissolved oxygen (DO), and specific conductance (SC). The Aqua TROLL 400 manufacturer’s specifications are within the USGS recommendations for all parameters tested, except for DO, which is outside the USGS recommendation at DO concentrations of 8.0 milligrams per liter (mg/L) and higher. The Aqua TROLL 400 was compliant with Serial Digital Interface at 1200 baud (SDI-12) version 1.3. During laboratory testing of pH, the Aqua TROLL 400 sonde met the U.S. Geological Survey “National Field Manual for the Collection of Water-Quality Data” (NFM) recommendations for pH at all values tested, except at 4 degrees Celsius (°C) at pH 9.395 and pH 3.998. The Aqua TROLL 400 met the manufacturer specifications for pH at all values tested, except for pH buffers 3.998, 9.395, and 10.245 at 4 °C; pH 2.990 and 3.998 at 15 °C; and pH 3.040 at 40 °C. The Aqua TROLL 400 met the NFM recommendations at 93.7 percent of the SC values tested and met the manufacturer’s accuracy specifications at 56.3 percent of the SC values tested. During the laboratory testing for DO, the Aqua TROLL 400 met the manufacturer specifications, except at 5.55 mg/L, and met the NFM recommendations at all concentrations tested. An Aqua TROLL 400 was field tested at USGS Station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River for 6 weeks and showed good agreement with the well-maintained site sonde data for pH, DO, temperature, and SC.
Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K
2015-11-01
A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.
NASA Astrophysics Data System (ADS)
Chama, Lackson; Siachoono, Stanford
2015-04-01
Human activities such as mining and agriculture are among the major threats to biodiversity globally. Discharges from these activities have been shown to negatively affect ecological processes, leading to ecosystem degradation and species loss across biomes. Freshwater systems have been shown to be particularly vulnerable, as discharges tend to spread rapidly here than in other ecosystems. Hence, there is need to routinely monitor the quality of these systems if impacts of discharges from human activities are to be minimised. Besides the use of conventional laboratory techniques, several studies have recently shown that organisms such as birds, butterflies, dragonflies, damselflies and invertebrates are also good indicators of ecological integrity and should therefore be used as alternatives to monitoring the quality of various ecosystems. However, most of these studies have only studied one or two of these organisms against ecosystem health, and it remains unclear whether all of them respond similarly to changes in different drivers of environmental change. We investigated the response of the diversity of birds, butterflies, dragonflies, damselflies and invertebrates to changing water quality along the Kafue River in Zambia. Sampling was done at 13 different sampling points stretching over a distance of 60Km along the river. At each point, both the diversity of each organism and the water quality were assessed. Water quality was determined by testing its temperature, pH, redox, electrical conductivity, turbidity and copper parameters. We then tested how the diversity of each organism responded to changes in these water parameters. All water parameters varied significantly across sampling points. The diversity of birds and damselflies remained unaffected by any of the water parameters used. However, the diversity of butterflies reduced with increasing pH, turbidity and copper, albeit it remained unaffected by other water parameters. The diversity of dragonflies reduced with increasing redox, electrical conductivity and turbidity, but remained unaffected by other water parameters. The diversity of invertebrates reduced with increasing redox and copper, but remained unaffected by other water parameters. Generally, these results suggest that these organisms, especially butterflies, dragonflies and invertebrates can indeed be used as indicators of changing water quality and ecological integrity in particular. However, their use is limited to specific, rather than, all water parameters. Therefore, the decision as to which organisms to use should largely depend on which water quality parameters are to be tested. Key words: temperature; pH; redox; electrical conductivity; turbidity; copper
Evaluation of Xylem EXO water-quality sondes and sensors
Snazelle, Teri T.
2015-01-01
Two models of multiparameter sondes manufactured by Xylem, parent company of Yellow Springs Incorporated (YSI)—EXO1 and EXO2—equipped with EXO conductivity/temperature (C/T), pH, dissolved oxygen (DO), and turbidity sensors, were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility. The sondes and sensors were evaluated in two phases for compliance with the manufacturer’s specifications and the USGS acceptance criteria for continuous water-quality monitors. Phase one tested the accuracy of the water-quality sondes equipped: (a) with a C/T, pH, DO, and turbidity sensor by comparing the EXO sensors’ measured values to those of an equivalently configured YSI 6920 V2-2 sensor, and (b) with multiple sensors of the same parameter type (such as three pH sensors and a C/T sensor) on a single sonde at room temperature and at an extended temperature range. In addition to accuracy, the communication protocols and the manufacturing specifications for range of detection and operating temperature were also tested during this phase. Phase two evaluated the sondes’ performance in a surface-water environment by deploying an EXO1 and an EXO2 equipped with pH, C/T, DO, and turbidity sensors at USGS site 02492620 located at East Pearl River near Bay Saint Louis, Mississippi. The EXO sondes’ temperature deviations from a certified YSI 4600 digital thermometer were within the ±0.2 degree Celsius (°C) USGS criteria, but were greater than the ±0.01 °C manufacturing specification. The conductivity sensors met the ±3 percent USGS criteria for specific conductance greater than 100 microsiemens per centimeter. The sensors met the more stringent ±0.5 percent manufacturing specification only at room temperature in the 250 microsiemens per centimeter (µS/cm) standard. The manufacturing and USGS criteria (±0.2 pH unit) were met in pH standards 4, 9.2, 10, and 12.45, but were not met in pH 1.68 standard. The DO sensors met both the ±0.3 milligram per liter (mg/L) USGS criteria and the ±1 percent manufacturing specification. The ±5 percent USGS criteria for turbidity in waters not exceeding 2,000 formazin nephelometric units (FNU) were met by the five turbidity sensors tested; however, all five sensors failed to meet these requirements at turbidities exceeding 2,000 FNU. The more stringent ±2 percent manufacturing turbidity specification for water with less than 1,000 FNU was met by only one of the five sensors tested. The results from the field deployment indicated acceptable agreement in temperature, specific conductance, pH, and DO between the EXO sondes, the site sonde, and the reference sonde. The EXO1 and EXO2 turbidity measurements differed from the site sonde by approximately 23 and 25 percent, respectively.
Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji
2017-07-01
Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.
CO2 induced pHi changes in the brain of polar fish: a TauCEST application.
Wermter, Felizitas C; Maus, Bastian; Pörtner, Hans-O; Dreher, Wolfgang; Bock, Christian
2018-06-22
Chemical exchange saturation transfer (CEST) from taurine to water (TauCEST) can be used for in vivo mapping of taurine concentrations as well as for measurements of relative changes in intracellular pH (pH i ) at temperatures below 37°C. Therefore, TauCEST offers the opportunity to investigate acid-base regulation and neurological disturbances of ectothermic animals living at low temperatures, and in particular to study the impact of ocean acidification (OA) on neurophysiological changes of fish. Here, we report the first in vivo application of TauCEST imaging. Thus, the study aimed to investigate the TauCEST effect in a broad range of temperatures (1-37°C) and pH (5.5-8.0), motivated by the high taurine concentration measured in the brains of polar fish. The in vitro data show that the TauCEST effect is especially detectable in the low temperature range and strictly monotonic for the relevant pH range (6.8-7.5). To investigate the specificity of TauCEST imaging for the brain of polar cod (Boreogadus saida) at 1.5°C simulations were carried out, indicating a taurine contribution of about 65% to the in vivo expected CEST effect, if experimental parameters are optimized. B. saida was acutely exposed to three different CO 2 concentrations in the sea water (control normocapnia; comparatively moderate hypercapnia OA m = 3300 μatm; high hypercapnia OA h = 4900 μatm). TauCEST imaging of the brain showed a significant increase in the TauCEST effect under the different CO 2 concentrations of about 1.5-3% in comparison with control measurements, indicative of changes in pH i or metabolite concentration. Consecutive recordings of 1 H MR spectra gave no support for a concentration induced change of the in vivo observed TauCEST effect. Thus, the in vivo application of TauCEST offers the possibility of mapping relative changes in pH i in the brain of polar cod during exposure to CO 2 . © 2018 John Wiley & Sons, Ltd.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments
NASA Astrophysics Data System (ADS)
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.
Kitadai, Norio
2015-12-01
Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Manojkumar, R.; Jayakumar, T.; Das, C. R.; Rao, B. P. C.
2016-06-01
17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson-Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson's model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson-Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.
NASA Astrophysics Data System (ADS)
Hajare, Sachin N.; Saxena, Sudhanshu; Kumar, Sanjeev; Wadhawan, Surbhi; More, Varsha; Mishra, B. B.; Narayan Parte, Madan; Gautam, Satyendra; Sharma, Arun
2010-09-01
Litchi ( Litchi chinensis) is a non-climacteric tropical fruit. The fruit has a short shelf-life making its marketing difficult. Physical, biochemical, microbiological, and organoleptic properties of two major commercially grown Indian cultivars of litchi, 'Shahi' and 'China' were studied. The effect of gamma radiation processing and low temperature storage on the above parameters was evaluated to standardize the optimal process parameters for shelf-life extension of litchi. Physical and biochemical parameters analyzed included weight, moisture, pH, titratable acidity, texture, color, total and reducing sugar, total soluble solids, vitamin C, and flavonoid content. Weight, moisture content, and pH in the fresh fruit ranged between 21-26 g, 74-77%, and 3.7-4.4, respectively, whereas, total and reducing sugar ranged 10-15, and 10-13 g%, respectively. In 'Shahi' vitamin C content was found to be around 17-19 mg%, whereas, in 'China' it was 22-28 mg%. Flavonoid content was in the range of 26-34 μg catechin equivalents/g of fresh fruit. Total surface and internal bacterial load was around 4 and 3 log cfu/g, respectively. Surface yeast-mold count (YMC) was ˜3 log cfu/g whereas internal YMC was ˜2 log cfu/g. Radiation treatment reduced microbial load in a dose dependent manner. Treatment at 0.5 kGy did not significantly affect the quality parameters of the fruit. Treated fruits retained the "good" organoleptic rating during storage. Thus, radiation treatment (0.5 kGy) in combination with low temperature (4 °C) storage achieved a shelf-life of 28 days for litchi fruit.
Pork Quality Traits According to Postmortem pH and Temperature in Berkshire
Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk
2016-01-01
This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-09-05
ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less
Method of saccharifying cellulose
Johnson, E.A.; Demain, A.L.; Madia, A.
1983-05-13
A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.
Uysal, Tolga; Yilmaz, Selehattin; Turkoglu, Muhammet; Sadikoglu, Murat
2017-07-01
In this study, the variations in concentrations of some disinfection chemicals such as cyanuric acid (CyA), free chlorine (FC), and residual chlorine (RC), which affect human health, were investigated in the water of swimming pools. In addition, quality parameters such as temperature, pH, and total alkalinity (TA) in 44 swimming pools located in the city center and districts of Canakkale, Turkey, were examined in the summer period. While FC and RC amounts were analyzed using tablet tests with N-N-diethyl phenylenediamine (DPD 1) and potassium iodine (DPD 3) using the colorimetric method in the comparator, TA and CyA levels were measured with a photometric method. Temperature and pH were measured using YSI 556 MPS. Levels of CyA, FC, RC, pH, temperature, and TA varied between 0.00 and 725.0 mg L -1 (108.0 ± 111.4 mg L -1 ), 0.00 and 5.00 mg L -1 (1.60 ± 0.962 mg L -1 ), 0 and 0.55 mg L -1 (0.087 ± 0.059), 6.40 and 8.20 mg L -1 (7.30 ± 0.038 mg L -1 ), 22.0 and 32.0 °C (27.6 ± 1.45 °C), and 0.00 and 391.0 mg L -1 (129.3 ± 89.0), respectively. The findings were compared to standard limit values of the Ministry of Health of the Turkish Republic and other countries. Not only maximum concentrations of CyA but also the average concentrations exceeded the standard limit values of different countries in July and August with high tourism activity in Turkey. Although there is no problem in view of average values of other quality parameters, there are some problems in view of the maximum values in pool waters compared to standard limit values.
Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems
Colt, J.; Watten, B.; Rust, M.
2009-01-01
In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity-pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air-water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air-water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.
Modeling Carbon Dioxide, pH and Un-Ionized Ammonia Relationships in Serial Reuse Systems
Watten, Barnaby J.; Rust, Michael; Colt, John
2009-01-01
In serial reuse systems, excretion of metabolic carbon dioxide has a significant impact on ambient pH, carbon dioxide, and un-ionized ammonia concentrations. This impact depends strongly on alkalinity, water flow rate, feeding rate, and loss of carbon dioxide to the atmosphere. A reduction in pH from metabolic carbon dioxide can significantly reduce the un-ionized ammonia concentration and increase the carbon dioxide concentrations compared to those parameters computed from influent pH. The ability to accurately predict pH in serial reuse systems is critical to their design and effective operation. A trial and error solution to the alkalinity–pH system was used to estimate important water quality parameters in serial reuse systems. Transfer of oxygen and carbon dioxide across the air–water interface, at overflow weirs, and impacts of substrate-attached algae and suspended bacteria were modeled. Gas transfer at the weirs was much greater than transfer across the air–water boundary. This simulation model can rapidly estimate influent and effluent concentrations of dissolved oxygen, carbon dioxide, and un-ionized ammonia as a function of water temperature, elevation, water flow, and weir type. The accuracy of the estimates strongly depends on assumed pollutional loading rates and gas transfer at the weirs. The current simulation model is based on mean daily loading rates; the impacts of daily variation loading rates are discussed. Copies of the source code and executable program are available free of charge.
Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.
2016-07-01
A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.
Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui
2015-01-01
This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed. PMID:25970266
Yin, Dongxue; Liu, Wei; Zhai, Ningning; Feng, Yongzhong; Yang, Gaihe; Wang, Xiaojiao; Han, Xinhui
2015-01-01
This study investigated the effect of sunlight-dark conditions on volatile fatty acids (VFAs), total ammonium nitrogen (TAN), total alkalinity (TA) and pH during pig manure (PM) digestion and then the subsequent influence on biogas yield of PM. PM1 and PM2 were performed in a transparent reactor and a non-transparent reactor, respectively. Two sets of experiments were conducted with a temperature of 35.0±2.0 °C and a total solid concentration of 8.0% to the digestion material. The dynamic change of the four parameters in response to sunlight-dark conditions resulted in variations of the physiological properties in the digester and affected the cumulative biogas production (CBP). PM1 obtained higher CBP (15020.0 mL) with a more stable pH and a lower TAN concentration (1414.5 mg/L) compared to PM2 (2675.0 mL and 1670.0 mg/L, respectively). The direct path coefficients and indirect path coefficients between the four parameters and CBP were also analyzed.
Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose
2016-07-28
Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.
Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.
Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique
2016-10-01
Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-08-02
Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less
The Influence of pH on Prokaryotic Cell Size and Temperature
NASA Astrophysics Data System (ADS)
Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.
2015-12-01
The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.
Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa
2015-11-01
This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®
Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6
NASA Astrophysics Data System (ADS)
Huang, I.-Wen
Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".
Characterizing the variation in pH measurements with apheresis platelets.
Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J
2011-11-01
pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.
Shamsi, Tooba Naz; Parveen, Romana; Naz, Huma; Haque, Md Anzarul; Fatima, Sadaf
2017-10-01
In this study, we have analyzed the structural and functional changes in the nature of Allium sativum Protease Inhibitor (ASPI) on undergoing various denaturation with variable range of pH, temperature and urea (at pH 8.2). ASPI being anti-tryptic in nature has native molecular mass of ∼15kDa. The conformational stability, functional parameters and their correlation were estimated under different conditions using circular dichroism, fluorescence and activity measurements. ASPI was found to fall in belongs to α+β protein. It demonstrated structural and functional stability in the pH range 5.0-12.0 and up to70°C temperature. Further decrease in pH and increase in temperature induces unfolding followed by aggregation. Chemical induced denaturation was found to be cooperative and transitions were reversible and sigmoid. T m (midpoint of denaturation), ΔC p (constant pressure heat capacity change) and ΔH m (van't Hoff enthalpy change at T m were calculated to be 41.25±0.2°C, 1.3±0.07kcalmol -1 K -1 and 61±2kcalmol -1 respectively for thermally denatured ASPI earlier. The reversibility of the protein was confirmed for both thermally and chemically denatured ASPI. The results obtained from trypsin inhibitory activity assay and structural studies are found to be in a significant correlation and hence established structure-function relationship of ASPI. Copyright © 2017 Elsevier B.V. All rights reserved.
Hashemi, Maryam; Razavi, Seyed Hadi; Shojaosadati, Seyed Abbas; Mousavi, Seyyed Mohammad; Khajeh, Khosro; Safari, Mohammad
2010-09-01
Ca-independency with potential activity and stability at low pH are among the most interesting characteristics of alpha-amylase in starch industry. In this attempt the synergetic effect of low pH on activity of crude Ca-independent alpha-amylase isolated from a native Bacillus sp. KR-8104 in solid-state fermentation (SSF) was studied using wheat bran (WB) as a substrate. The effects of different parameters including moisturizing agents, solid substrate to moisture ratio, particle size, incubation temperature and period, inoculum (v/w) and supplementation with 1% (w/w) different carbon and nitrogen sources on enzyme production were investigated. Maximum enzyme production of 140U/g dry fermented substrate was obtained from wheat bran moistened with tap water at a ratio of 1:1.5 and supplemented with 1% (w/w) NH(4)NO(3) and 1% (w/w) lactose after 48h incubation at 37 degrees C. Even though the production of alpha-amylase was lower at 40 and 45 degrees C, the viable cell count was higher. In addition response surface methodology (RSM) was applied to find optimum conditions of temperature and pH on crude amylase activity. Using central composite design (CCD) a quadratic mathematical model equation was derived for the prediction of enzyme activity. The results showed that the model was in good agreement with experimental results, with R(2)=0.90 (p<0.0001) and the low pH has a synergetic effect on enzyme activity at higher temperature. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Oliveira, Cristiane Patrícia de; Soares, Nilda de Fátima Ferreira; Fontes, Edimar Aparecida Filomeno; Oliveira, Taíla Veloso de; Filho, Antônio Manoel Maradini
2012-12-01
Blue polydiacetylene vesicles were studied with regard to their behaviour under variations in storage temperature, heating, potentiometric titration and in the presence of chemical components of milk, to evaluate their application as a sensor in the food industry. Vesicles were prepared using 10,12-pentacosadienoic acid (PCDA)/1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). Their changes were monitored using UV-Vis absorption. Temperatures not exceeding 25°C did not cause colour change in PCDA/DMPC vesicles for a period of up to 60days of storage. Heating for 10min at 60 and 90°C, exposure to pH higher than 9.0 and the simulant solutions of the whey proteins, β-lactoglobulin and α-lactalbumin, promoted colour change from blue to red for the vesicles studied. The effects of routine factors on the characteristics and stability of polydiacetylene vesicles is important in defining the parameters related to their application as a sensor for the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molina, Gustavo A; Hernández-Martínez, Angel Ramon; Cortez-Valadez, Manuel; García-Hernández, Fernando; Estevez, Miriam
2014-11-05
A novel, simple and inexpensive modification method using TEOS to increase the UV light, pH and temperature stability of a red-beet-pigment extracted from Beta vulgaris has been proposed. The effects on the molecular structure of betalains were studied by FTIR spectroscopy. The presence of betacyanin was verified by UV-Vis spectroscopy and its degradation in modified red-beet-pigment was evaluated and compared to the unmodified red-beet-pigment; performance improvements of 88.33%, 16.84% and 20.90% for UV light, pH and temperature stability were obtained, respectively,. Measurements of reducing sugars, phenol, and antioxidant contents were performed on unmodified and modified red-beet-pigment and losses of close to 21%, 54% and 36%, respectively, were found to be caused by the addition of TEOS. Polar diagrams of color by unmodified and modified red-beet-pigment in models of a beverage and of a yogurt were obtained and the color is preserved, although here is a small loss in the chromaticity parameter of the modified red-beet-pigment.
Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide
Jhan, Jhih-Wei; Cheng, Yi-Ming; Cheng, Hau-Hsein
2014-01-01
This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis-) based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET) surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon. PMID:25225639
Raghav, Raj; Middleton, Rachael; BSc, Rinshiya Ahamed; Arjunan, Raji; Caliendo, Valentina
2015-12-01
Arterial and venous blood gas analysis is useful in the assessment of tissue oxygenation and ventilation and in diagnosis of metabolic and respiratory derangements. It can be performed with a relatively small volume of blood in avian patients under emergency situations. Arterial and venous blood gas analysis was performed in 30 healthy gyr falcons ( Falco rusticolus ) under anaesthesia to establish temperature-corrected reference intervals for arterial blood gas values and to compare them to temperature-corrected venous blood gas values with a portable point-of-care blood gas analyzer (i-STAT 1, Abbott Laboratories, Abbott Park, IL, USA). Statistically significant differences were observed between the temperature-corrected values of pH, partial pressure of carbon dioxide (Pco2), and partial pressure of oxygen (Po2) and the corresponding nontemperature-corrected values of these parameters in both arterial and venous blood. Values of temperature-corrected pH, temperature-corrected Pco2, bicarbonate concentrations, and base excess of extra cellular fluid did not differ significantly between arterial and venous blood, suggesting that, in anesthetized gyr falcons, venous blood gas analysis can be used in place of arterial blood gas analysis in clinical situations. Values for hematocrit, measured by the point-of-care analyzer, were significantly lower compared with those obtained by the microhematocrit method.
Hopkins, D L; Toohey, E S; Lamb, T A; Kerr, M J; van de Ven, R; Refshauge, G
2011-08-01
The temperature when the pH=6.0 (temp@pH6) impacts on the tenderness and eating quality of sheep meat. Due to the expense, sarcomere length is not routinely measured as a variable to explain variation in shear force, but whether measures such as temp@pH6 are as useful a parameter needs to be established. Measures of rigor onset in 261 carcases, including the temp@pH6, were evaluated in this study for their ability to explain some of the variation in shear force. The results show that for 1 day aged product combinations of the temp@pH6, the pH at 18 °C and the pH at 24 h provided a larger reduction (almost double) in total shear force variation than sarcomere length alone, with pH at 24 h being the single best measure. For 5 day aged product, pH at 18 °C was the single best measure. Inclusion of sarcomere length did represent some improvement, but the marginal increase would not be cost effective. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes.
Monsees, Hendrik; Kloas, Werner; Wuertz, Sven
2017-01-01
In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.
Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad
2016-01-01
In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.
Vijayaraghavan, Ponnuswamy; Vijayan, Aija; Arun, Arumugaperumal; Jenisha, John Kennady; Vincent, Samuel Gnana Prakash
2012-01-01
Cow dung, a cheap and easily available source of energy, was used as the substrate for the production of alkaline protease by solid-state fermentation using the Bacillus subtilis strain VV. In order to achieve the maximum yield of this enzyme, the following optimum process parameters are needed: fermentation period (72 h), pH (10.0), moisture content (140%), inoculum (25%), temperature (30-40°C), carbon source (2% (w/w) maltose) and nitrogen source (1% (w/w) urea). The protease was stable over a broad temperature range (30-50°C) and pH (8.0-10.0), with maximum activity at 50°C and pH 10.0. Among the divalent ions tested, Ca(2+) (0.01 M) increased enzyme activity. The purified protease, after being subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was found to have a molecular mass of 38.5 kDa. The enzyme was solvent-and surfactant-stable and showed activity even after 24 h incubation along with various commercially available detergents. This enzyme possessed dehairing properties for animal hide after 16 h of incubation at room temperature. From these results it is evident that cow dung is a potential substrate for the production of a detergent-stable, dehairing protease by B. subtilis. This enzyme has a lot of potential applications in the detergent and leather-processing industries.
Pérez, R; Recabarren, S E; Mora, G; Jara, C; Quijada, G; Hetz, E
1992-04-01
In order to establish the relationship between draught force and cardiorespiratory responses to exercise heart rate (HR), respiratory rate (RR), arterial and venous blood gases, pH, hemoglobin concentration and temperature were measured in five draught horses during rest, immediately after exercise and 30 min post-exercise under field conditions. A wagon equipped with an odometer and a hydraulic dynamometer was used for measuring distance and draught force. The wagon was loaded with 946 kg for the low load, 1,979 kg for the medium load and 2,994 kg for the high load, and drawn for a distance of 1,500 m. Draught force and load weight were linearly related. The response of the draught horse to low and medium load exercise was characterized by a moderate increase in HR, RR and temperature with no significant changes in arterial blood gases and pH. An increase in HR, RR and temperature was observed, whereas no changes in arterial PO2 and increases in venous PO2 were noticed after high load exercise. Slight increase in venous lactic acid concentration as a result of high load exercise was observed, suggesting that some anaerobic work was performed. However this was insufficient to produce changes in blood pH. The increase in metabolic requirements during the three levels of draught exercise was associated with increases in arterial hemoglobin concentration and oxygen content of blood.
Kim, Sun Tae; Lee, Yong-Ju; Hwang, Yu-Sik; Lee, Seungho
2015-01-01
In this study, 40 nm silver nanoparticles (AgNPs) were synthesized using the citrate reduction method and then the surface of AgNPs was modified by conjugating Cytochrome C (Cyto C) to improve stability and to enhance bioactivity and biocompatibility of AgNPs. It is known that Cyto C may undergo conformational changes under various conditions of pH, temperature, ionic strength, etc., resulting in aggregation of the particles. These parameters also affect the size and size distribution of Cyto C-conjugated AgNPs (Cyto C-AgNP). ζ-potential measurement revealed that the adsorption of Cyto C on the surface of AgNPs is saturated at the molar ratio [Cyto C]/[AgNPs] above about 300. Asymmetrical flow field-flow fractionation (AsFlFFF) analysis showed that hydrodynamic diameter of AgNPs increases by about 4 nm when the particle is saturated by Cyto C. The aggregation behavior of Cyto C-AgNP at various conditions of pH, temperature and ionic strength were investigated using AsFlFFF and UV-vis spectroscopy. It was found that the aggregation of Cyto C-AgNP increases with decreasing pH, increasing temperature and ionic strength due to denaturation of Cyto C on AgNPs and reduction in the thickness of electrostatic double layer on the surface of Cyto C-AgNP. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magdy, Yehia M.; Altaher, Hossam; ElQada, E.
2018-03-01
In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.
Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini
2017-01-01
Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Memon, Jamil R; Memon, Saima Q; Bhanger, Muhammad I; El-Turki, Adel; Hallam, Keith R; Allen, Geoffrey C
2009-05-01
This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cr(VI) from industrial wastewater. The parameters pH, contact time, initial metal ion concentration, and temperature were investigated and the conditions resulting in rapid and efficient adsorption (95% within 10 min) were determined. The binding of metal ions was found to be pH dependent with the optimal sorption occurring at pH 2. The retained species were eluted with 5 mL of 2M H(2)SO(4). To elucidate the mechanism of the process, total amounts of chromium and Cr(VI) were analyzed using flame atomic absorption and ultraviolet-visible (UV-vis) spectroscopic techniques, respectively. The Langmuir and Dubinin-Radushkevich (D-R) isotherms were used to describe the partitioning behavior for the system at different temperatures. Kinetics and thermodynamics of Cr(VI) removal by banana peel were also studied. The influence of diverse ions on the sorption behavior revealed that only Fe(II) ions (of those tested) suppressed the sorption of Cr(VI) ions to some extent. The method was applied for the removal of Cr(VI) from industrial wastewater.
Highly efficient method towards in situ immobilization of invertase using cryogelation.
Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz
2013-12-01
A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.
Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.
Zhang, Yuanyuan; Lin, Yi-Pin
2015-06-01
Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Roque, Cristopher; Sheung, Anthony; Rahman, Nausheen; Ausar, S Fernando
2015-02-02
We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.
Bijan, L; Mohseni, M
2004-01-01
The effect of ozone based oxidation on removing recalcitrant organic matter (ROM) and enhancing the biodegradability of alkaline bleach plant effluent was investigated. A bubble column ozonation tower was used in the study. The experiments were carried out at different temperatures (20 degrees C and 60 degrees C) and pH (9 and 11), with a number of biological and chemical parameters being monitored including BOD5, COD, TC, pH, color, and molecular weight distribution of organics (nominal cut off of 1,000 Da). Biodegradability of the effluent was determined based on BOD5/COD of the wastewater throughout the process. For all the experiments, ozonation enhanced the biodegradability of the effluent by 30-40%, which was associated with noticeable removal of ROM including high molecular weight (HMW) and color-causing organics by about 30% and 60%, respectively. While the biodegradability of HMW fraction increased by about 50%, there was no biodegradability improvement for low molecular weight (LMW) portion, which was originally readily biodegradable (with BOD5/COD of about 0.5). Statistical analysis of variance (ANOVA) revealed neither pH nor temperature played significant role on the ozonation process at 95% confidence level.
Analysis of problems with dry fermentation process for biogas production
NASA Astrophysics Data System (ADS)
Pilát, Peter; Patsch, Marek; Jandačka, Jozef
2012-04-01
The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.
Silva Ferreira, António César; Rodrigues, Paula; Hogg, Timothy; Guedes De Pinho, Paula
2003-01-29
Volatile sulfur compounds of 15 young port wines and 12 old port wines were determined. As there is a great difference in the pool of sulfur compounds between the two groups of wines, an experimental protocol was performed to determine which technological parameter (dissolved O(2), free SO(2) levels, pH, and time/temperature) was related with the formation/consumption of these compounds. Four sulfur compounds were selected for this purpose: dimethyl sulfide, 2-mercaptoethanol, dimethyl sulfone, and methionol. The synergistic effects of increasing temperature and O(2) at lower pH had the largest impact. Dimethyl sulfide was formed during the experimental period in the presence of O(2). Dimethyl sulfone had the same behavior. Methionol decreased significantly in the presence of O(2), but no methional was formed. 2-Mercaptoethanol, considered to be an important "off-flavor" in dry wines, also decreased during the experimental period (54 days) in the presence of O(2), and the respective disulfide was formed. These results corroborate the fact that old port wine (barrel aged) never develops "off-flavors" associated with the presence of methionol (cauliflower), 2-mercaptoethanol (rubber/burnt), or methional (cooked potato). In fact, temperature and oxygen are the major factors in the consumption of these molecules. However, some notes of "quince" and "metallic" can appear during port wine aging, and these can be associated with the presence of dimethyl sulfide.
The initial freezing point temperature of beef rises with the rise in pH: a short communication.
Farouk, M M; Kemp, R M; Cartwright, S; North, M
2013-05-01
This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.
Basturk, Emine; Karatas, Mustafa
2014-09-01
In this work, the decolorization of C.I. Reactive Blue 181 (RB181), an anthraquinone dye, by Ultrasound and Fe(2+) H2O2 processes was investigated. The effects of operating parameters, such as Fe(2+) dosage, H2O2 dosage, pH value, reaction time and temperature were examined. Process optimisation [pH, ferrous ion (Fe(2+)), hydrogen peroxide (H2O2), and reaction time], kinetic studies and their comparison were carried out for both of the processes. The Sono-Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35-kHz frequency. The optimum conditions were determined as [Fe(2+)]=30 mg/L, [H2O2]=50 mg/L and pH=3 for the Fenton process and [Fe(2+)]=10 mg/L, [H2O2]=40 mg/L and pH=3 for the Sono-Fenton process. The colour removals were 88% and 93.5% by the Fenton and Sono-Fenton processes, respectively. The highest decolorization was achieved by the Sono-Fenton process because of the production of some oxidising agents as a result of sonication. The paper also discussed kinetic parameters. The decolorization kinetic of RB181 followed pseudo-second-order reaction (Fenton study) and Behnajady kinetics (Sono-Fenton study). Copyright © 2014 Elsevier B.V. All rights reserved.
Defense Coastal/Estuarine Research Program (DCERP1)
2013-05-10
also showed that the greater the mixing height and ventilation rate, the lower the PM2.5 concentrations, which points to the diluting effect of these... ventilation rate, the lower the resulting PM2.5 concentrations, which points to the diluting effects of these parameters on ambient PM2.5 concentration...and discharge (New River, tributary creeks) Chemistry: Nutrients, salinity, pH, oxygen , temperature (New River, NRE, tributary creeks) Sedimentology
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.
Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman
2018-01-01
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.
Ultrasound assisted three phase partitioning of a fibrinolytic enzyme.
Avhad, Devchand N; Niphadkar, Sonali S; Rathod, Virendra K
2014-03-01
The present investigation is aimed at ultrasound assisted three phase partitioning (UATPP) of a fibrinolytic enzyme from Bacillus sphaericus MTCC 3672. Three phase partitioning integrates the concentration and partial purification step of downstream processing of a biomolecule. Three phase system is formed with simultaneous addition of ammonium sulfate to crude broth and followed by t-butanol. UATPP of a fibrinolytic enzyme was studied by varying different process parameters such as ammonium sulfate saturation concentration, pH, broth to t-butanol ratio, temperature, ultrasound frequency, ultrasonication power, and duty cycle. The optimized parameters yielding maximum purity of 16.15-fold of fibrinolytic enzyme with 65% recovery comprised of 80% ammonium sulfate saturation, pH 9, temperature 30 °C, broth to t-butanol ratio 0.5 (v/v), at 25 kHz frequency and 150 W ultrasonication power with 40% duty cycle for 5 min irradiation time. SDS PAGE analysis of partitioned enzyme shows partial purification with a molecular weight in the range of 55-70 kDa. Enhanced mass transfer of UATPP resulted in higher fold purity of fibrinolytic enzyme with reduced time of operation from 1 h to 5 min as compared to conventional TPP. Outcome of our findings highlighted the use of UATPP as an efficient biosepartion technique. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Wei; Sun, Rong; Jin, Zhu; Cui, Jing; Wei, Zhenggui
2014-02-01
A novel adsorbent of hydroxyapatite-gelatin (HAP-GEL) nanocomposite was developed for nitrobenzene removal from aqueous solution. The adsorbent was characterized and its performance in nitrobenzene removal was evaluated. The effects of contact time, adsorbent dosage, temperature, pH, ionic strength, humic acid, and the presence of solvent on nitrobenzene adsorption, as well as the thermodynamic parameters for adsorption equilibrium were also investigated. Results showed that HAP-GEL nanocomposite possessed good adsorption ability to nitrobenzene. The adsorption process was fast, and it reached a steady state after only 1 min. Nitrobenzene removal was increased with an increasing amount of adsorbent dosage but decreased as the temperature and pH increased. Meanwhile the amount of nitrobenzene adsorbed decreased with an increase of ionic strength from 0.01 to 1.0 mol/L and humic acid from 10 to 50 mg/L. The adsorption isotherm studies showed that both Langmuir and Freundlich models could fit the experimental data well, and the maximum adsorption capacity was estimated to be 42.373 mg/g. The thermodynamic parameters suggested that the adsorption of nitrobenzene on HAP-GEL nanocomposite was physisorption, spontaneous and exothermic in nature. Findings of this study demonstrated the potential utility of the HAP-GEL nanocomposite as an effective adsorbent for nitrobenzene removal from aqueous solution.
Barik, Arati J; Gogate, Parag R
2016-05-01
The degradation of 4-chloro 2-aminophenol (4C2AP), an acute toxic organic compound, has been studied using different approaches based on the hydrodynamic cavitation (HC) with orifice plate as cavitating device, photolysis (UV) and ozonation (O3). The dependency of extent of degradation on operating parameters like operating pressure (2-5 bar), initial pH (3-8) and temperature (30-38 °C) have been established initially to maximize the efficacy of hydrodynamic cavitation. Subsequently the degradation has been studied using combined treatment strategies as HC+UV, HC+O3, UV+O3 and HC+UV+O3 at the established optimum parameters of operating temperature as 30 °C, initial pH of 6 and inlet pressure of 4 bar. The maximum extent of degradation as 96.85% and 73.6% reduction in TOC has been obtained using hydrodynamic cavitation in combination with UV photolysis and ozonation under the optimized operating conditions. The degradation products of 4C2AP have been identified using GC-MS. The present work has clearly established the efficacy of combined treatment approach (HC+UV+O3) for the removal of organic pollutant for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Tidke, Pritish R; Gupta, Indarchand; Gade, Aniket K; Rai, Mahendra
2014-12-01
We report the extracellular biosynthesis of gold nanoparticles (AuNPs) using a fungus Fusarium acuminatum. Mycosynthesis of Au-NPs was carried out by challenging the fungal cells filtrate with HAuCl 4 solution (1 mM), as nanoparticles synthesizing enzyme secrete extracellularly by the fungi. The AuNPs were characterized with the help of UV-Visible spectrophotometer, Fourier Transform Infrared spectroscopy, Zeta Potential, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). We observed absorbance peak in between 520 nm-550 nm corresponding to the surface plasmon absorbance of the gold nanoparticles. The nanoparticles synthesized in the present investigation were found to be capped by proteins. XRD results showed that the distinctive formation of crystalline gold nanoparticles in the solution. The spherical and polydispersed AuNPs in the range 8 to 28 nm with average size of 17 nm were observed by TEM analysis. We also standardized the parameters like the effect of pH, temperature and salt concentration on the biosynthesis of gold nanoparticles. It was found that acidic pH, 1 mM salt concentration and 37 (°)C temperature were found to be optimum for the synthesis of Au-NPs. Therefore, the present study introduces the easy, better and cheaper method for biosynthesis of AuNPs.
Nita, Loredana Elena; Chiriac, Aurica P; Neamtu, Iordana; Bercea, Maria
2010-03-01
The interpenetrated macromolecular chains complexation between poly(aspartic acid) and poly(vinyl alcohol) in aqueous solution it was investigated. The interpolymer complexation process was evaluated through dynamic rheology. The aspects concerning the stability of the tested homopolymers and the prepared interpolymeric complex there were achieved from the evaluation of the aqueous solutions'zeta potential and also by determining the pH influence upon the zeta potential and the conductivity. The data obtained through the rheological dynamic measurements were correlated with the composition of the polymeric mixture, the dependence of zeta potential and conductivity. The study reveals the conditions for the formation of interpenetrated polymeric complex as being a ratio of 70wt.% PAS to 30wt.% PVA at 22 degrees C and 50/50 PAS/PVA ratio at 37 degrees C temperature. From the pH influence upon the zeta potential values it was evidenced the PAS aqueous solution does not reach the isoelectric point. At the same time, PVA solution and the complex PAS/PVA reaches the isoelectric point at strongly acid pH. The better stability of PAS, PVA and their mixture in solution is recorded in the alkaline domain (7.5
NASA Astrophysics Data System (ADS)
Castro, P. B.; Ferreira, J. L.; Silva Neto, M. B.; ElMassalami, M.
2018-03-01
Normal-state of many Fe-based pnictides and chalcogenides superconductors exhibit a quadratic-in-temperature, ρtot – ρo – ρ ph = AT 2, over wide ranges of temperature and pressure. Moreover, these systems exhibit a correlation between their T c and A, namely ln(Tc /θ)∝ A ‑1/2(θ is an energy scale parameter), even when a control parameter such as pressure is widely varied. This manifestation, as well as that of \\frac{1}{{T}c}{≤ft(-\\frac{d{H}c2}{dT}\\right)}{Tc}\\propto \\frac{A}{n} [Phys. Rev. B 89, 220509 (2014), n is charge density, H c2 is the upper critical field] suggests a common Landau Fermi Liquid scenario for both superconductivity and quadratic-in-T contribution.
Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.
2009-01-01
The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704
Three dielectric constants and orientation order parameters in nematic mesophases
NASA Astrophysics Data System (ADS)
Yoon, Hyung Guen; Jeong, Seung Yeon; Kumar, Satyendra; Park, Min Sang; Park, Jung Ok; Srinivasarao, M.; Shin, Sung Tae
2011-03-01
Temperature dependence of the three components ɛ1 , ɛ2 , and ɛ3 of dielectric constant and orientation order parameters in the nematic phase of mesogens with rod, banana, and zero-order dendritic shape were measured using the in-plane and vertical switching geometries, and micro-Raman technique. Results on the well-known uniaxial (Nu) nematogens, E7 and 5CB, revealed two components ɛ1 = ~ɛ| | and ɛ2 = ~ɛ3 = ~ɛ⊥ , as expected. The three dielectric constants were different for two azo substituted (A131 and A103) and an oxadiazole based (ODBP-Ph-C12) bent core mesogens, and a Ge core tetrapode. In some cases, two of the components became the same indicating a loss of biaxiality at temperatures coinciding with the previously reported Nu to biaxial nematic transition. This interpretation is substantiated by micro-Raman measurements of the uniaxial and biaxial nematic order parameters. Supported by the US Department of Energy, Basic Energy Sciences grant ER46572 and by Samsung Electronics Corporation.
Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal
2010-10-29
The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd
2018-03-01
Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.
Koseki, Shige; Nonaka, Junko
2012-09-01
The objective of this study was to develop a probabilistic model to predict the end of lag time (λ) during the growth of Bacillus cereus vegetative cells as a function of temperature, pH, and salt concentration using logistic regression. The developed λ model was subsequently combined with a logistic differential equation to simulate bacterial numbers over time. To develop a novel model for λ, we determined whether bacterial growth had begun, i.e., whether λ had ended, at each time point during the growth kinetics. The growth of B. cereus was evaluated by optical density (OD) measurements in culture media for various pHs (5.5 ∼ 7.0) and salt concentrations (0.5 ∼ 2.0%) at static temperatures (10 ∼ 20°C). The probability of the end of λ was modeled using dichotomous judgments obtained at each OD measurement point concerning whether a significant increase had been observed. The probability of the end of λ was described as a function of time, temperature, pH, and salt concentration and showed a high goodness of fit. The λ model was validated with independent data sets of B. cereus growth in culture media and foods, indicating acceptable performance. Furthermore, the λ model, in combination with a logistic differential equation, enabled a simulation of the population of B. cereus in various foods over time at static and/or fluctuating temperatures with high accuracy. Thus, this newly developed modeling procedure enables the description of λ using observable environmental parameters without any conceptual assumptions and the simulation of bacterial numbers over time with the use of a logistic differential equation.
Food Waste Composting Study from Makanan Ringan Mas
NASA Astrophysics Data System (ADS)
Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.
2016-07-01
The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.
NASA Astrophysics Data System (ADS)
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-05-01
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j
Reinholdt, Marc; Croissant, Jonas; Di Carlo, Lidia; Granier, Dominique; Gaveau, Philippe; Bégu, Sylvie; Devoisselle, Jean-Marie; Mutin, P Hubert; Smith, Mark E; Bonhomme, Christian; Gervais, Christel; van der Lee, Arie; Laurencin, Danielle
2011-08-15
We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure. © 2011 American Chemical Society
Temperature correction of arterial blood-gas parameters: A comparative review of methodology.
Andritsch, R F; Muravchick, S; Gold, M I
1981-09-01
The need for accurate clinical diagnosis and appropriate intervention requires that a modern blood-gas laboratory have the means to correct for significant discrepancies between patient temperature and the temperature at which in vitro blood samples are analyzed. Recent advances in mini- and microcomputer technology permit application of any or all of the correction formulas above at modest cost and minimal inconvenience (See the Appendix). An expanded program for a TI-59 desk-top calculator and P-100C printer which gives labeled hard-copy readout of temperature-corrected pH, PCO2, PO2, and hemoglobin saturation values, as well as bicarbonate concentration and in vivo base excess is in daily clinical use in our operating room and is available from the authors upon request.
Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.
Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B
2006-07-01
alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.
NASA Astrophysics Data System (ADS)
Banwart, Steven A.; Berg, Astrid; Beerling, David J.
2009-12-01
A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not more important, than the role of biota to influence mineral dissolution rates through changes in soil water chemistry. This process-modeling approach to quantify the biological weathering feedback to atmospheric CO2 demonstrates the potential for a far more mechanistic description of weathering feedback in simulations of the global geochemical carbon cycle.
Böyükbayram, A Elif; Kiralp, Senem; Toppare, Levent; Yağci, Yusuf
2006-10-01
Electrochemically produced graft copolymers of thiophene capped polytetrahydofuran (TPTHF1 and TPTHF2) and pyrrole were achieved by constant potential electrolysis using sodium dodecylsulfate (SDS) as the supporting electrolyte. Characterizations were based on Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Electrical conductivities were measured by the four-probe technique. Novel biosensors for phenolic compounds were constructed by immobilizing polyphenol oxidase (PPO) into conducting copolymers prepared by electropolymerization of pyrrole with thiophene capped polytetrahydrofuran. Kinetic parameters, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) and optimum conditions regarding temperature and pH were determined for the immobilized enzyme. Operational stability and shelf-life of the enzyme electrodes were investigated. Enzyme electrodes of polyphenol oxidase were used to determine the amount of phenolic compounds in two brands of Turkish red wines and found very useful owing to their high kinetic parameters and wide pH working range.
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-06-07
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.
Holman, Benjamin W B; Coombs, Cassius E O; Morris, Stephen; Kerr, Matthew J; Hopkins, David L
2017-11-01
Beef loins (LL) stored under different chilled-then-frozen storage combinations (up to 5 and 52weeks, respectively) and two frozen holding temperatures were evaluated for microbial load and meat quality parameters. We found holding temperature effects to be negligible, which suggest -12°C could deliver comparable quality LL to -18°C across these same storage periods. Meat quality parameters varied significantly, but when compared to existing consumer thresholds these may not be perceptible, colour being the exception which proved unacceptable, earlier into retail display when either chilled and subsequent frozen storage periods were increased. There was insufficient detection of key spoilage microbes to allow for statistical analysis, potentially due to the hygienic and commercially representative LL source, although variation in water activity, glycogen content, pH and other moisture parameters conducive to microbial proliferation were influenced by chilled-then-frozen storage. These outcomes could be applied to defining storage thresholds that assure beef quality within export networks, leveraging market access, and improving product management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters
Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.
2009-01-01
Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.
Contributions to ultrasound monitoring of the process of milk curdling.
Jiménez, Antonio; Rufo, Montaña; Paniagua, Jesús M; Crespo, Abel T; Guerrero, M Patricia; Riballo, M José
2017-04-01
Ultrasound evaluation permits the state of milk being curdled to be determined quickly and cheaply, thus satisfying the demands faced by today's dairy product producers. This paper describes the non-invasive ultrasonic method of in situ monitoring the changing physical properties of milk during the renneting process. The basic objectives of the study were, on the one hand, to confirm the usefulness of conventional non-destructive ultrasonic testing (time-of-flight and attenuation of the ultrasound waves) in monitoring the process in the case of ewe's milk, and, on the other, to include other ultrasound parameters which have not previously been considered in studies on this topic, in particular, parameters provided by the Fast Fourier Transform technique. The experimental study was carried out in a dairy industry environment on four 52-l samples of raw milk in which were immersed 500kHz ultrasound transducers. Other physicochemical parameters of the raw milk (pH, dry matter, protein, Gerber fat test, and lactose) were measured, as also were the pH and temperature of the curdled samples simultaneously with the ultrasound tests. Another contribution of this study is the linear correlation analysis of the aforementioned ultrasound parameters and the physicochemical properties of the curdled milk. Copyright © 2017 Elsevier B.V. All rights reserved.
Uptake of Cr3+ from aqueous solution by lignite-based humic acids.
Arslan, G; Pehlivan, E
2008-11-01
Humic acid (HA) produced from brown coal, a relatively abundant and inexpensive material is currently being investigated as an adsorbent to remove toxic metals from aqueous solution. The influence of five parameters (contact time, solution pH, initial metal concentration, temperature and amount of adsorbent) on the removal at 20+/-1 degrees C was studied. HAs were prepared from lignites by using alkaline extraction, sedimentation and acidic precipitation. Adsorption equilibrium was achieved in about 60 min for Cr3+ ion. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The maximum adsorption capacity of 0.17 mmol for Ilgin (HA1), 0.29 mmol for Beysehir (HA2) and 0.18 mmol Ermenek (HA3) and 0.17 mmol of Cr3+/g for activated carbon (AC) was achieved, respectively at pH of 4.1. More than 84% of Cr3+ was removed by HA2, 54% by HA3 and 51% by HA1 and 50% by AC from aqueous solution. The adsorption was strongly dependent on pH but independent of ionic strength and metal ions. The adsorption of Cr3+ was higher between pH 4.1 and 5.1 for all HAs and maximum sorption was observed at pH 4.1. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr3+ ion. Complex mechanisms including ion exchange, complexation and adsorption and size exclusion are possible for sorption of Cr3+ ion on HAs.
Effect of ferrate on green algae removal.
Kubiňáková, Emília; Híveš, Ján; Gál, Miroslav; Fašková, Andrea
2017-09-01
Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Remediation of lead from lead electroplating industrial effluent using sago waste.
Jeyanthi, G P; Shanthi, G
2007-01-01
Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.
Panda, Gopal C; Das, Sujoy K; Guha, Arun K
2009-05-15
Jute stick powder (JSP) has been found to be a promising material for adsorptive removal of congo red (C.I. 22120) and rhodamine B (C.I. 45170) from aqueous solutions. Physico-chemical parameters like dye concentration, solution pH, temperature and contact time have been varied to study the adsorption phenomenon. Favorable adsorption occurs at around pH 7.0 whereas temperature has no significant effect on adsorption of both the dyes. The maximum adsorption capacity has been calculated to be 35.7 and 87.7mg/g of the biomass for congo red and rhodamine B, respectively. The adsorption process is in conformity with Freundlich and Langmuir isotherms for rhodamine B whereas congo red adsorption fits well to Langmuir isotherm only. In both the cases, adsorption occurs very fast initially and attains equilibrium within 60min. Kinetic results suggest the intra-particle diffusion of dyes as rate limiting step.
Khalaf, Mahmoud A
2008-09-01
The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass concentration and time) on dye removal were examined. The results obtained revealed that dried autoclaved biomass of A. niger and Spirogyra sp. exhibited maximum dye removal (88% and 85%, respectively) at pH3, temperature 30 degrees C and 8 gl(-1)(w/v) biomass conc. after 18h contact time. The stability and efficiency of both organisms in the long-term repetitive operation were also investigated. The results showed that the non-viable biomasses possessed high stability and efficiency of dye removal over 3 repeated batches.
Aspects of the "Design Space" in high pressure liquid chromatography method development.
Molnár, I; Rieger, H-J; Monks, K E
2010-05-07
The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong
2014-11-26
An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.
Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.
Khani, Mohammad Hassan
2011-06-01
The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
2014-01-01
This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676
NASA Astrophysics Data System (ADS)
Ozeki, K.; Aoki, H.; Masuzawa, T.
2010-09-01
Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized under hydrothermal conditions at 110-170 °C at pH values of 7.0 and 9.5. The crystallite size, the remnant film thickness, and the surface morphology of the films were observed using X-ray diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The crystallite size increased with the process temperature, and reached 123.6 nm (pH 9.5 and 170 °C) after 24 h. All of the crystallite sizes of the film treated at pH 9.5 were higher than those treated at pH 7.0 at each process temperature. The film treated at pH 9.5 retained more than 90% of the initial film thickness at any process temperature. The ratio of the film treated at pH 7.0 did not reached 90% at less than 150 °C, and tended to increase with the process temperature.
The effect of carbon surface chemical composition on the adsorption of acetanilide.
Terzyk, Artur P
2004-04-01
The study of acetanilide adsorption-desorption performed at three temperatures (300, 310, and 320 K) and at two pH levels (7.0 and 1.5) on the series of D43/1 carbons (initial and modified with HNO3, fuming H2SO4, and gaseous NH3) is reported. Sorption data are additionally supplemented with the results of thermal analysis and calorimetric and kinetic measurements. It is shown that, generally, acetanilide adsorption at the neutral pH level is reversible (only on the more acidic carbons and at the lowest temperature does hysteresis occur due to the formation of hydrogen bonds with surface OH groups), and it decreases for the chemically modified carbons. In contrast, at the acidic pH level acetanilide adsorption is irreversible. A mechanism of irreversibility is proposed and it is shown that hysteresis is caused by the chemical reaction between the nucleophile (carbon) and the protonized acetanilide molecules. For all studied carbons, at the acidic pH level, adsorption increases and this is caused by the weakly basic character of acetanilide molecule. Adsorption results are described applying adsorbability and Dubinin-Astakhov, quasi-Freundlich and solution analogue of the Toth adsorption isotherm equations. Using the kinetic data, the effective diffusion coefficients and the energy of diffusion are calculated. It is shown that the diffusion is mainly a surface process, and the contribution of the pore diffusion increases with the rise in temperature. By applying different correlations between the parameters obtained from the theoretical description of experimental data and those characterizing the chemical composition of the studied carbons, the role of the latter in the adsorption and kinetics of acetanilide adsorption is determined.
Fundamental Mvssbauer Parameters of Hydrous Iron Sulfates
NASA Technical Reports Server (NTRS)
Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Lane, M. D.; Bishop, J. L.
2005-01-01
Hydrous iron sulfates, which form as alteration products of sulfides, are rare on Earth. On Mars, the low temperature and pH found in the martian permafrost create ideal conditions for the formation of this group of minerals [1], which includes such phases as coquimbite (Fe2(SO4) 9H2O) and amarantite (FeSO4(OH) 3H2O). Viking, Mars Pathfinder, MER and OMEGA data [e.g., [2
The Thermodynamics of the Carbonate System in Seawater,
1979-03-08
ionization of water at various water by potentiometric titration . Deep-Sea Res. 17, temperatures from molal volume data. J. Soln. Chem. 737-750. 1... titration alkalinity, AT, givcn by not available at low salinities and molal volume cal- A, = [HCO/] + 2[CO2-] + [B(OH-] culations (MILLERO et al...used to characterize obtained by a computer titration improves, pH the parameters of the carbonate system in seawater. measurements should be made. This
Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot
2005-06-01
This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.
Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary; Geesey, Gill; Frazier, Marvin
2010-01-01
The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs. PMID:20333304
NASA Astrophysics Data System (ADS)
Budiastuti, H.; Ghozali, M.; Wicaksono, H. K.; Hadiansyah, R.
2018-01-01
Municipal solid waste has become a common challenged problem to be solved for developing countries including Indonesia. Municipal solid waste generating is always bigger than its treatment to reduce affect of environmental pollution. This research tries to contribute to provide an alternative solution to treat municipal solid waste to produce biogas. Vegetable waste was obtained from Gedebage Market, Bandung and starter as a source of anaerobic microorganisms was cow dung obtained from a cow farm in Lembang. A two stage anaerobic reactor was designed and built to treat the vegetable waste in a batch run. The capacity of each reactor is 20 liters but its active volume in each reactor is 15 liters. Reactor 1 (R1) was fed up with mixture of filtered blended vegetable waste and water at ratio of 1:1 whereas Reactor 2 (R2) was filled with filtered mixed liquor of cow dung and water at ratio of 1:1. Both mixtures were left overnight before use. Into R1 it was added EM-4 at concentration of 10%. pH in R1 was maintained at 5 - 6.5 whereas pH in R1 was maintained at 6.5 - 7.5. Temperature of reactors was not maintained to imitate the real environmental temperature. Parameters taken during experiment were pH, temperature, COD, MLVSS, and composition of biogas. The performance of reactor built was shown from COD efficiencies reduction obtained of about 60% both in R1 and R2, pH average in R1 of 4.5 ± 1 and R2 of 7 ± 0.6, average temperature in both reactors of 25 ± 2°C. About 1L gas produced was obtained during the last 6 days of experiment in which CH4 obtained was 8.951 ppm and CO2 of 1.087 ppm. The maximum increase of MLVSS in R1 reached 156% and R2 reached 89%.
Liu, Yangxian; Wang, Qian
2014-10-21
In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.
Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments
NASA Astrophysics Data System (ADS)
Kyle, J. E.; Ferris, G.
2009-05-01
Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a contributor to prokaryotic abundance but given the elements strong multicollinearity with sulfate, iron was removed from the model (as sulfate acts more conservatively across the range of pH sampled, 2.5-9.0). Geochemical variables that have been reported to influence viral abundances under laboratory and field experiments (i.e. Ca2+, DOC, temperature) had minimal effect in the natural environment despite 2 to 3 orders of magnitude range in the data. However, log transformed viral abundance did revealed a significant relationship with pH (Pearson correlation coefficient of r = 0.70) when using principle component analysis. Prokaryotic abundance did not reveal significant correlations with geochemical parameters (all r < 0.38).
Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F
2017-12-01
To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.
Seasonal microbial and environmental parameters at Crocker Reef, Florida Keys, 2014–2015
Kellogg, Christina A.; Yates, Kimberly K.; Lawler, Stephanie N.; Moore, Christopher S.; Smiley, Nathan A.
2015-11-04
Microbial measurements included enumeration of total bacteria, enumeration of virus-like particles, and plate counts of Vibrio spp. colony-forming units (CFU). These measurements were intended to give a sense of any seasonal changes in the total microbial load and to provide an indication of water quality. Additional environmental parameters measured included water temperature, salinity, dissolved oxygen, and pH. Four sites (table 1) were intensively sampled for periods of approximately 48 hours during summer (July 2014) and winter (January–February 2015), during which water samples were collected every 4 hours for analysis, except when prevented by weather conditions.
Synthesis and surface properties of submicron barium sulfate particles
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhang, Bao; Li, Xinhai; Yin, Zhoulan; Guo, Xueyi
2011-10-01
Barium sulfate particles were synthesized in the presence of EDTA at room temperature. X-ray diffractometry (XRD), Fourier transform infrared resonance (FTIR) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of BaSO 4 particles. The effect of the preparation parameters on the particle size distribution and morphology was investigated. The conditional formation constants of Ba-EDTA at different pH values were calculated. The results show that the size and morphology of BaSO 4 particles can be effectively controlled by adding EDTA in the precipitation process. Among all the operation conditions, the pH value has significant effect on the particle size. The obtained barium sulfate particles are spherical and well dispersed at pH = 9-10. Zeta potentials of BaSO 4 were measured at different pH. The isoelectric point (IEP) of barium sulfate colloid appears at pH 6.92. The model of the solid-solution interface at a particle of BaSO 4 was presented. The FTIR result indicates that the surface of the prepared BaSO 4 absorbs the functional groups of EDTA, which lower the IEP of the barium sulfate particles.
Rodríguez Pacheco, T; Aliaga, T; Schoeneberger, H; Gross, R
1981-12-01
Laboratory conditions were first investigated to determine are optimum processing parameters for the preparation of a protein isolate from the ground, defatted, commercial flakes of Lupinus mutabilis. The extraction variables were: pH (2-10); solvent to lupine ratio (5:1 to 40:1); temperature (28 degrees C - 60 degrees C) and time (10-50 min). The isoelectric point of the lupine protein was found to be pH 4.5 with a protein solubility higher than 80% above pH 8.0. Using 70-100 mesh, ground defatted flakes, and extracting at pH 8.7 for 60 min, a protein isolate was obtained on acidification to pH 4.5 which was 99.8 protein (dry basis), compared to 55.25% protein for the original material. This protein isolate represented 32% of the initial material and 57.6% of the initial nitrogen. When making pilot plant assays we found that the yield of protein isolate decreased to 20.4% of the original material and 36.4% of the initial nitrogen. The protein efficiency ratio for the protein isolate was 2.15 when supplemented with methionine, and had a digestibility of 89.33
Asparagine deamidation dependence on buffer type, pH, and temperature.
Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John
2013-06-01
The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.
Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.
2010-07-15
Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observedmore » temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.« less
Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures
NASA Astrophysics Data System (ADS)
Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.
2010-07-01
Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.
Albrecht, Antonia; Herbert, Ulrike; Miskel, Dennis; Heinemann, Celine; Braun, Carina; Dohlen, Sophia; Zeitz, Johanna O; Eder, Klaus; Saremi, Behnam; Kreyenschmidt, Judith
2017-08-01
The aim of this study was to investigate the influence of different methionine sources and concentrations on the quality and spoilage process of broiler meat. The trial was comprised of 7 treatment groups: one basal group (suboptimal in Methionine+Cysteine; i.e., 0.89, 0.74, 0.69% in DM SID Met+Cys in starter, grower, and finisher diets, respectively) and 3 doses (0.10, 0.25, and 0.40%) of either DL-Methionine (DLM) or DL-2-hydroxy-4-methylthio butanoic acid (DL-HMTBA) on an equimolar basis of the DLM-supplemented groups. The broilers were fed the diets for 35 d, then slaughtered and processed. The filets were aerobically packed and stored under temperature controlled conditions at 4°C. Meat quality investigations were comprised of microbial investigations (total viable count and Pseudomonas spp.), pH and drip loss measurements of the filets. The shelf life of the meat samples was determined based on sensory parameters. After slaughtering, all supplemented meat samples showed a high quality, whereby no differences between the 2 methionine sources could be detected for the microbial load, pH, and drip loss. In comparison to the control group, the supplemented samples showed a higher sensory quality, characterized by a fresh smell and fresh red color. Methionine supplementation had a significant influence on meat quality parameters during storage. The microbial load, pH and drip loss of the chicken filets were positively correlated to the methionine concentration. Additionally, the microbial load at the end of storage was positively correlated to pH and drip loss values. Nevertheless, the microbial parameters were in a normal range and the positive correlation to methionine concentration did not affect the sensory shelf life. The mean sensory shelf life of the broiler filets varied between 7 to 9 d. During storage, no difference in the development of sensory parameters was observed between the supplemented groups, while the spoilage process of the basal group occurred slightly faster. In conclusion, methionine concentration, but not methionine source, effected meat quality parameters in breast muscles of broilers. © 2017 Poultry Science Association Inc.
Occurrence and pathogenicity of Naegleria fowleri in artificially heated waters.
Sykora, J L; Keleti, G; Martinez, A J
1983-01-01
The occurrence of pathogenic Naegleria fowleri in thermal discharges, recipient waters, and cooling towers of eight power plants located in western Pennsylvania was investigated for 2 years in conjunction with several environmental measurements. Pathogenic N. fowleri was detected in one cooling tower and in the discharge, receiving waters, or both of five of eight localities. The occurrence of this organism was related to elevated temperatures, but no significant correlation was found for other biological and chemical parameters. Laboratory experiments on the effect of pH on pathogenic N. fowleri documented 100% survival at a range from 2.1 to 8.15. Higher pH reduced or killed the amoebae. No case of human primary amoebic meningoencephalitis occurred during the study. PMID:6847189
Simultaneous wireless assessment of intra-oral pH and temperature.
Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D
2016-08-01
Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Del Bubba, Massimo; Pinzauti, Sergio; Furlanetto, Sandra
2015-11-01
A fast and selective CE method for the determination of zolmitriptan (ZOL) and its five potential impurities has been developed applying the analytical Quality by Design principles. Voltage, temperature, buffer concentration, and pH were investigated as critical process parameters that can influence the critical quality attributes, represented by critical resolution values between peak pairs, analysis time, and peak efficiency of ZOL-dimer. A symmetric screening matrix was employed for investigating the knowledge space, and a Box-Behnken design was used to evaluate the main, interaction, and quadratic effects of the critical process parameters on the critical quality attributes. Contour plots were drawn highlighting important interactions between buffer concentration and pH, and the gained information was merged into the sweet spot plots. Design space (DS) was established by the combined use of response surface methodology and Monte Carlo simulations, introducing a probability concept and thus allowing the quality of the analytical performances to be assured in a defined domain. The working conditions (with the interval defining the DS) were as follows: BGE, 138 mM (115-150 mM) phosphate buffer pH 2.74 (2.54-2.94); temperature, 25°C (24-25°C); voltage, 30 kV. A control strategy was planned based on method robustness and system suitability criteria. The main advantages of applying the Quality by Design concept consisted of a great increase of knowledge of the analytical system, obtained throughout multivariate techniques, and of the achievement of analytical assurance of quality, derived by probability-based definition of DS. The developed method was finally validated and applied to the analysis of ZOL tablets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The oxygen-binding properties of hemocyanin from the mollusk Concholepas concholepas.
González, Andrea; Nova, Esteban; Del Campo, Miguel; Manubens, Augusto; De Ioannes, Alfredo; Ferreira, Jorge; Becker, María Inés
2017-12-01
Hemocyanins have highly conserved copper-containing active sites that bind oxygen. However, structural differences among the hemocyanins of various mollusks may affect their physicochemical properties. Here, we studied the oxygen-binding cooperativity and affinity of Concholepas concholepas hemocyanin (CCH) and its two isolated subunits over a wide range of temperatures and pH values. Considering the differences in the quaternary structures of CCH and keyhole limpet hemocyanin (KLH), we hypothesized that the heterodidecameric CCH has different oxygen-binding parameters than the homodidecameric KLH. A novel modification of the polarographic method was applied in which rat liver submitochondrial particles containing cytochrome c oxidase were introduced to totally deplete oxygen of the test solution using ascorbate as the electron donor. This method was both sensitive and reproducible. The results showed that CCH, like other hemocyanins, exhibits cooperativity, showing an inverse relationship between the oxygen-binding parameters and temperature. According to their Hill coefficients, KLH has greater cooperativity than CCH at physiological pH; however, CCH is less sensitive to pH changes than KLH. Appreciable differences in binding behavior were found between the CCH subunits: the cooperativity of CCH-A was not only almost double that of CCH-B, but it was also slightly superior to that of CCH, thus suggesting that the oxygen-binding domains of the CCH subunits are different in their primary structure. Collectively, these data suggest that CCH-A is the main oxygen-binding domain in CCH; CCH-B may play a more structural role, perhaps utilizing its surprising predisposition to form tubular polymers, unlike CCH-A, as demonstrated here using electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.
2014-03-01
We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.
Akkermans, Simen; Noriega Fernandez, Estefanía; Logist, Filip; Van Impe, Jan F
2017-01-02
Efficient modelling of the microbial growth rate can be performed by combining the effects of individual conditions in a multiplicative way, known as the gamma concept. However, several studies have illustrated that interactions between different effects should be taken into account at stressing environmental conditions to achieve a more accurate description of the growth rate. In this research, a novel approach for modeling the interactions between the effects of environmental conditions on the microbial growth rate is introduced. As a case study, the effect of temperature and pH on the growth rate of Escherichia coli K12 is modeled, based on a set of computer controlled bioreactor experiments performed under static environmental conditions. The models compared in this case study are the gamma model, the model of Augustin and Carlier (2000), the model of Le Marc et al. (2002) and the novel multiplicative interaction model, developed in this paper. This novel model enables the separate identification of interactions between the effects of two (or more) environmental conditions. The comparison of these models focuses on the accuracy, interpretability and compatibility with efficient modeling approaches. Moreover, for the separate effects of temperature and pH, new cardinal parameter model structures are proposed. The novel interaction model contributes to a generic modeling approach, resulting in predictive models that are (i) accurate, (ii) easily identifiable with a limited work load, (iii) modular, and (iv) biologically interpretable. Copyright © 2016. Published by Elsevier B.V.
Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.
Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha
2017-02-01
The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Clark, Melody S; Thorne, Michael A S; Amaral, Ana; Vieira, Florbela; Batista, Frederico M; Reis, João; Power, Deborah M
2013-01-01
Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future. PMID:24223268
Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S
2015-01-01
The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation.
Gabriel, Alonzo A
2012-11-01
The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Omotunde, Iyanu; Okoronkwo, Afamefuna; Oluwashina, Olugbenga
2018-03-01
The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkins-Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g-1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.
Bacterial navigation in chemical and nonchemical environments
NASA Astrophysics Data System (ADS)
Hu, Bo; Tu, Yuhai
2014-03-01
Navigation of cells to the optimal environmental niches is critical for their survival and growth. E. coli cells, for example, can detect various chemicals and move up or down those chemical gradients (i.e., chemotaxis). Using the same signaling machinery, they can also sense other external factors such as pH and temperature and navigate from both sides toward some intermediate levels of those stimuli. This mode of precision sensing is more sophisticated than the (unidirectional) chemotaxis strategy and requires distinctive molecular mechanisms. To understand different bacterial taxis behaviors, we develop a theoretical model which incorporates microscopic signaling events in individual cells into macroscopic population dynamics. We find that the equilibrium population distribution is governed by an effective potential, the landscape of which depends on the external environment (chemical stimuli, pH, and temperature). We uncover the key conditions for various taxis behaviors and directly connects the cellular taxis performances with the underlying molecular parameters. This approach is used to examine and predict how background attractants and downstream temperature effects influence the performance and stability of thermotaxis, which can be tested in future experiments. This work is supported by the National Institutes of Health Grant GM081747.
Implementation of PLUTO Buoy for Monitoring Water Quality in Indonesia, Reflection and Future Plans
NASA Astrophysics Data System (ADS)
Chandra, H.; Krismono, K.; Kusumaningrum, P. D.; Sianturi, D.; Firdaus, Y.; Taukhid, I.; Borneo, B. B.
2016-02-01
Research and development of PLUTO (Perairan Selalu Termonitor/Waters Always Monitored) buoy has reached its fourth year in 2015. Try out has been done in coastal waters, fishponds, fishing port ponds, and reservoirs. In the first year (2010) try out has been performed on coastal waters with off line measurement system. The buoy used temperature, salinity, DO and pH sensors. In the second year (2013) try out was carried out on fishponds and fishing port ponds using telemetry measurement system. In the third year (2014) try out was carried out on water reservoir with telemetry measurement system. In the fourth year (2015) android application is developed to monitor 4 water reservoirs and 1 lake. Beside that, observation point is added to 3 point depth for one buoy. Parameters used are temperature, DO, and turbidity. Three PLUTO buoys are placed in each reservoir, at inlet, outlet, and at center of fish cultivation. Through Ocean Science Meeting in New Orleans it is hoped that there will be input and suggestion from the experts for future development of the monitoring system for public inland waters (especially reservoir and lake) in Indonesia. Keywords: buoy PLUTO, salinity, temperature, Dissolved Oxygen (DO), pH, turbidity, telemetry
Occurance and survival of Vibrio alginolyticus in Tamouda Bay (Morocco).
Sabir, M; Cohen, N; Boukhanjer, A; Ennaji, M M
2011-10-15
The objectives of this study were to investigate the spatial and seasonal fluctuations of Vibrio alginolyticus in marine environment of the Tamouda Bay on the Mediterranean coast of Morocco and to determine the dominant factors of the environment that govern these fluctuations. The samples (sea water, plankton, shellfish and sediment) were collected fortnightly for two years from three study sites on the coast Tamouda Bay in northern Morocco. The charge of Vibrio alginolyticus is determined by MPN method. The physicochemical parameters including temperature of sea water, pH, salinity, turbidity and chlorophyll a concentration were determined. Analysis of variance of specific variables and several principal component analyses showed that the temperature of seawater is the major determinant of seasonal distribution of Vibrio alginolyticus. The results showed a positive linear correlation between Vibrio alginolyticus and the water temperature, pH, turbidity and chlorophyll a. Similarly, there are seasonal variations and spatial of Vibrio alginolyticus in marine environment of the Tamouda bay and the highest concentrations were recorded in both years of study during the warm season whereas it was minimal during the cold season. Linear positive correlation was recorded between Vibrio alginolyticus populations in all ecological types of samples studied.
Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.
Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.
Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2](-)3}.
Jaccard, Hugues; Miéville, Pascal; Cannizzo, Caroline; Mayer, Cédric R; Helm, Lothar
2014-02-01
A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wishart, J.F.; Sun, J.; Su, C.
1997-01-23
Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH{sub 3}){sub 4}(L)Ru-Cyt c derivatives (L = H{sub 2}O/OH{sup -}, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-{Delta}G{degree} = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence of electron-transfer rates between redox centers of the same charge types obeys Marcus-Hush theory. The activationless rate limit for all of the ruthenium derivatives except the N-methylpyrazinium complex is 3.9x10{sup 5} s{supmore » -1}. Thermodynamic parameters obtained from nonisothermal differential pulse voltammetry show that the electron-transfer reactions are entropy-driven. The thermodynamic and kinetic effects of phosphate ion binding to the ruthenium center are examined. The rate of intramolecular electron transfer in (NH{sub 3}){sub 4}(isn)Ru{sup III}-Cyt c{sup II} decreases at high pH, with a midpoint at pH 9.1. 28 refs., 4 figs., 3 tabs.« less
The use of macroalgae (Gracilaria changii) as bio-adsorbent for Copper (II) removal
NASA Astrophysics Data System (ADS)
Lavania-Baloo; Idayu, Nordin; Umar Salihi, Ibrahim; Zainoddin, Jamari
2017-05-01
Biosorption of heavy metals using marine macroalgae biomass can be an effective process and alternative to conventional methods. Activated carbon was developed from macroalgae (Gracilaria changii) and used as adsorbents for the removal of copper (II) from wastewater. Gracilaria changii based activated carbon (GCBAC) was prepared using muffle furnace at a constant temperature of 300 °C for 1 hour. Batch adsorption experiments were conducted to investigate the effets of important parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of Cu (II) from synthetic aqueous solution. Batch adsorption study shows that removal of Cu (II) using GCBAC relied upon pH, contact time, initial metal concentration and GCBAC dosage. The optimum conditions parameters were found to be pH 6.0, time of 60 minutes and GCBAC dosage of 0.3 g, respectively. Adsorption data was described better by Freundlich isotherm model with R2 value of 0.7936. The maximum Cu (II) adsorption capacity of GCBAC was found to be 0.07 mg/g. The experimental adsorption data obtained fitted well into Pseudo-second-order kinetic model, with R2 value near unity. Thus, GCBAC can be used as an effective adsorbent for the removal of Cu (II) from aqueous solution.
Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes
Kloas, Werner; Wuertz, Sven
2017-01-01
In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3--N, NO2--N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture. PMID:28957357
Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian
2013-11-01
In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.
Vijayaraghavan, P; Prakash Vincent, S G; Dhillon, G S
2016-02-01
The production of carboxymethyl cellulase (CMCase) by Bacillus halodurans IND18 under solid substrate fermentation (SSF) using cow dung was optimized through two level full factorial design and second order response surface methodology (RSM). The central composite design (CCD) was employed to optimize the vital fermentation parameters, such as pH of the substrate, concentration of nitrogen source (peptone) and ion (sodium dihydrogen phosphate) sources in medium for achieving higher enzyme production. The optimum medium composition was found to be 1.46% (w/w) peptone, 0.095% (w/w) sodium dihydrogen phosphate and pH 8.0. The model prediction of 4210IU/g enzyme activity at optimum conditions was verified experimentally as 4140IU/g. The enzyme was active over a broad temperature range (40-60±1°C) and pH (7.0-9.0) with maximal activity at 60±1°C and pH 8.0. This study demonstrated the potential of cow dung as novel substrate for CMCase production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Petruzzi, Leonardo; Sinigaglia, Milena; Corbo, Maria Rosaria; Beneduce, Luciano; Bevilacqua, Antonio
2013-07-01
This study investigated the effect of some physicochemical parameters on the removal of ochratoxin A (OTA) by yeasts. Two wild strains of Saccharomyces cerevisiae (W47 and Y28) were used to assess OTA removal under various conditions of temperature, pH, ethanol content and incubation time. All samples were analysed for OTA concentration by enzyme-linked immunosorbent assay (ELISA). In addition, yeast oenological traits were investigated: qualitative and technological traits were assessed on appropriate laboratory media, while the main products of microfermentation (sugars, ethanol, glycerol, acetic acid) were evaluated by Fourier transform infrared spectroscopy (FTIR). The results showed OTA reduction by 36-42% in cultures containing 100 g L⁻¹ ethanol incubated at pH 3.5 and 37 °C. OTA removal was affected by contact time, pH and ethanol content, as it was increased at low pH and by 100 g L⁻¹ ethanol. Moreover, the phenomenon was reversible, as OTA was lowest after 4 days, then it was partially released in the medium. © 2012 Society of Chemical Industry.
Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.
Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita
2011-06-01
Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media. Copyright © 2011 Elsevier B.V. All rights reserved.
Measuring pH variability using an experimental sensor on an underwater glider
NASA Astrophysics Data System (ADS)
Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner
2017-05-01
Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.
Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry
NASA Astrophysics Data System (ADS)
King, J.; Hurwitz, S.; Lowenstern, J. B.
2015-12-01
Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.
Niphadkar, Sonali S; Rathod, Virendra K
2015-01-01
Conventional three phase partitioning (TPP) and ultrasound assisted three phase partitioning (UATPP) were optimized for achieving the maximum extraction and purification of polyphenol oxidase (PPO) from waste potato peels. Different process parameters such as ammonium sulfate (NH4)2SO4 concentration, crude extract to t-butanol ratio, time, temperature and pH were studied for conventional TPP. Except agitation speed, the similar parameters were also optimized for UATPP. Further additional parameters were also studied for UATPP viz. irradiation time at different frequencies, duty cycle and, rated power in order to obtain the maximum purification factor and recovery of PPO. The optimized conditions for conventional TPP were (NH4)2SO4 0-40% (w/v), extract to t-butanol ratio 1:1 (v/v), time 40 min and pH 7 at 30°C. These conditions provided 6.3 purification factor and 70% recovery of PPO from bottom phase. On the other hand, UATPP gives maximum purification fold of 19.7 with 98.3% recovery under optimized parameters which includes (NH4)2SO4 0-40% (w/v), crude extract to t-butanol ratio 1: 1 (v/v) pH 7, irradiation time 5 min with 25 kHz, duty cycle 40% and rated power 150W at 30°C. UATPP delivers higher purification factor and % recovery of PPO along with reduced operation time from 40 min to 5 min when compared with TPP. SDS PAGE showed partial purification of PPO enzyme with UATPP with molecular weight in the range of 26-36 kDa. Results reveal that UATPP would be an attractive option for the isolation and purification of PPO without need of multiple steps. © 2015 American Institute of Chemical Engineers.
Line Parameters of the PH_3 Pentad in the 4-5 μm Region
NASA Astrophysics Data System (ADS)
Devi, V. Malathy; Benner, D. Chris; Kleiner, I.; Sams, R. L.; Blake, T. A.; Brown, Linda R.; Fletcher, L. N.
2012-06-01
Line positions, intensities and line shape parameters are reported for four bands of phosphine between 2150 and 2400 cm-1 in order to improve the spectroscopic database for remote sensing of the giant planets. Knowledge of PH_3 in this spectral region is important for Cassini/VIMS exploration of dynamics and chemistry on Saturn, as well as for interpreting the near-IR data from Juno and ESA's proposed Jupiter mission. For this study, five high-resolution (0.0023 cm-1), high signal-to-noise (>2000) spectra of pure PH_3 were recorded at room temperature (298.2 K) with the Bruker IFS 125HR Fourier transform spectrometer at Pacific Northwest National Laboratory. Individual line parameters were retrieved by multispectrum fitting of all five spectra simultaneously. Positions and intensities were measured for over 3100 transitions. The rotational quantum numbers of measured lines go as high as J''=16 and K''=15 in the ν_3 and ν_1 bands; some lines of the weaker bands 2ν_4 and ν_2+ν_4 are also reported. The measured positions and intensities are compared to new theoretical calculations of the pentad. Lorentz self-broadened width and pressure-induced shift coefficients of many transitions were also obtained, along with speed dependence parameters. Line mixing coefficients were determined for several A+A- pairs of transitions for K''=3, 6, and 9. Research described in this paper was performed at the College of William and Mary and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. L. Fletcher acknowledges support from a Glasstone Science Fellowship. D. C. Benner, C. P. Rinsland, V. Malathy Devi, M. A. H. Smith and D. A. Atkins, JQSRT 53 (1995) 705-721.
Simoncic, Z; Roskar, R; Gartner, A; Kogej, K; Kmetec, V
2008-05-22
Perindopril Erbumine (PER) is one of the newly used angiotensin-converting enzyme inhibitors (ACE inhibitors) and is used for the treatment of patients with hypertension and symptomatic heart failure. It has two main degradation pathways, i.e. the degradation by hydrolysis and the degradation by cyclization. An isothermal heat conduction microcalorimetry (MC) and high pressure liquid chromatography (HPLC) were used for the characterization of aqueous solutions of PER and its stability properties. The rates of heat evolved during degradation of perindopril were measured by MC as a function of temperature and pH and from these data rate constant and change in enthalpy of the reactions were determined. With the HPLC method the concentration of perindopril and its degradation products were measured as a function of time in aqueous solutions of different pH that were stored at different temperatures. We demonstrated that reactions of degradation of perindopril at observed conditions follow the first order kinetics. The Arrhenius equation for each pH was determined. At pH 6.8 only one degradation pathway is present, i.e. the degradation by hydrolysis. Degradation constants for this pathway calculated from MC data are in good agreement with those obtained from HPLC. MC as a non-specific technique was shown to be useful in studies of PER when one reaction was present in the sample and also when more chemical and physical processes were simultaneously running.
NASA Astrophysics Data System (ADS)
Obolewski, Krystian; Jarosiewicz, Anna; Ożgo, Małgorzata
2015-12-01
Cordylophora caspia Pall. is a highly invasive Ponto-Caspian colonial hydroid with a worldwide distribution. It is a biofouling organism colonizing industrial water installations and causing serious economic problems. Here, we give the first report of its occurrence in southern Baltic coastal lakes, and analyze its distribution in relation to environmental factors and likely colonization routes. Samples were collected from the stalks of Phragmites australis at the total of 102 sites in 15 lakes and lagoons. The species was most numerous in lagoons, i.e. ß-oligohaline water bodies with a surface hydrological connection with the sea, where it reached mean densities of 1200-4800 hydranths m-2. In regression tree analysis, chloride concentration, followed by pH, were the strongest explanatory variables for its occurrence, with highest densities observed at chloride concentration above 1.18 g Cl L-1 and pH 8.05-9.26. At pH 5.77-8.04 higher densities were observed at temperatures above 20.3 °C. Generally, within the range of parameters observed in our study, high densities of C. caspia were associated with high chloride concentration, pH, temperature and electrical conductivity values. The species was also present in freshwater lakes; these colonies may have the highest capacity for future invasions of such habitats. Within lakes, high densities were observed at canals connecting these water bodies with the sea, and at sites close to the inflow of rivers. This distribution pattern can facilitate its further spread into inland waters.
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.
Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).
Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.
Zhang, Lei; Liu, Na; Yang, Lijun; Lin, Qing
2009-10-30
Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2-6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L(-1) NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k(2)=0.69 g mg(-1) min(-1), 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol(-1)) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the DeltaH(0) and DeltaG(0) values indicate exothermic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassingham, N.; Corkhill, C. L.; Backhouse, D. J.
The first comprehensive assessment of the dissolution kinetics of simulant Magnox–THORP blended UK high-level waste glass, obtained by performing a range of single-pass flow-through experiments, is reported here. Inherent forward rates of glass dissolution were determined over a temperature range of 23 to 70°C and an alkaline pH range of 8.0 to 12.0. Linear regression techniques were applied to the TST kinetic rate law to obtain fundamental parameters necessary to model the dissolution kinetics of UK high-level waste glass (the activation energy (Ea), pH power law coefficient (η) and the intrinsic rate constant (k0)), which is of importance to themore » post-closure safety case for the geological disposal of vitreous products. The activation energies based on B release ranged from 55 ± 3 to 83 ± 9 kJ mol–1, indicating that Magnox–THORP blend glass dissolution has a surface-controlled mechanism, similar to that of other high- level waste simulant glass compositions such as the French SON68 and LAW in the US. Forward dissolution rates, based on Si, B and Na release, suggested that the dissolution mechanism under dilute conditions, and pH and temperature ranges of this study, was not sensitive to composition as defined by HLW-incorporation rate.« less
Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources
Phan, Hoa N.; Tran, Lam B.
2018-01-01
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2017-05-01
Oasis hydrophilic lipophilic balance ® (Oasis HLB) is commonly employed in solid phase extraction (SPE) of environmental contaminants and within polar organic chemical integrative passive samplers (POCIS). In this study batch experiments were carried out to evaluate the relative affinity of a range of relevant organic pollutants to Oasis HLB in aqueous systems. The influence of sorbate concentration, temperature, pH, and salinity on the equilibrium sorption was investigated. Equilibrium partition ratios (K D ) of 28 compounds were determined, ranging over three orders of magnitude from 1.16 × 10 3 L/kg (atenolol) to 1.07 × 10 6 L/kg (isoproturon). The Freundlich model was able to describe the equilibrium partitioning to Oasis HLB, and an analysis of the thermodynamic parameters revealed the spontaneous and exothermic nature of the partitioning process. Ionic strength had only a minor effect on the partitioning, whereas pH had a considerable effect but only for ionizable compounds. The results show that apolar interactions between the Oasis HLB and analyte mainly determine the equilibrium partitioning. These research findings can be used to optimize the application of SPE and POCIS for analyses of environmental contaminants even in complex mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aghajani, Khadijeh; Tayebi, Habib-Allah
2017-01-01
In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).
Biobleaching of industrial important dyes with peroxidase partially purified from garlic.
Osuji, Akudo Chigozirim; Eze, Sabinus Oscar O; Osayi, Emmanuel Emeka; Chilaka, Ferdinand Chiemeka
2014-01-01
An acidic peroxidase was extracted from garlic (Allium sativum) and was partially purified threefold by ammonium sulphate precipitation, dialysis, and gel filtration chromatography using sephadex G-200. The specific activity of the enzyme increased from 4.89 U/mg after ammonium sulphate precipitation to 25.26 U/mg after gel filtration chromatography. The optimum temperature and pH of the enzyme were 50°C and 5.0, respectively. The Km and V max for H2O2 and o-dianisidine were 0.026 mM and 0.8 U/min, and 25 mM and 0.75 U/min, respectively. Peroxidase from garlic was effective in decolourizing Vat Yellow 2, Vat Orange 11, and Vat Black 27 better than Vat Green 9 dye. For all the parameters monitored, the decolourization was more effective at a pH range, temperature, H2O2 concentration, and enzyme concentration of 4.5-5.0, 50°C, 0.6 mM, and 0.20 U/mL, respectively. The observed properties of the enzyme together with its low cost of extraction (from local sources) show the potential of this enzyme for practical application in industrial wastewater treatment especially with hydrogen peroxide. These Vat dyes also exhibited potentials of acting as peroxidase inhibitors at alkaline pH range.
Activation of Phosphorylase Kinase by Physiological Temperature.
Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M
2015-12-29
In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.
Kara, C; Orman, A; Gencoglu, H; Kovanlıkaya, A; Meral, Y; Cetin, I; Yıbar, A; Kasap, S; Turkmen, I; Deniz, G
2012-12-01
Fifty newborn Saanen kids were used to study the effects of inulin supplementation on faecal score, faecal pH, selected faecal bacterial population, BW, body temperature, haematological traits, selected health parameters and the incidence of diarrhoea. Kids were sorted by parity of their dams and multiple birth (twin or triplet) and assigned to one of the two groups (control: CG, and experimental: EG) at birth. Each group consisted of 25 kids. The groups were similar with regard to sex and birth weight. All kids were fed colostrum for the first 3 days after birth, and then the kids in EG were adapted to inulin supplementation by an increased dosage from day 4 to 7. Each kid in EG was supplemented with 0.2 g, 0.3 g, 0.4 g, 0.5 g and 0.6 g inulin on day 4, 5, 6, 7 and from day 8 to 28, respectively, whereas the kids in CG did not receive inulin. Faecal score and faecal bacterial population were not affected by inulin supplementation (P > 0.05). There were differences in faecal pH on day 14 (P = 0.01) and 28 (P<0.05), whereas no difference in faecal pH on day 21 (P > 0.05) was detected between groups. No differences (P > 0.05) in BW and haematological traits were found between groups. Body temperature did not differ on day 14 and 21 (P > 0.05), whereas there was a difference in body temperature on day 28 (P = 0.01) between groups. The numbers of kids with pneumonia and kids treated for pneumonia and diarrhoea were similar for CG and EG. Kid losses during the study were the same for CG and EG. The incidence of diarrhoea was not affected by inulin supplementation (P > 0.05). Inulin supplemented to kids did not adversely affect faecal score. The effect of inulin on faecal pH was not consistent. The results of our study suggested that daily dose (0.6 g) of inulin might not be enough to observe effects of it. Our data will be useful to determine the dose and timing of inulin supplementation in future studies investigating the effects of inulin on the parameters associated with performance and health status in kids and other young ruminants.
Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe
2012-07-01
In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.
Choi, J E; Loke, C; Waddell, J N; Lyons, K M; Kieser, J A; Farella, M
2015-08-01
To describe a novel approach for continuous measurement of intra-oral pH and temperature in individuals carrying out normal daily activities over 24 h. We designed, validated and constructed a custom-made appliance fitted with a pH probe and a thermocouple. Six subjects wore the appliance over a 24-h period for two non-consecutive days, while the intra-oral pH and temperature were measured continuously and recorded. Intra-oral pH and temperature were very similar across different recording days, the difference being not statistically significant (P ≥ 0.14). There was a noticeable difference in the pattern of variation of pH between day and night. During the day, the mean pH was 7.3 (±0.4) and dropped markedly only after consumption of acidic food and drinks. The intra-oral pH decreased slowly during sleep with an average pH of 6.6 (±0.4) being recorded. The difference between day and night was statistically significant (P = 0.002). The mean intra-oral temperature was 33.9 °C (±0.9) during daytime and 35·9 °C (±0·5) during sleep (P = 0.013) with minor fluctuations occurring over 24 h. The continuous and simultaneous intra-oral pH and temperature measurement system described in this report is reliable, easy to construct, able to measure variables over a sustained period and may serve as a future diagnostic tool in a number of applications. © 2015 John Wiley & Sons Ltd.
Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.
Zhang, R H; Zhang, X T; Hu, S M
2008-04-15
The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.
2014-10-01
We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.
2014-01-01
In this study, pumice stone was used for the removal of tetracyline (TC) from aqueous solutions. It was characterized by XRD, FT-IR, SEM and BET analyses. Cation exchange capacity of pumice stone was found to be 9.9 meq/100 g. Effect of various parameters such as solution pH (2–11), adsorbent dosage (0.5-10 g/L), contact time (2.5-120 min), initial TC concentration (5–300 mg/L) and temperature (20–50°C) on TC adsorption onto pumice was investigated. Also the adsorption of TC on pumice stone was studied as a function of Na+ and Cu2+ cations changing pH from 2 to 11 using batch experiments. The best removal efficiency performance was exhibited at adsorbent dosage 10 g/L, pH 3, contact time 120 min. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models were applied to the equilibrium data. The result has shown that the adsorption was favorable, physicochemical in nature and agrees well with Langmuir and Freundlich models. The maximum Langmuir adsorption capacity was found to be 20.02 mg/g. The adsorption behavior of TC on pumices stone was fitted well in the pseudo-second order kinetics model. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was feasible, spontaneous and exothermic. PMID:24936305
Ahmad, Fiaz; Anwar, Samina; Firdous, Sadiqa; Da-Chuan, Yin; Iqbal, Samina
2018-05-05
Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 2 3 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner. Copyright © 2017. Published by Elsevier B.V.
Erickson, Marilyn C; Liao, Jean; Jiang, Xiuping; Doyle, Michael P
2014-11-01
Two separate studies were conducted to address the condition and the type of feedstocks used during composting of dairy manure. In each study, physical (temperature), chemical (ammonia, volatile acids, and pH), and biological (Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7) parameters were monitored during composting in bioreactors to assess the degree to which they were affected by the experimental variables and, ultimately, the ability of the chemical and physical parameters to predict the fate of pathogens during composting. Compost mixtures that contained either aged dairy manure or pine needles had reduced heat generation; therefore, pathogen reduction took longer than if fresh manure or carbon amendments of wheat straw or peanut hulls were used. Based on regression models derived from these results, ammonia concentration, in addition to heat, were the primary factors affecting the degree of pathogen inactivation in compost mixtures formulated to an initial carbon-nitrogen (C:N) ratio of 40:1, whereas, the pH of the compost mixture along with the amount of heat exposure were most influential in compost mixtures formulated to an initial C:N ratio of 30:1. Further studies are needed to validate these models so that additional criteria in addition to time and temperature can be used to evaluate the microbiological safety of composted manures.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min
2017-09-28
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.
NASA Astrophysics Data System (ADS)
Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao
2006-09-01
The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.
Pedersen, C.; Jonsson, H.; Lindberg, J. E.; Roos, S.
2004-01-01
Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lactobacillus pontis, as determined by 16S rRNA gene sequencing. Since the use of WWDG as pig feed has indicated a health-promoting function, some relevant characteristics of three strains of each of these species were examined together with basal physiological parameters, such as carbohydrate utilization and growth temperature. Seven of the strains were isolated from WWDG, and two strains from pig feces were included for comparison. It was clear that all three species could grow at temperatures of 45 to 50°C, with L. amylolyticus being able to grow at temperatures as high as 54°C. This finding could be the explanation for the simple microflora of WWDG, where a low pH together with a high temperature during storage would select for these organisms. Some strains of L. panis and L. pontis showed prolonged survival at pH 2.5 in synthetic stomach juice and good growth in the presence of porcine bile salt. In addition, members of all three species were able to bind to immobilized mucus material in vitro. Especially the isolates from pig feces but, interestingly, some isolates from WWDG as well possessed properties that might be of importance for colonization of the gastrointestinal tracts of pigs. PMID:15006774
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects
NASA Astrophysics Data System (ADS)
Grover, Valerie Ann
The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.
Ugwuanyi, J Obeta; Harvey, L M; McNeil, B
2005-04-01
Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.
Wang, Gui-Zhen; Li, Zhao-Jun; Zhang, Shu-Qing; Ma, Xiao-Tong; Liang, Yong-Chao
2013-02-01
In order to illustrate the degradation of tetracyclines (TCs) and their influences on process parameters during the period of chicken feces aerobic-composting, the degradation of oxytetracycline (OTC), a kind of TCs and its effects on parameters during the period of chick feces aerobic-composting including temperature, pH, and germination index were investigated using the method of aerobic-composting. The contents of OTC decreased gradually with composting time. The degradation rate was high before 10 d, and then decreased gradually. The differences in OTC degradation among the OTC treatments were also found. The degradation rate of OTC was higher at the level of 25 mg.kg-1, than that of other levels. The degradation curve of OTC could be described by the first-order kinetic model, and the correlation coefficients ranged from 0. 911 1 to 0. 9913. The impacts of OTC on chick feces composting were found. OTC could decrease the rising rate of composting temperature and make the high temperature (> or =50 degrees C) period shorter than that of the control. The values of pH, TN, WSC, and the content of NH: -N of composting were 4.58%, 12.62%, 49.06%, and 35.30% higher than those of the control. The impacts of OTC on maturity of chicken feces composting was not found when the OTC addition contents were lower than 50 mg.kg-1. However, the strong impacts of OTC on maturity of chicken feces composting were found when the OTC addition contents were higher than 50 mg.kg-1. The rates of NH+4 -N to NO-3 -N, and GI were much higher than 0. 5 and lower than 80% , respectively. Theses results suggest that OTC have strong impacts on chicken feces composting when the contents of TOC was higher than 50 mg.kg-1, although OTC have the short half-life period ranged from 1.79-4.88 d.
NASA Astrophysics Data System (ADS)
Mansour, C.; Pavageau, E. M.; Faucher, A.; Inada, F.; Yoneda, K.; Miller, C.; Bretelle, J.-L.
Flow Accelerated Corrosion (FAC) of carbon steel is a phenomenon that has been studied for many years. However, to date, the specific behavior of welds and weld assemblies of carbon steel towards this phenomenon has been scarcely examined. An experimental program of FAC of welds and weld assemblies is being conducted by EDF and CRIEPI. This paper describes the results obtained on the behavior of weld metal independently of its behavior in a weld assembly as well as the sensitivity to FAC of various weld assembly configurations. Tests are performed, at EDF, in the CIROCO loop which permits to follow the FAC rate by gammametry measurements, and at CRIEPI, in the PRINTEMPS loop where FAC is measured by laser displacement sensor. Welds are performed by two different methods: Submerged Arc Welding (SAW) and Gas Tungsten Arc Welding (GTAW). The influence of several parameters on FAC of welds is examined: welding method, chromium content and temperature. For weld assemblies, only the impact of chromium content is studied. All the tests are conducted in ammonia medium at pH 9.0 and oxygen concentration lower then 1 ppb. Chemical parameters, as the pH, the conductivity and oxygen concentration, are measured in situ during the test and surface characterizations are performed after the test. The results show that, with more than 0.15% chromium, no FAC is detected on the weld metal, which is similar to the base metal behaviour. For the same and lower chromium content, the two types of metal have the same FAC rate. Concerning the temperature effect, for both metals FAC rate decreases with temperature increase above 150°C. Below 150 °C, their behaviour seems to be different. For weld assemblies, the study of different configurations shows that the chromium content is the main parameter affecting the behaviour of the specimens. Additional tests and modeling studies will be conducted in order to complete the results.
NASA Technical Reports Server (NTRS)
Coulbourn, W. C.; Olsen, D. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Remote sensing by the ERTS-1 satellite was compared with selected water quality parameters including pH, salinity, conductivity, dissolved oxygen, water depth, water temperature, turbidity, plankton concentration, current variables, chlorophylla, total carotenoids, and species diversity of the benthic community. Strong correlation between turbidity and MSS-sensed radiance was recorded and less strong correlations between the two plankton pigments and radiance. Turbidity and benthic species diversity were highly correlated furnishing an inferential tie between an easily sensed water quality variable and a sensitive indicator of average water quality conditions.
Lyngwi, Nathaniel A; Koijam, Khedarani; Sharma, D; Joshi, S R
2013-03-01
The Northeastern part of India sprawls over an area of 262 379km2 in the Eastern Himalayan range. This constitutes a biodiversity hotspot with high levels of biodiversity and endemism; unfortunately, is also a poorly known area, especially on its microbial diversity. In this study, we assessed cultivable soil bacterial diversity and distribution from lowlands to highlands (34 to 3 990m.a.s.l.). Soil physico-chemical parameters and forest types across the different altitudes were characterized and correlated with bacterial distribution and diversity. Microbes from the soil samples were grown in Nutrient, Muller Hinton and Luria-Bertani agar plates and were initially characterized using biochemical methods. Parameters like dehydrogenase and urease activities, temperature, moisture content, pH, carbon content, bulk density of the sampled soil were measured for each site. Representative isolates were also subjected to 16S rDNA sequence analysis. A total of 155 cultivable bacterial isolates were characterized which were analyzed for richness, evenness and diversity indices. The tropical and sub-tropical forests supported higher bacterial diversity compared to temperate pine, temperate conifer, and sub-alpine rhododendron forests. The 16S rRNA phylogenetic analysis revealed that Firmicutes was the most common group followed by Proteobacreria and Bacteroidetes. Species belonging to the genera Bacillus and Pseudomonas were the most abundant. Bacterial CFU showed positive but insignificant correlation with soil parameters like pH (r=0.208), soil temperature (r=0.303), ambient temperature (r=0.443), soil carbon content (r=0.525), soil bulk density (r=0.268), soil urease (r=0.549) and soil dehydrogenase (r=0.492). Altitude (r=-0.561) and soil moisture content (r=-0.051) showed negative correlation. Altitudinal gradient along with the vegetation and soil physico-chemical parameters were found to influence bacterial diversity and distribution. This study points out that this is a biome with a vast reservoir of bacteria which decrease with increasing altitudes, and highlights the microbiological importance of the poorly studied Eastern Himalayan range, justifying efforts to explore the prevalence of novel species in the biome.
Hoshijima, Umihiko; Wong, Juliet M; Hofmann, Gretchen E
2017-01-01
The Antarctic pteropod, Limacina helicina antarctica , is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that p CO 2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.
Hoshijima, Umihiko; Wong, Juliet M
2017-01-01
Abstract The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change—environmentally relevant temperature treatments (−0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at −0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at −0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas. PMID:29218223
Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan
2016-08-01
An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.
A comparative study of kinetic and connectionist modeling for shelf-life prediction of Basundi mix.
Ruhil, A P; Singh, R R B; Jain, D K; Patel, A A; Patil, G R
2011-04-01
A ready-to-reconstitute formulation of Basundi, a popular Indian dairy dessert was subjected to storage at various temperatures (10, 25 and 40 °C) and deteriorative changes in the Basundi mix were monitored using quality indices like pH, hydroxyl methyl furfural (HMF), bulk density (BD) and insolubility index (II). The multiple regression equations and the Arrhenius functions that describe the parameters' dependence on temperature for the four physico-chemical parameters were integrated to develop mathematical models for predicting sensory quality of Basundi mix. Connectionist model using multilayer feed forward neural network with back propagation algorithm was also developed for predicting the storage life of the product employing artificial neural network (ANN) tool box of MATLAB software. The quality indices served as the input parameters whereas the output parameters were the sensorily evaluated flavour and total sensory score. A total of 140 observations were used and the prediction performance was judged on the basis of per cent root mean square error. The results obtained from the two approaches were compared. Relatively lower magnitudes of percent root mean square error for both the sensory parameters indicated that the connectionist models were better fitted than kinetic models for predicting storage life.
Gaby, John Christian; Zamanzadeh, Mirzaman; Horn, Svein Jarle
2017-01-01
Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing. Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH 4 + when HRT was 17 days but were reduced to 550 mg/L NH 4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus , whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter . The acidogenic reactors were lower in diversity (34-101 observed OTU 0.97 , 1.3-2.5 Shannon) compared to the methanogenic reactors (472-513 observed OTU 0.97 , 5.1-5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors. The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH 4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
NASA Astrophysics Data System (ADS)
Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid
2018-02-01
The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.
NASA Astrophysics Data System (ADS)
Bogoslovskii, S. Yu; Kuznetsov, N. N.; Boldyrev, V. S.
2017-11-01
Electrochlorination parameters were optimized in flowing and non-flowing modes for a cell with a volume of 1 l. At a current density of 0.1 A/cm2 in the range of flow rates from 0.8 to 6.0 l/h with a temperature of the initial solution below 20°C the outlet temperature is maintained close to the optimal 40°C. The pH of the solution during electrolysis increases to 8.8 ÷ 9.4. There was studied a process in which a solution with a temperature of 7-8°C and a concentration of sodium chloride of 25 and 35 g/l in non-flowing cell was used. The dependence of the concentration of active chlorine on the electrolysis time varies with the concentration of the initial solution of sodium chloride. In case of chloride concentration of 25 g/l virtually linear relationship makes it easy to choose the time of electrolysis with the aim of obtaining the needed concentration of the product.
Stability of Tranexamic Acid after 12-Week Storage at Temperatures from -20 deg C to 50 deg C
2013-07-01
PRELIMINARY REPORTS STABILITY OF TRANEXAMIC ACID AFTER 12-WEEK STORAGE AT TEMPERATURES FROM –20◦C TO 50◦C Rodolfo de Guzman, Jr., MT, I. Amy...Polykratis, BS, Jill L. Sondeen, PhD, Daniel N. Darlington, PhD, Andrew P. Cap, MD, PhD, Michael A. Dubick, PhD ABSTRACT Background. Tranexamic acid (TXA) is... tranexamic acid ; temperature stability; HPLC; thromboelastography; storage PREHOSPITAL EMERGENCY CARE 2013;17:394–400 BACKGROUND Hemorrhage is the leading
Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M
2008-03-01
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Water and sediment quality parameters in the Chalan Beel, the largest wetland of Bangladesh
NASA Astrophysics Data System (ADS)
Sayeed, Md. Abu; Hossain, Mostafa Ali Reza; Wahab, Md. Abdul; Hasan, Md. Tawheed; Simon, Kumar Das; Mazumder, Sabuj Kanti
2015-07-01
A study was conducted to investigate the status of the water and sediment quality in the Chalan Beel-a major fresh water fish reservoir of the country for a period of one year from July 2007 to June 2008. The mean values of water quality parameters (depth: 214.73±152.22 cm, temperature 27.68±4.26°C, transparency 123±82 cm, pH 9.7±0.47, total alkalinity 137±42 mg/L, conductivity 307±147 μs/cm, total dissolved solids 183±89 mg/L, ammonia-N 0.27±0.39 mg/L, nitrate-N 0.09±0.07 mg/L, phosphate-P 2.01±2.53 mg/L) and sediment quality parameters (pH 7.21±0.35, organic matter 2.59±0.52%, total nitrogen 0.09±0.04%, available phosphorus 5.4±3.6 Meq./100 g and exchangeable potassium 0.43±0.14 Meq./100 g) were within the range recommended for most of the inland fishes of Bangladesh. Although the water and sediment quality parameters except ammonia and phosphate are in the suitable range, the overall results suggest that better management techniques should be practiced in order to overcome the declining trend of associated aquatic life (fauna and flora) of this important fresh water body of Bangladesh.
Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2015-01-01
A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.
Dotto, G L; Lima, E C; Pinto, L A A
2012-01-01
The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g(-1) and 1619.4 mg g(-1), respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2>0.99 and ARE<5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.
Yakout, Sobhy M; Hassan, Hisham S
2014-07-01
Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.
Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid
2015-04-01
Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2000-02-01
These studies were intended to further refine sugar yield parameters which effect sugar yield such as feedstock particle size, debris, acid soak time, temperature, dewatering, and pretreatment conditions (such as temperature, reaction time, percentage solids concentration, acid concentration), liquid-solids separation, and detoxification parameters (such as time temperature and mixing of detoxification ingredients). Validate and refine parameters, which affect ethanol yield such as detoxification conditions mentioned above, and to fermenter conditions such as temperature, pH adjustment, aeration, nutrients, and charging sequence. Materials of construction will be evaluated also. Evaluate stillage to determine clarification process and suitability for recycle; evaluate lignocellulosic cakemore » for thermal energy recovery to produce heat and electricity for the process; and Support Studies at UF - Toxin Amelioration and Fermentation; TVA work will provide pre-hydroylsates for the evaluation of BCI proprietary methods of toxin amelioration. Pre-hydrolysates from batch studies will allow the determination of the range of allowable hydrolyze conditions that can be used to produce a fermentable sugar stream. This information is essential to guide selection of process parameters for refinement and validation in the continuous pretreatment reactor, and for overall process design. Additional work will be conducted at UFRFI to develop improved strains that are resistant to inhibitors. The authors are quite optimistic about the long-term prospects for this advancement having recently developed strains with a 25%--50% increase in ethanol production. The biocatalyst platform selected originally, genetically engineered Escherichia coli B, has proven to be quite robust and adaptable.« less
Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy
2009-05-30
The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.
Characterization of cellulose acetate micropore membrane immobilized acylase I.
Guo, Yong-Sheng; Wang, Jie; Song, Xi-Jin
2004-12-01
This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 degrees C, which is higher than that of free acylase I (60 degrees C). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.
Statistical optimization for lipase production from solid waste of vegetable oil industry.
Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara
2018-04-21
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.
Growth enhancement of effective microorganisms for bioremediation of crude oil contaminated waters.
Mukred, Abdualdaim Mohammed; Abd-Hamid, Aidil; Hamzah, Ainon; Yusoff, Wan Mohtar Wan
2008-07-01
The bioremediation of polluted groundwater, wastewater aeration pond and biopond sites was investigated using bacteria isolated from these sites located at the oil refinery Terengganu Malaysia. Out of 62 isolates, only 16 isolates from groundwater (8) and wastewater aeration pond (3) and biopond (5) were chosen based on growth medium containing 1% (v/v) Tapis crude oil. Only four isolates; Acinetobacter faecalis, Staphylococcus sp., Pseudomonas putida and Neisseria elongata showed percentage biodegradation of crude oil more than 50% after 5 days using Mineral Salts Medium (MSM). The effect of physical parameters (temperature, pH and agitation) on growth by all four strains showed a maximum growth in MSM medium with 1% Tapis crude oil at 37 degrees C with pH 7 and agitation of 130 rpm.
Sea Surface Scanner: An advanced catamaran to study the sea surface
NASA Astrophysics Data System (ADS)
Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.
2016-02-01
The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.
NASA Astrophysics Data System (ADS)
Khazri, Hassen; Ghorbel-Abid, Ibtissem; Kalfat, Rafik; Trabelsi-Ayadi, Malika
2017-10-01
This study aimed to describe the adsorption of three pharmaceuticals compounds (ibuprofen, naproxen and carbamazepine) onto natural clay on the basis of equilibrium parameters such as a function of time, effect of pH, varying of the concentration and the temperature. Adsorption kinetic data were modeled using the Lagergren's first-order and the pseudo-second-order kinetic equations. The kinetic results of adsorption are described better using the pseudo-second order model. The isotherm results were tested in the Langmuir, Freundlich and Dubinin-Radushkevich models. The thermodynamic parameters obtained indicate that the adsorption of pharmaceuticals on the clay is a spontaneous and endothermic process.
Inductive-capacitive resonant circuit sensors for structural health and environmental monitoring
NASA Astrophysics Data System (ADS)
DeRouin, Andrew J.
Inductive-capacitive (LC) sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or where large numbers of sensors are needed. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. This work focuses on the development and characterization of two new sensor designs that address this limitation in addition to significantly reducing the overall sensor footprint and thus the sensor unit cost.
Multivariate analysis of drinking water quality parameters in Bhopal, India.
Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh
2008-05-01
Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.
Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.
Ma, Y; Barbano, D M
2003-12-01
Raw skim milk, with or without added CO2, was heated, held, and cooled in a small pilot-scale tubular heat exchanger (372 ml/min). The experiment was replicated twice, and, for each replication, milk was first carbonated at 0 to 1 degree C to contain 0 (control), 600, 1200, 1800, and 2400 ppm added CO2 using a continuous carbonation unit. After storage at 0 to 1 degree C, portions of milk at each CO2 concentration were heated to 40, 56, 72, and 80 degrees C, held at the desired temperature for 30 s (except 80 degrees C, holding 20 s) and cooled to 0 to 1 degree C. At each temperature, five pressures were applied: 69, 138, 207, 276, and 345 kPa. Pressure was controlled with a needle valve at the heat exchanger exit. Both the pressure gauge and pH probe were inline at the end of the holding section. Milk pH during heating depended on CO2 concentration, temperature, and pressure. During heating of milk without added CO2, pH decreased linearly as a function of increasing temperature but was independent of pressure. In general, the pH of milk with added CO2 decreased with increasing CO2 concentration and pressure. For milk with added CO2, at a fixed CO2 concentration, the effect of pressure on pH decrease was greater at a higher temperature. At a fixed temperature, the effect of pressure on pH decrease was greater for milk with a higher CO2 concentration. Thermal death of bacteria during pasteurization of milk without added CO2 is probably due not only to temperature but also to the decrease in pH that occurs during the process. Increasing milk CO2 concentration and pressure decreases the milk pH even further during heating and may further enhance the microbial killing power of pasteurization.
2015-07-01
19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen
PLS-NIR determination of five parameters in different types of Chinese rice wine
NASA Astrophysics Data System (ADS)
Yu, Haiyan; Ying, Yibin; Fu, Xiaping; Lu, Huishan
2005-11-01
To evaluate the applicability of near infrared spectroscopy for determination of the five enological parameters (alcoholic degree, pH value, total acid and amino acid nitrogen, °Brix) of Chinese rice wine, transmission spectra were collected in the spectral range from 12500 to 3800 cm-1 in a 1 mm path length rectangular quartz cuvette with air as reference at room temperature. Five calibration equations for the five parameters were established between the reference data and spectra by partial least squares (PLS) regression, separately. The best calibration results were achieved for the determination of alcoholic degree and °Brix. The RPD (ration of the standard deviation of the samples to the SECV) values of the calibration for both alcoholic degree and °Brix were higher than 3 (4.30 and 7.94, respectively), which demonstrated the robustness and power of the calibration models. The determination coefficients (R2) for alcoholic degree and °Brix were 0.987 and 0.991, respectively. The performance of pH, total acid and amino acid nitrogen was not as good as that of alcoholic degree and °Brix. The RPD values for the three parameters were 1.48, 1.85 and 1.82, respectively, and R2 values were 0.964, 0.970 and 0.971, respectively. In validation step, R2 value of the five parameters are all higher than 0.7, especially for alcoholic degree and °Brix (0.968 and 0.956, respectively). The results demonstrated that NIR spectroscopy could be used to predict the concentration of the five enological parameters in Chinese rice wine.
Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F
2015-01-01
A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered.
NASA Astrophysics Data System (ADS)
Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel
1998-06-01
Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.
Fuel neutralization by ozone oxidation
NASA Technical Reports Server (NTRS)
Swartz, A. B.; Agthe, R. E.; Smith, I. D.; Mulholland, J. P.
1988-01-01
The viability of a hazardous waste disposal system based on ozone oxidation of hydrazine fuels at low aqueous concentrations in the presence of ultraviolet light (UV at 2.537 x 10(exp -7) m or 8.324 x 10(exp -7) ft) excitation was investigated. Important parameters investigated include temperature, solution pH, and ultraviolet light power. Statistically relevant experimentation was done to estimate main factor effects on performance. The best available chemical analysis technology was used to evaluate the performance of the system.
Theory of the milieu dependent isomerisation dynamics of reducing sugars applied to d-erythrose.
Kaufmann, Martin; Mügge, Clemens; Kroh, Lothar W
2015-12-11
Quantitative (1)H selective saturation transfer NMR spectroscopy ((1)H SST qNMR) was used to fully describe the milieu dependent dynamics of the isomeric system of d-erythrose. Thermodynamic activation parameters are calculated for acidic as well as for basic catalysis combining McConnell's modified Bloch equations for the chemical exchange solved for the constraint of saturating the non-hydrated acyclic isomer, the Eyring equation and Hudson's equation for pH dependent catalysis. A detailed mathematical examination describing the milieu dependent dynamics of sugar isomerisation is provided. Thermodynamic data show evidence that photo-catalysed sugar isomerisation as well as degradation has to be considered. Approximations describing the pH and temperature dependence of thermodynamic activation parameters are derived that indicate the possibility of photo-affecting equilibrium constants. Moreover, the results show that isomerisation dynamics are closely related to degradation kinetics and that sugars' reactivities are altered by the concentration of acyclic carbonyl isomer and the sum of its ring closing rate constants. Additionally, it is concluded that sugar solutions show a limited self-stabilising behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mayerhoff, Zea D V L; Roberto, Inês C; Franco, Telma T
2006-05-01
A central composite experimental design leading to a set of 16 experiments with different combinations of pH and temperature was performed to attain the optimal activities of xylose reductase (XR) and xylitol dehydrogenase (XDH) enzymes from Candida mogii cell extract. Under optimized conditions (pH 6.5 and 38 degrees C), the XR and XDH activities were found to be 0.48 U/ml and 0.22 U/ml, respectively, resulting in an XR to XDH ratio of 2.2. Stability, cofactor specificity and kinetic parameters of the enzyme XR were also evaluated. XR activity remained stable for 3 h under 4 and 38 degrees C and for 4 months of storage at -18 degrees C. Studies on cofactor specificity showed that only NADPH-dependent XR was obtained under the cultivation conditions employed. The XR present in C. mogii extracts showed a superior Km value for xylose when compared with other yeast strains. Besides, this parameter was not modified after enzyme extraction by aqueous two-phase system.
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
Vergara-Barberán, M; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F
2015-02-15
The improvement of protein extraction from olive leaves using an enzyme-assisted protocol has been investigated. Using a cellulase enzyme (Celluclast® 1.5L), different parameters that affect the extraction process, such as the influence and amount of organic solvent, enzyme amount, pH and extraction temperature and time, were optimised. The influence of these factors was examined using the standard Bradford assay and the extracted proteins were characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum extraction parameters were: 30% acetonitrile, 5% (v/v) Celluclast® 1.5L at pH 5.0 and 55°C for 15min. Under these conditions, several protein extracts from olive leaves of different genetic variety (with a total protein amount comprised between 1.87 and 6.64mgg(-1)) were analysed and compared by SDS-PAGE, showing differences in their electrophoretic protein profiles. The developed enzyme-assisted extraction method has shown a faster extraction, higher recovery and reduced solvent usage with respect to the use of the non-enzymatic methods described in literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Water quality management using statistical analysis and time-series prediction model
NASA Astrophysics Data System (ADS)
Parmar, Kulwinder Singh; Bhardwaj, Rashmi
2014-12-01
This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.
Kesraoui, Aida; Moussa, Asma; Ali, Ghada Ben; Seffen, Mongi
2016-08-01
The aim of the present work is to develop an effective and inexpensive pollutant-removal technology using lignocellulosic fibers: Luffa cylindrica, for the biosorption of an anionic dye: alpacide blue. The influence of some experimental parameters such as pH, temperature, initial concentration of the polluted solution, and mass of the sorbent L. cylindrica on the biosorption of alpacide blue by L. cylindrica fibers has been investigated. Optimal parameters for maximum quantity of biosorption dye were achieved after 2 h of treatment in a batch system using an initial dye concentration of 20 mg/L, a mass of 1 g of L. cylindrica fibers, and pH 2. In these conditions, the quantity of dye retained is 2 mg/g and the retention rate is 78 %. Finally, a mathematical modeling of kinetics and isotherms has been used for mathematical modeling; the model of pseudo-second order is more appropriate to describe this phenomenon of biosorption. Concerning biosorption isotherms, the Freundlich model is the most appropriate for a biosorption of alpacide blue dye by L. cylindrica fibers.
Gianguzza, Paola; Visconti, Giulia; Gianguzza, Fabrizio; Vizzini, Salvatrice; Sarà, Gianluca; Dupont, Sam
2014-02-01
The increasing abundances of the thermophilous black sea urchin Arbacia lixula in the Mediterranean Sea are attributed to the Western Mediterranean warming. However, few data are available on the potential impact of this warming on A. lixula in combination with other global stressors such as ocean acidification. The aim of this study is to investigate the interactive effects of increased temperature and of decreased pH on fertilization and early development of A. lixula. This was tested using a fully crossed design with four temperatures (20, 24, 26 and 27 °C) and two pH levels (pHNBS 8.2 and 7.9). Temperature and pH had no significant effect on fertilization and larval survival (2d) for temperature <27 °C. At 27 °C, the fertilization success was very low (<1%) and all larvae died within 2d. Both temperature and pH had effects on the developmental dynamics. Temperature appeared to modulate the impact of decreasing pH on the % of larvae reaching the pluteus stage leading to a positive effect (faster growth compared to pH 8.2) of low pH at 20 °C, a neutral effect at 24 °C and a negative effect (slower growth) at 26 °C. These results highlight the importance of considering a range of temperatures covering today and the future environmental variability in any experiment aiming at studying the impact of ocean acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arampatzidou, An; Deliyanni, Eleni A.
2015-04-01
Activated carbons prepared from potato peels, a solid waste by product, and activated with different activating chemicals, have been studied for the adsorption of an endocrine disruptor (Bisphenol-A) from aqueous solutions. The potato peels biomass was activated with phosphoric acid, KOH and ZnCl2. The different activating chemicals were tested in order the better activation agent to be found. The carbons were carbonized by pyrolysis, in one step procedure, at three different temperatures in order the role of the temperature of carbonization to be pointed out. The porous texture and the surface chemistry of the prepared activated carbons were characterized by Nitrogen adsorption (BET), Scanning Electron Microscope (SEM), thermal analysis (DTA) and Fourier Transform Infrared Spectroscopy (FTIR). Batch experiments were performed to investigate the effect of pH, the adsorbent dose, the initial bisphenol A concentration and temperature. Equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherms. The thermodynamic parameters such as the change of enthalpy (ΔH0), entropy (ΔS0) and Gibb's free energy (ΔG0) of adsorption systems were also evaluated. The adsorption capacity calculated from the Langmuir isotherm was found to be 450 mg g-1 at an initial pH 3 at 25 °C for the phosphoric acid activated carbon, that make the activated carbon a promising adsorbent material.
Gas production in anaerobic dark-fermentation processes from agriculture solid waste
NASA Astrophysics Data System (ADS)
Sriwuryandari, L.; Priantoro, E. A.; Sintawardani, N.
2017-03-01
Approximately, Bandung produces agricultural solid waste of 1549 ton/day. This wastes consist of wet-organic matter and can be used for bio-gas production. The research aimed to apply the available agricultural solid waste for bio-hydrogen. Biogas production was done by a serial of batches anaerobic fermentation using mix-culture bacteria as the active microorganism. Fermentation was carried out inside a 30 L bioreactor at room temperature. The analyzed parameters were of pH, total gas, temperature, and COD. Result showed that from 3 kg/day of organic wastes, various total gases of O2, CH4, H2, CO2, and CnHn,O2 was produced.
Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles
NASA Astrophysics Data System (ADS)
Kumar, Nikhil; Upadhyay, Lata Sheo Bachan
2016-11-01
A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month
NASA Astrophysics Data System (ADS)
Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.
2015-02-01
We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.
Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.
Son, Ikbae; Chalikian, Tigran V
2016-11-29
We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.
Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C
2014-03-03
Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.
Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia
2014-07-15
Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two adsorption processes were strongly dependent on solution pH. The Cd(II) adsorption was reduced by the presence of aniline at pH<5.4 but was improved at pH>5.4. The presence of Cd(II) diminished the adsorption capacity for aniline at pH<7.8 but enhanced the aniline adsorption at pH>7.8. The decontamination of Cd(II) by MGOs/SA was influenced by ionic strength. Besides, the adsorption process could be well described by pseudo-second-order kinetic model. The intraparticle diffusion study revealed that the intraparticle diffusion was not the only rate-limiting step for the adsorption process. Moreover, the experimental data of isotherm followed the Freundlich isotherm model. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C.; Pratiwi, D.; Suwanto, A.; Ratih, D.
2017-12-01
Bacterial cellulose produced by Acetobacter xylinum is a unique type of bacterial cellulose. It contains more than 90% of water. A preliminary study had shown that bacterial cellulose films has remarkable mechanical properties. The aim of this study was to investigate the optimum condition such as percentage of carbon source, time of cultivation, and pH to produce bacterial cellulose films from local coconut water, and its characterization on morphology, swelling ability and tensile strength of dried bacterial cellulose. A. xylinum was grown on coconut water culture medium with addition of 3%, 5%, and 7% of sugar, while the cultivation time was vary from 3 days, 5 days and 7 days. pH condition was conducted in pH 3, pH 5 and pH 7. Bacterial cellulose samples were dried using oven with temperature of 100°C until the moisture content reached 4-5%. This study showed that several parameters for optimum condition to produce bacterial cellulose films from local waste of coconut water had been obtained (5% of carbon source; pH 5; and 7 day of incubation period). The electron microscopy also showed that dried bacterial cellulose films had pores covered by fibrils on the surface. Therefore, the present work proposes the optimum formula and condition that can be used based on properties of end product needed.
Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters
Pettersson, H. E.
1975-01-01
Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009
In Vivo Model to Test Implanted Biosensors for Blood pH
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Somps, Chris J.; Madou, Marc; Hines, John; Wade, Charles E. (Technical Monitor)
1997-01-01
Biosensors for monitoring physiologic data continuously through telemetry are available for heart rate, respiration, and temperature but not for blood pH or ions affected by hydrogen ion concentration. A telemetric biosensor for monitoring blood pH on-line could be used to identify and manage problems in fluid and electrolyte metabolism, cardiac and respiratory function during space flight and the acid-base status of patients without the need for venipuncture in patients on Earth. Critical to the development of biosensors is a method for evaluating their performance after implantation. Mature rats, prepared with jugular, cannulas for repeated blood samples, were exposed to a gas mixture containing high levels of carbon dioxide (7%) in a closed environment to induce mild respiratory acidosis. Serial blood gas and pH measurements in venous blood were compared with electrical responses from sensors implanted in the subcutaneous tissue. Animals became slightly tachypneic after exposure to excess CO2, but remained alert and active. After 5 minutes, basal blood pH decreased from 7.404 +/- 0.013 to 7.289 +/- 0.010 (p less than 0.001)and PC02 increased from 45 +/- 6 to 65 +/- 4 mm. Hg (p les than 0.001). Thereafter pH and blood gas parameters remained stable. Implanted sensors showed a decrease in millivolts (mV) which paralleled the change in pH and averaged 5-6 mV per 0.1 unit pH. Implanted sensors remained sensitive to modest changes in tissue pH for one week. A system for inducing acidosis in rats was developed to test the in vivo performance of pH biosensors. The system provides a method which is sensitive, rapid and reproducible in the same and different animals with full recovery, for testing the performance of sensors implanted in subcutaneous tissues.
Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K
2013-12-15
The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.
Temperature sensitivity of organic substrate decay varies with pH
NASA Astrophysics Data System (ADS)
Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.
2012-12-01
Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.
Nguyen Van Long, Nicolas; Vasseur, Valérie; Coroller, Louis; Dantigny, Philippe; Le Panse, Sophie; Weill, Amélie; Mounier, Jérôme; Rigalma, Karim
2017-01-16
Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (a w ) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced a w (0.900 a w ) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 a w germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 a w . Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H
2004-01-01
The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.
NASA Astrophysics Data System (ADS)
Bhaumik, Ria; Mondal, Naba Kumar
2016-06-01
The present work highlighted the effective application of banana peel dust (BPD) for removal of fluoride (F-) from aqueous solution. The effects of operating parameters such as pH, initial concentration, adsorbent dose, contact time, agitation speed and temperature were analysed using response surface methodology. The significance of independent variables and their interactions were tested by the analysis of variance and t test statistics. Experimental results revealed that BPD has higher F- adsorption capacity (17.43, 26.31 and 39.5 mg/g). Fluoride adsorption kinetics followed pseudo-second-order model with high correlation of coefficient value (0.998). On the other hand, thermodynamic data suggest that adsorption is favoured at lower temperature, exothermic in nature and enthalpy driven. The adsorbents were characterised through scanning electron microscope, Fourier transform infrared spectroscopy and point of zero charges (pHZPC) ranges from pH 6.2-8.2. Finally, error analysis clearly demonstrates that all three adsorbents are well fitted with Langmuir isotherm compared to the other isotherm models. The reusable properties of the material support further development for commercial application purpose.
Bērziņš, Kārlis; Kons, Artis; Grante, Ilze; Dzabijeva, Diana; Nakurte, Ilva; Actiņš, Andris
2016-09-10
Degradation of drug furazidin was studied under different conditions of environmental pH (11-13) and temperature (30-60°C). The novel approach of hybrid hard- and soft-multivariate curve resolution-alternating least squares (HS-MCR-ALS) method was applied to UV-vis spectral data to determine a valid kinetic model and kinetic parameters of the degradation process. The system was found to be comprised of three main species and best characterized by two consecutive first-order reactions. Furazidin degradation rate was found to be highly dependent on the applied environmental conditions, showing more prominent differences between both degradation steps towards higher pH and temperature. Complimentary qualitative analysis of the degradation process was carried out using HPLC-DAD-TOF-MS. Based on the obtained chromatographic and mass spectrometric results, as well as additional computational analysis of the species (theoretical UV-vis spectra calculations utilizing TD-DFT methodology), the operating degradation mechanism was proposed to include formation of a 5-hydroxyfuran derivative, followed by complete hydrolysis of furazidin hydantoin ring. Copyright © 2016 Elsevier B.V. All rights reserved.
Drinking water microbiological survey of the Northwestern State of Sinaloa, Mexico.
Chaidez, Cristobal; Soto, Marcela; Martinez, Celida; Keswick, Bruce
2008-03-01
A potable water survey, in two important municipalities of the state of Sinaloa, Mexico was conducted. Culiacan, capital city of Sinaloa and its neighboring municipality, Navolato were selected to enumerate Aeromonas hydrophila, Escherichia coli, fecal and total coliforms, Pseudomonas aeruginosa, and Heterotrophic plate count bacteria from 100 households' taps. Manganese; residual chlorine; pH; temperature and turbidity were also examined. Overall, Aeromonas hydrophila was not detected in any of the samples, 3% contained Escherichia coli, 28% had fecal and 46 total coliforms, P. aeruginosa was present in 15% of the samples. HPC bacteria were found in all of the samples but 43% had numbers greater than 500 CFU per ml. The average numbers obtained for the physico-chemical parameters were 0.15 mg/L; 0.32 mg/L; 6.5; 28.7 degrees C and 2.92 NTU for manganese, residual chlorine, pH, temperature and turbidity, respectively. The findings of the current study demonstrate that potable water from both municipalities can harbor substantial numbers of indicator and opportunistic pathogens suggesting that additional treatment in the household may be needed.
Prasad, R Krishna
2009-06-15
The effects of dosage, pH and concentration of salts were investigated for an optimized condition of color removal from the distillery spent wash. The optimization process was analyzed using custom response surface methodology (RSM). The design was employed to derive a statistical model for the effect of parameters studied on removal of color using Moringa oleifera coagulant (MOC). The dosage (20 and 60 ml), pH (7 and 8.5) and concentration of 0.25 M had been found to be the optimum conditions for maximum 56% and 67% color removal using sodium chloride (NaCl) and potassium chloride (KCl) salts respectively. The actual color removal at optimal conditions was found to be 53% and 64% respectively for NaCl and KCl salts which confirms close to RSM results. The effects of storage duration and temperature on MOC studied reveal that coagulation efficiency of MOC kept at room temperature was effective for 3 days and at 4 degrees C it performed coagulation up to 5 days.
Effects of sol-gel processing parameters on the phases and microstructures of HA films.
Wang, Diangang; Chen, Chuanzhong; Liu, Xiuna; Lei, Tingquan
2007-06-15
Bioactive hydroxyapatite (HA) films were fabricated by a sol-gel method and triethylphosphate and calcium nitrate were used as the phosphorus and calcium precursors, respectively. The effects of the heat treatment temperature, pH level and substrate materials on the phases and microstructures of HA films were studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic probe microanalysis (EPMA) and so on. The results show that all the sol-gel films are composed of the phases of HA, CaO, TiO(2) and CaTiO(3). With increasing the calcining temperature, the crystallinity of the films increases, the structure becomes more compact and changes from granular and lamellar to cellular structure, and the Ca/P ratio increases slightly because of the loss of P in the films. The addition of ammonia (adjusting the pH level to be about 7.5) can increase the HA content in the films, and the difference of substrate materials only has a little influence on the microstructure of the sol-gel films.
Mrudula, Soma; Murugammal, Rangasamy
2011-01-01
Aspergillus niger was used for cellulase production in submerged (SmF) and solid state fermentation (SSF). The maximum production of cellulase was obtained after 72 h of incubation in SSF and 96 h in Smf. The CMCase and FPase activities recorded in SSF were 8.89 and 3.56 U per g of dry mycelial bran (DBM), respectively. Where as in Smf the CMase & FPase activities were found to be 3.29 and 2.3 U per ml culture broth, respectively. The productivity of extracellular cellulase in SSF was 14.6 fold higher than in SmF. The physical and nutritional parameters of fermentation like pH, temperature, substrate, carbon and nitrogen sources were optimized. The optimal conditions for maximum biosynthesis of cellulase by A. niger were shown to be at pH 6, temperature 30 °C. The additives like lactose, peptone and coir waste as substrate increased the productivity both in SmF and SSF. The moisture ratio of 1:2 (w/v) was observed for optimum production of cellulase in SSF. PMID:24031730
The organic agricultural waste as a basic source of biohydrogen production
NASA Astrophysics Data System (ADS)
Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.
2016-02-01
Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.
Lee, K.E.
2002-01-01
This report describes the study design, sampling methods, and summarizes the physical, chemical, and benthic algal data for a component of the multiagency study that was designed to document diurnal water-quality measurements (specific conductance, pH, water temperature, and dissolved oxygen), benthic algal community composition and chlorophyll-a content, and primary productivity at 12 stream sites on 6 streams in Minnesota during August 2000. Specific conductance, pH, water temperature, dissolved oxygen concentrations and percent dissolved oxygen saturation measurements were made with submersible data recorders at 30 minute intervals for a period of 3-6 days during August 2000. Benthic algae collected from wood and rock substrate were identified and enumerated. Biovolume (volume of algal cells per unit area), density (number of cells per unit area), and chlorophyll-a content from benthic algae were determined. These data can be used as part of the multiagency study to develop an understanding of the relations among nutrient concentrations, algal abundance, algal community composition, and primary production and respiration processes in rivers of differing ecoregions in Minnesota.
Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.
Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M
2015-06-01
The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.
Tian, Chunqiu; Tan, Huarong; Gao, Liping; Shen, Huqin; Qi, Kezong
2011-11-01
A high performance capillary electrophoresis (HPCE) method was developed for the simultaneous determination of penicillin intermediate and penicillins in milk, including 6-amino-penicillanic acid (6-APA), penicillin G (PEN), ampicillin (AMP) and amoxicillin (AMO). The main parameters including the ion concentration and pH value of running buffer, separation voltage and column temperature were optimized systematically by orthogonal test. The four penicillins (PENs) were baseline separated within 4.5 min with the running buffer of 40 mmol/L potassium dihydrogen phosphate-20 mmol/L borax solution (pH 7.8), separation voltage of 28 kV and column temperature of 30 degrees C. The calibration curves showed good linearity in the range of 1.56 - 100 mg/L, and the correlation coefficients (r2) were between 0.9979 and 0.9998. The average recoveries at three spiked levels were in the range of 84.91% - 96.72% with acceptable relative standard deviations (RSDs) of 1.11% - 9.11%. The method is simple, fast, accurate and suitable for the determination of penicillins in real samples.
Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam.
Fernández, Maikel; Ramírez, Martín; Gómez, José Manuel; Cantero, Domingo
2014-01-15
Biogas biodesulfurization by an anoxic biotrickling filter packed with open pore polyurethane foam at the laboratory scale (packed volume 2.4L) has been studied. The biotrickling system was operated for 620 days with biogas supplied continuously and two nitrate feeding regimes were tested (manual and programmed). Biomass immobilization was carried out under the manual nitrate feeding regime and a study was then carried out on the effects on removal efficiency of the following parameters: nitrate source, H2S inlet load, nitrate concentration, sulfate accumulation, temperature, pH and trickling liquid velocity. The effect of increased H2S inlet load was studied under the programmed nitrate feeding regime. The results show that a removal efficiency of 99% can be obtained when working under the following conditions: inlet loads below 130gSm(-3)h(-1), a programmed nitrate feeding system, temperature of 30°C, sulfate concentration below 33gL(-1), a pH between 7.3 and 7.5, and a trickling liquid velocity higher than 4.6mh(-1). Copyright © 2013 Elsevier B.V. All rights reserved.
Determining the Pollution Parameters of Degirmendere Stream (Trabzon, NE TURKEY)
NASA Astrophysics Data System (ADS)
Sunnetci, M. O.; Hatipoglu, E.; Firat Ersoy, A.; Gultekin, F.
2013-12-01
The pollution parameters of Degirmendere Stream (Trabzon, TURKEY) are determined in this study. The study area is located between Maçka, 26 km to the south of Trabzon city, and the Black Sea. The area consists of Late Cretaceous volcano-sedimentary rocks, dacite, and basalt, overlain by Eocene volcanic rocks. Quaternary alluvium overlay all geological units following Degirmendere Stream bed. In-situ physical parameter measurements, anion-cation analysis, and heavy and pollutant element analysis on water samples were carried out for four months at four different locations on the stream. The stream's water temperature values were between 4.7 and 9.7oC, pH values were between 6.01 and 7.98, dissolved oxygen (DO) values were between 7.03 and 12.38 mg/l, electrical conductivity (EC) values were between 86 and 254 μS/cm. According to the Piper diagram, the stream water is classified as Ca-HCO3 type water. In the Schoeller diagram, the lines combining mek/l values of the ions in stream water are parallel. Al concentration in the stream water varied from 0.06 to 0.22 mg/l, Mn concentration varied from 0.1 to 0.36 mg/l, and Fe concentration varied from 0.01 to 0.12 mg/l. The stream water is classified as first class in point of temperature, pH, DO, total dissolved solids (TDS), NO3-, P, Pb, Fe, and Al; first and second class in point of NH4+; second class in point of Cu; and third class in point of NO2-, according to the Water Pollution Control Regulation of the Turkish Republic's Criteria for Inland Surface Water Classification. Results indicate waters of the Degirmendere Stream is very good-good for irrigation use according to the Wilcox diagram.
Karmali, Amin; Coelho, José
2011-04-01
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of D-glucose at carbon 2 in the presence of molecular O₂ producing D-glucosone (2-keto-glucose and D-arabino-2-hexosulose) and H₂O₂. It was used to convert D-glucose into D-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of D-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H₂O₂ acted as inhibitor for this reaction. The rate of bioconversion of D-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO₂ at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55 °C) and pH (5.0) of D-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E (a)) was 32.08 kJ mol⁻¹ and kinetic parameters (V(max), K(m), K(cat) and K(cat)/K(m)) for this bioconversion were 8.8 U mg⁻¹ protein, 2.95 mM, 30.81 s⁻¹ and 10,444.06 s⁻¹ M⁻¹, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of D-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vijayalakshmi, Subramanian; Nadanasabhapathi, Shanmugam; Kumar, Ranganathan; Sunny Kumar, S
2018-03-01
The presence of aflatoxin, a carcinogenic and toxigenic secondary metabolite produced by Aspergillus species, in food matrix has been a major worldwide problem for years now. Food processing methods such as roasting, extrusion, etc. have been employed for effective destruction of aflatoxins, which are known for their thermo-stable nature. The high temperature treatment, adversely affects the nutritive and other quality attributes of the food, leading to the necessity of application of non-thermal processing techniques such as ultrasonication, gamma irradiation, high pressure processing, pulsed electric field (PEF), etc. The present study was focused on analysing the efficacy of the PEF process in the reduction of the toxin content, which was subsequently quantified using HPLC. The process parameters of different pH model system (potato dextrose agar) artificially spiked with aflatoxin mix standard was optimized using the response surface methodology. The optimization of PEF process effects on the responses aflatoxin B1 and total aflatoxin reduction (%) by pH (4-10), pulse width (10-26 µs) and output voltage (20-65%), fitted 2FI model and quadratic model respectively. The response surface plots obtained for the processes were of saddle point type, with the absence of minimum or maximum response at the centre point. The implemented numerical optimization showed that the predicted and actual values were similar, proving the adequacy of the fitted models and also proved the possible application of PEF in toxin reduction.
Banana peel: an effective biosorbent for aflatoxins.
Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad
2016-05-01
This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets.
Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin
Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun
2012-01-01
To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the published experimental TSR data yield kinetic parameters that are consistent with our values. Assuming MgSO4 contact-ion-pair ([MgSO4]CIP) as the reactive form of sulfate in petroleum reservoir formation waters, a simple extrapolation of our experimentally derived HSO4− reduction kinetics as a proxy for [MgSO4]CIP to geologically reasonable conditions predicts onset temperatures (130–140 °C) that are comparable to those observed in nature.
Dong, Zhijun; Sun, Tingting
2018-08-01
Rapidly rising levels of atmospheric CO 2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Teunis, Meghan B; Nagaraju, Mulpuri; Dutta, Poulami; Pu, Jingzhi; Muhoberac, Barry B; Sardar, Rajesh; Agarwal, Mangilal
2017-09-28
This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe) 34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS 2 - ), carboxylate (-COO - ), and amine (-NH 2 )], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe) 34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- < Naph- < Anth- < Py-DTC. This shift is reversible upon removal of Py-DTC by triethylphosphine gold(i) chloride treatment at room temperature. Furthermore, we performed temperature-dependent (80-300 K) photoluminescence lifetime measurements, which show longer lifetime at lower temperature, suggesting a strong influence of hole wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.
NASA Astrophysics Data System (ADS)
Kafshgari, Leila Asadi; Ghorbani, Mohsen; Azizi, Asghar
2017-10-01
In present study, MnFe2O4/MWCNT nanocomposite synthesized using the hydrothermal technique and has been used for removal of DR16 and Y40 dyes from aqueous solutions. The characteristics results of FTIR, XRD, FESEM and TEM indicated that the nanoadsorbent was successfully fabricated. Magnetic sensitivity results demonstrated that the nanoparticles with saturation magnetization (Ms) value of 8.93 emu g-1 would have a fast magnetic response. The performance of adsorption was investigated in a batch reactor employing parameters expected to affect the maximum adsorption capacity (qm) such as pH, contact time, initial dye concentration and temperature. The highest sorption capacities of DR16 and Y40 after 300 min at 328 K were found to be 607.79 mg/g and 280 mg/g at pH of 2 and 6, respectively. The adsorption behavior over the time was assessed through pseudo-first, pseudo-second and Weber-Morris intra particle diffusion models. It was found that the pseudo-second order model gave the best agreement to the experimental data. Adsorbate-adsorbent interactions as a function of temperature was evaluated by Langmuir, Freundlich, Temkin and Sips isotherm models from which Sips isotherm had the highest consistency with the experimental data. Thermodynamic parameters including ΔG°, ΔS° and ΔH° were determined over the temperature range of 298-328 K. The results revealed that the adsorption reaction of DR16 onto MnFe2O4/MWCNT was spontaneous and exothermic, whilst the sorption process of Y40 was spontaneous and endothermic. In addition, activation energy values implied that the removal process of DR16 and Y40 was physical in nature.
Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven
2013-06-01
The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.
Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre
2012-10-01
Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.
Vidojkovic, Sonja M; Rakin, Marko P
2017-07-01
Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge (pH pzc ) values has been obtained. All obtained results showed that the surface of magnetite particles is negatively charged in typical high temperature thermal power plant water, which indicates the low probability of aggregation and deposition on plant metal surfaces. The results also gave strong evidence on decline of pH iep and pH pzc with temperature in the same manner as neutral pH of water. The thermodynamic parameters of magnetite surface protonation reactions were in good agreement with each other and obtained using one site/two pK and mainly one site/one pK model. All collected data provided evidences for interaction between particles, probability of deposition and eventual attachment to the steel surface at various pH and temperatures and can serve as a foundation for future surface studies aimed at optimizing plant performances and reducing of magnetite deposition. In future works it would be indispensable to provide the surface experimental data for extended temperature ranges, typical solution chemistries and metal surfaces of power plant structural components and thus obtain entire set of results useful in modeling the surface behavior and control of deposition process in power reactors and thermal plant circuits. Moreover, the acquired results will be applicable and greatly valuable to all other types of power plants, industrial facilities and technological processes using the high temperature water medium. Copyright © 2016 Elsevier B.V. All rights reserved.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K
2017-03-10
Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Yamada, Kazunori; Ikeda, Naoya; Takano, Yoko; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo
2010-03-01
Systematic investigations were carried out to determine the optimum process parameters such as the hydrogen peroxide (H2O2) concentration, concentration and molar mass of poly(ethylene glycol) (PEG) as an additive, pH value, temperature and enzyme dose for treatment of bisphenol A (BPA) with horseradish peroxidase (HRP). The HRP-catalysed treatment of BPA was effectively enhanced by adding PEG, and BPA was completely converted into phenoxy radicals by HRP dose of 0.10 U/cm3. The optimum conditions for HRP-catalysed treatment of BPA at 0.3 mM was determined to be 0.3 mM for H2O2 and 0.10 mg/cm3 for PEG with a molar mass of 1.0 x 10(4) in a pH 6.0 buffer at 30 degrees C. Different kinds of bisphenol derivatives were completely or effectively treated by HRP under the optimum conditions determined for treatment of BPA, although the HRP dose was further increased as necessary for some of them. The aggregation of water-insoluble oligomers generated by the enzymatic radicalization and radical coupling reaction was enhanced by decreasing the pH values to 4.0 with HCl after the enzymatic treatment, and BPA and bisphenol derivatives were removed from aqueous solutions by filtering out the oligomer precipitates.
Wu, Fangli; Xie, Zhe; Lan, Yawen; Dupont, Sam; Sun, Meng; Cui, Shuaikang; Huang, Xizhi; Huang, Wei; Liu, Liping; Hu, Menghong; Lu, Weiqun; Wang, Youji
2018-01-01
With the release of large amounts of CO 2 , ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shell mussel Mytilus coruscus exposed to different salinities (15, 25, and 35‰) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.
The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques
Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong
2017-01-01
Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II) adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849
Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.
Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison
2017-05-01
In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-03-04
Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-01-01
Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512
NASA Astrophysics Data System (ADS)
Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.
2017-04-01
Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the critical role of internal molecule re-organization to form crystalline structures. Aggregation of AMC spherulites triggers biomimetic morphologies forming curling laminar structures and rings. The size and number of nesquehonite (MgCO3.3H2O) crystals are controlled by pH and Mg2+ ions at pH < 9. As pH increases, nesquehonite transforms to spherical, rosette-like dypingite and/or hydromagnesite. Crystallization experiments within silica gel impedes the normal growth of prismatic nesquehonite crystals and generates peculiar dendritic crystalline structures. Finally, vapor diffusion techniques resulted in synthesis of NH4+-bearing hydrated compounds after ammonium incorporation when [NH4+]/[Mg2+] ≥ 1 and ≥ 0.5M [NH4+]. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n˚ 608001.
Carey, Nicholas; Sigwart, Julia D
2014-08-01
Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Chlorine Disinfection of Atypical Mycobacteria Isolated from a Water Distribution System
Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique
2002-01-01
We studied the resistance of various mycobacteria isolated from a water distribution system to chlorine. Chlorine disinfection efficiency is expressed as the coefficient of lethality (liters per minute per milligram) as follows: Mycobacterium fortuitum (0.02) > M. chelonae (0.03) > M. gordonae (0.09) > M. aurum (0.19). For a C · t value (product of the disinfectant concentration and contact time) of 60 mg · min · liter−1, frequently used in water treatment lines, chlorine disinfection inactivates over 4 log units of M. gordonae and 1.5 log units of M. fortuitum or M. chelonae. C · t values determined under similar conditions show that even the most susceptible species, M. aurum and M. gordonae, are 100 and 330 times more resistant to chlorine than Escherichia coli. We also investigated the effects of different parameters (medium, pH, and temperature) on chlorine disinfection in a chlorine-resistant M. gordonae model. Our experimental results follow the Arrhenius equation, allowing the inactivation rate to be predicted at different temperatures. Our results show that M. gordonae is more resistant to chlorine in low-nutrient media, such as those encountered in water, and that an increase in temperature (from 4°C to 25°C) and a decrease in pH result in better inactivation. PMID:11872446
Realm of Thermoalkaline Lipases in Bioprocess Commodities.
Lajis, Ahmad Firdaus B
2018-01-01
For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.
Silver nano fabrication using leaf disc of Passiflora foetida Linn
NASA Astrophysics Data System (ADS)
Lade, Bipin D.; Patil, Anita S.
2017-06-01
The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.
Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal
NASA Astrophysics Data System (ADS)
Angelova, Ralitsa; Baldikova, Eva; Pospiskova, Kristyna; Safarikova, Mirka; Safarik, Ivo
2017-04-01
The goal of this study was to assess the biosorption of Amido black 10B dye from aqueous solutions on magnetically modified sheaths of Leptothrix sp. in a batch system. The magnetic modification of the sheaths was performed using both microwave synthesized iron oxide nano- and microparticles and perchloric acid stabilized ferrofluid. The native and both magnetically modified sheaths were characterized by SEM. Various parameters significantly affecting the adsorption process, such as pH, contact time, temperature and initial concentration, were studied in detail using the adsorbent magnetized by both methods. The highest adsorption efficiency was achieved at pH 2. The maximum adsorption capacities of both types of magnetized material at room temperature were found to be 339.2 and 286.1 mg of dye per 1 g of ferrofluid modified and microwave synthesized particles modified adsorbent, respectively. Thermodynamic study of dye adsorption revealed a spontaneous and endothermic process in the temperature range between 279.15 and 313.15 K. The data were fitted to various equilibrium and kinetic models. Experimental data matched well with the pseudo-second-order kinetics and Freundlich isotherm model. The Leptothrix sheaths have excellent efficacy for dye adsorption. This material can be used as an effective, low-cost adsorbent.
FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Asmussen, Robert M.; Parruzot, Benjamin PG
The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based onmore » Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less
Ab initio determination of effective electron-phonon coupling factor in copper
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-04-01
The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.
The Role of Bi3+ in Promoting and Stabilizing Iron Oxo Clusters in Strong Acid.
Sadeghi, Omid; Amiri, Mehran; Reinheimer, Eric W; Nyman, May
2018-05-22
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of "molecular" and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi 3+ drives the formation of aqueous Fe 3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe 3 BiO 2 (CCl 3 COO) 8 (THF)(H 2 O) 2 , and demonstrated its conversion into an iron Keggin ion capped by six Bi 3+ irons (Bi 6 Fe 13 ). The reaction pathway was documented by X-ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi 3+ , which drives hydrolysis and condensation. Likewise, Bi 3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Survival of Burkholderia pseudomallei in Liquid Media
Robertson, Jeannie; Levy, Avram; Sagripanti, Jose-Luis; Inglis, Timothy J. J.
2010-01-01
We studied the effect of environmental parameters on the survival of Burkholderia pseudomallei. There was a small increase in bacterial count for up to 28 days in sterilized distilled water or rain water, in water at 20°C or 40°C, and in buffered solutions of pH 4 or higher. Counts of culturable B. pseudomallei declined at pH 3, in the presence of seawater or water with concentrations of 4% salt or higher, and under refrigeration. The morphological appearances of B. pseudomallei changed under conditions that maintained culturable numbers from bacilli to coccoid cells and spiral forms under pH or salt stress. These observations indicate that B. pseudomallei can endure nutrient-depleted environments as well as a wide range of pH, salt concentrations, and temperatures for periods of up to 28 days. The relative stability of B. pseudomallei under these conditions underlines the tenacity of this species and its potential for natural dispersal in water: in surface water collections, in managed water distribution systems, and through rainfall. These survival properties help explain the recent expansion of the known melioidosis endemic zone in Australia and may have played a part in recent melioidosis outbreaks. PMID:20065001
Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad
2012-06-15
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.
Wu, Fangli; Cui, Shuaikang; Sun, Meng; Xie, Zhe; Huang, Wei; Huang, Xizhi; Liu, Liping; Hu, Menghong; Lu, Weiqun; Wang, Youji
2018-05-15
Flow cytometry was used to investigate the immune parameters of haemocytes in thick-shell mussel Mytilus coruscus exposed to different concentrations of ZnO nanoparticles (NPs) (0, 2.5, and 10mgl -1 ) at two pH levels (7.3 and 8.1) for 14days following a recovery period of 7days. ZnO NPs significantly affected all of the immune parameters throughout the experiment. At high ZnO NPs concentrations, total haemocyte counting, phagocytosis, esterase, and lysosomal content were significantly decreased whereas haemocyte mortality and reactive oxygen species (ROS) were increased. Although low pH also significantly influenced all of the immune parameters of the mussels, its effect was not as strong as that of ZnO NPs. Interactive effects were observed between pH and ZnO NPs in most haemocyte parameters during the exposure period. Although a slight recovery from the stress of ZnO NPs and pH was observed for all immune parameters, significant carry-over effects of low pH and ZnO NPs were still detected. This study revealed that high concentration of ZnO NPs and low pH exert negative and synergistic effects on mussels, and these effects remain even after the mussels are no longer exposed to such stressors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guía-Tello, J. C.; Pech-Canul, M. A.; Trujillo-Vázquez, E.; Pech-Canul, M. I.
2017-08-01
Controlled atmosphere brazing has a widespread industrial use in the production of aluminum automotive heat exchangers. Good-quality joints between the components depend on the initial condition of materials as well as on the brazing process parameters. In this work, the Taguchi method was used to optimize the brazing parameters with respect to corrosion performance for tube-fin mini-assemblies of an automotive condenser. The experimental design consisted of five factors (micro-channel tube type, flux type, peak temperature, heating rate and dwell time), with two levels each. The corrosion behavior in acidified seawater solution pH 2.8 was evaluated through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. Scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to analyze the microstructural features in the joint zone. The results showed that the parameters that most significantly affect the corrosion rate are the type of flux and the peak temperature. The optimal conditions were: micro-channel tube with 4.2 g/m2 of zinc coating, standard flux, 610 °C peak temperature, 5 °C/min heating rate and 4 min dwell time. The corrosion current density value of the confirmation experiment is in excellent agreement with the predicted value. The electrochemical characterization for selected samples gave indication that the brazing conditions had a more significant effect on the kinetics of the hydrogen evolution reaction than on the kinetics of the metal dissolution reaction.