Sample records for parameters sensitivity analysis

  1. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  2. Comparison of Two Global Sensitivity Analysis Methods for Hydrologic Modeling over the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Hameed, M.; Demirel, M. C.; Moradkhani, H.

    2015-12-01

    Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.

  3. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  4. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  5. Multi-Response Parameter Interval Sensitivity and Optimization for the Composite Tape Winding Process.

    PubMed

    Deng, Bo; Shi, Yaoyao; Yu, Tao; Kang, Chao; Zhao, Pan

    2018-01-31

    The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing.

  6. Multi-Response Parameter Interval Sensitivity and Optimization for the Composite Tape Winding Process

    PubMed Central

    Yu, Tao; Kang, Chao; Zhao, Pan

    2018-01-01

    The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048

  7. Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks

    PubMed Central

    Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis

    2015-01-01

    Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the number of the sensitive parameters. PMID:26161544

  8. Importance analysis for Hudson River PCB transport and fate model parameters using robust sensitivity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Toll, J.; Cothern, K.

    1995-12-31

    The authors have performed robust sensitivity studies of the physico-chemical Hudson River PCB model PCHEPM to identify the parameters and process uncertainties contributing the most to uncertainty in predictions of water column and sediment PCB concentrations, over the time period 1977--1991 in one segment of the lower Hudson River. The term ``robust sensitivity studies`` refers to the use of several sensitivity analysis techniques to obtain a more accurate depiction of the relative importance of different sources of uncertainty. Local sensitivity analysis provided data on the sensitivity of PCB concentration estimates to small perturbations in nominal parameter values. Range sensitivity analysismore » provided information about the magnitude of prediction uncertainty associated with each input uncertainty. Rank correlation analysis indicated which parameters had the most dominant influence on model predictions. Factorial analysis identified important interactions among model parameters. Finally, term analysis looked at the aggregate influence of combinations of parameters representing physico-chemical processes. The authors scored the results of the local and range sensitivity and rank correlation analyses. The authors considered parameters that scored high on two of the three analyses to be important contributors to PCB concentration prediction uncertainty, and treated them probabilistically in simulations. They also treated probabilistically parameters identified in the factorial analysis as interacting with important parameters. The authors used the term analysis to better understand how uncertain parameters were influencing the PCB concentration predictions. The importance analysis allowed us to reduce the number of parameters to be modeled probabilistically from 16 to 5. This reduced the computational complexity of Monte Carlo simulations, and more importantly, provided a more lucid depiction of prediction uncertainty and its causes.« less

  9. MOVES sensitivity analysis update : Transportation Research Board Summer Meeting 2012 : ADC-20 Air Quality Committee

    DOT National Transportation Integrated Search

    2012-01-01

    OVERVIEW OF PRESENTATION : Evaluation Parameters : EPAs Sensitivity Analysis : Comparison to Baseline Case : MOVES Sensitivity Run Specification : MOVES Sensitivity Input Parameters : Results : Uses of Study

  10. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  11. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  12. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Günther, Michael; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  13. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.

  14. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  15. Analysis of the sensitivity properties of a model of vector-borne bubonic plague.

    PubMed

    Buzby, Megan; Neckels, David; Antolin, Michael F; Estep, Donald

    2008-09-06

    Model sensitivity is a key to evaluation of mathematical models in ecology and evolution, especially in complex models with numerous parameters. In this paper, we use some recently developed methods for sensitivity analysis to study the parameter sensitivity of a model of vector-borne bubonic plague in a rodent population proposed by Keeling & Gilligan. The new sensitivity tools are based on a variational analysis involving the adjoint equation. The new approach provides a relatively inexpensive way to obtain derivative information about model output with respect to parameters. We use this approach to determine the sensitivity of a quantity of interest (the force of infection from rats and their fleas to humans) to various model parameters, determine a region over which linearization at a specific parameter reference point is valid, develop a global picture of the output surface, and search for maxima and minima in a given region in the parameter space.

  16. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  17. AN OVERVIEW OF THE UNCERTAINTY ANALYSIS, SENSITIVITY ANALYSIS, AND PARAMETER ESTIMATION (UA/SA/PE) API AND HOW TO IMPLEMENT IT

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and
    Parameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...

  18. Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.; Kachare, A. H.

    1981-01-01

    The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.

  19. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  20. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  1. A three-dimensional cohesive sediment transport model with data assimilation: Model development, sensitivity analysis and parameter estimation

    NASA Astrophysics Data System (ADS)

    Wang, Daosheng; Cao, Anzhou; Zhang, Jicai; Fan, Daidu; Liu, Yongzhi; Zhang, Yue

    2018-06-01

    Based on the theory of inverse problems, a three-dimensional sigma-coordinate cohesive sediment transport model with the adjoint data assimilation is developed. In this model, the physical processes of cohesive sediment transport, including deposition, erosion and advection-diffusion, are parameterized by corresponding model parameters. These parameters are usually poorly known and have traditionally been assigned empirically. By assimilating observations into the model, the model parameters can be estimated using the adjoint method; meanwhile, the data misfit between model results and observations can be decreased. The model developed in this work contains numerous parameters; therefore, it is necessary to investigate the parameter sensitivity of the model, which is assessed by calculating a relative sensitivity function and the gradient of the cost function with respect to each parameter. The results of parameter sensitivity analysis indicate that the model is sensitive to the initial conditions, inflow open boundary conditions, suspended sediment settling velocity and resuspension rate, while the model is insensitive to horizontal and vertical diffusivity coefficients. A detailed explanation of the pattern of sensitivity analysis is also given. In ideal twin experiments, constant parameters are estimated by assimilating 'pseudo' observations. The results show that the sensitive parameters are estimated more easily than the insensitive parameters. The conclusions of this work can provide guidance for the practical applications of this model to simulate sediment transport in the study area.

  2. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  3. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  4. Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis.

    PubMed

    Nestorov, I A; Aarons, L J; Rowland, M

    1997-08-01

    Sensitivity analysis studies the effects of the inherent variability and uncertainty in model parameters on the model outputs and may be a useful tool at all stages of the pharmacokinetic modeling process. The present study examined the sensitivity of a whole-body physiologically based pharmacokinetic (PBPK) model for the distribution kinetics of nine 5-n-alkyl-5-ethyl barbituric acids in arterial blood and 14 tissues (lung, liver, kidney, stomach, pancreas, spleen, gut, muscle, adipose, skin, bone, heart, brain, testes) after i.v. bolus administration to rats. The aims were to obtain new insights into the model used, to rank the model parameters involved according to their impact on the model outputs and to study the changes in the sensitivity induced by the increase in the lipophilicity of the homologues on ascending the series. Two approaches for sensitivity analysis have been implemented. The first, based on the Matrix Perturbation Theory, uses a sensitivity index defined as the normalized sensitivity of the 2-norm of the model compartmental matrix to perturbations in its entries. The second approach uses the traditional definition of the normalized sensitivity function as the relative change in a model state (a tissue concentration) corresponding to a relative change in a model parameter. Autosensitivity has been defined as sensitivity of a state to any of its parameters; cross-sensitivity as the sensitivity of a state to any other states' parameters. Using the two approaches, the sensitivity of representative tissue concentrations (lung, liver, kidney, stomach, gut, adipose, heart, and brain) to the following model parameters: tissue-to-unbound plasma partition coefficients, tissue blood flows, unbound renal and intrinsic hepatic clearance, permeability surface area product of the brain, have been analyzed. Both the tissues and the parameters were ranked according to their sensitivity and impact. The following general conclusions were drawn: (i) the overall sensitivity of the system to all parameters involved is small due to the weak connectivity of the system structure; (ii) the time course of both the auto- and cross-sensitivity functions for all tissues depends on the dynamics of the tissues themselves, e.g., the higher the perfusion of a tissue, the higher are both its cross-sensitivity to other tissues' parameters and the cross-sensitivities of other tissues to its parameters; and (iii) with a few exceptions, there is not a marked influence of the lipophilicity of the homologues on either the pattern or the values of the sensitivity functions. The estimates of the sensitivity and the subsequent tissue and parameter rankings may be extended to other drugs, sharing the same common structure of the whole body PBPK model, and having similar model parameters. Results show also that the computationally simple Matrix Perturbation Analysis should be used only when an initial idea about the sensitivity of a system is required. If comprehensive information regarding the sensitivity is needed, the numerically expensive Direct Sensitivity Analysis should be used.

  5. Nuclear morphology for the detection of alterations in bronchial cells from lung cancer: an attempt to improve sensitivity and specificity.

    PubMed

    Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc

    2011-08-01

    To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.

  6. New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    NASA Technical Reports Server (NTRS)

    Winters, J. M.; Stark, L.

    1984-01-01

    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities.

  7. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  9. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  10. Are quantitative sensitivity analysis methods always reliable?

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2016-12-01

    Physical parameterizations developed to represent subgrid-scale physical processes include various uncertain parameters, leading to large uncertainties in today's Earth System Models (ESMs). Sensitivity Analysis (SA) is an efficient approach to quantitatively determine how the uncertainty of the evaluation metric can be apportioned to each parameter. Also, SA can identify the most influential parameters, as a result to reduce the high dimensional parametric space. In previous studies, some SA-based approaches, such as Sobol' and Fourier amplitude sensitivity testing (FAST), divide the parameters into sensitive and insensitive groups respectively. The first one is reserved but the other is eliminated for certain scientific study. However, these approaches ignore the disappearance of the interactive effects between the reserved parameters and the eliminated ones, which are also part of the total sensitive indices. Therefore, the wrong sensitive parameters might be identified by these traditional SA approaches and tools. In this study, we propose a dynamic global sensitivity analysis method (DGSAM), which iteratively removes the least important parameter until there are only two parameters left. We use the CLM-CASA, a global terrestrial model, as an example to verify our findings with different sample sizes ranging from 7000 to 280000. The result shows DGSAM has abilities to identify more influential parameters, which is confirmed by parameter calibration experiments using four popular optimization methods. For example, optimization using Top3 parameters filtered by DGSAM could achieve substantial improvement against Sobol' by 10%. Furthermore, the current computational cost for calibration has been reduced to 1/6 of the original one. In future, it is necessary to explore alternative SA methods emphasizing parameter interactions.

  11. On the sensitivity analysis of porous material models

    NASA Astrophysics Data System (ADS)

    Ouisse, Morvan; Ichchou, Mohamed; Chedly, Slaheddine; Collet, Manuel

    2012-11-01

    Porous materials are used in many vibroacoustic applications. Different available models describe their behaviors according to materials' intrinsic characteristics. For instance, in the case of porous material with rigid frame, and according to the Champoux-Allard model, five parameters are employed. In this paper, an investigation about this model sensitivity to parameters according to frequency is conducted. Sobol and FAST algorithms are used for sensitivity analysis. A strong parametric frequency dependent hierarchy is shown. Sensitivity investigations confirm that resistivity is the most influent parameter when acoustic absorption and surface impedance of porous materials with rigid frame are considered. The analysis is first performed on a wide category of porous materials, and then restricted to a polyurethane foam analysis in order to illustrate the impact of the reduction of the design space. In a second part, a sensitivity analysis is performed using the Biot-Allard model with nine parameters including mechanical effects of the frame and conclusions are drawn through numerical simulations.

  12. An analysis of sensitivity of CLIMEX parameters in mapping species potential distribution and the broad-scale changes observed with minor variations in parameters values: an investigation using open-field Solanum lycopersicum and Neoleucinodes elegantalis as an example

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho

    2018-04-01

    A sensitivity analysis can categorize levels of parameter influence on a model's output. Identifying parameters having the most influence facilitates establishing the best values for parameters of models, providing useful implications in species modelling of crops and associated insect pests. The aim of this study was to quantify the response of species models through a CLIMEX sensitivity analysis. Using open-field Solanum lycopersicum and Neoleucinodes elegantalis distribution records, and 17 fitting parameters, including growth and stress parameters, comparisons were made in model performance by altering one parameter value at a time, in comparison to the best-fit parameter values. Parameters that were found to have a greater effect on the model results are termed "sensitive". Through the use of two species, we show that even when the Ecoclimatic Index has a major change through upward or downward parameter value alterations, the effect on the species is dependent on the selection of suitability categories and regions of modelling. Two parameters were shown to have the greatest sensitivity, dependent on the suitability categories of each species in the study. Results enhance user understanding of which climatic factors had a greater impact on both species distributions in our model, in terms of suitability categories and areas, when parameter values were perturbed by higher or lower values, compared to the best-fit parameter values. Thus, the sensitivity analyses have the potential to provide additional information for end users, in terms of improving management, by identifying the climatic variables that are most sensitive.

  13. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection

    PubMed Central

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close “neighborhood” of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa. PMID:26327290

  14. Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection.

    PubMed

    Alam, Maksudul; Deng, Xinwei; Philipson, Casandra; Bassaganya-Riera, Josep; Bisset, Keith; Carbo, Adria; Eubank, Stephen; Hontecillas, Raquel; Hoops, Stefan; Mei, Yongguo; Abedi, Vida; Marathe, Madhav

    2015-01-01

    Agent-based models (ABM) are widely used to study immune systems, providing a procedural and interactive view of the underlying system. The interaction of components and the behavior of individual objects is described procedurally as a function of the internal states and the local interactions, which are often stochastic in nature. Such models typically have complex structures and consist of a large number of modeling parameters. Determining the key modeling parameters which govern the outcomes of the system is very challenging. Sensitivity analysis plays a vital role in quantifying the impact of modeling parameters in massively interacting systems, including large complex ABM. The high computational cost of executing simulations impedes running experiments with exhaustive parameter settings. Existing techniques of analyzing such a complex system typically focus on local sensitivity analysis, i.e. one parameter at a time, or a close "neighborhood" of particular parameter settings. However, such methods are not adequate to measure the uncertainty and sensitivity of parameters accurately because they overlook the global impacts of parameters on the system. In this article, we develop novel experimental design and analysis techniques to perform both global and local sensitivity analysis of large-scale ABMs. The proposed method can efficiently identify the most significant parameters and quantify their contributions to outcomes of the system. We demonstrate the proposed methodology for ENteric Immune SImulator (ENISI), a large-scale ABM environment, using a computational model of immune responses to Helicobacter pylori colonization of the gastric mucosa.

  15. Results of an integrated structure/control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1989-01-01

    A design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations is discussed. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changes in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient than finite difference methods for the computation of the equivalent sensitivity information.

  16. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  17. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  18. Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test.

    PubMed

    Munir, Mohammad

    2018-06-01

    Generalized sensitivity functions characterize the sensitivity of the parameter estimates with respect to the nominal parameters. We observe from the generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test that the measurements of insulin, 62 min after the administration of the glucose bolus into the experimental subject's body, possess no information about the parameter estimates. The glucose measurements possess the information about the parameter estimates up to three hours. These observations have been verified by the parameter estimation of the minimal model. The standard errors of the estimates and crude Monte Carlo process also confirm this observation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A global sensitivity analysis approach for morphogenesis models.

    PubMed

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  20. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    USGS Publications Warehouse

    Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  1. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.

    2016-12-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  2. Simulation-based sensitivity analysis for non-ignorably missing data.

    PubMed

    Yin, Peng; Shi, Jian Q

    2017-01-01

    Sensitivity analysis is popular in dealing with missing data problems particularly for non-ignorable missingness, where full-likelihood method cannot be adopted. It analyses how sensitively the conclusions (output) may depend on assumptions or parameters (input) about missing data, i.e. missing data mechanism. We call models with the problem of uncertainty sensitivity models. To make conventional sensitivity analysis more useful in practice we need to define some simple and interpretable statistical quantities to assess the sensitivity models and make evidence based analysis. We propose a novel approach in this paper on attempting to investigate the possibility of each missing data mechanism model assumption, by comparing the simulated datasets from various MNAR models with the observed data non-parametrically, using the K-nearest-neighbour distances. Some asymptotic theory has also been provided. A key step of this method is to plug in a plausibility evaluation system towards each sensitivity parameter, to select plausible values and reject unlikely values, instead of considering all proposed values of sensitivity parameters as in the conventional sensitivity analysis method. The method is generic and has been applied successfully to several specific models in this paper including meta-analysis model with publication bias, analysis of incomplete longitudinal data and mean estimation with non-ignorable missing data.

  3. Sobol' sensitivity analysis for stressor impacts on honeybee ...

    EPA Pesticide Factsheets

    We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more

  4. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  5. Adjoint sensitivity analysis of plasmonic structures using the FDTD method.

    PubMed

    Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H

    2014-05-15

    We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.

  6. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE PAGES

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...

    2017-01-24

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  7. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  8. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    NASA Astrophysics Data System (ADS)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.

  9. Scaling in sensitivity analysis

    USGS Publications Warehouse

    Link, W.A.; Doherty, P.F.

    2002-01-01

    Population matrix models allow sets of demographic parameters to be summarized by a single value 8, the finite rate of population increase. The consequences of change in individual demographic parameters are naturally measured by the corresponding changes in 8; sensitivity analyses compare demographic parameters on the basis of these changes. These comparisons are complicated by issues of scale. Elasticity analysis attempts to deal with issues of scale by comparing the effects of proportional changes in demographic parameters, but leads to inconsistencies in evaluating demographic rates. We discuss this and other problems of scaling in sensitivity analysis, and suggest a simple criterion for choosing appropriate scales. We apply our suggestions to data for the killer whale, Orcinus orca.

  10. Local sensitivity analysis for inverse problems solved by singular value decomposition

    USGS Publications Warehouse

    Hill, M.C.; Nolan, B.T.

    2010-01-01

    Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.

  11. How often do sensitivity analyses for economic parameters change cost-utility analysis conclusions?

    PubMed

    Schackman, Bruce R; Gold, Heather Taffet; Stone, Patricia W; Neumann, Peter J

    2004-01-01

    There is limited evidence about the extent to which sensitivity analysis has been used in the cost-effectiveness literature. Sensitivity analyses for health-related QOL (HR-QOL), cost and discount rate economic parameters are of particular interest because they measure the effects of methodological and estimation uncertainties. To investigate the use of sensitivity analyses in the pharmaceutical cost-utility literature in order to test whether a change in economic parameters could result in a different conclusion regarding the cost effectiveness of the intervention analysed. Cost-utility analyses of pharmaceuticals identified in a prior comprehensive audit (70 articles) were reviewed and further audited. For each base case for which sensitivity analyses were reported (n = 122), up to two sensitivity analyses for HR-QOL (n = 133), cost (n = 99), and discount rate (n = 128) were examined. Article mentions of thresholds for acceptable cost-utility ratios were recorded (total 36). Cost-utility ratios were denominated in US dollars for the year reported in each of the original articles in order to determine whether a different conclusion would have been indicated at the time the article was published. Quality ratings from the original audit for articles where sensitivity analysis results crossed the cost-utility ratio threshold above the base-case result were compared with those that did not. The most frequently mentioned cost-utility thresholds were $US20,000/QALY, $US50,000/QALY, and $US100,000/QALY. The proportions of sensitivity analyses reporting quantitative results that crossed the threshold above the base-case results (or where the sensitivity analysis result was dominated) were 31% for HR-QOL sensitivity analyses, 20% for cost-sensitivity analyses, and 15% for discount-rate sensitivity analyses. Almost half of the discount-rate sensitivity analyses did not report quantitative results. Articles that reported sensitivity analyses where results crossed the cost-utility threshold above the base-case results (n = 25) were of somewhat higher quality, and were more likely to justify their sensitivity analysis parameters, than those that did not (n = 45), but the overall quality rating was only moderate. Sensitivity analyses for economic parameters are widely reported and often identify whether choosing different assumptions leads to a different conclusion regarding cost effectiveness. Changes in HR-QOL and cost parameters should be used to test alternative guideline recommendations when there is uncertainty regarding these parameters. Changes in discount rates less frequently produce results that would change the conclusion about cost effectiveness. Improving the overall quality of published studies and describing the justifications for parameter ranges would allow more meaningful conclusions to be drawn from sensitivity analyses.

  12. Adaptation of an urban land surface model to a tropical suburban area: Offline evaluation, sensitivity analysis, and optimization of TEB/ISBA (SURFEX)

    NASA Astrophysics Data System (ADS)

    Harshan, Suraj

    The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction has a significant influence on all fluxes considered. Comparison between the Sobol and Morris methods shows similar sensitivities, indicating the robustness of the present analysis and that the Morris method can be employed as a computationally cheaper alternative of Sobol's method. Optimization as well as the sensitivity experiments for the three periods (dry, wet and mixed), show a noticeable difference in parameter sensitivity and parameter convergence, indicating inadequacies in model formulation. Existence of a significant proportion of less sensitive parameters might be indicating an over-parametrized model. Borg MOEA showed great promise in optimizing the input parameters set. The optimized model modified using the site specific values for thermal roughness length parametrization shows an improvement in the performances of outgoing longwave radiation flux, overall surface temperature, heat storage flux and sensible heat flux.

  13. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  14. Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1988-01-01

    Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.

  15. MOVES regional level sensitivity analysis

    DOT National Transportation Integrated Search

    2012-01-01

    The MOVES Regional Level Sensitivity Analysis was conducted to increase understanding of the operations of the MOVES Model in regional emissions analysis and to highlight the following: : the relative sensitivity of selected MOVES Model input paramet...

  16. Analysis of the NAEG model of transuranic radionuclide transport and dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, J.R.; Anspaugh, L.R.

    We analyze the model for estimating the dose from /sup 239/Pu developed for the Nevada Applied Ecology Group (NAEG) by using sensitivity analysis and uncertainty analysis. Sensitivity analysis results suggest that the air pathway is the critical pathway for the organs receiving the highest dose. Soil concentration and the factors controlling air concentration are the most important parameters. The only organ whose dose is sensitive to parameters in the ingestion pathway is the GI tract. The air pathway accounts for 100% of the dose to lung, upper respiratory tract, and thoracic lymph nodes; and 95% of its dose via ingestion.more » Leafy vegetable ingestion accounts for 70% of the dose from the ingestion pathway regardless of organ, peeled vegetables 20%; accidental soil ingestion 5%; ingestion of beef liver 4%; beef muscle 1%. Only a handful of model parameters control the dose for any one organ. The number of important parameters is usually less than 10. Uncertainty analysis indicates that choosing a uniform distribution for the input parameters produces a lognormal distribution of the dose. The ratio of the square root of the variance to the mean is three times greater for the doses than it is for the individual parameters. As found by the sensitivity analysis, the uncertainty analysis suggests that only a few parameters control the dose for each organ. All organs have similar distributions and variance to mean ratios except for the lymph modes. 16 references, 9 figures, 13 tables.« less

  17. Sensitivity analysis of conservative and reactive stream transient storage models applied to field data from multiple-reach experiments

    USGS Publications Warehouse

    Gooseff, M.N.; Bencala, K.E.; Scott, D.T.; Runkel, R.L.; McKnight, Diane M.

    2005-01-01

    The transient storage model (TSM) has been widely used in studies of stream solute transport and fate, with an increasing emphasis on reactive solute transport. In this study we perform sensitivity analyses of a conservative TSM and two different reactive solute transport models (RSTM), one that includes first-order decay in the stream and the storage zone, and a second that considers sorption of a reactive solute on streambed sediments. Two previously analyzed data sets are examined with a focus on the reliability of these RSTMs in characterizing stream and storage zone solute reactions. Sensitivities of simulations to parameters within and among reaches, parameter coefficients of variation, and correlation coefficients are computed and analyzed. Our results indicate that (1) simulated values have the greatest sensitivity to parameters within the same reach, (2) simulated values are also sensitive to parameters in reaches immediately upstream and downstream (inter-reach sensitivity), (3) simulated values have decreasing sensitivity to parameters in reaches farther downstream, and (4) in-stream reactive solute data provide adequate data to resolve effective storage zone reaction parameters, given the model formulations. Simulations of reactive solutes are shown to be equally sensitive to transport parameters and effective reaction parameters of the model, evidence of the control of physical transport on reactive solute dynamics. Similar to conservative transport analysis, reactive solute simulations appear to be most sensitive to data collected during the rising and falling limb of the concentration breakthrough curve. ?? 2005 Elsevier Ltd. All rights reserved.

  18. Improving the analysis of slug tests

    USGS Publications Warehouse

    McElwee, C.D.

    2002-01-01

    This paper examines several techniques that have the potential to improve the quality of slug test analysis. These techniques are applicable in the range from low hydraulic conductivities with overdamped responses to high hydraulic conductivities with nonlinear oscillatory responses. Four techniques for improving slug test analysis will be discussed: use of an extended capability nonlinear model, sensitivity analysis, correction for acceleration and velocity effects, and use of multiple slug tests. The four-parameter nonlinear slug test model used in this work is shown to allow accurate analysis of slug tests with widely differing character. The parameter ?? represents a correction to the water column length caused primarily by radius variations in the wellbore and is most useful in matching the oscillation frequency and amplitude. The water column velocity at slug initiation (V0) is an additional model parameter, which would ideally be zero but may not be due to the initiation mechanism. The remaining two model parameters are A (parameter for nonlinear effects) and K (hydraulic conductivity). Sensitivity analysis shows that in general ?? and V0 have the lowest sensitivity and K usually has the highest. However, for very high K values the sensitivity to A may surpass the sensitivity to K. Oscillatory slug tests involve higher accelerations and velocities of the water column; thus, the pressure transducer responses are affected by these factors and the model response must be corrected to allow maximum accuracy for the analysis. The performance of multiple slug tests will allow some statistical measure of the experimental accuracy and of the reliability of the resulting aquifer parameters. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Sensitivity analysis of infectious disease models: methods, advances and their application

    PubMed Central

    Wu, Jianyong; Dhingra, Radhika; Gambhir, Manoj; Remais, Justin V.

    2013-01-01

    Sensitivity analysis (SA) can aid in identifying influential model parameters and optimizing model structure, yet infectious disease modelling has yet to adopt advanced SA techniques that are capable of providing considerable insights over traditional methods. We investigate five global SA methods—scatter plots, the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation coefficient and the sensitivity heat map method—and detail their relative merits and pitfalls when applied to a microparasite (cholera) and macroparasite (schistosomaisis) transmission model. The methods investigated yielded similar results with respect to identifying influential parameters, but offered specific insights that vary by method. The classical methods differed in their ability to provide information on the quantitative relationship between parameters and model output, particularly over time. The heat map approach provides information about the group sensitivity of all model state variables, and the parameter sensitivity spectrum obtained using this method reveals the sensitivity of all state variables to each parameter over the course of the simulation period, especially valuable for expressing the dynamic sensitivity of a microparasite epidemic model to its parameters. A summary comparison is presented to aid infectious disease modellers in selecting appropriate methods, with the goal of improving model performance and design. PMID:23864497

  20. The application of sensitivity analysis to models of large scale physiological systems

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1974-01-01

    A survey of the literature of sensitivity analysis as it applies to biological systems is reported as well as a brief development of sensitivity theory. A simple population model and a more complex thermoregulatory model illustrate the investigatory techniques and interpretation of parameter sensitivity analysis. The role of sensitivity analysis in validating and verifying models, and in identifying relative parameter influence in estimating errors in model behavior due to uncertainty in input data is presented. This analysis is valuable to the simulationist and the experimentalist in allocating resources for data collection. A method for reducing highly complex, nonlinear models to simple linear algebraic models that could be useful for making rapid, first order calculations of system behavior is presented.

  1. Sensitivity analysis and nonlinearity assessment of steam cracking furnace process

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Sudibyo, Aziz, N.

    2017-11-01

    In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.

  2. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  3. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  4. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  5. A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Ren, Luchuan

    2015-04-01

    A Global Sensitivity Analysis Method on Maximum Tsunami Wave Heights to Potential Seismic Source Parameters Luchuan Ren, Jianwei Tian, Mingli Hong Institute of Disaster Prevention, Sanhe, Heibei Province, 065201, P.R. China It is obvious that the uncertainties of the maximum tsunami wave heights in offshore area are partly from uncertainties of the potential seismic tsunami source parameters. A global sensitivity analysis method on the maximum tsunami wave heights to the potential seismic source parameters is put forward in this paper. The tsunami wave heights are calculated by COMCOT ( the Cornell Multi-grid Coupled Tsunami Model), on the assumption that an earthquake with magnitude MW8.0 occurred at the northern fault segment along the Manila Trench and triggered a tsunami in the South China Sea. We select the simulated results of maximum tsunami wave heights at specific sites in offshore area to verify the validity of the method proposed in this paper. For ranking importance order of the uncertainties of potential seismic source parameters (the earthquake's magnitude, the focal depth, the strike angle, dip angle and slip angle etc..) in generating uncertainties of the maximum tsunami wave heights, we chose Morris method to analyze the sensitivity of the maximum tsunami wave heights to the aforementioned parameters, and give several qualitative descriptions of nonlinear or linear effects of them on the maximum tsunami wave heights. We quantitatively analyze the sensitivity of the maximum tsunami wave heights to these parameters and the interaction effects among these parameters on the maximum tsunami wave heights by means of the extended FAST method afterward. The results shows that the maximum tsunami wave heights are very sensitive to the earthquake magnitude, followed successively by the epicenter location, the strike angle and dip angle, the interactions effect between the sensitive parameters are very obvious at specific site in offshore area, and there exist differences in importance order in generating uncertainties of the maximum tsunami wave heights for same group parameters at different specific sites in offshore area. These results are helpful to deeply understand the relationship between the tsunami wave heights and the seismic tsunami source parameters. Keywords: Global sensitivity analysis; Tsunami wave height; Potential seismic tsunami source parameter; Morris method; Extended FAST method

  6. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    PubMed

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  7. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  8. Systematic parameter estimation and sensitivity analysis using a multidimensional PEMFC model coupled with DAKOTA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming

    2010-05-01

    Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated inmore » order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.« less

  9. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  10. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    PubMed

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

    PubMed

    Navarro Jimenez, M; Le Maître, O P; Knio, O M

    2016-12-28

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  12. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    DOE PAGES

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-23

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less

  13. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    NASA Astrophysics Data System (ADS)

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-01

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  14. Predictive Uncertainty And Parameter Sensitivity Of A Sediment-Flux Model: Nitrogen Flux and Sediment Oxygen Demand

    EPA Science Inventory

    Estimating model predictive uncertainty is imperative to informed environmental decision making and management of water resources. This paper applies the Generalized Sensitivity Analysis (GSA) to examine parameter sensitivity and the Generalized Likelihood Uncertainty Estimation...

  15. Sensitivity analysis of add-on price estimate for select silicon wafering technologies

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1982-01-01

    The cost of producing wafers from silicon ingots is a major component of the add-on price of silicon sheet. Economic analyses of the add-on price estimates and their sensitivity internal-diameter (ID) sawing, multiblade slurry (MBS) sawing and fixed-abrasive slicing technique (FAST) are presented. Interim price estimation guidelines (IPEG) are used for estimating a process add-on price. Sensitivity analysis of price is performed with respect to cost parameters such as equipment, space, direct labor, materials (blade life) and utilities, and the production parameters such as slicing rate, slices per centimeter and process yield, using a computer program specifically developed to do sensitivity analysis with IPEG. The results aid in identifying the important cost parameters and assist in deciding the direction of technology development efforts.

  16. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  17. Proof-of-Concept Study for Uncertainty Quantification and Sensitivity Analysis using the BRL Shaped-Charge Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Justin Matthew

    These are the slides for a graduate presentation at Mississippi State University. It covers the following: the BRL Shaped-Charge Geometry in PAGOSA, mesh refinement study, surrogate modeling using a radial basis function network (RBFN), ruling out parameters using sensitivity analysis (equation of state study), uncertainty quantification (UQ) methodology, and sensitivity analysis (SA) methodology. In summary, a mesh convergence study was used to ensure that solutions were numerically stable by comparing PDV data between simulations. A Design of Experiments (DOE) method was used to reduce the simulation space to study the effects of the Jones-Wilkins-Lee (JWL) Parameters for the Composition Bmore » main charge. Uncertainty was quantified by computing the 95% data range about the median of simulation output using a brute force Monte Carlo (MC) random sampling method. Parameter sensitivities were quantified using the Fourier Amplitude Sensitivity Test (FAST) spectral analysis method where it was determined that detonation velocity, initial density, C1, and B1 controlled jet tip velocity.« less

  18. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines

    PubMed Central

    Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.

    2017-01-01

    Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445

  19. Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.

    PubMed

    Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R; Melo, Alba C M A; Gao, Yi; Kong, Jun; Saltz, Joel H

    2017-04-01

    Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Source code: https://github.com/SBU-BMI/region-templates/ . teodoro@unb.br. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  20. Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation

    PubMed Central

    Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.

    2015-01-01

    Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972

  1. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias

    2015-04-01

    Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.

  2. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  3. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  4. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  5. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  6. Space shuttle SRM plume expansion sensitivity analysis. [flow characteristics of exhaust gases from solid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.

    1975-01-01

    The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.

  7. Rapid Debris Analysis Project Task 3 Final Report - Sensitivity of Fallout to Source Parameters, Near-Detonation Environment Material Properties, Topography, and Meteorology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Peter

    2014-01-24

    This report describes the sensitivity of predicted nuclear fallout to a variety of model input parameters, including yield, height of burst, particle and activity size distribution parameters, wind speed, wind direction, topography, and precipitation. We investigate sensitivity over a wide but plausible range of model input parameters. In addition, we investigate a specific example with a relatively narrow range to illustrate the potential for evaluating uncertainties in predictions when there are more precise constraints on model parameters.

  8. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  9. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  10. Stereometric parameters change vs. Topographic Change Analysis (TCA) agreement in Heidelberg Retina Tomography III (HRT-3) early detection of clinical significant glaucoma progression.

    PubMed

    Dascalu, A M; Cherecheanu, A P; Stana, D; Voinea, L; Ciuluvica, R; Savlovschi, C; Serban, D

    2014-01-01

    to investigate the sensitivity and specificity of the stereometric parameters change analysis vs. Topographic Change Analysis in early detection of glaucoma progression. 81 patients with POAG were monitored for 4 years (GAT monthly, SAP at every 6 months, optic disc photographs and HRT3 yearly). The exclusion criteria were other optic disc or retinal pathology; topographic standard deviation (TSD>30; inter-test variation of reference height>25 μm. The criterion for structural progression was the following: at least 20 adjacent super-pixels with a clinically significant decrease in height (>5%). 16 patients of the total 81 presented structural progression on TCA. The most useful stereometric parameters for the early detection of glaucoma progression were the following: Rim Area change (sensitivity 100%, specificity 74.2% for a "cut-off " value of -0.05), C/D Area change (sensitivity 85.7%, specificity 71.5% for a "cut off " value of 0.02), C/D linear change (sensitivity 85.7%, specificity 71.5% for a "cut-off " value of 0.02), Rim Volume change (sensitivity 71.4%, specificity 88.8% for a "cut-off " value of -0.04). RNFL Thickness change (<0) was highly sensitive (82%), but less specific for glaucoma progression (45,2%). Changes of the other stereometric parameters have a limited diagnostic value for the early detection of glaucoma progression. TCA is a valuable tool for the assessment of the structural progression in glaucoma patients and its inter-test variability is low. On long-term, the quantitative analysis according to stereometric parameters change is also very important. The most relevant parameters to detect progression are RA, C/D Area, Linear C/D and RV.

  11. Towards simplification of hydrologic modeling: Identification of dominant processes

    USGS Publications Warehouse

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  12. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  13. Sensitivity and Specificity of Eustachian Tube Function Tests in Adults

    PubMed Central

    Doyle, William J.; Swarts, J. Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M.

    2013-01-01

    Objective Determine if Eustachian Tube (ET) function (ETF) tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and define the inter-relatedness of ETF test parameters. Methods ETF was evaluated using the Forced-Response, Inflation-Deflation, Valsalva and Sniffing tests in 15 control ears of adult subjects after unilateral myringotomy (Group I) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (Group II). Data were analyzed using logistic regression including each parameter independently and then a step-down Discriminant Analysis including all ETF test parameters to predict group assignment. Factor Analysis operating over all parameters was used to explore relatedness. Results The Discriminant Analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency and % positive pressure equilibrated) that together correctly assigned ears to Group II at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters, the first had negative loadings of the ETF structural parameters, the second had positive loadings of the muscle-assisted ET opening parameters and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. Discussion These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories. PMID:23868429

  14. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.

  15. CXTFIT/Excel A modular adaptable code for parameter estimation, sensitivity analysis and uncertainty analysis for laboratory or field tracer experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Guoping; Mayes, Melanie; Parker, Jack C

    2010-01-01

    We implemented the widely used CXTFIT code in Excel to provide flexibility and added sensitivity and uncertainty analysis functions to improve transport parameter estimation and to facilitate model discrimination for multi-tracer experiments on structured soils. Analytical solutions for one-dimensional equilibrium and nonequilibrium convection dispersion equations were coded as VBA functions so that they could be used as ordinary math functions in Excel for forward predictions. Macros with user-friendly interfaces were developed for optimization, sensitivity analysis, uncertainty analysis, error propagation, response surface calculation, and Monte Carlo analysis. As a result, any parameter with transformations (e.g., dimensionless, log-transformed, species-dependent reactions, etc.) couldmore » be estimated with uncertainty and sensitivity quantification for multiple tracer data at multiple locations and times. Prior information and observation errors could be incorporated into the weighted nonlinear least squares method with a penalty function. Users are able to change selected parameter values and view the results via embedded graphics, resulting in a flexible tool applicable to modeling transport processes and to teaching students about parameter estimation. The code was verified by comparing to a number of benchmarks with CXTFIT 2.0. It was applied to improve parameter estimation for four typical tracer experiment data sets in the literature using multi-model evaluation and comparison. Additional examples were included to illustrate the flexibilities and advantages of CXTFIT/Excel. The VBA macros were designed for general purpose and could be used for any parameter estimation/model calibration when the forward solution is implemented in Excel. A step-by-step tutorial, example Excel files and the code are provided as supplemental material.« less

  16. Design sensitivity analysis using EAL. Part 1: Conventional design parameters

    NASA Technical Reports Server (NTRS)

    Dopker, B.; Choi, Kyung K.; Lee, J.

    1986-01-01

    A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method.

  17. Estimating Sobol Sensitivity Indices Using Correlations

    EPA Science Inventory

    Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...

  18. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  19. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software.

    PubMed

    Liwarska-Bizukojc, Ewa; Biernacki, Rafal

    2010-10-01

    In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. An approach to measure parameter sensitivity in watershed ...

    EPA Pesticide Factsheets

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.

  1. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  2. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  3. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  4. Sensitivity analysis in economic evaluation: an audit of NICE current practice and a review of its use and value in decision-making.

    PubMed

    Andronis, L; Barton, P; Bryan, S

    2009-06-01

    To determine how we define good practice in sensitivity analysis in general and probabilistic sensitivity analysis (PSA) in particular, and to what extent it has been adhered to in the independent economic evaluations undertaken for the National Institute for Health and Clinical Excellence (NICE) over recent years; to establish what policy impact sensitivity analysis has in the context of NICE, and policy-makers' views on sensitivity analysis and uncertainty, and what use is made of sensitivity analysis in policy decision-making. Three major electronic databases, MEDLINE, EMBASE and the NHS Economic Evaluation Database, were searched from inception to February 2008. The meaning of 'good practice' in the broad area of sensitivity analysis was explored through a review of the literature. An audit was undertaken of the 15 most recent NICE multiple technology appraisal judgements and their related reports to assess how sensitivity analysis has been undertaken by independent academic teams for NICE. A review of the policy and guidance documents issued by NICE aimed to assess the policy impact of the sensitivity analysis and the PSA in particular. Qualitative interview data from NICE Technology Appraisal Committee members, collected as part of an earlier study, were also analysed to assess the value attached to the sensitivity analysis components of the economic analyses conducted for NICE. All forms of sensitivity analysis, notably both deterministic and probabilistic approaches, have their supporters and their detractors. Practice in relation to univariate sensitivity analysis is highly variable, with considerable lack of clarity in relation to the methods used and the basis of the ranges employed. In relation to PSA, there is a high level of variability in the form of distribution used for similar parameters, and the justification for such choices is rarely given. Virtually all analyses failed to consider correlations within the PSA, and this is an area of concern. Uncertainty is considered explicitly in the process of arriving at a decision by the NICE Technology Appraisal Committee, and a correlation between high levels of uncertainty and negative decisions was indicated. The findings suggest considerable value in deterministic sensitivity analysis. Such analyses serve to highlight which model parameters are critical to driving a decision. Strong support was expressed for PSA, principally because it provides an indication of the parameter uncertainty around the incremental cost-effectiveness ratio. The review and the policy impact assessment focused exclusively on documentary evidence, excluding other sources that might have revealed further insights on this issue. In seeking to address parameter uncertainty, both deterministic and probabilistic sensitivity analyses should be used. It is evident that some cost-effectiveness work, especially around the sensitivity analysis components, represents a challenge in making it accessible to those making decisions. This speaks to the training agenda for those sitting on such decision-making bodies, and to the importance of clear presentation of analyses by the academic community.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  6. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global sensitivity analysis results.

  7. CALIBRATION, OPTIMIZATION, AND SENSITIVITY AND UNCERTAINTY ALGORITHMS APPLICATION PROGRAMMING INTERFACE (COSU-API)

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...

  8. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  9. Uncertainty, Sensitivity Analysis, and Causal Identification in the Arctic using a Perturbed Parameter Ensemble of the HiLAT Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark

    Coupled climate models have a large number of input parameters that can affect output uncertainty. We conducted a sensitivity analysis of sea ice proper:es and Arc:c related climate variables to 5 parameters in the HiLAT climate model: air-ocean turbulent exchange parameter (C), conversion of water vapor to clouds (cldfrc_rhminl) and of ice crystals to snow (micro_mg_dcs), snow thermal conduc:vity (ksno), and maximum snow grain size (rsnw_mlt). We used an elementary effect (EE) approach to rank their importance for output uncertainty. EE is an extension of one-at-a-time sensitivity analyses, but it is more efficient in sampling multi-dimensional parameter spaces. We lookedmore » for emerging relationships among climate variables across the model ensemble, and used causal discovery algorithms to establish potential pathways for those relationships.« less

  10. Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters.

    PubMed

    Douglas, P; Tyrrel, S F; Kinnersley, R P; Whelan, M; Longhurst, P J; Walsh, K; Pollard, S J T; Drew, G H

    2016-12-15

    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions. Copyright © 2016. Published by Elsevier Ltd.

  11. Uncertainty analysis and global sensitivity analysis of techno-economic assessments for biodiesel production.

    PubMed

    Tang, Zhang-Chun; Zhenzhou, Lu; Zhiwen, Liu; Ningcong, Xiao

    2015-01-01

    There are various uncertain parameters in the techno-economic assessments (TEAs) of biodiesel production, including capital cost, interest rate, feedstock price, maintenance rate, biodiesel conversion efficiency, glycerol price and operating cost. However, fewer studies focus on the influence of these parameters on TEAs. This paper investigated the effects of these parameters on the life cycle cost (LCC) and the unit cost (UC) in the TEAs of biodiesel production. The results show that LCC and UC exhibit variations when involving uncertain parameters. Based on the uncertainty analysis, three global sensitivity analysis (GSA) methods are utilized to quantify the contribution of an individual uncertain parameter to LCC and UC. The GSA results reveal that the feedstock price and the interest rate produce considerable effects on the TEAs. These results can provide a useful guide for entrepreneurs when they plan plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia

    NASA Astrophysics Data System (ADS)

    Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica

    2017-01-01

    We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.

  13. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  14. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models

    USGS Publications Warehouse

    Miller, David A.W.

    2012-01-01

    Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.

  15. Monte Carlo sensitivity analysis of unknown parameters in hazardous materials transportation risk assessment.

    PubMed

    Pet-Armacost, J J; Sepulveda, J; Sakude, M

    1999-12-01

    The US Department of Transportation was interested in the risks associated with transporting Hydrazine in tanks with and without relief devices. Hydrazine is both highly toxic and flammable, as well as corrosive. Consequently, there was a conflict as to whether a relief device should be used or not. Data were not available on the impact of relief devices on release probabilities or the impact of Hydrazine on the likelihood of fires and explosions. In this paper, a Monte Carlo sensitivity analysis of the unknown parameters was used to assess the risks associated with highway transport of Hydrazine. To help determine whether or not relief devices should be used, fault trees and event trees were used to model the sequences of events that could lead to adverse consequences during transport of Hydrazine. The event probabilities in the event trees were derived as functions of the parameters whose effects were not known. The impacts of these parameters on the risk of toxic exposures, fires, and explosions were analyzed through a Monte Carlo sensitivity analysis and analyzed statistically through an analysis of variance. The analysis allowed the determination of which of the unknown parameters had a significant impact on the risks. It also provided the necessary support to a critical transportation decision even though the values of several key parameters were not known.

  16. A sensitivity analysis for a thermomechanical model of the Antarctic ice sheet and ice shelves

    NASA Astrophysics Data System (ADS)

    Baratelli, F.; Castellani, G.; Vassena, C.; Giudici, M.

    2012-04-01

    The outcomes of an ice sheet model depend on a number of parameters and physical quantities which are often estimated with large uncertainty, because of lack of sufficient experimental measurements in such remote environments. Therefore, the efforts to improve the accuracy of the predictions of ice sheet models by including more physical processes and interactions with atmosphere, hydrosphere and lithosphere can be affected by the inaccuracy of the fundamental input data. A sensitivity analysis can help to understand which are the input data that most affect the different predictions of the model. In this context, a finite difference thermomechanical ice sheet model based on the Shallow-Ice Approximation (SIA) and on the Shallow-Shelf Approximation (SSA) has been developed and applied for the simulation of the evolution of the Antarctic ice sheet and ice shelves for the last 200 000 years. The sensitivity analysis of the model outcomes (e.g., the volume of the ice sheet and of the ice shelves, the basal melt rate of the ice sheet, the mean velocity of the Ross and Ronne-Filchner ice shelves, the wet area at the base of the ice sheet) with respect to the model parameters (e.g., the basal sliding coefficient, the geothermal heat flux, the present-day surface accumulation and temperature, the mean ice shelves viscosity, the melt rate at the base of the ice shelves) has been performed by computing three synthetic numerical indices: two local sensitivity indices and a global sensitivity index. Local sensitivity indices imply a linearization of the model and neglect both non-linear and joint effects of the parameters. The global variance-based sensitivity index, instead, takes into account the complete variability of the input parameters but is usually conducted with a Monte Carlo approach which is computationally very demanding for non-linear complex models. Therefore, the global sensitivity index has been computed using a development of the model outputs in a neighborhood of the reference parameter values with a second-order approximation. The comparison of the three sensitivity indices proved that the approximation of the non-linear model with a second-order expansion is sufficient to show some differences between the local and the global indices. As a general result, the sensitivity analysis showed that most of the model outcomes are mainly sensitive to the present-day surface temperature and accumulation, which, in principle, can be measured more easily (e.g., with remote sensing techniques) than the other input parameters considered. On the other hand, the parameters to which the model resulted less sensitive are the basal sliding coefficient and the mean ice shelves viscosity.

  17. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  18. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.

  19. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  20. Surrogate models for efficient stability analysis of brake systems

    NASA Astrophysics Data System (ADS)

    Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques

    2015-07-01

    This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.

  1. PREVALENCE OF METABOLIC SYNDROME IN YOUNG MEXICANS: A SENSITIVITY ANALYSIS ON ITS COMPONENTS.

    PubMed

    Murguía-Romero, Miguel; Jiménez-Flores, J Rafael; Sigrist-Flores, Santiago C; Tapia-Pancardo, Diana C; Jiménez-Ramos, Arnulfo; Méndez-Cruz, A René; Villalobos-Molina, Rafael

    2015-07-28

    obesity is a worldwide epidemic, and the high prevalence of diabetes type II (DM2) and cardiovascular disease (CVD) is in great part a consequence of that epidemic. Metabolic syndrome is a useful tool to estimate the risk of a young population to evolve to DM2 and CVD. to estimate the MetS prevalence in young Mexicans, and to evaluate each parameter as an independent indicator through a sensitivity analysis. the prevalence of MetS was estimated in 6 063 young of the México City metropolitan area. A sensitivity analysis was conducted to estimate the performance of each one of the components of MetS, as an indicator of the presence of MetS itself. Five statistical of the sensitivity analysis were calculated for each MetS component and the other parameters included: sensitivity, specificity, positive predictive value or precision, negative predictive value, and accuracy. the prevalence of MetS in Mexican young population was estimated to be 13.4%. Waist circumference presented the highest sensitivity (96.8% women; 90.0% men), blood pressure presented the highest specificity for women (97.7%) and glucose for men (91.0%). When all the five statistical are considered triglycerides is the component with the highest values, showing a value of 75% or more in four of them. Differences by sex are detected for averages of all components of MetS in young without alterations. Mexican young are highly prone to acquire MetS: 71% have at least one and up to five MetS parameters altered, and 13.4% of them have MetS. From all the five components of MetS, waist circumference presented the highest sensitivity as a predictor of MetS, and triglycerides is the best parameter if a single factor is to be taken as sole predictor of MetS in Mexican young population, triglycerides is also the parameter with the highest accuracy. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2015-01-01

    Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

  3. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  4. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE PAGES

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  5. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.

  6. Testing alternative ground water models using cross-validation and other methods

    USGS Publications Warehouse

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  7. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan

    2016-09-01

    Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  8. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  9. Sensitivity analysis in a Lassa fever deterministic mathematical model

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Doko, Umar Chado; Mamuda, Mamman

    2015-05-01

    Lassa virus that causes the Lassa fever is on the list of potential bio-weapons agents. It was recently imported into Germany, the Netherlands, the United Kingdom and the United States as a consequence of the rapid growth of international traffic. A model with five mutually exclusive compartments related to Lassa fever is presented and the basic reproduction number analyzed. A sensitivity analysis of the deterministic model is performed. This is done in order to determine the relative importance of the model parameters to the disease transmission. The result of the sensitivity analysis shows that the most sensitive parameter is the human immigration, followed by human recovery rate, then person to person contact. This suggests that control strategies should target human immigration, effective drugs for treatment and education to reduced person to person contact.

  10. Automated Optimization of Potential Parameters

    PubMed Central

    Michele, Di Pierro; Ron, Elber

    2013-01-01

    An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field. PMID:24015115

  11. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    NASA Astrophysics Data System (ADS)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).

  12. Developing a methodology for the inverse estimation of root architectural parameters from field based sampling schemes

    NASA Astrophysics Data System (ADS)

    Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry

    2017-04-01

    Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.

  13. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  14. Sensitivity and specificity of eustachian tube function tests in adults.

    PubMed

    Doyle, William J; Swarts, J Douglas; Banks, Julianne; Casselbrant, Margaretha L; Mandel, Ellen M; Alper, Cuneyt M

    2013-07-01

    The study demonstrates the utility of eustachian tube (ET) function (ETF) test results for accurately assigning ears to disease state. To determine if ETF tests can identify ears with physician-diagnosed ET dysfunction (ETD) in a mixed population at high sensitivity and specificity and to define the interrelatedness of ETF test parameters. Through use of the forced-response, inflation-deflation, Valsalva, and sniffing tests, ETF was evaluated in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). Data were analyzed using logistic regression including each parameter independently and then a step-down discriminant analysis including all ETF test parameters to predict group assignment. Factor analysis operating over all parameters was used to explore relatedness. ETF testing. ETF parameters for the forced response, inflation-deflation, Valsalva, and sniffing tests measured in 15 control ears of adult subjects after unilateral myringotomy (group 1) and in 23 ears of 19 adult subjects with ventilation tubes inserted for ETD (group 2). The discriminant analysis identified 4 ETF test parameters (Valsalva, ET opening pressure, dilatory efficiency, and percentage of positive pressure equilibrated) that together correctly assigned ears to group 2 at a sensitivity of 95% and a specificity of 83%. Individual parameters representing the efficiency of ET opening during swallowing showed moderately accurate assignments of ears to their respective groups. Three factors captured approximately 98% of the variance among parameters: the first had negative loadings of the ETF structural parameters; the second had positive loadings of the muscle-assisted ET opening parameters; and the third had negative loadings of the muscle-assisted ET opening parameters and positive loadings of the structural parameters. These results show that ETF tests can correctly assign individual ears to physician-diagnosed ETD with high sensitivity and specificity and that ETF test parameters can be grouped into structural-functional categories.

  15. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions.

    PubMed

    Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry

    2018-06-19

    Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.

  16. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake.

    PubMed

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-09-02

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.

  17. Quantifying uncertainty and sensitivity in sea ice models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego Blanco, Jorge Rolando; Hunke, Elizabeth Clare; Urban, Nathan Mark

    The Los Alamos Sea Ice model has a number of input parameters for which accurate values are not always well established. We conduct a variance-based sensitivity analysis of hemispheric sea ice properties to 39 input parameters. The method accounts for non-linear and non-additive effects in the model.

  18. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  19. Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model – Evidence from MOPEX Basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.

    2013-12-01

    With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less

  20. Sensitivity of VIIRS Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    2010-01-01

    The design of an optical system typically involves a sensitivity analysis where the various lens parameters, such as lens spacing and curvatures, to name two parameters, are (slightly) varied to see what, if any, effect this has on the performance and to establish manufacturing tolerances. A sinular analysis was performed for the VIIRS instruments polarization measurements to see how real world departures from perfectly linearly polarized light entering VIIRS effects the polarization measurement. The methodology and a few of the results of this polarization sensitivity analysis are presented and applied to the construction of a single polarizer which will cover the VIIRS VIS/NIR spectral range. Keywords: VIIRS, polarization, ray, trace; polarizers, Bolder Vision, MOXTEK

  1. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  2. Sensitivity of combustion and ignition characteristics of the solid-fuel charge of the microelectromechanical system of a microthruster to macrokinetic and design parameters

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.

    2012-07-01

    We have developed a sensitivity analysis permitting effective estimation of the change in the impulse responses of a microthrusters and in the ignition characteristics of the solid-fuel charge caused by the variation of the basic macrokinetic parameters of the mixed fuel and the design parameters of the microthruster's combustion chamber. On the basis of the proposed sensitivity analysis, we have estimated the spread of both the propulsive force and impulse and the induction period and self-ignition temperature depending on the macrokinetic parameters of combustion (pre-exponential factor, activation energy, density, and heat content) of the solid-fuel charge of the microthruster. The obtained results can be used for rapid and effective estimation of the spread of goal functions to provide stable physicochemical characteristics and impulse responses of solid-fuel mixtures in making and using microthrusters.

  3. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.

  4. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  5. Sensitivity analysis as an aid in modelling and control of (poorly-defined) ecological systems. [closed ecological systems

    NASA Technical Reports Server (NTRS)

    Hornberger, G. M.; Rastetter, E. B.

    1982-01-01

    A literature review of the use of sensitivity analyses in modelling nonlinear, ill-defined systems, such as ecological interactions is presented. Discussions of previous work, and a proposed scheme for generalized sensitivity analysis applicable to ill-defined systems are included. This scheme considers classes of mathematical models, problem-defining behavior, analysis procedures (especially the use of Monte-Carlo methods), sensitivity ranking of parameters, and extension to control system design.

  6. Importance of optimizing chromatographic conditions and mass spectrometric parameters for supercritical fluid chromatography/mass spectrometry.

    PubMed

    Fujito, Yuka; Hayakawa, Yoshihiro; Izumi, Yoshihiro; Bamba, Takeshi

    2017-07-28

    Supercritical fluid chromatography/mass spectrometry (SFC/MS) has great potential in high-throughput and the simultaneous analysis of a wide variety of compounds, and it has been widely used in recent years. The use of MS for detection provides the advantages of high sensitivity and high selectivity. However, the sensitivity of MS detection depends on the chromatographic conditions and MS parameters. Thus, optimization of MS parameters corresponding to the SFC condition is mandatory for maximizing performance when connecting SFC to MS. The aim of this study was to reveal a way to decide the optimum composition of the mobile phase and the flow rate of the make-up solvent for MS detection in a wide range of compounds. Additionally, we also showed the basic concept for determination of the optimum values of the MS parameters focusing on the MS detection sensitivity in SFC/MS analysis. To verify the versatility of these findings, a total of 441 pesticides with a wide polarity range (logP ow from -4.21 to 7.70) and pKa (acidic, neutral and basic). In this study, a new SFC-MS interface was used, which can transfer the entire volume of eluate into the MS by directly coupling the SFC with the MS. This enabled us to compare the sensitivity or optimum MS parameters for MS detection between LC/MS and SFC/MS for the same sample volume introduced into the MS. As a result, it was found that the optimum values of some MS parameters were completely different from those of LC/MS, and that SFC/MS-specific optimization of the analytical conditions is required. Lastly, we evaluated the sensitivity of SFC/MS using fully optimized analytical conditions. As a result, we confirmed that SFC/MS showed much higher sensitivity than LC/MS when the analytical conditions were fully optimized for SFC/MS; and the high sensitivity also increase the number of the compounds that can be detected with good repeatability in real sample analysis. This result indicates that SFC/MS has potential for practical use in the multiresidue analysis of a wide range of compounds that requires high sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Parameter sensitivity analysis of a 1-D cold region lake model for land-surface schemes

    NASA Astrophysics Data System (ADS)

    Guerrero, José-Luis; Pernica, Patricia; Wheater, Howard; Mackay, Murray; Spence, Chris

    2017-12-01

    Lakes might be sentinels of climate change, but the uncertainty in their main feedback to the atmosphere - heat-exchange fluxes - is often not considered within climate models. Additionally, these fluxes are seldom measured, hindering critical evaluation of model output. Analysis of the Canadian Small Lake Model (CSLM), a one-dimensional integral lake model, was performed to assess its ability to reproduce diurnal and seasonal variations in heat fluxes and the sensitivity of simulated fluxes to changes in model parameters, i.e., turbulent transport parameters and the light extinction coefficient (Kd). A C++ open-source software package, Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), was used to perform sensitivity analysis (SA) and identify the parameters that dominate model behavior. The generalized likelihood uncertainty estimation (GLUE) was applied to quantify the fluxes' uncertainty, comparing daily-averaged eddy-covariance observations to the output of CSLM. Seven qualitative and two quantitative SA methods were tested, and the posterior likelihoods of the modeled parameters, obtained from the GLUE analysis, were used to determine the dominant parameters and the uncertainty in the modeled fluxes. Despite the ubiquity of the equifinality issue - different parameter-value combinations yielding equivalent results - the answer to the question was unequivocal: Kd, a measure of how much light penetrates the lake, dominates sensible and latent heat fluxes, and the uncertainty in their estimates is strongly related to the accuracy with which Kd is determined. This is important since accurate and continuous measurements of Kd could reduce modeling uncertainty.

  8. Sensitivity-Based Guided Model Calibration

    NASA Astrophysics Data System (ADS)

    Semnani, M.; Asadzadeh, M.

    2017-12-01

    A common practice in automatic calibration of hydrologic models is applying the sensitivity analysis prior to the global optimization to reduce the number of decision variables (DVs) by identifying the most sensitive ones. This two-stage process aims to improve the optimization efficiency. However, Parameter sensitivity information can be used to enhance the ability of the optimization algorithms to find good quality solutions in a fewer number of solution evaluations. This improvement can be achieved by increasing the focus of optimization on sampling from the most sensitive parameters in each iteration. In this study, the selection process of the dynamically dimensioned search (DDS) optimization algorithm is enhanced by utilizing a sensitivity analysis method to put more emphasis on the most sensitive decision variables for perturbation. The performance of DDS with the sensitivity information is compared to the original version of DDS for different mathematical test functions and a model calibration case study. Overall, the results show that DDS with sensitivity information finds nearly the same solutions as original DDS, however, in a significantly fewer number of solution evaluations.

  9. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    NASA Astrophysics Data System (ADS)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  10. Impact of the time scale of model sensitivity response on coupled model parameter estimation

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu

    2017-11-01

    That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.

  11. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  12. JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY

    EPA Science Inventory

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.

  13. [Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: The BIOME-BGC model as an example.

    PubMed

    Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying

    2018-01-01

    The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.

  14. Parameter sensitivity analysis for pesticide impacts on honeybee colonies

    EPA Science Inventory

    We employ Monte Carlo simulation and linear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed that simulate hive population trajectories, taking into account queen strength, foraging success, weather, colo...

  15. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: global change and management implications.

    PubMed

    Sánchez-Canales, M; López-Benito, A; Acuña, V; Ziv, G; Hamel, P; Chaplin-Kramer, R; Elorza, F J

    2015-01-01

    Climate change and land-use change are major factors influencing sediment dynamics. Models can be used to better understand sediment production and retention by the landscape, although their interpretation is limited by large uncertainties, including model parameter uncertainties. The uncertainties related to parameter selection may be significant and need to be quantified to improve model interpretation for watershed management. In this study, we performed a sensitivity analysis of the InVEST (Integrated Valuation of Environmental Services and Tradeoffs) sediment retention model in order to determine which model parameters had the greatest influence on model outputs, and therefore require special attention during calibration. The estimation of the sediment loads in this model is based on the Universal Soil Loss Equation (USLE). The sensitivity analysis was performed in the Llobregat basin (NE Iberian Peninsula) for exported and retained sediment, which support two different ecosystem service benefits (avoided reservoir sedimentation and improved water quality). Our analysis identified the model parameters related to the natural environment as the most influential for sediment export and retention. Accordingly, small changes in variables such as the magnitude and frequency of extreme rainfall events could cause major changes in sediment dynamics, demonstrating the sensitivity of these dynamics to climate change in Mediterranean basins. Parameters directly related to human activities and decisions (such as cover management factor, C) were also influential, especially for sediment exported. The importance of these human-related parameters in the sediment export process suggests that mitigation measures have the potential to at least partially ameliorate climate-change driven changes in sediment exportation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    2018-02-01

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. About 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). The relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.

  17. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  18. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  19. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    USGS Publications Warehouse

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  1. Application of design sensitivity analysis for greater improvement on machine structural dynamics

    NASA Technical Reports Server (NTRS)

    Yoshimura, Masataka

    1987-01-01

    Methodologies are presented for greatly improving machine structural dynamics by using design sensitivity analyses and evaluative parameters. First, design sensitivity coefficients and evaluative parameters of structural dynamics are described. Next, the relations between the design sensitivity coefficients and the evaluative parameters are clarified. Then, design improvement procedures of structural dynamics are proposed for the following three cases: (1) addition of elastic structural members, (2) addition of mass elements, and (3) substantial charges of joint design variables. Cases (1) and (2) correspond to the changes of the initial framework or configuration, and (3) corresponds to the alteration of poor initial design variables. Finally, numerical examples are given for demonstrating the availability of the methods proposed.

  2. Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.

    2017-12-01

    Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.

  3. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model

    DOE PAGES

    Gan, Yanjun; Duan, Qingyun; Gong, Wei; ...

    2014-01-01

    Sensitivity analysis (SA) is a commonly used approach for identifying important parameters that dominate model behaviors. We use a newly developed software package, a Problem Solving environment for Uncertainty Analysis and Design Exploration (PSUADE), to evaluate the effectiveness and efficiency of ten widely used SA methods, including seven qualitative and three quantitative ones. All SA methods are tested using a variety of sampling techniques to screen out the most sensitive (i.e., important) parameters from the insensitive ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen tunable parameters, is used for illustration. The South Branch Potomac River basin nearmore » Springfield, West Virginia in the U.S. is chosen as the study area. The key findings from this study are: (1) For qualitative SA methods, Correlation Analysis (CA), Regression Analysis (RA), and Gaussian Process (GP) screening methods are shown to be not effective in this example. Morris One-At-a-Time (MOAT) screening is the most efficient, needing only 280 samples to identify the most important parameters, but it is the least robust method. Multivariate Adaptive Regression Splines (MARS), Delta Test (DT) and Sum-Of-Trees (SOT) screening methods need about 400–600 samples for the same purpose. Monte Carlo (MC), Orthogonal Array (OA) and Orthogonal Array based Latin Hypercube (OALH) are appropriate sampling techniques for them; (2) For quantitative SA methods, at least 2777 samples are needed for Fourier Amplitude Sensitivity Test (FAST) to identity parameter main effect. McKay method needs about 360 samples to evaluate the main effect, more than 1000 samples to assess the two-way interaction effect. OALH and LPτ (LPTAU) sampling techniques are more appropriate for McKay method. For the Sobol' method, the minimum samples needed are 1050 to compute the first-order and total sensitivity indices correctly. These comparisons show that qualitative SA methods are more efficient but less accurate and robust than quantitative ones.« less

  4. Using sensitivity analysis in model calibration efforts

    USGS Publications Warehouse

    Tiedeman, Claire; Hill, Mary C.

    2003-01-01

    In models of natural and engineered systems, sensitivity analysis can be used to assess relations among system state observations, model parameters, and model predictions. The model itself links these three entities, and model sensitivities can be used to quantify the links. Sensitivities are defined as the derivatives of simulated quantities (such as simulated equivalents of observations, or model predictions) with respect to model parameters. We present four measures calculated from model sensitivities that quantify the observation-parameter-prediction links and that are especially useful during the calibration and prediction phases of modeling. These four measures are composite scaled sensitivities (CSS), prediction scaled sensitivities (PSS), the value of improved information (VOII) statistic, and the observation prediction (OPR) statistic. These measures can be used to help guide initial calibration of models, collection of field data beneficial to model predictions, and recalibration of models updated with new field information. Once model sensitivities have been calculated, each of the four measures requires minimal computational effort. We apply the four measures to a three-layer MODFLOW-2000 (Harbaugh et al., 2000; Hill et al., 2000) model of the Death Valley regional ground-water flow system (DVRFS), located in southern Nevada and California. D’Agnese et al. (1997, 1999) developed and calibrated the model using nonlinear regression methods. Figure 1 shows some of the observations, parameters, and predictions for the DVRFS model. Observed quantities include hydraulic heads and spring flows. The 23 defined model parameters include hydraulic conductivities, vertical anisotropies, recharge rates, evapotranspiration rates, and pumpage. Predictions of interest for this regional-scale model are advective transport paths from potential contamination sites underlying the Nevada Test Site and Yucca Mountain.

  5. Are LOD and LOQ Reliable Parameters for Sensitivity Evaluation of Spectroscopic Methods?

    PubMed

    Ershadi, Saba; Shayanfar, Ali

    2018-03-22

    The limit of detection (LOD) and the limit of quantification (LOQ) are common parameters to assess the sensitivity of analytical methods. In this study, the LOD and LOQ of previously reported terbium sensitized analysis methods were calculated by different methods, and the results were compared with sensitivity parameters [lower limit of quantification (LLOQ)] of U.S. Food and Drug Administration guidelines. The details of the calibration curve and standard deviation of blank samples of three different terbium-sensitized luminescence methods for the quantification of mycophenolic acid, enrofloxacin, and silibinin were used for the calculation of LOD and LOQ. A comparison of LOD and LOQ values calculated by various methods and LLOQ shows a considerable difference. The significant difference of the calculated LOD and LOQ with various methods and LLOQ should be considered in the sensitivity evaluation of spectroscopic methods.

  6. Normalized sensitivities and parameter identifiability of in situ diffusion experiments on Callovo Oxfordian clay at Bure site

    NASA Astrophysics Data System (ADS)

    Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.

    Diffusion of inert and reactive tracers (DIR) is an experimental program performed by ANDRA at Bure underground research laboratory in Meuse/Haute Marne (France) to characterize diffusion and retention of radionuclides in Callovo-Oxfordian (C-Ox) argillite. In situ diffusion experiments were performed in vertical boreholes to determine diffusion and retention parameters of selected radionuclides. C-Ox clay exhibits a mild diffusion anisotropy due to stratification. Interpretation of in situ diffusion experiments is complicated by several non-ideal effects caused by the presence of a sintered filter, a gap between the filter and borehole wall and an excavation disturbed zone (EdZ). The relevance of such non-ideal effects and their impact on estimated clay parameters have been evaluated with numerical sensitivity analyses and synthetic experiments having similar parameters and geometric characteristics as real DIR experiments. Normalized dimensionless sensitivities of tracer concentrations at the test interval have been computed numerically. Tracer concentrations are found to be sensitive to all key parameters. Sensitivities are tracer dependent and vary with time. These sensitivities are useful to identify which are the parameters that can be estimated with less uncertainty and find the times at which tracer concentrations begin to be sensitive to each parameter. Synthetic experiments generated with prescribed known parameters have been interpreted automatically with INVERSE-CORE 2D and used to evaluate the relevance of non-ideal effects and ascertain parameter identifiability in the presence of random measurement errors. Identifiability analysis of synthetic experiments reveals that data noise makes difficult the estimation of clay parameters. Parameters of clay and EdZ cannot be estimated simultaneously from noisy data. Models without an EdZ fail to reproduce synthetic data. Proper interpretation of in situ diffusion experiments requires accounting for filter, gap and EdZ. Estimates of the effective diffusion coefficient and the porosity of clay are highly correlated, indicating that these parameters cannot be estimated simultaneously. Accurate estimation of De and porosities of clay and EdZ is only possible when the standard deviation of random noise is less than 0.01. Small errors in the volume of the circulation system do not affect clay parameter estimates. Normalized sensitivities as well as the identifiability analysis of synthetic experiments provide additional insight on inverse estimation of in situ diffusion experiments and will be of great benefit for the interpretation of real DIR in situ diffusion experiments.

  7. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  8. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake

    PubMed Central

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-01-01

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642

  9. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Yang, Guang; Satija, Addy; Scheidt, Céline; Caers, Jef

    2016-12-01

    Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.

  10. Sensitivity analysis of machine-learning models of hydrologic time series

    NASA Astrophysics Data System (ADS)

    O'Reilly, A. M.

    2017-12-01

    Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.

  11. Rainfall or parameter uncertainty? The power of sensitivity analysis on grouped factors

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2017-04-01

    Hydrological models are typically used to study and represent (a part of) the hydrological cycle. In general, the output of these models mostly depends on their input rainfall and parameter values. Both model parameters and input precipitation however, are characterized by uncertainties and, therefore, lead to uncertainty on the model output. Sensitivity analysis (SA) allows to assess and compare the importance of the different factors for this output uncertainty. Hereto, the rainfall uncertainty can be incorporated in the SA by representing it as a probabilistic multiplier. Such multiplier can be defined for the entire time series, or several of these factors can be determined for every recorded rainfall pulse or for hydrological independent storm events. As a consequence, the number of parameters included in the SA related to the rainfall uncertainty can be (much) lower or (much) higher than the number of model parameters. Although such analyses can yield interesting results, it remains challenging to determine which type of uncertainty will affect the model output most due to the different weight both types will have within the SA. In this study, we apply the variance based Sobol' sensitivity analysis method to two different hydrological simulators (NAM and HyMod) for four diverse watersheds. Besides the different number of model parameters (NAM: 11 parameters; HyMod: 5 parameters), the setup of our sensitivity and uncertainty analysis-combination is also varied by defining a variety of scenarios including diverse numbers of rainfall multipliers. To overcome the issue of the different number of factors and, thus, the different weights of the two types of uncertainty, we build on one of the advantageous properties of the Sobol' SA, i.e. treating grouped parameters as a single parameter. The latter results in a setup with a single factor for each uncertainty type and allows for a straightforward comparison of their importance. In general, the results show a clear influence of the weights in the different SA scenarios. However, working with grouped factors resolves this issue and leads to clear importance results.

  12. Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Wilson, J. L.; Andrews, R. W.

    1985-03-01

    Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.

  13. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    PubMed

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  14. Sensitivity analysis of the space shuttle to ascent wind profiles

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Austin, L. D., Jr.

    1982-01-01

    A parametric sensitivity analysis of the space shuttle ascent flight to the wind profile is presented. Engineering systems parameters are obtained by flight simulations using wind profile models and samples of detailed (Jimsphere) wind profile measurements. The wind models used are the synthetic vector wind model, with and without the design gust, and a model of the vector wind change with respect to time. From these comparison analyses an insight is gained on the contribution of winds to ascent subsystems flight parameters.

  15. Sensitivity analysis of the add-on price estimate for the silicon web growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1981-01-01

    The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.

  16. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.

  17. Dynamic sensitivity analysis of biological systems

    PubMed Central

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2008-01-01

    Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. Conclusion By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input. PMID:19091016

  18. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  19. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  20. Parameters Estimation For A Patellofemoral Joint Of A Human Knee Using A Vector Method

    NASA Astrophysics Data System (ADS)

    Ciszkiewicz, A.; Knapczyk, J.

    2015-08-01

    Position and displacement analysis of a spherical model of a human knee joint using the vector method was presented. Sensitivity analysis and parameter estimation were performed using the evolutionary algorithm method. Computer simulations for the mechanism with estimated parameters proved the effectiveness of the prepared software. The method itself can be useful when solving problems concerning the displacement and loads analysis in the knee joint.

  1. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

    NASA Astrophysics Data System (ADS)

    Safaei, S.; Haghnegahdar, A.; Razavi, S.

    2016-12-01

    Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

  2. Sensitivity analysis to assess the influence of the inertial properties of railway vehicle bodies on the vehicle's dynamic behaviour

    NASA Astrophysics Data System (ADS)

    Suarez, Berta; Felez, Jesus; Maroto, Joaquin; Rodriguez, Pablo

    2013-02-01

    A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analysed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.

  3. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  4. Sensitivity Analysis of Mechanical Parameters of Different Rock Layers to the Stability of Coal Roadway in Soft Rock Strata

    PubMed Central

    Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing

    2013-01-01

    According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447

  5. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    DTIC Science & Technology

    2015-03-16

    sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates

  6. Spike shape analysis of electromyography for parkinsonian tremor evaluation.

    PubMed

    Marusiak, Jarosław; Andrzejewska, Renata; Świercz, Dominika; Kisiel-Sajewicz, Katarzyna; Jaskólska, Anna; Jaskólski, Artur

    2015-12-01

    Standard electromyography (EMG) parameters have limited utility for evaluation of Parkinson disease (PD) tremor. Spike shape analysis (SSA) EMG parameters are more sensitive than standard EMG parameters for studying motor control mechanisms in healthy subjects. SSA of EMG has not been used to assess parkinsonian tremor. This study assessed the utility of SSA and standard time and frequency analysis for electromyographic evaluation of PD-related resting tremor. We analyzed 1-s periods of EMG recordings to detect nontremor and tremor signals in relaxed biceps brachii muscle of seven mild to moderate PD patients. SSA revealed higher mean spike amplitude, duration, and slope and lower mean spike frequency in tremor signals than in nontremor signals. Standard EMG parameters (root mean square, median, and mean frequency) did not show differences between the tremor and nontremor signals. SSA of EMG data is a sensitive method for parkinsonian tremor evaluation. © 2015 Wiley Periodicals, Inc.

  7. Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan

    2016-04-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  8. Effect of different transport observations on inverse modeling results: case study of a long-term groundwater tracer test monitored at high resolution

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Foglia, Laura; Mackay, Douglas M.; Scow, Kate M.

    2013-11-01

    Conservative tracer experiments can provide information useful for characterizing various subsurface transport properties. This study examines the effectiveness of three different types of transport observations for sensitivity analysis and parameter estimation of a three-dimensional site-specific groundwater flow and transport model: conservative tracer breakthrough curves (BTCs), first temporal moments of BTCs ( m 1), and tracer cumulative mass discharge ( M d) through control planes combined with hydraulic head observations ( h). High-resolution data obtained from a 410-day controlled field experiment at Vandenberg Air Force Base, California (USA), have been used. In this experiment, bromide was injected to create two adjacent plumes monitored at six different transects (perpendicular to groundwater flow) with a total of 162 monitoring wells. A total of 133 different observations of transient hydraulic head, 1,158 of BTC concentration, 23 of first moment, and 36 of mass discharge were used for sensitivity analysis and parameter estimation of nine flow and transport parameters. The importance of each group of transport observations in estimating these parameters was evaluated using sensitivity analysis, and five out of nine parameters were calibrated against these data. Results showed the advantages of using temporal moment of conservative tracer BTCs and mass discharge as observations for inverse modeling.

  9. Population and High-Risk Group Screening for Glaucoma: The Los Angeles Latino Eye Study

    PubMed Central

    Francis, Brian A.; Vigen, Cheryl; Lai, Mei-Ying; Winarko, Jonathan; Nguyen, Betsy; Azen, Stanley

    2011-01-01

    Purpose. To evaluate the ability of various screening tests, both individually and in combination, to detect glaucoma in the general Latino population and high-risk subgroups. Methods. The Los Angeles Latino Eye Study is a population-based study of eye disease in Latinos 40 years of age and older. Participants (n = 6082) underwent Humphrey visual field testing (HVF), frequency doubling technology (FDT) perimetry, measurement of intraocular pressure (IOP) and central corneal thickness (CCT), and independent assessment of optic nerve vertical cup disc (C/D) ratio. Screening parameters were evaluated for three definitions of glaucoma based on optic disc, visual field, and a combination of both. Analyses were also conducted for high-risk subgroups (family history of glaucoma, diabetes mellitus, and age ≥65 years). Sensitivity, specificity, and receiver operating characteristic curves were calculated for those continuous parameters independently associated with glaucoma. Classification and regression tree (CART) analysis was used to develop a multivariate algorithm for glaucoma screening. Results. Preset cutoffs for screening parameters yielded a generally poor balance of sensitivity and specificity (sensitivity/specificity for IOP ≥21 mm Hg and C/D ≥0.8 was 0.24/0.97 and 0.60/0.98, respectively). Assessment of high-risk subgroups did not improve the sensitivity/specificity of individual screening parameters. A CART analysis using multiple screening parameters—C/D, HVF, and IOP—substantially improved the balance of sensitivity and specificity (sensitivity/specificity 0.92/0.92). Conclusions. No single screening parameter is useful for glaucoma screening. However, a combination of vertical C/D ratio, HVF, and IOP provides the best balance of sensitivity/specificity and is likely to provide the highest yield in glaucoma screening programs. PMID:21245400

  10. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less

  11. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model

    DOE PAGES

    Ricciuto, Daniel; Sargsyan, Khachik; Thornton, Peter

    2018-02-27

    We conduct a global sensitivity analysis (GSA) of the Energy Exascale Earth System Model (E3SM), land model (ELM) to calculate the sensitivity of five key carbon cycle outputs to 68 model parameters. This GSA is conducted by first constructing a Polynomial Chaos (PC) surrogate via new Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth leading to a sparse, high-dimensional PC surrogate with 3,000 model evaluations. The PC surrogate allows efficient extraction of GSA information leading to further dimensionality reduction. The GSA is performed at 96 FLUXNET sites covering multiple plant functional types (PFTs) and climate conditions. Aboutmore » 20 of the model parameters are identified as sensitive with the rest being relatively insensitive across all outputs and PFTs. These sensitivities are dependent on PFT, and are relatively consistent among sites within the same PFT. The five model outputs have a majority of their highly sensitive parameters in common. A common subset of sensitive parameters is also shared among PFTs, but some parameters are specific to certain types (e.g., deciduous phenology). In conclusion, the relative importance of these parameters shifts significantly among PFTs and with climatic variables such as mean annual temperature.« less

  12. Design of experiments for identification of complex biochemical systems with applications to mitochondrial bioenergetics.

    PubMed

    Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K

    2009-01-01

    Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.

  13. Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Hou, Gene J. W.; Kenny, Sean P.

    1991-01-01

    A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.

  14. Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models.

    PubMed

    Erguler, Kamil; Stumpf, Michael P H

    2011-05-01

    The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.

  15. Assessment of Spatial Transferability of Process-Based Hydrological Model Parameters in Two Neighboring Catchments in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Nepal, S.

    2016-12-01

    The spatial transferability of the model parameters of the process-oriented distributed J2000 hydrological model was investigated in two glaciated sub-catchments of the Koshi river basin in eastern Nepal. The basins had a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986-1991) and validated (1992-1997) in the Dudh Koshi sub-catchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001-2009). A sensitivity and uncertainty analysis was carried out for both sub-catchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both sub-catchments, including baseflow and medium range flows (rising and recession limbs). The efficiency results according to both Nash-Sutcliffe and the coefficient of determination was above 0.84 in both cases. The sensitivity analysis showed that the same parameter was most sensitive for Nash-Sutcliffe (ENS) and Log Nash-Sutcliffe (LNS) efficiencies in both catchments. However, there were some differences in sensitivity to ENS and LNS for moderate and low sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. A generalized likelihood uncertainty estimation (GLUE) result suggest that most of the time the observed runoff is within the parameter uncertainty range, although occasionally the values lie outside the uncertainty range, especially during flood peaks and more in the Tamor. This may be due to the limited input data resulting from the small number of precipitation stations and lack of representative stations in high-altitude areas, as well as to model structural uncertainty. The results indicate that transfer of the J2000 parameters to a neighboring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying process-based J2000 model be to the ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.

  16. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. II: Factor sensitivity analysis, calibration, and validation.

    PubMed

    Schuff, M M; Gore, J P; Nauman, E A

    2013-12-01

    The treatment of cancerous tumors is dependent upon the delivery of therapeutics through the blood by means of the microcirculation. Differences in the vasculature of normal and malignant tissues have been recognized, but it is not fully understood how these differences affect transport and the applicability of existing mathematical models has been questioned at the microscale due to the complex rheology of blood and fluid exchange with the tissue. In addition to determining an appropriate set of governing equations it is necessary to specify appropriate model parameters based on physiological data. To this end, a two stage sensitivity analysis is described which makes it possible to determine the set of parameters most important to the model's calibration. In the first stage, the fluid flow equations are examined and a sensitivity analysis is used to evaluate the importance of 11 different model parameters. Of these, only four substantially influence the intravascular axial flow providing a tractable set that could be calibrated using red blood cell velocity data from the literature. The second stage also utilizes a sensitivity analysis to evaluate the importance of 14 model parameters on extravascular flux. Of these, six exhibit high sensitivity and are integrated into the model calibration using a response surface methodology and experimental intra- and extravascular accumulation data from the literature (Dreher et al. in J Natl Cancer Inst 98(5):335-344, 2006). The model exhibits good agreement with the experimental results for both the mean extravascular concentration and the penetration depth as a function of time for inert dextran over a wide range of molecular weights.

  17. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.

    PubMed

    Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.

  18. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  19. What Constitutes a "Good" Sensitivity Analysis? Elements and Tools for a Robust Sensitivity Analysis with Reduced Computational Cost

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin; Haghnegahdar, Amin

    2016-04-01

    Global sensitivity analysis (GSA) is a systems theoretic approach to characterizing the overall (average) sensitivity of one or more model responses across the factor space, by attributing the variability of those responses to different controlling (but uncertain) factors (e.g., model parameters, forcings, and boundary and initial conditions). GSA can be very helpful to improve the credibility and utility of Earth and Environmental System Models (EESMs), as these models are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. However, conventional approaches to GSA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we identify several important sensitivity-related characteristics of response surfaces that must be considered when investigating and interpreting the ''global sensitivity'' of a model response (e.g., a metric of model performance) to its parameters/factors. Accordingly, we present a new and general sensitivity and uncertainty analysis framework, Variogram Analysis of Response Surfaces (VARS), based on an analogy to 'variogram analysis', that characterizes a comprehensive spectrum of information on sensitivity. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices are contained within the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  20. Sensitivity analysis of the parameters of an HIV/AIDS model with condom campaign and antiretroviral therapy

    NASA Astrophysics Data System (ADS)

    Marsudi, Hidayat, Noor; Wibowo, Ratno Bagus Edy

    2017-12-01

    In this article, we present a deterministic model for the transmission dynamics of HIV/AIDS in which condom campaign and antiretroviral therapy are both important for the disease management. We calculate the effective reproduction number using the next generation matrix method and investigate the local and global stability of the disease-free equilibrium of the model. Sensitivity analysis of the effective reproduction number with respect to the model parameters were carried out. Our result shows that efficacy rate of condom campaign, transmission rate for contact with the asymptomatic infective, progression rate from the asymptomatic infective to the pre-AIDS infective, transmission rate for contact with the pre-AIDS infective, ARV therapy rate, proportion of the susceptible receiving condom campaign and proportion of the pre-AIDS receiving ARV therapy are highly sensitive parameters that effect the transmission dynamics of HIV/AIDS infection.

  1. Global sensitivity analysis of groundwater transport

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Soltani, S.; Vigouroux, G.

    2015-12-01

    In this work we address the model and parametric sensitivity of groundwater transport using the Lagrangian-Stochastic Advection-Reaction (LaSAR) methodology. The 'attenuation index' is used as a relevant and convenient measure of the coupled transport mechanisms. The coefficients of variation (CV) for seven uncertain parameters are assumed to be between 0.25 and 3.5, the highest value being for the lower bound of the mass transfer coefficient k0 . In almost all cases, the uncertainties in the macro-dispersion (CV = 0.35) and in the mass transfer rate k0 (CV = 3.5) are most significant. The global sensitivity analysis using Sobol and derivative-based indices yield consistent rankings on the significance of different models and/or parameter ranges. The results presented here are generic however the proposed methodology can be easily adapted to specific conditions where uncertainty ranges in models and/or parameters can be estimated from field and/or laboratory measurements.

  2. Towards an atrio-ventricular delay optimization assessed by a computer model for cardiac resynchronization therapy

    NASA Astrophysics Data System (ADS)

    Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.

    2013-11-01

    In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.

  3. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis

    PubMed Central

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement. PMID:26799483

  4. Assessment of the Potential Impacts of Wheat Plant Traits across Environments by Combining Crop Modeling and Global Sensitivity Analysis.

    PubMed

    Casadebaig, Pierre; Zheng, Bangyou; Chapman, Scott; Huth, Neil; Faivre, Robert; Chenu, Karine

    2016-01-01

    A crop can be viewed as a complex system with outputs (e.g. yield) that are affected by inputs of genetic, physiology, pedo-climatic and management information. Application of numerical methods for model exploration assist in evaluating the major most influential inputs, providing the simulation model is a credible description of the biological system. A sensitivity analysis was used to assess the simulated impact on yield of a suite of traits involved in major processes of crop growth and development, and to evaluate how the simulated value of such traits varies across environments and in relation to other traits (which can be interpreted as a virtual change in genetic background). The study focused on wheat in Australia, with an emphasis on adaptation to low rainfall conditions. A large set of traits (90) was evaluated in a wide target population of environments (4 sites × 125 years), management practices (3 sowing dates × 3 nitrogen fertilization levels) and CO2 (2 levels). The Morris sensitivity analysis method was used to sample the parameter space and reduce computational requirements, while maintaining a realistic representation of the targeted trait × environment × management landscape (∼ 82 million individual simulations in total). The patterns of parameter × environment × management interactions were investigated for the most influential parameters, considering a potential genetic range of +/- 20% compared to a reference cultivar. Main (i.e. linear) and interaction (i.e. non-linear and interaction) sensitivity indices calculated for most of APSIM-Wheat parameters allowed the identification of 42 parameters substantially impacting yield in most target environments. Among these, a subset of parameters related to phenology, resource acquisition, resource use efficiency and biomass allocation were identified as potential candidates for crop (and model) improvement.

  5. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  6. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  7. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach: SENSITIVITY ANALYSIS OF SOA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recentmore » work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase transformation of SOA volatility, which is neglected in most previous models.« less

  8. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  10. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  11. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  12. Global sensitivity analysis of multiscale properties of porous materials

    NASA Astrophysics Data System (ADS)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  13. Linked Sensitivity Analysis, Calibration, and Uncertainty Analysis Using a System Dynamics Model for Stroke Comparative Effectiveness Research.

    PubMed

    Tian, Yuan; Hassmiller Lich, Kristen; Osgood, Nathaniel D; Eom, Kirsten; Matchar, David B

    2016-11-01

    As health services researchers and decision makers tackle more difficult problems using simulation models, the number of parameters and the corresponding degree of uncertainty have increased. This often results in reduced confidence in such complex models to guide decision making. To demonstrate a systematic approach of linked sensitivity analysis, calibration, and uncertainty analysis to improve confidence in complex models. Four techniques were integrated and applied to a System Dynamics stroke model of US veterans, which was developed to inform systemwide intervention and research planning: Morris method (sensitivity analysis), multistart Powell hill-climbing algorithm and generalized likelihood uncertainty estimation (calibration), and Monte Carlo simulation (uncertainty analysis). Of 60 uncertain parameters, sensitivity analysis identified 29 needing calibration, 7 that did not need calibration but significantly influenced key stroke outcomes, and 24 not influential to calibration or stroke outcomes that were fixed at their best guess values. One thousand alternative well-calibrated baselines were obtained to reflect calibration uncertainty and brought into uncertainty analysis. The initial stroke incidence rate among veterans was identified as the most influential uncertain parameter, for which further data should be collected. That said, accounting for current uncertainty, the analysis of 15 distinct prevention and treatment interventions provided a robust conclusion that hypertension control for all veterans would yield the largest gain in quality-adjusted life years. For complex health care models, a mixed approach was applied to examine the uncertainty surrounding key stroke outcomes and the robustness of conclusions. We demonstrate that this rigorous approach can be practical and advocate for such analysis to promote understanding of the limits of certainty in applying models to current decisions and to guide future data collection. © The Author(s) 2016.

  14. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  15. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  16. Model‐based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments

    PubMed Central

    Wagener, Thorsten; McGlynn, Brian

    2015-01-01

    Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197

  17. Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola

    2013-04-01

    Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.

  18. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B–induced local skin hypersensitization in healthy subjects: a machine-learned analysis

    PubMed Central

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G.; Ultsch, Alfred

    2018-01-01

    Abstract The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models. PMID:28700537

  19. PeTTSy: a computational tool for perturbation analysis of complex systems biology models.

    PubMed

    Domijan, Mirela; Brown, Paul E; Shulgin, Boris V; Rand, David A

    2016-03-10

    Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have either used parameter sampling, been focused on a restricted set of model observables of interest, studied optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where the changes can be permanent or temporary. Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of mathematical models including free-running and forced oscillators and signalling systems. To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new experiments. It is especially useful in the analysis of large and complex models involving many variables and parameters. PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and signalling systems. It allows for simulation and analysis of models under a variety of environmental conditions and for experimental optimisation of complex combined experiments. With its unique set of tools it makes a valuable addition to the current library of sensitivity analysis toolboxes. We believe that this software will be of great use to the wider biological, systems biology and modelling communities.

  20. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  1. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors?

    PubMed

    De Robertis, Riccardo; Maris, Bogdan; Cardobi, Nicolò; Tinazzi Martini, Paolo; Gobbo, Stefano; Capelli, Paola; Ortolani, Silvia; Cingarlini, Sara; Paiella, Salvatore; Landoni, Luca; Butturini, Giovanni; Regi, Paolo; Scarpa, Aldo; Tortora, Giampaolo; D'Onofrio, Mirko

    2018-06-01

    To evaluate MRI derived whole-tumour histogram analysis parameters in predicting pancreatic neuroendocrine neoplasm (panNEN) grade and aggressiveness. Pre-operative MR of 42 consecutive patients with panNEN >1 cm were retrospectively analysed. T1-/T2-weighted images and ADC maps were analysed. Histogram-derived parameters were compared to histopathological features using the Mann-Whitney U test. Diagnostic accuracy was assessed by ROC-AUC analysis; sensitivity and specificity were assessed for each histogram parameter. ADC entropy was significantly higher in G2-3 tumours with ROC-AUC 0.757; sensitivity and specificity were 83.3 % (95 % CI: 61.2-94.5) and 61.1 % (95 % CI: 36.1-81.7). ADC kurtosis was higher in panNENs with vascular involvement, nodal and hepatic metastases (p= .008, .021 and .008; ROC-AUC= 0.820, 0.709 and 0.820); sensitivity and specificity were: 85.7/74.3 % (95 % CI: 42-99.2 /56.4-86.9), 36.8/96.5 % (95 % CI: 17.2-61.4 /76-99.8) and 100/62.8 % (95 % CI: 56.1-100/44.9-78.1). No significant differences between groups were found for other histogram-derived parameters (p >.05). Whole-tumour histogram analysis of ADC maps may be helpful in predicting tumour grade, vascular involvement, nodal and liver metastases in panNENs. ADC entropy and ADC kurtosis are the most accurate parameters for identification of panNENs with malignant behaviour. • Whole-tumour ADC histogram analysis can predict aggressiveness in pancreatic neuroendocrine neoplasms. • ADC entropy and kurtosis are higher in aggressive tumours. • ADC histogram analysis can quantify tumour diffusion heterogeneity. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information for prognostication.

  2. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  3. Manual versus Automated Rodent Behavioral Assessment: Comparing Efficacy and Ease of Bederson and Garcia Neurological Deficit Scores to an Open Field Video-Tracking System.

    PubMed

    Desland, Fiona A; Afzal, Aqeela; Warraich, Zuha; Mocco, J

    2014-01-01

    Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garcia scales did not show significant differences between pre- and post-stroke animals in a small cohort. When using the same cohort, however, post-stroke data obtained from automated open field analysis showed significant differences in several parameters. Furthermore, large cohort analysis also demonstrated increased sensitivity with automated open field analysis versus the Bederson and Garcia scales. These early data indicate use of automated open field analysis software may provide a more sensitive assessment when compared to traditional Bederson and Garcia scales.

  4. Parameters sensitivity on mooring loads of ship-shaped FPSOs

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Saidee

    2017-12-01

    The work in this paper is focused on special assessment and evaluation of mooring system of ship-shaped FPSO unit. In particular, the purpose of the study is to find the impact on mooring loads for the variation in different parameters using MIMOSA software. First, a selected base case was designed for an intact mooring system in a typical ultimate limit state (ULS) condition, and then the sensitivity to mooring loads on parameters e.g. location of the turret, analysis method (quasi-static vs. dynamic analysis), low-frequency damping level in the surge, pretension and drag coefficients on chain and steel wire has been performed. It is found that mooring loads change due to the change of these parameters. Especially, pretension has a large impact on the maximum tension of mooring lines and low-frequency damping can change surge offset significantly.

  5. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.

    PubMed

    Benoit, Gaëlle; Heinkélé, Christophe; Gourdon, Emmanuel

    2013-12-01

    This paper deals with a numerical procedure to identify the acoustical parameters of road pavement from surface impedance measurements. This procedure comprises three steps. First, a suitable equivalent fluid model for the acoustical properties porous media is chosen, the variation ranges for the model parameters are set, and a sensitivity analysis for this model is performed. Second, this model is used in the parameter inversion process, which is performed with simulated annealing in a selected frequency range. Third, the sensitivity analysis and inversion process are repeated to estimate each parameter in turn. This approach is tested on data obtained for porous bituminous concrete and using the Zwikker and Kosten equivalent fluid model. This work provides a good foundation for the development of non-destructive in situ methods for the acoustical characterization of road pavements.

  6. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method

    USGS Publications Warehouse

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-01-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant density, height, and to a certain degree, diameter. Wave dissipation is mostly dependent on the variation in plant density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance for future observational and modeling work to optimize efforts and reduce exploration of parameter space.

  7. A special protection scheme utilizing trajectory sensitivity analysis in power transmission

    NASA Astrophysics Data System (ADS)

    Suriyamongkol, Dan

    In recent years, new measurement techniques have provided opportunities to improve the North American Power System observability, control and protection. This dissertation discusses the formulation and design of a special protection scheme based on a novel utilization of trajectory sensitivity techniques with inputs consisting of system state variables and parameters. Trajectory sensitivity analysis (TSA) has been used in previous publications as a method for power system security and stability assessment, and the mathematical formulation of TSA lends itself well to some of the time domain power system simulation techniques. Existing special protection schemes often have limited sets of goals and control actions. The proposed scheme aims to maintain stability while using as many control actions as possible. The approach here will use the TSA in a novel way by using the sensitivities of system state variables with respect to state parameter variations to determine the state parameter controls required to achieve the desired state variable movements. The initial application will operate based on the assumption that the modeled power system has full system observability, and practical considerations will be discussed.

  8. A multi-model assessment of terrestrial biosphere model data needs

    NASA Astrophysics Data System (ADS)

    Gardella, A.; Cowdery, E.; De Kauwe, M. G.; Desai, A. R.; Duveneck, M.; Fer, I.; Fisher, R.; Knox, R. G.; Kooper, R.; LeBauer, D.; McCabe, T.; Minunno, F.; Raiho, A.; Serbin, S.; Shiklomanov, A. N.; Thomas, A.; Walker, A.; Dietze, M.

    2017-12-01

    Terrestrial biosphere models provide us with the means to simulate the impacts of climate change and their uncertainties. Going beyond direct observation and experimentation, models synthesize our current understanding of ecosystem processes and can give us insight on data needed to constrain model parameters. In previous work, we leveraged the Predictive Ecosystem Analyzer (PEcAn) to assess the contribution of different parameters to the uncertainty of the Ecosystem Demography model v2 (ED) model outputs across various North American biomes (Dietze et al., JGR-G, 2014). While this analysis identified key research priorities, the extent to which these priorities were model- and/or biome-specific was unclear. Furthermore, because the analysis only studied one model, we were unable to comment on the effect of variability in model structure to overall predictive uncertainty. Here, we expand this analysis to all biomes globally and a wide sample of models that vary in complexity: BioCro, CABLE, CLM, DALEC, ED2, FATES, G'DAY, JULES, LANDIS, LINKAGES, LPJ-GUESS, MAESPA, PRELES, SDGVM, SIPNET, and TEM. Prior to performing uncertainty analyses, model parameter uncertainties were assessed by assimilating all available trait data from the combination of the BETYdb and TRY trait databases, using an updated multivariate version of PEcAn's Hierarchical Bayesian meta-analysis. Next, sensitivity analyses were performed for all models across a range of sites globally to assess sensitivities for a range of different outputs (GPP, ET, SH, Ra, NPP, Rh, NEE, LAI) at multiple time scales from the sub-annual to the decadal. Finally, parameter uncertainties and model sensitivities were combined to evaluate the fractional contribution of each parameter to the predictive uncertainty for a specific variable at a specific site and timescale. Facilitated by PEcAn's automated workflows, this analysis represents the broadest assessment of the sensitivities and uncertainties in terrestrial models to date, and provides a comprehensive roadmap for constraining model uncertainties through model development and data collection.

  9. Phase 1 of the near term hybrid passenger vehicle development program. Appendix D: Sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Traversi, M.

    1979-01-01

    Data are presented on the sensitivity of: (1) mission analysis results to the boundary values given for number of passenger cars and average annual vehicle miles traveled per car; (2) vehicle characteristics and performance to specifications; and (3) tradeoff study results to the expected parameters.

  10. Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat

    2016-01-01

    The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.

  11. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  12. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.

  13. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.

    PubMed

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.

  14. Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

    PubMed Central

    Apte, Advait A; Senger, Ryan S; Fong, Stephen S

    2014-01-01

    Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736

  15. Model-based POD study of manual ultrasound inspection and sensitivity analysis using metamodel

    NASA Astrophysics Data System (ADS)

    Ribay, Guillemette; Artusi, Xavier; Jenson, Frédéric; Reece, Christopher; Lhuillier, Pierre-Emile

    2016-02-01

    The reliability of NDE can be quantified by using the Probability of Detection (POD) approach. Former studies have shown the potential of the model-assisted POD (MAPOD) approach to replace expensive experimental determination of POD curves. In this paper, we make use of CIVA software to determine POD curves for a manual ultrasonic inspection of a heavy component, for which a whole experimental POD campaign was not available. The influential parameters were determined by expert analysis. The semi-analytical models used in CIVA for wave propagation and beam-defect interaction have been validated in the range of variation of the influential parameters by comparison with finite element modelling (Athena). The POD curves are computed for « hit/miss » and « â versus a » analysis. The verification of Berens hypothesis is evaluated by statistical tools. A sensitivity study is performed to measure the relative influence of parameters on the defect response amplitude variance, using the Sobol sensitivity index. A meta-model is also built to reduce computing cost and enhance the precision of estimated index.

  16. Two-dimensional advective transport in ground-water flow parameter estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.

  17. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  18. A Quantitative Study of Oxygen as a Metabolic Regulator

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation). Sensitivity analysis establishes relationships between model predictions and problem parameters (i.e., initial concentrations, rate coefficients, etc). It helps determine the effects of uncertainties or changes in these input parameters on the predictions, which ultimately are compared with experimental observations in order to validate the model. Sensitivity analysis can identify parameters that must be determined accurately because of their large effect on the model predictions and parameters that need not be known with great precision because they have little or no effect on the solution. This capability may prove to be important in optimizing the design of experiments, thereby reducing the use of animals. This approach can be applied to study the metabolic effects of reduced oxygen delivery to cardiac muscle due to local myocardial ischemia and the effects of acute hypoxia on brain metabolism. Other important applications of sensitivity analysis include identification of quantitatively relevant pathways and biochemical species within an overall mechanism, when examining the effects of a genetic anomaly or pathological state on energetic system components and whole system behavior.

  19. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  20. A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling.

    PubMed

    Sumner, T; Shephard, E; Bogle, I D L

    2012-09-07

    One of the main challenges in the development of mathematical and computational models of biological systems is the precise estimation of parameter values. Understanding the effects of uncertainties in parameter values on model behaviour is crucial to the successful use of these models. Global sensitivity analysis (SA) can be used to quantify the variability in model predictions resulting from the uncertainty in multiple parameters and to shed light on the biological mechanisms driving system behaviour. We present a new methodology for global SA in systems biology which is computationally efficient and can be used to identify the key parameters and their interactions which drive the dynamic behaviour of a complex biological model. The approach combines functional principal component analysis with established global SA techniques. The methodology is applied to a model of the insulin signalling pathway, defects of which are a major cause of type 2 diabetes and a number of key features of the system are identified.

  1. Sensitivity analysis and uncertainty estimation in ash concentration simulations and tephra deposit daily forecasted at Mt. Etna, in Italy

    NASA Astrophysics Data System (ADS)

    Prestifilippo, Michele; Scollo, Simona; Tarantola, Stefano

    2015-04-01

    The uncertainty in volcanic ash forecasts may depend on our knowledge of the model input parameters and our capability to represent the dynamic of an incoming eruption. Forecasts help governments to reduce risks associated with volcanic eruptions and for this reason different kinds of analysis that help to understand the effect that each input parameter has on model outputs are necessary. We present an iterative approach based on the sequential combination of sensitivity analysis, parameter estimation procedure and Monte Carlo-based uncertainty analysis, applied to the lagrangian volcanic ash dispersal model PUFF. We modify the main input parameters as the total mass, the total grain-size distribution, the plume thickness, the shape of the eruption column, the sedimentation models and the diffusion coefficient, perform thousands of simulations and analyze the results. The study is carried out on two different Etna scenarios: the sub-plinian eruption of 22 July 1998 that formed an eruption column rising 12 km above sea level and lasted some minutes and the lava fountain eruption having features similar to the 2011-2013 events that produced eruption column high up to several kilometers above sea level and lasted some hours. Sensitivity analyses and uncertainty estimation results help us to address the measurements that volcanologists should perform during volcanic crisis to reduce the model uncertainty.

  2. On the Influence of Material Parameters in a Complex Material Model for Powder Compaction

    NASA Astrophysics Data System (ADS)

    Staf, Hjalmar; Lindskog, Per; Andersson, Daniel C.; Larsson, Per-Lennart

    2016-10-01

    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

  3. CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations

    DOE Data Explorer

    Oldenburg, Curtis (ORCID:0000000201326016); Lee, Kyung Jae; Doughty, Christine; Jung, Yoojin; Borgia, Andrea; Pan, Lehua; Zhang, Rui; Daley, Thomas M.; Altundas, Bilgin; Chugunov, Nikita

    2017-07-20

    This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley- sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis. Datasets include: (1) Forward simulation runs of standard cases (push & pull phases), (2) Local sensitivity analyses (push & pull phases), and (3) Data-worth analysis (push & pull phases).

  4. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  5. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models

    PubMed Central

    Trame, MN; Lesko, LJ

    2015-01-01

    A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289

  6. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.

  7. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedane, T.; Di Maio, L.; Scarfato, P.

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less

  8. MOVES2010a regional level sensitivity analysis

    DOT National Transportation Integrated Search

    2012-12-10

    This document discusses the sensitivity of various input parameter effects on emission rates using the US Environmental Protection Agencys (EPAs) MOVES2010a model at the regional level. Pollutants included in the study are carbon monoxide (CO),...

  9. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  10. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.

    PubMed

    Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer

    2016-09-10

    When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior distributions of treatment effects to choices of sensitivity parameters. This results in an easily interpretable framework for testing for the impact of an unmeasured confounder that also limits the number of modeling assumptions. We evaluate our approach in a large-scale simulation setting and with high blood pressure data taken from the Third National Health and Nutrition Examination Survey. The model is implemented as open-source software, integrated into the treatSens package for the R statistical programming language. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  11. SENSITIVITY OF BLIND PULSAR SEARCHES WITH THE FERMI LARGE AREA TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dormody, M.; Johnson, R. P.; Atwood, W. B.

    2011-12-01

    We quantitatively establish the sensitivity to the detection of young to middle-aged, isolated, gamma-ray pulsars through blind searches of Fermi Large Area Telescope (LAT) data using a Monte Carlo simulation. We detail a sensitivity study of the time-differencing blind search code used to discover gamma-ray pulsars in the first year of observations. We simulate 10,000 pulsars across a broad parameter space and distribute them across the sky. We replicate the analysis in the Fermi LAT First Source Catalog to localize the sources, and the blind search analysis to find the pulsars. We analyze the results and discuss the effect ofmore » positional error and spin frequency on gamma-ray pulsar detections. Finally, we construct a formula to determine the sensitivity of the blind search and present a sensitivity map assuming a standard set of pulsar parameters. The results of this study can be applied to population studies and are useful in characterizing unidentified LAT sources.« less

  12. Sensitivity Challenge of Steep Transistors

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Chen, ChinYi; Klimeck, Gerhard; Rahman, Rajib

    2018-04-01

    Steep transistors are crucial in lowering power consumption of the integrated circuits. However, the difficulties in achieving steepness beyond the Boltzmann limit experimentally have hindered the fundamental challenges in application of these devices in integrated circuits. From a sensitivity perspective, an ideal switch should have a high sensitivity to the gate voltage and lower sensitivity to the device design parameters like oxide and body thicknesses. In this work, conventional tunnel-FET (TFET) and negative capacitance FET are shown to suffer from high sensitivity to device design parameters using full-band atomistic quantum transport simulations and analytical analysis. Although Dielectric Engineered (DE-) TFETs based on 2D materials show smaller sensitivity compared with the conventional TFETs, they have leakage issue. To mitigate this challenge, a novel DE-TFET design has been proposed and studied.

  13. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis.

    PubMed

    Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A

    2018-06-14

    The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast lesions among all the parameters. Copyright © 2018. Published by Elsevier Masson SAS.

  14. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groen, E.A., E-mail: Evelyne.Groen@gmail.com; Heijungs, R.; Leiden University, Einsteinweg 2, Leiden 2333 CC

    Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlationsmore » between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.« less

  15. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE PAGES

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    2016-03-22

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  16. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  17. Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. S.; Ho, Y. T.; Lai, C. H.; Chou, Youn-Min

    The events of high ozone concentrations and meteorological conditions covering the Kaohsiung metropolitan area were investigated based on data analysis and model simulation. A photochemical grid model was employed to analyze two ozone episodes in autumn (2000) and winter (2001) seasons, each covering three consecutive days (or 72 h) in the Kaohsiung City. The potential influence of the initial and boundary conditions on model performance was assessed. Model performance can be improved by separately considering the daytime and nighttime ozone concentrations on the lateral boundary conditions of the model domain. The sensitivity analyses of ozone concentrations to the emission reductions in volatile organic compounds (VOC) and nitrogen oxides (NO x) show a VOC-sensitive regime for emission reductions to lower than 30-40% VOC and 30-50% NO x and a NO x-sensitive regime for larger percentage reductions. Meteorological parameters show that warm temperature, sufficient sunlight, low wind, and high surface pressure are distinct parameters that tend to trigger ozone episodes in polluted urban areas, like Kaohsiung.

  18. A preliminary cost-effectiveness analysis of hepatitis E vaccination among pregnant women in epidemic regions.

    PubMed

    Zhao, Yueyuan; Zhang, Xuefeng; Zhu, Fengcai; Jin, Hui; Wang, Bei

    2016-08-02

    Objective To estimate the cost-effectiveness of hepatitis E vaccination among pregnant women in epidemic regions. Methods A decision tree model was constructed to evaluate the cost-effectiveness of 3 hepatitis E virus vaccination strategies from societal perspectives. The model parameters were estimated on the basis of published studies and experts' experience. Sensitivity analysis was used to evaluate the uncertainties of the model. Results Vaccination was more economically effective on the basis of the incremental cost-effectiveness ratio (ICER< 3 times China's per capital gross domestic product/quality-adjusted life years); moreover, screening and vaccination had higher QALYs and lower costs compared with universal vaccination. No parameters significantly impacted ICER in one-way sensitivity analysis, and probabilistic sensitivity analysis also showed screening and vaccination to be the dominant strategy. Conclusion Screening and vaccination is the most economical strategy for pregnant women in epidemic regions; however, further studies are necessary to confirm the efficacy and safety of the hepatitis E vaccines.

  19. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Tolson, Bryan

    2017-04-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters or model processes. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method independency of the convergence testing method, we applied it to three widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991, Campolongo et al., 2000), the variance-based Sobol' method (Solbol' 1993, Saltelli et al. 2010) and a derivative-based method known as Parameter Importance index (Goehler et al. 2013). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. Subsequently, we focus on the model-independency by testing the frugal method using the hydrologic model mHM (www.ufz.de/mhm) with about 50 model parameters. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed (and published) sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  20. Spatiotemporal sensitivity analysis of vertical transport of pesticides in soil

    EPA Science Inventory

    Environmental fate and transport processes are influenced by many factors. Simulation models that mimic these processes often have complex implementations, which can lead to over-parameterization. Sensitivity analyses are subsequently used to identify critical parameters whose un...

  1. An easily implemented static condensation method for structural sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gangadharan, S. N.; Haftka, R. T.; Nikolaidis, E.

    1990-01-01

    A black-box approach to static condensation for sensitivity analysis is presented with illustrative examples of a cube and a car structure. The sensitivity of the structural response with respect to joint stiffness parameter is calculated using the direct method, forward-difference, and central-difference schemes. The efficiency of the various methods for identifying joint stiffness parameters from measured static deflections of these structures is compared. The results indicate that the use of static condensation can reduce computation times significantly and the black-box approach is only slightly less efficient than the standard implementation of static condensation. The ease of implementation of the black-box approach recommends it for use with general-purpose finite element codes that do not have a built-in facility for static condensation.

  2. Sewer deterioration modeling with condition data lacking historical records.

    PubMed

    Egger, C; Scheidegger, A; Reichert, P; Maurer, M

    2013-11-01

    Accurate predictions of future conditions of sewer systems are needed for efficient rehabilitation planning. For this purpose, a range of sewer deterioration models has been proposed which can be improved by calibration with observed sewer condition data. However, if datasets lack historical records, calibration requires a combination of deterioration and sewer rehabilitation models, as the current state of the sewer network reflects the combined effect of both processes. Otherwise, physical sewer lifespans are overestimated as pipes in poor condition that were rehabilitated are no longer represented in the dataset. We therefore propose the combination of a sewer deterioration model with a simple rehabilitation model which can be calibrated with datasets lacking historical information. We use Bayesian inference for parameter estimation due to the limited information content of the data and limited identifiability of the model parameters. A sensitivity analysis gives an insight into the model's robustness against the uncertainty of the prior. The analysis reveals that the model results are principally sensitive to the means of the priors of specific model parameters, which should therefore be elicited with care. The importance sampling technique applied for the sensitivity analysis permitted efficient implementation for regional sensitivity analysis with reasonable computational outlay. Application of the combined model with both simulated and real data shows that it effectively compensates for the bias induced by a lack of historical data. Thus, the novel approach makes it possible to calibrate sewer pipe deterioration models even when historical condition records are lacking. Since at least some prior knowledge of the model parameters is available, the strength of Bayesian inference is particularly evident in the case of small datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Assessing the sensitivity of bovine tuberculosis surveillance in Canada's cattle population, 2009-2013.

    PubMed

    El Allaki, Farouk; Harrington, Noel; Howden, Krista

    2016-11-01

    The objectives of this study were (1) to estimate the annual sensitivity of Canada's bTB surveillance system and its three system components (slaughter surveillance, export testing and disease investigation) using a scenario tree modelling approach, and (2) to identify key model parameters that influence the estimates of the surveillance system sensitivity (SSSe). To achieve these objectives, we designed stochastic scenario tree models for three surveillance system components included in the analysis. Demographic data, slaughter data, export testing data, and disease investigation data from 2009 to 2013 were extracted for input into the scenario trees. Sensitivity analysis was conducted to identify key influential parameters on SSSe estimates. The median annual SSSe estimates generated from the study were very high, ranging from 0.95 (95% probability interval [PI]: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). Median annual sensitivity estimates for the slaughter surveillance component ranged from 0.95 (95% PI: 0.88-0.98) to 0.97 (95% PI: 0.93-0.99). This shows that slaughter surveillance to be the major contributor to overall surveillance system sensitivity with a high probability to detect M. bovis infection if present at a prevalence of 0.00028% or greater during the study period. The export testing and disease investigation components had extremely low component sensitivity estimates-the maximum median sensitivity estimates were 0.02 (95% PI: 0.014-0.023) and 0.0061 (95% PI: 0.0056-0.0066) respectively. The three most influential input parameters on the model's output (SSSe) were the probability of a granuloma being detected at slaughter inspection, the probability of a granuloma being present in older animals (≥12 months of age), and the probability of a granuloma sample being submitted to the laboratory. Additional studies are required to reduce the levels of uncertainty and variability associated with these three parameters influencing the surveillance system sensitivity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Sensitivity Analysis in Sequential Decision Models.

    PubMed

    Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet

    2017-02-01

    Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.

  5. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and identifying sources of uncertainty affecting relevant reaction pathways are usually addressed by resorting to Global Sensitivity Analysis (GSA) techniques. In particular, the most sensitive reactions controlling combustion phenomena are first identified using the Morris Method and then analyzed under the Random Sampling -- High Dimensional Model Representation (RS-HDMR) framework. The HDMR decomposition shows that 10% of the variance seen in the extinction strain rate of non-premixed flames is due to second-order effects between parameters, whereas the maximum concentration of acetylene, a key soot precursor, is affected by mostly only first-order contributions. Moreover, the analysis of the global sensitivity indices demonstrates that improving the accuracy of the reaction rates including the vinyl radical, C2H3, can drastically reduce the uncertainty of predicting targeted flame properties. Finally, the back-propagation of the experimental uncertainty of the extinction strain rate to the parameter space is also performed. This exercise, achieved by recycling the numerical solutions of the RS-HDMR, shows that some regions of the parameter space have a high probability of reproducing the experimental value of the extinction strain rate between its own uncertainty bounds. Therefore this study demonstrates that the uncertainty analysis of bulk flame properties can effectively provide information on relevant chemical reactions.

  6. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  7. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  8. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  9. Quantifying Parameter Sensitivity, Interaction and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

    NASA Technical Reports Server (NTRS)

    Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue

    2009-01-01

    We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.

  10. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less

  11. Quantitative analysis of iris parameters in keratoconus patients using optical coherence tomography.

    PubMed

    Bonfadini, Gustavo; Arora, Karun; Vianna, Lucas M; Campos, Mauro; Friedman, David; Muñoz, Beatriz; Jun, Albert S

    2015-01-01

    To investigate the relationship between quantitative iris parameters and the presence of keratoconus. Cross-sectional observational study that included 15 affected eyes of 15 patients with keratoconus and 26 eyes of 26 normal age- and sex-matched controls. Iris parameters (area, thickness, and pupil diameter) of affected and unaffected eyes were measured under standardized light and dark conditions using anterior segment optical coherence tomography (AS-OCT). To identify optimal iris thickness cutoff points to maximize the sensitivity and specificity when discriminating keratoconus eyes from normal eyes, the analysis included the use of receiver operating characteristic (ROC) curves. Iris thickness and area were lower in keratoconus eyes than in normal eyes. The mean thickness at the pupillary margin under both light and dark conditions was found to be the best parameter for discriminating normal patients from keratoconus patients. Diagnostic performance was assessed by the area under the ROC curve (AROC), which had a value of 0.8256 with 80.0% sensitivity and 84.6% specificity, using a cutoff of 0.4125 mm. The sensitivity increased to 86.7% when a cutoff of 0.4700 mm was used. In our sample, iris thickness was lower in keratoconus eyes than in normal eyes. These results suggest that tomographic parameters may provide novel adjunct approaches for keratoconus screening.

  12. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  13. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    NASA Astrophysics Data System (ADS)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  15. Sensitivity analyses for sparse-data problems-using weakly informative bayesian priors.

    PubMed

    Hamra, Ghassan B; MacLehose, Richard F; Cole, Stephen R

    2013-03-01

    Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist.

  16. Sensitivity Analyses for Sparse-Data Problems—Using Weakly Informative Bayesian Priors

    PubMed Central

    Hamra, Ghassan B.; MacLehose, Richard F.; Cole, Stephen R.

    2013-01-01

    Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist. PMID:23337241

  17. Chapter 8: Demographic characteristics and population modeling

    Treesearch

    Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge

    2000-01-01

    An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...

  18. Sensitivity analysis of a coupled hydrodynamic-vegetation model using the effectively subsampled quadratures method (ESQM v5.2)

    NASA Astrophysics Data System (ADS)

    Kalra, Tarandeep S.; Aretxabaleta, Alfredo; Seshadri, Pranay; Ganju, Neil K.; Beudin, Alexis

    2017-12-01

    Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.

  19. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  20. Post-Optimality Analysis In Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. An optimal sensitivity (or post-optimality) analysis refers to computations performed once the initial optimization problem is solved. These computations may be used to characterize the design space about the present solution and infer changes in this solution as a result of constraint or parameter variations, without reoptimizing the entire system. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict the effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process, For a hierarchically decomposed problem, this computational efficiency is realized by estimating the main-problem objective gradient through optimal sep&ivity calculations, By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  1. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  2. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  3. Computer simulation of the last support phase of the long jump.

    PubMed

    Chow, John W; Hay, James G

    2005-01-01

    The purpose was to examine the interacting roles played by the approach velocity, the explosive strength (represented by vertical ground reaction force [VGRF]), and the change in angular momentum about a transverse axis through the jumper's center of mass (deltaHzz) during the last support phase of the long jump, using a computer simulation technique. A two-dimensional inverted-pendulum-plus-foot segment model was developed to simulate the last support phase. Using a reference jump derived from a jump performance reported in the literature, the effects of varying individual parameters were studied using sensitivity analyses. In each sensitivity analysis, the kinematic characteristics of the longest jumps with the deltaHzz considered and not considered when the parameter of interest was altered were noted. A sensitivity analysis examining the influence of altering both approach velocity and VGRF at the same time was also conducted. The major findings were that 1) the jump distance was more sensitive to changes in approach velocity (e.g., a 10% increase yielded a 10.0% increase in jump distance) than to changes in the VGRF (e.g., a 10% increase yielded a 7.2% increase in jump distance); 2) the relatively large change in jump distance when both the approach velocity and VGRF were altered (e.g., a 10% increase in both parameters yielded a 20.4% increase in jump distance), suggesting that these two parameters are not independent factors in determining the jump distance; and 3) the jump distance was overestimated if the deltaHzz was not considered in the analysis.

  4. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  5. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  6. A sensitivity analysis of cloud properties to CLUBB parameters in the single-column Community Atmosphere Model (SCAM5)

    DOE PAGES

    Guo, Zhun; Wang, Minghuai; Qian, Yun; ...

    2014-08-13

    In this study, we investigate the sensitivity of simulated shallow cumulus and stratocumulus clouds to selected tunable parameters of Cloud Layers Unified by Binormals (CLUBB) in the single column version of Community Atmosphere Model version 5 (SCAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is adopted to study the responses of simulated cloud fields to tunable parameters. One stratocumulus and two shallow convection cases are configured at both coarse and fine vertical resolutions in this study.. Our results show that most of the variance in simulated cloudmore » fields can be explained by a small number of tunable parameters. The parameters related to Newtonian and buoyancy-damping terms of total water flux are found to be the most influential parameters for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in the stratocumulus case are sensitive to the choice of the vertical resolution while little sensitivity is found for the shallow convection cases, as eddy mixing length (or dissipation time scale) plays a more important role and depends more strongly on the vertical resolution in stratocumulus than in shallow convections. The influential parameters remain almost unchanged when the number of tunable parameters increases from 16 to 35. This study improves understanding of the CLUBB behavior associated with parameter uncertainties.« less

  7. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study.

    PubMed

    Bovendeerd, Peter H M; Borsje, Petra; Arts, Theo; van De Vosse, Frans N

    2006-12-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  9. Adjoint-Based Aerodynamic Design of Complex Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.

    2016-01-01

    An overview of twenty years of adjoint-based aerodynamic design research at NASA Langley Research Center is presented. Adjoint-based algorithms provide a powerful tool for efficient sensitivity analysis of complex large-scale computational fluid dynamics (CFD) simulations. Unlike alternative approaches for which computational expense generally scales with the number of design parameters, adjoint techniques yield sensitivity derivatives of a simulation output with respect to all input parameters at the cost of a single additional simulation. With modern large-scale CFD applications often requiring millions of compute hours for a single analysis, the efficiency afforded by adjoint methods is critical in realizing a computationally tractable design optimization capability for such applications.

  10. Sensitivity studies with a coupled ice-ocean model of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.

    1983-01-01

    An analytical coupled ice-ocean model is considered which is forced by a specified wind stress acting on the open ocean as well as the ice. The analysis supports the conjecture that the upwelling dynamics at ice edges can be understood by means of a simple analytical model. In similarity with coastal problems it is shown that the ice edge upwelling is determined by the net mass flux at the boundaries of the considered region. The model is used to study the sensitivity of the upwelling dynamics in the marginal ice zone to variation in the controlling parameters. These parameters consist of combinations of the drag coefficients used in the parameterization of the stresses on the three interfaces atmosphere-ice, atmosphere-ocean, and ice-ocean. The response is shown to be sensitive to variations in these parameters in that one set of parameters may give upwelling while a slightly different set of parameters may give downwelling.

  11. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  12. First- and Second-Order Sensitivity Analysis of a P-Version Finite Element Equation Via Automatic Differentiation

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    1998-01-01

    Sensitivity analysis is a technique for determining derivatives of system responses with respect to design parameters. Among many methods available for sensitivity analysis, automatic differentiation has been proven through many applications in fluid dynamics and structural mechanics to be an accurate and easy method for obtaining derivatives. Nevertheless, the method can be computational expensive and can require a high memory space. This project will apply an automatic differentiation tool, ADIFOR, to a p-version finite element code to obtain first- and second- order then-nal derivatives, respectively. The focus of the study is on the implementation process and the performance of the ADIFOR-enhanced codes for sensitivity analysis in terms of memory requirement, computational efficiency, and accuracy.

  13. Reliability and sensitivity analysis of a system with multiple unreliable service stations and standby switching failures

    NASA Astrophysics Data System (ADS)

    Ke, Jyh-Bin; Lee, Wen-Chiung; Wang, Kuo-Hsiung

    2007-07-01

    This paper presents the reliability and sensitivity analysis of a system with M primary units, W warm standby units, and R unreliable service stations where warm standby units switching to the primary state might fail. Failure times of primary and warm standby units are assumed to have exponential distributions, and service times of the failed units are exponentially distributed. In addition, breakdown times and repair times of the service stations also follow exponential distributions. Expressions for system reliability, RY(t), and mean time to system failure, MTTF are derived. Sensitivity analysis, relative sensitivity analysis of the system reliability and the mean time to failure, with respect to system parameters are also investigated.

  14. A comparative study of the sensitivity of diffusion-related parameters obtained from diffusion tensor imaging, diffusional kurtosis imaging, q-space analysis and bi-exponential modelling in the early disease course (24 h) of hyperacute (6 h) ischemic stroke patients.

    PubMed

    Duchêne, Gaëtan; Peeters, Frank; Peeters, André; Duprez, Thierry

    2017-08-01

    To compare the sensitivity and early temporal changes of diffusion parameters obtained from diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), q-space analysis (QSA) and bi-exponential modelling in hyperacute stroke patients. A single investigational acquisition allowing the four diffusion analyses was performed on seven hyperacute stroke patients with a 3T system. The percentage change between ipsi- and contralateral regions were compared at admission and 24 h later. Two out of the seven patients were imaged every 6 h during this period. Kurtoses from both DKI and QSA were the most sensitive of the tested diffusion parameters in the few hours following ischemia. An early increase-maximum-decrease pattern of evolution was highlighted during the 24-h period for all parameters proportional to diffusion coefficients. A similar pattern was observed for both kurtoses in only one of two patients. Our comparison was performed using identical diffusion encoding timings and on patients in the same stage of their condition. Although preliminary, our findings confirm those of previous studies that showed enhanced sensitivity of kurtosis. A fine time mapping of diffusion metrics in hyperacute stroke patients was presented which advocates for further investigations on larger animal or human cohorts.

  15. Sensitivity of drainage efficiency of cranberry fields to edaphic conditions

    NASA Astrophysics Data System (ADS)

    Periard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean; Hallema, Dennis W.

    2014-05-01

    Water management on a cranberry farm requires intelligent irrigation and drainage strategies to sustain strong productivity and minimize environmental impact. For example, to avoid propagation of disease and meet evapotranspiration demand, it is imperative to maintain optimal moisture conditions in the root zone, which depends on an efficient drainage system. However, several drainage problems have been identified in cranberry fields. Most of these drainage problems are due to the presence of a restrictive layer in the soil profile (Gumiere et al., 2014). The objective of this work is to evaluate the effects of a restrictive layer on the drainage efficiency by the bias of a multi-local sensitivity analysis. We have tested the sensitivity of the drainage efficiency to different input parameters set of soil hydraulic properties, geometrical parameters and climatic conditions. Soil water flux dynamic for every input parameters set was simulated with finite element model Hydrus 1D (Simanek et al., 2008). Multi-local sensitivity was calculated with the Gâteaux directional derivatives with the procedure described by Cheviron et al. (2010). Results indicate that drainage efficiency is more sensitive to soil hydraulic properties than geometrical parameters and climatic conditions. Then, the geometrical parameters of the depth are more sensitive than the thickness. The drainage efficiency was very insensitive to the climatic conditions. Understanding the sensitivity of drainage efficiency according to soil hydraulic properties, geometrical and climatic conditions are essential for diagnosis drainage problems. However, it becomes important to identify the mechanisms involved in the genesis of anthropogenic soils cranberry to identify conditions that may lead to the formation of a restrictive layer. References: Cheviron, B., S.J. Gumiere, Y. Le Bissonnais, R. Moussa and D. Raclot. 2010. Sensitivity analysis of distributed erosion models: Framework. Water Resources Research 46: W08508. doi:10.1029/2009WR007950. Gumiere, S.J., J. Lafond, D. W. Hallema, Y. Périard, J. Caron et J. Gallichand. 2014. Mapping soil hydraulic conductivity and matric potential for water management of cranberry: Characterization and spatial interpolation methods. Biosystems Engineering.

  16. Optimizing detection and analysis of slow waves in sleep EEG.

    PubMed

    Mensen, Armand; Riedner, Brady; Tononi, Giulio

    2016-12-01

    Analysis of individual slow waves in EEG recording during sleep provides both greater sensitivity and specificity compared to spectral power measures. However, parameters for detection and analysis have not been widely explored and validated. We present a new, open-source, Matlab based, toolbox for the automatic detection and analysis of slow waves; with adjustable parameter settings, as well as manual correction and exploration of the results using a multi-faceted visualization tool. We explore a large search space of parameter settings for slow wave detection and measure their effects on a selection of outcome parameters. Every choice of parameter setting had some effect on at least one outcome parameter. In general, the largest effect sizes were found when choosing the EEG reference, type of canonical waveform, and amplitude thresholding. Previously published methods accurately detect large, global waves but are conservative and miss the detection of smaller amplitude, local slow waves. The toolbox has additional benefits in terms of speed, user-interface, and visualization options to compare and contrast slow waves. The exploration of parameter settings in the toolbox highlights the importance of careful selection of detection METHODS: The sensitivity and specificity of the automated detection can be improved by manually adding or deleting entire waves and or specific channels using the toolbox visualization functions. The toolbox standardizes the detection procedure, sets the stage for reliable results and comparisons and is easy to use without previous programming experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  18. Accurate evaluation of sensitivity for calibration between a LiDAR and a panoramic camera used for remote sensing

    NASA Astrophysics Data System (ADS)

    García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier

    2016-04-01

    Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.

  19. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE PAGES

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; ...

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  20. Stability, performance and sensitivity analysis of I.I.D. jump linear systems

    NASA Astrophysics Data System (ADS)

    Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven

    2018-06-01

    This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.

  1. Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.

    PubMed

    Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa

    2010-01-21

    Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.

  2. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  3. Aggregation Pheromone System: A Real-parameter Optimization Algorithm using Aggregation Pheromones as the Base Metaphor

    NASA Astrophysics Data System (ADS)

    Tsutsui, Shigeyosi

    This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.

  4. Development of a generalized perturbation theory method for sensitivity analysis using continuous-energy Monte Carlo methods

    DOE PAGES

    Perfetti, Christopher M.; Rearden, Bradley T.

    2016-03-01

    The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less

  5. Effect of a single session of muscle-biased therapy on pain sensitivity: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Gay, Charles W; Alappattu, Meryl J; Coronado, Rogelio A; Horn, Maggie E; Bishop, Mark D

    2013-01-01

    Background Muscle-biased therapies (MBT) are commonly used to treat pain, yet several reviews suggest evidence for the clinical effectiveness of these therapies is lacking. Inadequate treatment parameters have been suggested to account for inconsistent effects across studies. Pain sensitivity may serve as an intermediate physiologic endpoint helping to establish optimal MBT treatment parameters. The purpose of this review was to summarize the current literature investigating the short-term effect of a single dose of MBT on pain sensitivity in both healthy and clinical populations, with particular attention to specific MBT parameters of intensity and duration. Methods A systematic search for articles meeting our prespecified criteria was conducted using Cumulative Index to Nursing and Allied Health Literature (CINAHL) and MEDLINE from the inception of each database until July 2012, in accordance with guidelines from the Preferred Reporting Items for Systematic reviews and Meta-Analysis. Relevant characteristics from studies included type, intensity, and duration of MBT and whether short-term changes in pain sensitivity and clinical pain were noted with MBT application. Study results were pooled using a random-effects model to estimate the overall effect size of a single dose of MBT on pain sensitivity as well as the effect of MBT, dependent on comparison group and population type. Results Reports from 24 randomized controlled trials (23 articles) were included, representing 36 MBT treatment arms and 29 comparative groups, where 10 groups received active agents, 11 received sham/inert treatments, and eight received no treatment. MBT demonstrated a favorable and consistent ability to modulate pain sensitivity. Short-term modulation of pain sensitivity was associated with short-term beneficial effects on clinical pain. Intensity of MBT, but not duration, was linked with change in pain sensitivity. A meta-analysis was conducted on 17 studies that assessed the effect of MBT on pressure pain thresholds. The results suggest that MBT had a favorable effect on pressure pain thresholds when compared with no-treatment and sham/inert groups, and effects comparable with those of other active treatments. Conclusion The evidence supports the use of pain sensitivity measures by future research to help elucidate optimal therapeutic parameters for MBT as an intermediate physiologic marker. PMID:23403507

  6. Quantitative sensory testing response patterns to capsaicin- and ultraviolet-B-induced local skin hypersensitization in healthy subjects: a machine-learned analysis.

    PubMed

    Lötsch, Jörn; Geisslinger, Gerd; Heinemann, Sarah; Lerch, Florian; Oertel, Bruno G; Ultsch, Alfred

    2017-08-16

    The comprehensive assessment of pain-related human phenotypes requires combinations of nociceptive measures that produce complex high-dimensional data, posing challenges to bioinformatic analysis. In this study, we assessed established experimental models of heat hyperalgesia of the skin, consisting of local ultraviolet-B (UV-B) irradiation or capsaicin application, in 82 healthy subjects using a variety of noxious stimuli. We extended the original heat stimulation by applying cold and mechanical stimuli and assessing the hypersensitization effects with a clinically established quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain). This study provided a 246 × 10-sized data matrix (82 subjects assessed at baseline, following UV-B application, and following capsaicin application) with respect to 10 QST parameters, which we analyzed using machine-learning techniques. We observed statistically significant effects of the hypersensitization treatments in 9 different QST parameters. Supervised machine-learned analysis implemented as random forests followed by ABC analysis pointed to heat pain thresholds as the most relevantly affected QST parameter. However, decision tree analysis indicated that UV-B additionally modulated sensitivity to cold. Unsupervised machine-learning techniques, implemented as emergent self-organizing maps, hinted at subgroups responding to topical application of capsaicin. The distinction among subgroups was based on sensitivity to pressure pain, which could be attributed to sex differences, with women being more sensitive than men. Thus, while UV-B and capsaicin share a major component of heat pain sensitization, they differ in their effects on QST parameter patterns in healthy subjects, suggesting a lack of redundancy between these models.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  7. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  8. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  9. Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. R.; Urban, N. M.

    2015-12-01

    Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.

  10. Integrated Data Collection Analysis (IDCA) Program - NaClO 3/Icing Sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of NaClO 3 and icing sugar—NaClO 3/icing sugar mixture. The mixture was found to: be more sensitive than RDX but less sensitive than PETN in impact testing (180-grit sandpaper); be more sensitive than RDX and about the same sensitivity as PETN in BAM fiction testing; be less sensitive than RDX and PETN except for one participant found themore » mixture more sensitive than PETN in ABL ESD testing; and to have one to three exothermic features with the lowest temperature event occurring at ~ 160°C always observed in thermal testing. Variations in testing parameters also affected the sensitivity.« less

  11. Mathematical 3D modelling and sensitivity analysis of multipolar radiofrequency ablation in the spine.

    PubMed

    Matschek, Janine; Bullinger, Eric; von Haeseler, Friedrich; Skalej, Martin; Findeisen, Rolf

    2017-02-01

    Radiofrequency ablation is a valuable tool in the treatment of many diseases, especially cancer. However, controlled heating up to apoptosis of the desired target tissue in complex situations, e.g. in the spine, is challenging and requires experienced interventionalists. For such challenging situations a mathematical model of radiofrequency ablation allows to understand, improve and optimise the outcome of the medical therapy. The main contribution of this work is the derivation of a tailored, yet expandable mathematical model, for the simulation, analysis, planning and control of radiofrequency ablation in complex situations. The dynamic model consists of partial differential equations that describe the potential and temperature distribution during intervention. To account for multipolar operation, time-dependent boundary conditions are introduced. Spatially distributed parameters, like tissue conductivity and blood perfusion, allow to describe the complex 3D environment representing diverse involved tissue types in the spine. To identify the key parameters affecting the prediction quality of the model, the influence of the parameters on the temperature distribution is investigated via a sensitivity analysis. Simulations underpin the quality of the derived model and the analysis approach. The proposed modelling and analysis schemes set the basis for intervention planning, state- and parameter estimation, and control. Copyright © 2016. Published by Elsevier Inc.

  12. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    PubMed Central

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  13. Parameter Uncertainty Analysis Using Monte Carlo Simulations for a Regional-Scale Groundwater Model

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pohlmann, K.

    2016-12-01

    Regional-scale grid-based groundwater models for flow and transport often contain multiple types of parameters that can intensify the challenge of parameter uncertainty analysis. We propose a Monte Carlo approach to systematically quantify the influence of various types of model parameters on groundwater flux and contaminant travel times. The Monte Carlo simulations were conducted based on the steady-state conversion of the original transient model, which was then combined with the PEST sensitivity analysis tool SENSAN and particle tracking software MODPATH. Results identified hydrogeologic units whose hydraulic conductivity can significantly affect groundwater flux, and thirteen out of 173 model parameters that can cause large variation in travel times for contaminant particles originating from given source zones.

  14. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Shirong; Davis, Michael J.; Skodje, Rex T.

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less

  15. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    PubMed

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    NASA Technical Reports Server (NTRS)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  17. Parametric sensitivity analysis of leachate transport simulations at landfills.

    PubMed

    Bou-Zeid, E; El-Fadel, M

    2004-01-01

    This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. Copyright 2004 Elsevier Ltd.

  18. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  19. Evaluation of Uncertainty and Sensitivity in Environmental Modeling at a Radioactive Waste Management Site

    NASA Astrophysics Data System (ADS)

    Stockton, T. B.; Black, P. K.; Catlett, K. M.; Tauxe, J. D.

    2002-05-01

    Environmental modeling is an essential component in the evaluation of regulatory compliance of radioactive waste management sites (RWMSs) at the Nevada Test Site in southern Nevada, USA. For those sites that are currently operating, further goals are to support integrated decision analysis for the development of acceptance criteria for future wastes, as well as site maintenance, closure, and monitoring. At these RWMSs, the principal pathways for release of contamination to the environment are upward towards the ground surface rather than downwards towards the deep water table. Biotic processes, such as burrow excavation and plant uptake and turnover, dominate this upward transport. A combined multi-pathway contaminant transport and risk assessment model was constructed using the GoldSim modeling platform. This platform facilitates probabilistic analysis of environmental systems, and is especially well suited for assessments involving radionuclide decay chains. The model employs probabilistic definitions of key parameters governing contaminant transport, with the goals of quantifying cumulative uncertainty in the estimation of performance measures and providing information necessary to perform sensitivity analyses. This modeling differs from previous radiological performance assessments (PAs) in that the modeling parameters are intended to be representative of the current knowledge, and the uncertainty in that knowledge, of parameter values rather than reflective of a conservative assessment approach. While a conservative PA may be sufficient to demonstrate regulatory compliance, a parametrically honest PA can also be used for more general site decision-making. In particular, a parametrically honest probabilistic modeling approach allows both uncertainty and sensitivity analyses to be explicitly coupled to the decision framework using a single set of model realizations. For example, sensitivity analysis provides a guide for analyzing the value of collecting more information by quantifying the relative importance of each input parameter in predicting the model response. However, in these complex, high dimensional eco-system models, represented by the RWMS model, the dynamics of the systems can act in a non-linear manner. Quantitatively assessing the importance of input variables becomes more difficult as the dimensionality, the non-linearities, and the non-monotonicities of the model increase. Methods from data mining such as Multivariate Adaptive Regression Splines (MARS) and the Fourier Amplitude Sensitivity Test (FAST) provide tools that can be used in global sensitivity analysis in these high dimensional, non-linear situations. The enhanced interpretability of model output provided by the quantitative measures estimated by these global sensitivity analysis tools will be demonstrated using the RWMS model.

  20. Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.

    2007-03-01

    An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.

  1. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE PAGES

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  2. Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide

    DOE PAGES

    Favorite, Jeffrey A.; Perko, Zoltan; Kiedrowski, Brian C.; ...

    2017-03-01

    The ability to perform sensitivity analyses using adjoint-based first-order sensitivity theory has existed for decades. This paper provides guidance on how adjoint sensitivity methods can be used to predict the effect of material density and composition uncertainties in critical experiments, including when these uncertain parameters are correlated or constrained. Two widely used Monte Carlo codes, MCNP6 (Ref. 2) and SCALE 6.2 (Ref. 3), are both capable of computing isotopic density sensitivities in continuous energy and angle. Additionally, Perkó et al. have shown how individual isotope density sensitivities, easily computed using adjoint methods, can be combined to compute constrained first-order sensitivitiesmore » that may be used in the uncertainty analysis. This paper provides details on how the codes are used to compute first-order sensitivities and how the sensitivities are used in an uncertainty analysis. Constrained first-order sensitivities are computed in a simple example problem.« less

  3. Parameter Analysis of the VPIN (Volume synchronized Probability of Informed Trading) Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jung Heon; Wu, Kesheng; Simon, Horst D.

    2014-03-01

    VPIN (Volume synchronized Probability of Informed trading) is a leading indicator of liquidity-induced volatility. It is best known for having produced a signal more than hours before the Flash Crash of 2010. On that day, the market saw the biggest one-day point decline in the Dow Jones Industrial Average, which culminated to the market value of $1 trillion disappearing, but only to recover those losses twenty minutes later (Lauricella 2010). The computation of VPIN requires the user to set up a handful of free parameters. The values of these parameters significantly affect the effectiveness of VPIN as measured by themore » false positive rate (FPR). An earlier publication reported that a brute-force search of simple parameter combinations yielded a number of parameter combinations with FPR of 7%. This work is a systematic attempt to find an optimal parameter set using an optimization package, NOMAD (Nonlinear Optimization by Mesh Adaptive Direct Search) by Audet, le digabel, and tribes (2009) and le digabel (2011). We have implemented a number of techniques to reduce the computation time with NOMAD. Tests show that we can reduce the FPR to only 2%. To better understand the parameter choices, we have conducted a series of sensitivity analysis via uncertainty quantification on the parameter spaces using UQTK (Uncertainty Quantification Toolkit). Results have shown dominance of 2 parameters in the computation of FPR. Using the outputs from NOMAD optimization and sensitivity analysis, We recommend A range of values for each of the free parameters that perform well on a large set of futures trading records.« less

  4. A pattern-mixture model approach for handling missing continuous outcome data in longitudinal cluster randomized trials.

    PubMed

    Fiero, Mallorie H; Hsu, Chiu-Hsieh; Bell, Melanie L

    2017-11-20

    We extend the pattern-mixture approach to handle missing continuous outcome data in longitudinal cluster randomized trials, which randomize groups of individuals to treatment arms, rather than the individuals themselves. Individuals who drop out at the same time point are grouped into the same dropout pattern. We approach extrapolation of the pattern-mixture model by applying multilevel multiple imputation, which imputes missing values while appropriately accounting for the hierarchical data structure found in cluster randomized trials. To assess parameters of interest under various missing data assumptions, imputed values are multiplied by a sensitivity parameter, k, which increases or decreases imputed values. Using simulated data, we show that estimates of parameters of interest can vary widely under differing missing data assumptions. We conduct a sensitivity analysis using real data from a cluster randomized trial by increasing k until the treatment effect inference changes. By performing a sensitivity analysis for missing data, researchers can assess whether certain missing data assumptions are reasonable for their cluster randomized trial. Copyright © 2017 John Wiley & Sons, Ltd.

  5. A design methodology for nonlinear systems containing parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Young, G. E.; Auslander, D. M.

    1983-01-01

    In the present design methodology for nonlinear systems containing parameter uncertainty, a generalized sensitivity analysis is incorporated which employs parameter space sampling and statistical inference. For the case of a system with j adjustable and k nonadjustable parameters, this methodology (which includes an adaptive random search strategy) is used to determine the combination of j adjustable parameter values which maximize the probability of those performance indices which simultaneously satisfy design criteria in spite of the uncertainty due to k nonadjustable parameters.

  6. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  7. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage.

    PubMed

    García-Isla, Guadalupe; Olivares, Andy Luis; Silva, Etelvino; Nuñez-Garcia, Marta; Butakoff, Constantine; Sanchez-Quintana, Damian; G Morales, Hernán; Freixa, Xavier; Noailly, Jérôme; De Potter, Tom; Camara, Oscar

    2018-05-08

    The left atrial appendage (LAA) is a complex and heterogeneous protruding structure of the left atrium (LA). In atrial fibrillation patients, it is the location where 90% of the thrombi are formed. However, the role of the LAA in thrombus formation is not fully known yet. The main goal of this work is to perform a sensitivity analysis to identify the most relevant LA and LAA morphological parameters in atrial blood flow dynamics. Simulations were run on synthetic ellipsoidal left atria models where different parameters were individually studied: pulmonary veins and mitral valve dimensions; LAA shape; and LA volume. Our computational analysis confirmed the relation between large LAA ostia, low blood flow velocities and thrombus formation. Additionally, we found that pulmonary vein configuration exerted a critical influence on LAA blood flow patterns. These findings contribute to a better understanding of the LAA and to support clinical decisions for atrial fibrillation patients. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.

  9. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  10. Sensitivity analysis for best-estimate thermal models of vertical dry cask storage systems

    DOE PAGES

    DeVoe, Remy R.; Robb, Kevin R.; Skutnik, Steven E.

    2017-07-08

    Loading requirements for dry cask storage of spent nuclear fuel are driven primarily by decay heat capacity limitations, which themselves are determined through recommended limits on peak cladding temperature within the cask. This study examines the relative sensitivity of peak material temperatures within the cask to parameters that influence both the stored fuel residual decay heat as well as heat removal mechanisms. Here, these parameters include the detailed reactor operating history parameters (e.g., soluble boron concentrations and the presence of burnable poisons) as well as factors that influence heat removal, including non-dominant processes (such as conduction from the fuel basketmore » to the canister and radiation within the canister) and ambient environmental conditions. By examining the factors that drive heat removal from the cask alongside well-understood factors that drive decay heat, it is therefore possible to make a contextual analysis of the most important parameters to evaluation of peak material temperatures within the cask.« less

  11. A Workflow for Global Sensitivity Analysis of PBPK Models

    PubMed Central

    McNally, Kevin; Cotton, Richard; Loizou, George D.

    2011-01-01

    Physiologically based pharmacokinetic (PBPK) models have a potentially significant role in the development of a reliable predictive toxicity testing strategy. The structure of PBPK models are ideal frameworks into which disparate in vitro and in vivo data can be integrated and utilized to translate information generated, using alternative to animal measures of toxicity and human biological monitoring data, into plausible corresponding exposures. However, these models invariably include the description of well known non-linear biological processes such as, enzyme saturation and interactions between parameters such as, organ mass and body mass. Therefore, an appropriate sensitivity analysis (SA) technique is required which can quantify the influences associated with individual parameters, interactions between parameters and any non-linear processes. In this report we have defined the elements of a workflow for SA of PBPK models that is computationally feasible, accounts for interactions between parameters, and can be displayed in the form of a bar chart and cumulative sum line (Lowry plot), which we believe is intuitive and appropriate for toxicologists, risk assessors, and regulators. PMID:21772819

  12. An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.

    2015-10-01

    Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.

  13. Comment on “Two statistics for evaluating parameter identifiability and error reduction” by John Doherty and Randall J. Hunt

    USGS Publications Warehouse

    Hill, Mary C.

    2010-01-01

    Doherty and Hunt (2009) present important ideas for first-order-second moment sensitivity analysis, but five issues are discussed in this comment. First, considering the composite-scaled sensitivity (CSS) jointly with parameter correlation coefficients (PCC) in a CSS/PCC analysis addresses the difficulties with CSS mentioned in the introduction. Second, their new parameter identifiability statistic actually is likely to do a poor job of parameter identifiability in common situations. The statistic instead performs the very useful role of showing how model parameters are included in the estimated singular value decomposition (SVD) parameters. Its close relation to CSS is shown. Third, the idea from p. 125 that a suitable truncation point for SVD parameters can be identified using the prediction variance is challenged using results from Moore and Doherty (2005). Fourth, the relative error reduction statistic of Doherty and Hunt is shown to belong to an emerging set of statistics here named perturbed calculated variance statistics. Finally, the perturbed calculated variance statistics OPR and PPR mentioned on p. 121 are shown to explicitly include the parameter null-space component of uncertainty. Indeed, OPR and PPR results that account for null-space uncertainty have appeared in the literature since 2000.

  14. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    PubMed

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; Millwater, Harry; Shipley, Heather J

    2014-11-15

    Aluminum oxide nanoparticles have been widely used in various consumer products and there are growing concerns regarding their exposure in the environment. This study deals with the modeling, sensitivity analysis and uncertainty quantification of one-dimensional transport of nano-sized (~82 nm) aluminum oxide particles in saturated sand. The transport of aluminum oxide nanoparticles was modeled using a two-kinetic-site model with a blocking function. The modeling was done at different ionic strengths, flow rates, and nanoparticle concentrations. The two sites representing fast and slow attachments along with a blocking term yielded good agreement with the experimental results from the column studies of aluminum oxide nanoparticles. The same model was used to simulate breakthrough curves under different conditions using experimental data and calculated 95% confidence bounds of the generated breakthroughs. The sensitivity analysis results showed that slow attachment was the most sensitive parameter for high influent concentrations (e.g. 150 mg/L Al2O3) and the maximum solid phase retention capacity (related to blocking function) was the most sensitive parameter for low concentrations (e.g. 50 mg/L Al2O3). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  17. Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models (Open Access)

    DTIC Science & Technology

    2015-03-16

    shaded region around each total sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity...Performance We conducted a global sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the...Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear

  18. PESTAN: Pesticide Analytical Model Version 4.0 User's Guide

    EPA Pesticide Factsheets

    The principal objective of this User's Guide to provide essential information on the aspects such as model conceptualization, model theory, assumptions and limitations, determination of input parameters, analysis of results and sensitivity analysis.

  19. Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel

    CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less

  20. Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection

    PubMed Central

    Jones, Douglas E.; Dorman, Karin S.

    2009-01-01

    Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen’s ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. PMID:19837088

  1. Modelling the effect of heterogeneity of shedding on the within herd Coxiella burnetii spread and identification of key parameters by sensitivity analysis.

    PubMed

    Courcoul, Aurélie; Monod, Hervé; Nielen, Mirjam; Klinkenberg, Don; Hogerwerf, Lenny; Beaudeau, François; Vergu, Elisabeta

    2011-09-07

    Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding. To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state). Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    PubMed

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  3. Early impairment of somatosensory evoked potentials in very young children with achondroplasia with foramen magnum stenosis.

    PubMed

    Fornarino, Stefania; Rossi, Daniela Paola; Severino, Mariasavina; Pistorio, Angela; Allegri, Anna Elsa Maria; Martelli, Simona; Doria Lamba, Laura; Lanteri, Paola

    2017-02-01

    To evaluate the contribution of somatosensory evoked potentials after median nerve (MN-SEPs) and posterior tibial nerve (PTN-SEPs) stimulation in functional assessment of cervical and lumbar spinal stenosis in children with achondroplasia. We reviewed MN-SEPs, PTN-SEPs, and spinal magnetic resonance imaging (MRI) examinations performed in 58 patients with achondroplasia (25 males, 33 females; age range 21d-16y 10mo; mean age 4y 3mo [SD 4y 1mo]). Patients were subdivided into four age categories: <2 years, between 2 to 4 years, between 4 to 8 years, and ≥8 years. The peak latency of P37 for PTN-SEPs, the peak latencies of N11, N13, P14, and N20, and the N13-N20 interpeak latency (IPL) for MN-SEPs were collected; the diagnostic accuracy measures of these parameters (analysis of receiver operating characteristic [ROC] curves) with respect to the presence of foramen magnum or lumbar spinal stenosis were analysed in each age category. The ROC curve analysis showed that the most sensitive parameter in detecting the presence of foramen magnum stenosis was P37 latency in the first two age categories (<2y and ≥2-4y; sensitivity 0.63, specificity 1.00, and sensitivity 1.00, specificity 0.75 respectively). In the third age category (≥4-8y), the most sensitive parameter in detecting the presence of foramen magnum stenosis was IPLs N13-N20 (sensitivity 0.73, specificity 0.87), whereas in the last age category (≥8y), the most important parameter was N20 latency (sensitivity 0.75, specificity 0.77). In children with achondroplasia, the cortical component of PTN-SEPs is more sensitive than the cortical component and central conduction time of MN-SEPs in detection of cervical spinal cord compression at early ages. © 2016 Mac Keith Press.

  4. Sensitivity to Mental Effort and Test-Retest Reliability of Heart Rate Variability Measures in Healthy Seniors

    PubMed Central

    Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P.; Oken, Barry S.

    2011-01-01

    Objectives To determine 1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and 2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Methods Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings two weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Results Time domain (especially mean R-R interval/RRI), frequency domain and, among nonlinear parameters- Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Conclusions Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. Significance A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. PMID:21459665

  5. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  6. Multiobjective Sensitivity Analysis Of Sediment And Nitrogen Processes With A Watershed Model

    EPA Science Inventory

    This paper presents a computational analysis for evaluating critical non-point-source sediment and nutrient (specifically nitrogen) processes and management actions at the watershed scale. In the analysis, model parameters that bear key uncertainties were presumed to reflect the ...

  7. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  8. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-01

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.

  9. Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc

    2016-03-14

    We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less

  10. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  11. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  12. Application of Sensitivity Analysis to Aerodynamic Parameters of a Bank to Turn Missile.

    DTIC Science & Technology

    1983-12-01

    the parameter-induced chanqe of the trajectcry can be taken as r X ( tOC ) (, 0%(2.10) Where o( + Z , which is the ICTUIL parameter vector of the system...Espacimis Divisao de Sistemas Belicos Rnia Paraibuna S/N12200 Sao Jose dos Campos - SPSao Paulo, BRAZIL 10. MAJ Tiaq* da Silva Ribeiro 3Cento ec ico. cial

  13. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  14. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  15. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.

  16. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.

    PubMed

    Johnson, T S; Andriacchi, T P; Erdman, A G

    2004-01-01

    Various uses of the screw or helical axis have previously been reported in the literature in an attempt to quantify the complex displacements and coupled rotations of in vivo human knee kinematics. Multiple methods have been used by previous authors to calculate the axis parameters, and it has been theorized that the mathematical stability and accuracy of the finite helical axis (FHA) is highly dependent on experimental variability and rotation increment spacing between axis calculations. Previous research has not addressed the sensitivity of the FHA for true in vivo data collection, as required for gait laboratory analysis. This research presents a controlled series of experiments simulating continuous data collection as utilized in gait analysis to investigate the sensitivity of the three-dimensional finite screw axis parameters of rotation, displacement, orientation and location with regard to time step increment spacing, utilizing two different methods for spatial location. Six-degree-of-freedom motion parameters are measured for an idealized rigid body knee model that is constrained to a planar motion profile for the purposes of error analysis. The kinematic data are collected using a multicamera optoelectronic system combined with an error minimization algorithm known as the point cluster method. Rotation about the screw axis is seen to be repeatable, accurate and time step increment insensitive. Displacement along the axis is highly dependent on time step increment sizing, with smaller rotation angles between calculations producing more accuracy. Orientation of the axis in space is accurate with only a slight filtering effect noticed during motion reversal. Locating the screw axis by a projected point onto the screw axis from the mid-point of the finite displacement is found to be less sensitive to motion reversal than finding the intersection of the axis with a reference plane. A filtering effect of the spatial location parameters was noted for larger time step increments during periods of little or no rotation.

  17. Resolution of VTI anisotropy with elastic full-waveform inversion: theory and basic numerical examples

    NASA Astrophysics Data System (ADS)

    Podgornova, O.; Leaney, S.; Liang, L.

    2018-07-01

    Extracting medium properties from seismic data faces some limitations due to the finite frequency content of the data and restricted spatial positions of the sources and receivers. Some distributions of the medium properties make low impact on the data (including none). If these properties are used as the inversion parameters, then the inverse problem becomes overparametrized, leading to ambiguous results. We present an analysis of multiparameter resolution for the linearized inverse problem in the framework of elastic full-waveform inversion. We show that the spatial and multiparameter sensitivities are intertwined and non-sensitive properties are spatial distributions of some non-trivial combinations of the conventional elastic parameters. The analysis accounts for the Hessian information and frequency content of the data; it is semi-analytical (in some scenarios analytical), easy to interpret and enhances results of the widely used radiation pattern analysis. Single-type scattering is shown to have limited sensitivity, even for full-aperture data. Finite-frequency data lose multiparameter sensitivity at smooth and fine spatial scales. Also, we establish ways to quantify a spatial-multiparameter coupling and demonstrate that the theoretical predictions agree well with the numerical results.

  18. Dependence of Intramyocardial Pressure and Coronary Flow on Ventricular Loading and Contractility: A Model Study

    PubMed Central

    Borsje, Petra; Arts, Theo; van De Vosse, Frans N.

    2006-01-01

    The phasic coronary arterial inflow during the normal cardiac cycle has been explained with simple (waterfall, intramyocardial pump) models, emphasizing the role of ventricular pressure. To explain changes in isovolumic and low afterload beats, these models were extended with the effect of three-dimensional wall stress, nonlinear characteristics of the coronary bed, and extravascular fluid exchange. With the associated increase in the number of model parameters, a detailed parameter sensitivity analysis has become difficult. Therefore we investigated the primary relations between ventricular pressure and volume, wall stress, intramyocardial pressure and coronary blood flow, with a mathematical model with a limited number of parameters. The model replicates several experimental observations: the phasic character of coronary inflow is virtually independent of maximum ventricular pressure, the amplitude of the coronary flow signal varies about proportionally with cardiac contractility, and intramyocardial pressure in the ventricular wall may exceed ventricular pressure. A parameter sensitivity analysis shows that the normalized amplitude of coronary inflow is mainly determined by contractility, reflected in ventricular pressure and, at low ventricular volumes, radial wall stress. Normalized flow amplitude is less sensitive to myocardial coronary compliance and resistance, and to the relation between active fiber stress, time, and sarcomere shortening velocity. PMID:17048105

  19. Sensitivity analysis of respiratory parameter uncertainties: impact of criterion function form and constraints.

    PubMed

    Lutchen, K R

    1990-08-01

    A sensitivity analysis based on weighted least-squares regression is presented to evaluate alternative methods for fitting lumped-parameter models to respiratory impedance data. The goal is to maintain parameter accuracy simultaneously with practical experiment design. The analysis focuses on predicting parameter uncertainties using a linearized approximation for joint confidence regions. Applications are with four-element parallel and viscoelastic models for 0.125- to 4-Hz data and a six-element model with separate tissue and airway properties for input and transfer impedance data from 2-64 Hz. The criterion function form was evaluated by comparing parameter uncertainties when data are fit as magnitude and phase, dynamic resistance and compliance, or real and imaginary parts of input impedance. The proper choice of weighting can make all three criterion variables comparable. For the six-element model, parameter uncertainties were predicted when both input impedance and transfer impedance are acquired and fit simultaneously. A fit to both data sets from 4 to 64 Hz could reduce parameter estimate uncertainties considerably from those achievable by fitting either alone. For the four-element models, use of an independent, but noisy, measure of static compliance was assessed as a constraint on model parameters. This may allow acceptable parameter uncertainties for a minimum frequency of 0.275-0.375 Hz rather than 0.125 Hz. This reduces data acquisition requirements from a 16- to a 5.33- to 8-s breath holding period. These results are approximations, and the impact of using the linearized approximation for the confidence regions is discussed.

  20. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  1. Sensitivity analysis of 1-D dynamical model for basin analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, S.

    1987-01-01

    Geological processes related to petroleum generation, migration and accumulation are very complicated in terms of time and variables involved, and it is very difficult to simulate these processes by laboratory experiments. For this reasons, many mathematic/computer models have been developed to simulate these geological processes based on geological, geophysical and geochemical principles. The sensitivity analysis in this study is a comprehensive examination on how geological, geophysical and geochemical parameters influence the reconstructions of geohistory, thermal history and hydrocarbon generation history using the 1-D fluid flow/compaction model developed in the Basin Modeling Group at the University of South Carolina. This studymore » shows the effects of some commonly used parameter such as depth, age, lithology, porosity, permeability, unconformity (eroded thickness and erosion time), temperature at sediment surface, bottom hole temperature, present day heat flow, thermal gradient, thermal conductivity and kerogen type and content on the evolutions of formation thickness, porosity, permeability, pressure with time and depth, heat flow with time, temperature with time and depth, vitrinite reflectance (Ro) and TTI with time and depth, and oil window in terms of time and depth, amount of hydrocarbons generated with time and depth. Lithology, present day heat flow and thermal conductivity are the most sensitive parameters in the reconstruction of temperature history.« less

  2. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  3. Sobol's sensitivity analysis for a fuel cell stack assembly model with the aid of structure-selection techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Cho, Chongdu; Piao, Changhao; Choi, Hojoon

    2016-01-01

    This paper presents a novel method for identifying the main parameters affecting the stress distribution of the components used in assembly modeling of proton exchange membrane fuel cell (PEMFC) stack. This method is a combination of an approximation model and Sobol's method, which allows a fast global sensitivity analysis for a set of uncertain parameters using only a limited number of calculations. Seven major parameters, i.e., Young's modulus of the end plate and the membrane electrode assembly (MEA), the contact stiffness between the MEA and bipolar plate (BPP), the X and Y positions of the bolts, the pressure of each bolt, and the thickness of the end plate, are investigated regarding their effect on four metrics, i.e., the maximum stresses of the MEA, BPP, and end plate, and the stress distribution percentage of the MEA. The analysis reveals the individual effects of each parameter and its interactions with the other parameters. The results show that the X position of a bolt has a major influence on the maximum stresses of the BPP and end plate, whereas the thickness of the end plate has the strongest effect on both the maximum stress and the stress distribution percentage of the MEA.

  4. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    USDA-ARS?s Scientific Manuscript database

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  5. Sensitivity of grass and alfalfa reference evapotranspiration to weather station sensor accuracy

    USDA-ARS?s Scientific Manuscript database

    A sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1991 to 2008 from an autom...

  6. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  7. Complex multifractal nature in Mycobacterium tuberculosis genome

    PubMed Central

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-01-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326

  8. Complex multifractal nature in Mycobacterium tuberculosis genome

    NASA Astrophysics Data System (ADS)

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-04-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.

  9. Minerva exoplanet detection sensitivity from simulated observations

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Nava, C.

    2014-01-01

    Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.

  10. Estimating the Geocenter from GNSS Observations

    NASA Astrophysics Data System (ADS)

    Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian

    2014-05-01

    The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.

  11. Sensitivity and specificity of univariate MRI analysis of experimentally degraded cartilage

    PubMed Central

    Lin, Ping-Chang; Reiter, David A.; Spencer, Richard G.

    2010-01-01

    MRI is increasingly used to evaluate cartilage in tissue constructs, explants, and animal and patient studies. However, while mean values of MR parameters, including T1, T2, magnetization transfer rate km, apparent diffusion coefficient ADC, and the dGEMRIC-derived fixed charge density, correlate with tissue status, the ability to classify tissue according to these parameters has not been explored. Therefore, the sensitivity and specificity with which each of these parameters was able to distinguish between normal and trypsin- degraded, and between normal and collagenase-degraded, cartilage explants were determined. Initial analysis was performed using a training set to determine simple group means to which parameters obtained from a validation set were compared. T1 and ADC showed the greatest ability to discriminate between normal and degraded cartilage. Further analysis with k-means clustering, which eliminates the need for a priori identification of sample status, generally performed comparably. Use of fuzzy c-means (FCM) clustering to define centroids likewise did not result in improvement in discrimination. Finally, a FCM clustering approach in which validation samples were assigned in a probabilistic fashion to control and degraded groups was implemented, reflecting the range of tissue characteristics seen with cartilage degradation. PMID:19705467

  12. Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Ruiz, Rafael O.; Meruane, Viviana

    2017-06-01

    The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.

  13. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems, particularly at the laboratory scale.

  14. On selecting a prior for the precision parameter of Dirichlet process mixture models

    USGS Publications Warehouse

    Dorazio, R.M.

    2009-01-01

    In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.

  15. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust decisions.

  16. Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control.

    PubMed

    Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A

    2015-06-01

    We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes.

  17. JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES

    EPA Science Inventory

    The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...

  18. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  19. Evaluation of the information content of long-term wastewater characteristics data in relation to activated sludge model parameters.

    PubMed

    Alikhani, Jamal; Takacs, Imre; Al-Omari, Ahmed; Murthy, Sudhir; Massoudieh, Arash

    2017-03-01

    A parameter estimation framework was used to evaluate the ability of observed data from a full-scale nitrification-denitrification bioreactor to reduce the uncertainty associated with the bio-kinetic and stoichiometric parameters of an activated sludge model (ASM). Samples collected over a period of 150 days from the effluent as well as from the reactor tanks were used. A hybrid genetic algorithm and Bayesian inference were used to perform deterministic and parameter estimations, respectively. The main goal was to assess the ability of the data to obtain reliable parameter estimates for a modified version of the ASM. The modified ASM model includes methylotrophic processes which play the main role in methanol-fed denitrification. Sensitivity analysis was also used to explain the ability of the data to provide information about each of the parameters. The results showed that the uncertainty in the estimates of the most sensitive parameters (including growth rate, decay rate, and yield coefficients) decreased with respect to the prior information.

  20. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    PubMed

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.

  2. Photobiomodulation in the Prevention of Tooth Sensitivity Caused by In-Office Dental Bleaching. A Randomized Placebo Preliminary Study.

    PubMed

    Calheiros, Andrea Paiva Corsetti; Moreira, Maria Stella; Gonçalves, Flávia; Aranha, Ana Cecília Correa; Cunha, Sandra Ribeiro; Steiner-Oliveira, Carolina; Eduardo, Carlos de Paula; Ramalho, Karen Müller

    2017-08-01

    Analyze the effect of photobiomodulation in the prevention of tooth sensitivity after in-office dental bleaching. Tooth sensitivity is a common clinical consequence of dental bleaching. Therapies for prevention of sensitivity have been investigated in literature. This study was developed as a randomized, placebo blind clinical trial. Fifty patients were selected (n = 10) and randomly divided into five groups: (1) control, (2) placebo, (3) laser before bleaching, (4) laser after bleaching, and (5) laser before and after bleaching. Irradiation was performed perpendicularly, in contact, on each tooth during 10 sec per point in two points. The first point was positioned in the middle of the tooth crown and the second in the periapical region. Photobiomodulation was applied using the following parameters: 780 nm, 40 mW, 10 J/cm 2 , 0.4 J per point. Pain was analyzed before, immediately after, and seven subsequent days after bleaching. Patients were instructed to report pain using the scale: 0 = no tooth sensitivity, 1 = gentle sensitivity, 2 = moderate sensitivity, 3 = severe sensitivity. There were no statistical differences between groups at any time (p > 0.05). More studies, with others parameters and different methods of tooth sensitivity analysis, should be performed to complement the results found. Within the limitation of the present study, the laser parameters of photobiomodulation tested in the present study were not efficient in preventing tooth sensitivity after in-office bleaching.

  3. A comprehensive approach to identify dominant controls of the behavior of a land surface-hydrology model across various hydroclimatic conditions

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, Amin; Elshamy, Mohamed; Yassin, Fuad; Razavi, Saman; Wheater, Howard; Pietroniro, Al

    2017-04-01

    Complex physically-based environmental models are being increasingly used as the primary tool for watershed planning and management due to advances in computation power and data acquisition. Model sensitivity analysis plays a crucial role in understanding the behavior of these complex models and improving their performance. Due to the non-linearity and interactions within these complex models, Global sensitivity analysis (GSA) techniques should be adopted to provide a comprehensive understanding of model behavior and identify its dominant controls. In this study we adopt a multi-basin multi-criteria GSA approach to systematically assess the behavior of the Modélisation Environmentale-Surface et Hydrologie (MESH) across various hydroclimatic conditions in Canada including areas in the Great Lakes Basin, Mackenzie River Basin, and South Saskatchewan River Basin. MESH is a semi-distributed physically-based coupled land surface-hydrology modelling system developed by Environment and Climate Change Canada (ECCC) for various water resources management purposes in Canada. We use a novel method, called Variogram Analysis of Response Surfaces (VARS), to perform sensitivity analysis. VARS is a variogram-based GSA technique that can efficiently provide a spectrum of sensitivity information across a range of scales within the parameter space. We use multiple metrics to identify dominant controls of model response (e.g. streamflow) to model parameters under various conditions such as high flows, low flows, and flow volume. We also investigate the influence of initial conditions on model behavior as part of this study. Our preliminary results suggest that this type of GSA can significantly help with estimating model parameters, decreasing calibration computational burden, and reducing prediction uncertainty.

  4. Sensitivity Analysis Reveals Critical Factors that Affect Wetland Methane Emissions using Soil Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Alonso-Contes, C.; Gerber, S.; Bliznyuk, N.; Duerr, I.

    2017-12-01

    Wetlands contribute approximately 20 to 40 % to global sources of methane emissions. We build a Methane model for tropical and subtropical forests, that allows inundated conditions, following the approaches used in more complex global biogeochemical emission models (LPJWhyMe and CLM4Me). The model was designed to replace model formulations with field and remotely sensed collected data for 2 essential drivers: plant productivity and hydrology. This allows us to directly focus on the central processes of methane production, consumption and transport. One of our long term goals is to make the model available to a scientists interested in including methane modeling in their location of study. Sensitivity analysis results help in focusing field data collection efforts. Here, we present results from a pilot global sensitivity analysis of the model order to determine which parameters and processes contribute most to the model's uncertainty of methane emissions. Results show that parameters related to water table behavior, carbon input (in form of plant productivity) and rooting depth affect simulated methane emissions the most. Current efforts include to perform the sensitivity analysis again on methane emissions outputs from an updated model that incorporates a soil heat flux routine and to determine the extent by which the soil temperature parameters affect CH4 emissions. Currently we are conducting field collection of data during Summer 2017 for comparison among 3 different landscapes located in the Ordway-Swisher Biological Station in Melrose, FL. We are collecting soil moisture and CH4 emission data from 4 different wetland types. Having data from 4 wetland types allows for calibration of the model to diverse soil, water and vegetation characteristics.

  5. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters.

    PubMed

    Zhou, Qian-Jun; Zheng, Zhi-Chun; Zhu, Yong-Qiao; Lu, Pei-Ji; Huang, Jia; Ye, Jian-Ding; Zhang, Jie; Lu, Shun; Luo, Qing-Quan

    2017-05-01

    To investigate the potential value of CT parameters to differentiate ground-glass nodules between noninvasive adenocarcinoma and invasive pulmonary adenocarcinoma (IPA) as defined by IASLC/ATS/ERS classification. We retrospectively reviewed 211 patients with pathologically proved stage 0-IA lung adenocarcinoma which appeared as subsolid nodules, from January 2012 to January 2013 including 137 pure ground glass nodules (pGGNs) and 74 part-solid nodules (PSNs). Pathological data was classified under the 2011 IASLC/ATS/ERS classification. Both quantitative and qualitative CT parameters were used to determine the tumor invasiveness between noninvasive adenocarcinomas and IPAs. There were 154 noninvasive adenocarcinomas and 57 IPAs. In pGGNs, CT size and area, one-dimensional mean CT value and bubble lucency were significantly different between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate regression and ROC analysis revealed that CT size and one-dimensional mean CT value were predictive of noninvasive adenocarcinomas compared to IPAs. Optimal cutoff value was 13.60 mm (sensitivity, 75.0%; specificity, 99.6%), and -583.60 HU (sensitivity, 68.8%; specificity, 66.9%). In PSNs, there were significant differences in CT size and area, solid component area, solid proportion, one-dimensional mean and maximum CT value, three-dimensional (3D) mean CT value between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate and ROC analysis showed that CT size and 3D mean CT value were significantly differentiators. Optimal cutoff value was 19.64 mm (sensitivity, 53.7%; specificity, 93.9%), -571.63 HU (sensitivity, 85.4%; specificity, 75.8%). For pGGNs, CT size and one-dimensional mean CT value are determinants for tumor invasiveness. For PSNs, tumor invasiveness can be predicted by CT size and 3D mean CT value.

  6. UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API

    USGS Publications Warehouse

    Poeter, Eileen E.; Hill, Mary C.; Banta, Edward R.; Mehl, Steffen; Christensen, Steen

    2006-01-01

    This report documents the computer codes UCODE_2005 and six post-processors. Together the codes can be used with existing process models to perform sensitivity analysis, data needs assessment, calibration, prediction, and uncertainty analysis. Any process model or set of models can be used; the only requirements are that models have numerical (ASCII or text only) input and output files, that the numbers in these files have sufficient significant digits, that all required models can be run from a single batch file or script, and that simulated values are continuous functions of the parameter values. Process models can include pre-processors and post-processors as well as one or more models related to the processes of interest (physical, chemical, and so on), making UCODE_2005 extremely powerful. An estimated parameter can be a quantity that appears in the input files of the process model(s), or a quantity used in an equation that produces a value that appears in the input files. In the latter situation, the equation is user-defined. UCODE_2005 can compare observations and simulated equivalents. The simulated equivalents can be any simulated value written in the process-model output files or can be calculated from simulated values with user-defined equations. The quantities can be model results, or dependent variables. For example, for ground-water models they can be heads, flows, concentrations, and so on. Prior, or direct, information on estimated parameters also can be considered. Statistics are calculated to quantify the comparison of observations and simulated equivalents, including a weighted least-squares objective function. In addition, data-exchange files are produced that facilitate graphical analysis. UCODE_2005 can be used fruitfully in model calibration through its sensitivity analysis capabilities and its ability to estimate parameter values that result in the best possible fit to the observations. Parameters are estimated using nonlinear regression: a weighted least-squares objective function is minimized with respect to the parameter values using a modified Gauss-Newton method or a double-dogleg technique. Sensitivities needed for the method can be read from files produced by process models that can calculate sensitivities, such as MODFLOW-2000, or can be calculated by UCODE_2005 using a more general, but less accurate, forward- or central-difference perturbation technique. Problems resulting from inaccurate sensitivities and solutions related to the perturbation techniques are discussed in the report. Statistics are calculated and printed for use in (1) diagnosing inadequate data and identifying parameters that probably cannot be estimated; (2) evaluating estimated parameter values; and (3) evaluating how well the model represents the simulated processes. Results from UCODE_2005 and codes RESIDUAL_ANALYSIS and RESIDUAL_ANALYSIS_ADV can be used to evaluate how accurately the model represents the processes it simulates. Results from LINEAR_UNCERTAINTY can be used to quantify the uncertainty of model simulated values if the model is sufficiently linear. Results from MODEL_LINEARITY and MODEL_LINEARITY_ADV can be used to evaluate model linearity and, thereby, the accuracy of the LINEAR_UNCERTAINTY results. UCODE_2005 can also be used to calculate nonlinear confidence and predictions intervals, which quantify the uncertainty of model simulated values when the model is not linear. CORFAC_PLUS can be used to produce factors that allow intervals to account for model intrinsic nonlinearity and small-scale variations in system characteristics that are not explicitly accounted for in the model or the observation weighting. The six post-processing programs are independent of UCODE_2005 and can use the results of other programs that produce the required data-exchange files. UCODE_2005 and the other six codes are intended for use on any computer operating system. The programs con

  7. Performance sensitivity analysis of Department of Energy-Chrysler upgraded automotive gas turbine engine, S/N 5-4

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.

    1979-01-01

    The performance sensitivity of a two-shaft automotive gas turbine engine to changes in component performance and cycle operating parameters was examined. Sensitivities were determined for changes in turbomachinery efficiency, compressor inlet temperature, power turbine discharge temperature, regenerator effectiveness, regenerator pressure drop, and several gas flow and heat leaks. Compressor efficiency was found to have the greatest effect on system performance.

  8. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  9. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  10. Analysis of Composite Panels Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1999-01-01

    The results of a detailed study of the effect of cutout on the nonlinear response of curved unstiffened panels are presented. The panels are subjected to combined temperature gradient through-the-thickness combined with pressure loading and edge shortening or edge shear. The analysis is based on a first-order, shear deformation, Sanders-Budiansky-type shell theory with the effects of large displacements, moderate rotations, transverse shear deformation, and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, principal strains, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the nonlinear response to variations in the panel parameters, as well as in the material properties of the individual layers. Numerical results are presented for cylindrical panels and show the effects of variations in the loading and the size of the cutout on the global and local response quantities as well as their sensitivity to changes in the various panel, layer, and micromechanical parameters.

  11. Post-Launch Analysis of Swift's Gamma-Ray Burst Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.

  12. Basic research for the geodynamics program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mathematical models of space very long base interferometry (VLBI) observables suitable for least squares covariance analysis were derived and estimatability problems inherent in the space VLBI system were explored, including a detailed rank defect analysis and sensitivity analysis. An important aim is to carry out a comparative analysis of the mathematical models of the ground-based VLBI and space VLBI observables in order to describe the background in detail. Computer programs were developed in order to check the relations, assess errors, and analyze sensitivity. In order to investigate the estimatability of different geodetic and geodynamic parameters from the space VLBI observables, the mathematical models for time delay and time delay rate observables of space VLBI were analytically derived along with the partial derivatives with respect to the parameters. Rank defect analysis was carried out both by analytical and numerical testing of linear dependencies between the columns of the normal matrix thus formed. Definite conclusions were formed about the rank defects in the system.

  13. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma.

    PubMed

    Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi

    2017-04-01

    To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P < 0.001 and P = 0.001, respectively). With all b-value combinations, the entropy of ADC was significantly higher in pheochromocytomas than in adrenal adenomas (all P ≤ 0.001), and showed the highest area under the ROC curve among the ADC histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry.

    PubMed

    Wittmann, C; Heinzle, E

    2001-04-01

    Experimental design of (13)C-tracer studies for metabolic flux analysis with mass spectrometric determination of labeling patterns was performed for the central metabolism of Corynebacterium glutamicum comprising various flux scenarios. Ratio measurement of mass isotopomer pools of Corynebacterium products lysine, alanine, and trehalose is sufficient to quantify the flux partitioning ratios (i) between glycolysis and pentose phosphate pathways (Phi(PPP)), (ii) between the split pathways in the lysine biosynthesis (Phi(DH)), (iii) at the pyruvate node (Phi(PC)), and reversibilities of (iv) glucose 6-phosphate isomerase (zeta(PGI)), (v) at the pyruvate node (zeta(PC/PEPCK)), and (vi) of transaldolase and transketolases in the PPP. Weighted sensitivities for flux parameters were derived from partial derivatives to quantitatively evaluate experimental approaches and predict precision for estimated flux parameters. Deviation of intensity ratios from ideal values of 1 was used as weighting function. Weighted flux sensitivities can be used to identify optimal type and degree of tracer labeling or potential intensity ratios to be measured. Experimental design for lysine-producing strain C. glutamicum MH 20-22B (Marx et al., Biotechnol. Bioeng. 49, 111-129, 1996) and various potential mutants with different alterations in the flux pattern showed that specific tracer labelings are optimal to quantify a certain flux parameter uninfluenced by the overall flux situation. Identified substrates of choice are [1-(13)C]glucose for the estimation of Phi(PPP) and zeta(PGI) and a 1 : 1 mixture of [U-(12)C/U-(13)C]glucose for the determination of zeta(PC/PEPCK). Phi(PC) can be quantified by feeding [4-(13)C]glucose or [U-(12)C/U-(13)C]glucose (1 : 1), whereas Phi(DH) is accessible via [4-(13)C]glucose. The sensitivity for the quantification of a certain flux parameter can be influenced by superposition through other flux parameters in the network, but substrate and measured mass isotopomers of choice remain the same. In special cases, reduced labeling degree of the tracer substrate can increase the precision of flux analysis. Enhanced precision and flux information can be achieved via multiply labeled substrates. The presented approach can be applied for effective experimental design of (13)C tracer studies for metabolic flux analysis. Intensity ratios of other products such as glutamate, valine, phenylalanine, and riboflavin also sensitively reflect flux parameters, which underlines the great potential of mass spectrometry for flux analysis. Copyright 2001 Academic Press.

  15. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  16. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution

    NASA Astrophysics Data System (ADS)

    Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.

    2013-01-01

    Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.

  17. The Relationship of Mean Platelet Volume/Platelet Distribution Width and Duodenal Ulcer Perforation.

    PubMed

    Fan, Zhe; Zhuang, Chengjun

    2017-03-01

    Duodenal ulcer perforation (DUP) is a severe acute abdominal disease. Mean platelet volume (MPV) and platelet distribution width (PDW) are two platelet parameters, participating in many inflammatory processes. This study aims to investigate the relation of MPV/PDW and DUP. A total of 165 patients were studied retrospectively, including 21 females and 144 males. The study included two groups: 87 normal patients (control group) and 78 duodenal ulcer perforation patients (DUP group). Routine blood parameters were collected for analysis including white blood cell count (WBC), neutrophil ratio (NR), platelet count (PLT), MPV and PDW. Receiver operating curve (ROC) analysis was applied to evaluate the parameters' sensitivity. No significant differences were observed between the control group and DUP group in age and gender. WBC, NR and PDW were significantly increased in the DUP group ( P <0.001, respectively); PLT and MPV were significantly decreased in the DUP group ( P <0.001, respectively) compared to controls. MPV had the high sensitivity. Our results suggested a potential association between MPV/PDW and disease activity in DUP patients, and high sensitivity of MPV. © 2017 by the Association of Clinical Scientists, Inc.

  18. Margin and sensitivity methods for security analysis of electric power systems

    NASA Astrophysics Data System (ADS)

    Greene, Scott L.

    Reliable operation of large scale electric power networks requires that system voltages and currents stay within design limits. Operation beyond those limits can lead to equipment failures and blackouts. Security margins measure the amount by which system loads or power transfers can change before a security violation, such as an overloaded transmission line, is encountered. This thesis shows how to efficiently compute security margins defined by limiting events and instabilities, and the sensitivity of those margins with respect to assumptions, system parameters, operating policy, and transactions. Security margins to voltage collapse blackouts, oscillatory instability, generator limits, voltage constraints and line overloads are considered. The usefulness of computing the sensitivities of these margins with respect to interarea transfers, loading parameters, generator dispatch, transmission line parameters, and VAR support is established for networks as large as 1500 buses. The sensitivity formulas presented apply to a range of power system models. Conventional sensitivity formulas such as line distribution factors, outage distribution factors, participation factors and penalty factors are shown to be special cases of the general sensitivity formulas derived in this thesis. The sensitivity formulas readily accommodate sparse matrix techniques. Margin sensitivity methods are shown to work effectively for avoiding voltage collapse blackouts caused by either saddle node bifurcation of equilibria or immediate instability due to generator reactive power limits. Extremely fast contingency analysis for voltage collapse can be implemented with margin sensitivity based rankings. Interarea transfer can be limited by voltage limits, line limits, or voltage stability. The sensitivity formulas presented in this thesis apply to security margins defined by any limit criteria. A method to compute transfer margins by directly locating intermediate events reduces the total number of loadflow iterations required by each margin computation and provides sensitivity information at minimal additional cost. Estimates of the effect of simultaneous transfers on the transfer margins agree well with the exact computations for a network model derived from a portion of the U.S grid. The accuracy of the estimates over a useful range of conditions and the ease of obtaining the estimates suggest that the sensitivity computations will be of practical value.

  19. Interactive Controls Analysis (INCA)

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H.

    1989-01-01

    Version 3.12 of INCA provides user-friendly environment for design and analysis of linear control systems. System configuration and parameters easily adjusted, enabling INCA user to create compensation networks and perform sensitivity analysis in convenient manner. Full complement of graphical routines makes output easy to understand. Written in Pascal and FORTRAN.

  20. Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Rehman, Naveed Ur; Siddiqui, Mubashir Ali

    2017-03-01

    In this paper, a regression model for evaluating the performance of solar concentrated thermoelectric generators (SCTEGs) is established and the significance of contributing parameters is discussed in detail. The model is based on several natural, design and operational parameters of the system, including the thermoelectric generator (TEG) module and its intrinsic material properties, the connected electrical load, concentrator attributes, heat transfer coefficients, solar flux, and ambient temperature. The model is developed by fitting a response curve, using the least-squares method, to the results. The sample points for the model were obtained by simulating a thermodynamic model, also developed in this paper, over a range of values of input variables. These samples were generated employing the Latin hypercube sampling (LHS) technique using a realistic distribution of parameters. The coefficient of determination was found to be 99.2%. The proposed model is validated by comparing the predicted results with those in the published literature. In addition, based on the elasticity for parameters in the model, sensitivity analysis was performed and the effects of parameters on the performance of SCTEGs are discussed in detail. This research will contribute to the design and performance evaluation of any SCTEG system for a variety of applications.

  1. Sensitivity to mental effort and test-retest reliability of heart rate variability measures in healthy seniors.

    PubMed

    Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P; Oken, Barry S

    2011-10-01

    To determine (1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and (2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings 2 weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Time domain, especially mean R-R interval (RRI), frequency domain and, among non-linear parameters - Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Intravoxel Incoherent Motion and Quantitative Non-Gaussian Diffusion MR Imaging: Evaluation of the Diagnostic and Prognostic Value of Several Markers of Malignant and Benign Breast Lesions.

    PubMed

    Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Onishi, Natsuko; Kawai, Makiko; Ohashi, Akane; Sakaguchi, Rena; Toi, Masakazu; Togashi, Kaori

    2018-05-01

    Purpose To investigate the performance of integrated approaches that combined intravoxel incoherent motion (IVIM) and non-Gaussian diffusion parameters compared with the Breast Imaging and Reporting Data System (BI-RADS) to establish multiparameter thresholds scores or probabilities by using Bayesian analysis to distinguish malignant from benign breast lesions and their correlation with molecular prognostic factors. Materials and Methods Between May 2013 and March 2015, 411 patients were prospectively enrolled and 199 patients (allocated to training [n = 99] and validation [n = 100] sets) were included in this study. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm 2 [ADC 0 ] and kurtosis [K]) by using IVIM and kurtosis models were estimated from diffusion-weighted image series (16 b values up to 2500 sec/mm 2 ), as well as a synthetic ADC (sADC) calculated by using b values of 200 and 1500 (sADC 200-1500 ) and a standard ADC calculated by using b values of 0 and 800 sec/mm 2 (ADC 0-800 ). The performance of two diagnostic approaches (combined parameter thresholds and Bayesian analysis) combining IVIM and diffusion parameters was evaluated and compared with BI-RADS performance. The Mann-Whitney U test and a nonparametric multiple comparison test were used to compare their performance to determine benignity or malignancy and as molecular prognostic biomarkers and subtypes of breast cancer. Results Significant differences were found between malignant and benign breast lesions for IVIM and non-Gaussian diffusion parameters (ADC 0 , K, fIVIM, fIVIM · D*, sADC 200-1500, and ADC 0-800 ; P < .05). Sensitivity and specificity for the validation set by radiologists A and B were as follows: sensitivity, 94.7% and 89.5%, and specificity, 75.0% and 79.2% for sADC 200-1500 , respectively; sensitivity, 94.7% and 96.1%, and specificity, 75.0% and 66.7%, for the combined thresholds approach, respectively; sensitivity, 92.1% and 92.1%, and specificity, 83.3% and 66.7%, for Bayesian analysis, respectively; and sensitivity and specificity, 100% and 79.2%, for BI-RADS, respectively. The significant difference in values of sADC 200-1500 in progesterone receptor status (P = .002) was noted. sADC 200-1500 was significantly different between histologic subtypes (P = .006). Conclusion Approaches that combined various IVIM and non-Gaussian diffusion MR imaging parameters may provide BI-RADS-equivalent scores almost comparable to BI-RADS categories without the use of contrast agents. Non-Gaussian diffusion parameters also differed by biologic prognostic factors. © RSNA, 2017 Online supplemental material is available for this article.

  3. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    PubMed

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.

  4. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  5. An alternative respiratory sounds classification system utilizing artificial neural networks.

    PubMed

    Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen

    2015-01-01

    Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.

  6. Aerosol Retrievals over the Ocean using Channel 1 and 2 AVHRR Data: A Sensitivity Analysis and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.; Lacis, Andrew A.

    1999-01-01

    This paper outlines the methodology of interpreting channel 1 and 2 AVHRR radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. We show that two-channel algorithms can be expected to provide significantly more accurate and less biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  7. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The sensitivity and significance analysis of parameters in the model of pH regulation on lactic acid production by Lactobacillus bulgaricus.

    PubMed

    Liu, Ke; Zeng, Xiangmiao; Qiao, Lei; Li, Xisheng; Yang, Yubo; Dai, Cuihong; Hou, Aiju; Xu, Dechang

    2014-01-01

    The excessive production of lactic acid by L. bulgaricus during yogurt storage is a phenomenon we are always tried to prevent. The methods used in industry either control the post-acidification inefficiently or kill the probiotics in yogurt. Genetic methods of changing the activity of one enzyme related to lactic acid metabolism make the bacteria short of energy to growth, although they are efficient ways in controlling lactic acid production. A model of pH-induced promoter regulation on the production of lactic acid by L. bulgaricus was built. The modelled lactic acid metabolism without pH-induced promoter regulation fitted well with wild type L. bulgaricus (R2LAC = 0.943, R2LA = 0.942). Both the local sensitivity analysis and Sobol sensitivity analysis indicated parameters Tmax, GR, KLR, S, V0, V1 and dLR were sensitive. In order to guide the future biology experiments, three adjustable parameters, KLR, V0 and V1, were chosen for further simulations. V0 had little effect on lactic acid production if the pH-induced promoter could be well induced when pH decreased to its threshold. KLR and V1 both exhibited great influence on the producing of lactic acid. The proposed method of introducing a pH-induced promoter to regulate a repressor gene could restrain the synthesis of lactic acid if an appropriate strength of promoter and/or an appropriate strength of ribosome binding sequence (RBS) in lacR gene has been designed.

  9. Global Sensitivity Analysis of Environmental Systems via Multiple Indices based on Statistical Moments of Model Outputs

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Dell'Oca, A.

    2017-12-01

    We propose to ground sensitivity of uncertain parameters of environmental models on a set of indices based on the main (statistical) moments, i.e., mean, variance, skewness and kurtosis, of the probability density function (pdf) of a target model output. This enables us to perform Global Sensitivity Analysis (GSA) of a model in terms of multiple statistical moments and yields a quantification of the impact of model parameters on features driving the shape of the pdf of model output. Our GSA approach includes the possibility of being coupled with the construction of a reduced complexity model that allows approximating the full model response at a reduced computational cost. We demonstrate our approach through a variety of test cases. These include a commonly used analytical benchmark, a simplified model representing pumping in a coastal aquifer, a laboratory-scale tracer experiment, and the migration of fracturing fluid through a naturally fractured reservoir (source) to reach an overlying formation (target). Our strategy allows discriminating the relative importance of model parameters to the four statistical moments considered. We also provide an appraisal of the error associated with the evaluation of our sensitivity metrics by replacing the original system model through the selected surrogate model. Our results suggest that one might need to construct a surrogate model with increasing level of accuracy depending on the statistical moment considered in the GSA. The methodological framework we propose can assist the development of analysis techniques targeted to model calibration, design of experiment, uncertainty quantification and risk assessment.

  10. Endobronchial Ultrasound for Nodal Staging of Non-Small Cell Lung Cancer Patients with Radiologically Normal Mediastinum: A Meta-Analysis.

    PubMed

    El-Osta, Hazem; Jani, Pushan; Mansour, Ali; Rascoe, Philip; Jafri, Syed

    2018-04-23

    An accurate assessment of the mediastinal lymph nodes status is essential in the staging and treatment planning of potentially resectable non-small cell lung cancer (NSCLC). We performed this meta-analysis to evaluate the role of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) in detecting occult mediastinal disease in NSCLC with no radiologic mediastinal involvement. The PubMed, Embase, and Cochrane libraries were searched for studies describing the role of EBUS-TBNA in lung cancer patients with radiologically negative mediastinum. The individual and pooled sensitivity, prevalence, negative predictive value (NPV), and diagnostic odds ratio (DOR) were calculated using the random effects model. Metaregression analysis, heterogeneity, and publication bias were also assessed. A total of 13 studies that met the inclusion criteria were included in the meta-analysis. The pooled effect size of the different diagnostic parameters were estimated as follows: prevalence, 12.8% (95% CI, 10.4%-15.7%); sensitivity, 49.5% (95% confidence interval [CI], 36.4%-62.6%); NPV, 93.0% (95% CI, 90.3%-95.0%); and log DOR, 5.069 (95% CI, 4.212-5.925). Significant heterogeneity was noticeable for the sensitivity, disease prevalence, and NPV, but not observed for log DOR. Publication bias was detected for sensitivity, NPV and log DOR but not for prevalence. Bivariate meta-regression analysis showed no significant association between the pooled calculated parameters and the type of anesthesia, imaging utilized to define negative mediastinum, rapid on-site test usage, and presence of bias by QUADAS-2 tool. Interestingly, we observed a greater sensitivity, NPV and log DOR for studies published prior to 2010, and for prospective multicenter studies. Among NSCLC patients with a radiologically normal mediastinum, the prevalence of mediastinal disease is 12.8% and the sensitivity of EBUS-TBNA is 49.5%. Despite the low sensitivity, the resulting NPV of 93.0% for EBUS-TBNA suggests that mediastinal metastasis is uncommon in such patients.

  11. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less

  12. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    PubMed

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.

  13. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  14. High correlation of double Debye model parameters in skin cancer detection.

    PubMed

    Truong, Bao C Q; Tuan, H D; Fitzgerald, Anthony J; Wallace, Vincent P; Nguyen, H T

    2014-01-01

    The double Debye model can be used to capture the dielectric response of human skin in terahertz regime due to high water content in the tissue. The increased water proportion is widely considered as a biomarker of carcinogenesis, which gives rise of using this model in skin cancer detection. Therefore, the goal of this paper is to provide a specific analysis of the double Debye parameters in terms of non-melanoma skin cancer classification. Pearson correlation is applied to investigate the sensitivity of these parameters and their combinations to the variation in tumor percentage of skin samples. The most sensitive parameters are then assessed by using the receiver operating characteristic (ROC) plot to confirm their potential of classifying tumor from normal skin. Our positive outcomes support further steps to clinical application of terahertz imaging in skin cancer delineation.

  15. A note on `a replenishment policy for items with price-dependent demand, time-proportional deterioration and no shortages'

    NASA Astrophysics Data System (ADS)

    Shah, Nita H.; Soni, Hardik N.; Gupta, Jyoti

    2014-08-01

    In a recent paper, Begum et al. (2012, International Journal of Systems Science, 43, 903-910) established pricing and replenishment policy for an inventory system with price-sensitive demand rate, time-proportional deterioration rate which follows three parameters, Weibull distribution and no shortages. In their model formulation, it is observed that the retailer's stock level reaches zero before the deterioration occurs. Consequently, the model resulted in traditional inventory model with price sensitive demand rate and no shortages. Hence, the main purpose of this note is to modify and present complete model formulation for Begum et al. (2012). The proposed model is validated by a numerical example and the sensitivity analysis of parameters is carried out.

  16. Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen

    2002-01-01

    The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.

  17. Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm.

    PubMed

    Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio

    2013-04-01

    Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing, dependent on the strength and direction of the forcing. These results indicate the importance of understanding model sensitivities under disturbance impacts to manage these shifts; plan for future water resource changes and determine how the impacts will affect the sustainability and adaptability of food-energy-water systems.

  19. What do we mean by sensitivity analysis? The need for comprehensive characterization of "global" sensitivity in Earth and Environmental systems models

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2015-05-01

    Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling. However, the term "sensitivity" has a clear definition, based in partial derivatives, only when specified locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique definition exists for "global sensitivity" across the problem space, when considering one or more model responses to different factors such as model parameters or forcings. A variety of approaches have been proposed for global sensitivity analysis, based on different philosophies and theories, and each of these formally characterizes a different "intuitive" understanding of sensitivity. These approaches focus on different properties of the model response at a fundamental level and may therefore lead to different (even conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensitivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved in interpreting "global" interaction effects, which may undermine the value of existing interpretive approaches. With this background, we identify several important properties of response surfaces that are associated with the understanding and interpretation of sensitivities in the context of Earth and Environmental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity analysis that effectively characterizes all of the important sensitivity-related properties of model response surfaces.

  20. Field-sensitivity To Rheological Parameters

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2017-11-01

    We ask this question: where in a flow is a quantity of interest Q quantitatively sensitive to the model parameters θ-> describing the rheology of the fluid? This field sensitivity is computed via the numerical solution of the adjoint flow equations, as developed to expose the target sensitivity δQ / δθ-> (x) via the constraint of satisfying the flow equations. Our primary example is a sphere settling in Carbopol, for which we have experimental data. For this Carreau-model configuration, we simultaneously calculate how much a local change in the fluid intrinsic time-scale λ, limit-viscosities ηo and η∞, and exponent n would affect the drag D. Such field sensitivities can show where different fluid physics in the model (time scales, elastic versus viscous components, etc.) are important for the target observable and generally guide model refinement based on predictive goals. In this case, the computational cost of solving the local sensitivity problem is negligible relative to the flow. The Carreau-fluid/sphere example is illustrative; the utility of field sensitivity is in the design and analysis of less intuitive flows, for which we provide some additional examples.

  1. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis version 6.0 theory manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less

  2. [Numerical simulation and operation optimization of biological filter].

    PubMed

    Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing

    2014-12-01

    BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.

  3. Physically-based modelling of high magnitude torrent events with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wing-Yuen Chow, Candace; Ramirez, Jorge; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    High magnitude torrent events are associated with the rapid propagation of vast quantities of water and available sediment downslope where human settlements may be established. Assessing the vulnerability of built structures to these events is a part of consequence analysis, where hazard intensity is related to the degree of loss sustained. The specific contribution of the presented work describes a procedure simulate these damaging events by applying physically-based modelling and to include uncertainty information about the simulated results. This is a first step in the development of vulnerability curves based on several intensity parameters (i.e. maximum velocity, sediment deposition depth and impact pressure). The investigation process begins with the collection, organization and interpretation of detailed post-event documentation and photograph-based observation data of affected structures in three sites that exemplify the impact of highly destructive mudflows and flood occurrences on settlements in Switzerland. Hazard intensity proxies are then simulated with the physically-based FLO-2D model (O'Brien et al., 1993). Prior to modelling, global sensitivity analysis is conducted to support a better understanding of model behaviour, parameterization and the quantification of uncertainties (Song et al., 2015). The inclusion of information describing the degree of confidence in the simulated results supports the credibility of vulnerability curves developed with the modelled data. First, key parameters are identified and selected based on literature review. Truncated a priori ranges of parameter values were then defined by expert solicitation. Local sensitivity analysis is performed based on manual calibration to provide an understanding of the parameters relevant to the case studies of interest. Finally, automated parameter estimation is performed to comprehensively search for optimal parameter combinations and associated values, which are evaluated using the observed data collected in the first stage of the investigation. O'Brien, J.S., Julien, P.Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2): 244-261.
 Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu C., 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical frameworks, Journal of Hydrology 523: 739-757.

  4. Using global sensitivity analysis to understand higher order interactions in complex models: an application of GSA on the Revised Universal Soil Loss Equation (RUSLE) to quantify model sensitivity and implications for ecosystem services management in Costa Rica

    NASA Astrophysics Data System (ADS)

    Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.

    2011-12-01

    Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch of soil (C factor), slope angle (L and S factor), and percentage of land area covered by surface cover (C factor). Our findings give further support to the importance of vegetation as a vital ecosystem service provider - soil loss reduction. Concurrent, progress is already been made in Costa Rica, where dam managers are moving forward on a Payment for Ecosystem Services scheme to help keep private lands forested and to improve crop management through targeted investments. Use of complex watershed models, such as RUSLE can help managers quantify the effect of specific land use changes. Moreover, effective land management of vegetation has other important benefits, such as bundled ecosystem services (e.g. pollination, habitat connectivity, etc) and improvements of communities' livelihoods.

  5. Cross-borehole slug test analysis in a fractured limestone aquifer

    NASA Astrophysics Data System (ADS)

    Audouin, Olivier; Bodin, Jacques

    2008-01-01

    SummaryThis work proposes new semi-analytical solutions for the interpretation of cross-borehole slug tests in fractured media. Our model is an extension of a previous work by Barker [Barker, J.A., 1988. A generalized radial flow model for hydraulic tests in fractured rock. Water Resources Research 24 (10), 1796-1804; Butler Jr., J.J., Zhan X., 2004. Hydraulic tests in highly permeable aquifers. Water Resources Research 40, W12402. doi:10.1029/2003/WR002998]. It includes inertial effects at both test and observation wells and a fractional flow dimension in the aquifer. The model has five fitting parameters: flow dimension n, hydraulic conductivity K, specific storage coefficient Ss, and effective lengths of test well Le and of observation well Leo. The results of a sensitivity analysis show that the most sensitive parameter is the flow dimension n. The model sensitivity to other parameters may be ranked as follows: K > Le ˜ Leo > Ss. The sensitivity to aquifer storage remains one or two orders of magnitude lower than that to other parameters. The model has been coupled to an automatic inversion algorithm for facilitating the interpretation of real field data. This inversion algorithm is based on a Gauss-Newton optimization procedure conditioned by re-scaled sensitivities. It has been used to interpret successfully cross-borehole slug test data from the Hydrogeological Experimental Site (HES) of Poitiers, France, consisting of fractured and karstic limestones. HES data provide flow dimension values ranging between 1.6 and 2.5, and hydraulic conductivity values ranging between 4.4 × 10 -5 and 7.7 × 10 -4 m s -1. These values are consistent with previous interpretations of single-well slug tests. The results of the sensitivity analysis are confirmed by calculations of relative errors on parameter estimates, which show that accuracy on n and K is below 20% and that on Ss is about one order of magnitude. The K-values interpreted from cross-borehole slug tests are one order of magnitude higher than those previously interpreted from interference pumping tests. These findings suggest that cross-borehole slug tests focus on preferential flowpath networks made by fractures and karstic channels, i.e. the head perturbation induced by a slug test propagates only through those flowpaths with the lowest hydraulic resistance. As a result, cross-borehole slug tests are expected to identify the hydrodynamic properties of karstic-channels and fracture flowpaths, and may be considered as complementary to pumping tests which more likely provide bulk properties of the whole fracture/karstic-channel/matrix system.

  6. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    NASA Astrophysics Data System (ADS)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a sparse to a closed forest canopy has almost no effect on annual TE at warm and dry sites, it increases TE by up to 100 mm/year at cold-humid and warm-humid sites. Further parameters of importance describe infiltration, as well as canopy resistance and its response to environmental variables. This study offers insights for future development of hydrological and ecohydrological models. First, it shows that although local water balance is primarily controlled by climate, the vegetation and soil parameters may have a large impact on the outputs. Second, it indicates that modeling studies should prioritize a realistic parameterization of LAI and AWC, while other parameters may be set to fixed values. Third, it illustrates to which extent parameter effect and interactions depend on local climate.

  7. Quantifying the sensitivity of feedstock properties and process conditions on hydrochar yield, carbon content, and energy content.

    PubMed

    Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D

    2018-08-01

    Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Aspen succession in the Intermountain West: A deterministic model

    Treesearch

    Dale L. Bartos; Frederick R. Ward; George S. Innis

    1983-01-01

    A deterministic model of succession in aspen forests was developed using existing data and intuition. The degree of uncertainty, which was determined by allowing the parameter values to vary at random within limits, was larger than desired. This report presents results of an analysis of model sensitivity to changes in parameter values. These results have indicated...

  9. Hydrogen from coal cost estimation guidebook

    NASA Technical Reports Server (NTRS)

    Billings, R. E.

    1981-01-01

    In an effort to establish baseline information whereby specific projects can be evaluated, a current set of parameters which are typical of coal gasification applications was developed. Using these parameters a computer model allows researchers to interrelate cost components in a sensitivity analysis. The results make possible an approximate estimation of hydrogen energy economics from coal, under a variety of circumstances.

  10. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    NASA Technical Reports Server (NTRS)

    Waelbroek, C.; Louis, J.-F.

    1995-01-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  11. WE-D-BRE-07: Variance-Based Sensitivity Analysis to Quantify the Impact of Biological Uncertainties in Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, F.; Brueningk, S.C.; Wilkens, J.J.

    Purpose: In particle therapy, treatment planning and evaluation are frequently based on biological models to estimate the relative biological effectiveness (RBE) or the equivalent dose in 2 Gy fractions (EQD2). In the context of the linear-quadratic model, these quantities depend on biological parameters (α, β) for ions as well as for the reference radiation and on the dose per fraction. The needed biological parameters as well as their dependency on ion species and ion energy typically are subject to large (relative) uncertainties of up to 20–40% or even more. Therefore it is necessary to estimate the resulting uncertainties in e.g.more » RBE or EQD2 caused by the uncertainties of the relevant input parameters. Methods: We use a variance-based sensitivity analysis (SA) approach, in which uncertainties in input parameters are modeled by random number distributions. The evaluated function is executed 10{sup 4} to 10{sup 6} times, each run with a different set of input parameters, randomly varied according to their assigned distribution. The sensitivity S is a variance-based ranking (from S = 0, no impact, to S = 1, only influential part) of the impact of input uncertainties. The SA approach is implemented for carbon ion treatment plans on 3D patient data, providing information about variations (and their origin) in RBE and EQD2. Results: The quantification enables 3D sensitivity maps, showing dependencies of RBE and EQD2 on different input uncertainties. The high number of runs allows displaying the interplay between different input uncertainties. The SA identifies input parameter combinations which result in extreme deviations of the result and the input parameter for which an uncertainty reduction is the most rewarding. Conclusion: The presented variance-based SA provides advantageous properties in terms of visualization and quantification of (biological) uncertainties and their impact. The method is very flexible, model independent, and enables a broad assessment of uncertainties. Supported by DFG grant WI 3745/1-1 and DFG cluster of excellence: Munich-Centre for Advanced Photonics.« less

  12. Theoretical foundations for finite-time transient stability and sensitivity analysis of power systems

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sambarta

    Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.

  13. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  14. Sensitivity Analysis for Coupled Aero-structural Systems

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.

    1999-01-01

    A novel method has been developed for calculating gradients of aerodynamic force and moment coefficients for an aeroelastic aircraft model. This method uses the Global Sensitivity Equations (GSE) to account for the aero-structural coupling, and a reduced-order modal analysis approach to condense the coupling bandwidth between the aerodynamic and structural models. Parallel computing is applied to reduce the computational expense of the numerous high fidelity aerodynamic analyses needed for the coupled aero-structural system. Good agreement is obtained between aerodynamic force and moment gradients computed with the GSE/modal analysis approach and the same quantities computed using brute-force, computationally expensive, finite difference approximations. A comparison between the computational expense of the GSE/modal analysis method and a pure finite difference approach is presented. These results show that the GSE/modal analysis approach is the more computationally efficient technique if sensitivity analysis is to be performed for two or more aircraft design parameters.

  15. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    PubMed Central

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-01-01

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372

  16. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.

    PubMed

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-05-12

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  17. Effect of internal and external conditions on ionization processes in the FAPA ambient desorption/ionization source.

    PubMed

    Orejas, Jaime; Pfeuffer, Kevin P; Ray, Steven J; Pisonero, Jorge; Sanz-Medel, Alfredo; Hieftje, Gary M

    2014-11-01

    Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.

  18. Pressure sensitivity analysis of fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Sridharan, Vasant; Kazemi, Alex

    2014-09-01

    Recent development in fiber optic sensing technology has mainly focused on discrete sensing, particularly, sensing systems with potential multiplexing and multi-parameter capabilities. Bragg grating fiber optic sensors have emerged as the non-disputed champion for multiplexing and simultaneous multi-parameter sensing for emerging high value structural components, advanced processing and manufacturing capabilities and increased critical infrastructure resilience applications. Although the number of potential applications for this sensing technology is large and spans the domains of medicine, manufacturing, aerospace, and public safety; critical issues such as fatigue life, sensitivity, accuracy, embeddability, material/sensor interface integrity, and universal demodulation systems still need to be addressed. The purpose of this paper is to primarily evaluate Commercial-Of-The-Shelf (COTS) Fiber Bragg Grating (FBG) sensors' sensitivity to pressure, often neglected in several applications. The COTS fiber sensitivity to pressure is further evaluated for two types of coatings (Polyimide and Acrylate), and different arrangements (arrayed and single).

  19. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2015-08-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  20. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2016-04-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  1. An Evaluation of the Potential for Shifting of Freight from Truck to Rail and Its Impacts on Energy Use and GHG Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Vyas, Anant D.; Guo, Zhaomiao

    This report summarizes our evaluation of the potential energy-use and GHG-emissions reduction achieved by shifting freight from truck to rail under a most-likely scenario. A sensitivity analysis is also included. The sensitivity analysis shows changes in energy use and GHG emissions when key parameters are varied. The major contribution and distinction from previous studies is that this study considers the rail level of service (LOS) and commodity movements at the origin-destination (O-D) level. In addition, this study considers the fragility and time sensitivity of each commodity type.

  2. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    PubMed

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  3. Current economic and sensitivity analysis for ID slicing of 4 inch and 6 inch diameter silicon ingots for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.; Johnson, C. M.

    1982-01-01

    The economics and sensitivities of slicing large diameter silicon ingots for photovoltaic applications were examined. Current economics and slicing add on cost sensitivities are calculated using variable parameters for blade life, slicing yield, and slice cutting speed. It is indicated that cutting speed has the biggest impact on slicing add on cost, followed by slicing yield, and by blade life as the blade life increases.

  4. Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization.

    PubMed

    Fujarewicz, Krzysztof; Lakomiec, Krzysztof

    2016-12-01

    We investigate a spatial model of growth of a tumor and its sensitivity to radiotherapy. It is assumed that the radiation dose may vary in time and space, like in intensity modulated radiotherapy (IMRT). The change of the final state of the tumor depends on local differences in the radiation dose and varies with the time and the place of these local changes. This leads to the concept of a tumor's spatiotemporal sensitivity to radiation, which is a function of time and space. We show how adjoint sensitivity analysis may be applied to calculate the spatiotemporal sensitivity of the finite difference scheme resulting from the partial differential equation describing the tumor growth. We demonstrate results of this approach to the tumor proliferation, invasion and response to radiotherapy (PIRT) model and we compare the accuracy and the computational effort of the method to the simple forward finite difference sensitivity analysis. Furthermore, we use the spatiotemporal sensitivity during the gradient-based optimization of the spatiotemporal radiation protocol and present results for different parameters of the model.

  5. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  6. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    PubMed

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .

  7. Cross Correlation Analysis to Determine the Environmental Parameters Correlated with Electro-Optical System Performance.

    DTIC Science & Technology

    1982-11-01

    band, due to higher molecular absorption by water vapor in the 8-12 um band. On the other hand, aerosol extinction may affect the shorter wavelenghts ...precipitation, and aerosol growth . While relative humidity is a LOWTRAN 5 model input, single parameter sensitivity analysis indicates that this fact alone does...M.J., and Vaklyes, D.W., Comparison of Canadian and German Weather, Systems Planning Corporation SPP 566, March 1980. 13. Atwater, M.A., and Ball

  8. Sensitivity Analysis for some Water Pollution Problem

    NASA Astrophysics Data System (ADS)

    Le Dimet, François-Xavier; Tran Thu, Ha; Hussaini, Yousuff

    2014-05-01

    Sensitivity Analysis for Some Water Pollution Problems Francois-Xavier Le Dimet1 & Tran Thu Ha2 & M. Yousuff Hussaini3 1Université de Grenoble, France, 2Vietnamese Academy of Sciences, 3 Florida State University Sensitivity analysis employs some response function and the variable with respect to which its sensitivity is evaluated. If the state of the system is retrieved through a variational data assimilation process, then the observation appears only in the Optimality System (OS). In many cases, observations have errors and it is important to estimate their impact. Therefore, sensitivity analysis has to be carried out on the OS, and in that sense sensitivity analysis is a second order property. The OS can be considered as a generalized model because it contains all the available information. This presentation proposes a method to carry out sensitivity analysis in general. The method is demonstrated with an application to water pollution problem. The model involves shallow waters equations and an equation for the pollutant concentration. These equations are discretized using a finite volume method. The response function depends on the pollutant source, and its sensitivity with respect to the source term of the pollutant is studied. Specifically, we consider: • Identification of unknown parameters, and • Identification of sources of pollution and sensitivity with respect to the sources. We also use a Singular Evolutive Interpolated Kalman Filter to study this problem. The presentation includes a comparison of the results from these two methods. .

  9. Critique and sensitivity analysis of the compensation function used in the LMS Hudson River striped bass models. Environmental Sciences Division publication No. 944

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Winkle, W.; Christensen, S.W.; Kauffman, G.

    1976-12-01

    The description and justification for the compensation function developed and used by Lawler, Matusky and Skelly Engineers (LMS) (under contract to Consolidated Edison Company of New York) in their Hudson River striped bass models are presented. A sensitivity analysis of this compensation function is reported, based on computer runs with a modified version of the LMS completely mixed (spatially homogeneous) model. Two types of sensitivity analysis were performed: a parametric study involving at least five levels for each of the three parameters in the compensation function, and a study of the form of the compensation function itself, involving comparison ofmore » the LMS function with functions having no compensation at standing crops either less than or greater than the equilibrium standing crops. For the range of parameter values used in this study, estimates of percent reduction are least sensitive to changes in YS, the equilibrium standing crop, and most sensitive to changes in KXO, the minimum mortality rate coefficient. Eliminating compensation at standing crops either less than or greater than the equilibrium standing crops results in higher estimates of percent reduction. For all values of KXO and for values of YS and KX at and above the baseline values, eliminating compensation at standing crops less than the equilibrium standing crops results in a greater increase in percent reduction than eliminating compensation at standing crops greater than the equilibrium standing crops.« less

  10. Macular ganglion cell imaging study: glaucoma diagnostic accuracy of spectral-domain optical coherence tomography.

    PubMed

    Jeoung, Jin Wook; Choi, Yun Jeong; Park, Ki Ho; Kim, Dong Myung

    2013-07-01

    We evaluated the diagnostic accuracy of macular ganglion cell-inner plexiform layer (GCIPL) measurements using a high-definition optical coherence tomography (Cirrus HD-OCT) ganglion cell analysis algorithm for detecting early and moderate-to-severe glaucoma. Totals of 119 normal subjects and 306 glaucoma patients (164 patients with early glaucoma and 142 with moderate-to-severe glaucoma) were enrolled from the Macular Ganglion Cell Imaging Study. Macular GCIPL, peripapillary retinal nerve fiber layer (RNFL) thickness, and optic nerve head (ONH) parameters were measured in each subject. Areas under the receiver operating characteristic curves (AUROCs) were calculated and compared. Based on the internal normative database, the sensitivity and specificity for detecting early and moderate-to-severe glaucoma were calculated. There was no statistically significant difference between the AUROCs for the best OCT parameters. For detecting early glaucoma, the sensitivity of the Cirrus GCIPL parameters ranged from 26.8% to 73.2% and that of the Cirrus RNFL parameters ranged from 6.1% to 61.6%. For the early glaucoma group, the best parameter from the GCIPL generally had a higher sensitivity than those of the RNFL and ONH parameters with comparable specificity (P < 0.05, McNemar's test). There were no significant differences between the AUROCs for Cirrus GCIPL, RNFL, and ONH parameters, indicating that these maps have similar diagnostic potentials for glaucoma. The minimum GCIPL showed better glaucoma diagnostic performance than the other parameters at comparable specificities. However, other GCIPL parameters showed performances comparable to those of the RNFL parameters.

  11. FDG-PET/CT lymph node staging after neoadjuvant chemotherapy in patients with adenocarcinoma of the esophageal-gastric junction.

    PubMed

    Fencl, Pavel; Belohlavek, Otakar; Harustiak, Tomas; Zemanova, Milada

    2016-11-01

    The aim of the analysis was to assess the accuracy of various FDG-PET/CT parameters in staging lymph nodes after neoadjuvant chemotherapy. In this prospective study, 74 patients with adenocarcinoma of the esophageal-gastric junction were examined by FDG-PET/CT in the course of their neoadjuvant chemotherapy given before surgical treatment. Data from the final FDG-PET/CT examinations were compared with the histology from the surgical specimens (gold standard). The accuracy was calculated for four FDG-PET/CT parameters: (1) hypermetabolic nodes, (2) large nodes, (3) large-and-medium large nodes, and (4) hypermetabolic or large nodes. In 74 patients, a total of 1540 lymph nodes were obtained by surgery, and these were grouped into 287 regions according to topographic origin. Five hundred and two nodes were imaged by FDG-PET/CT and were grouped into these same regions for comparison. In the analysis, (1) hypermetabolic nodes, (2) large nodes, (3) large-and-medium large nodes, and (4) hypermetabolic or large nodes identified metastases in particular regions with sensitivities of 11.6%, 2.9%, 21.7%, and 13.0%, respectively; specificity was 98.6%, 94.5%, 74.8%, and 93.6%, respectively. The best accuracy of 77.7% reached the parameter of hypermetabolic nodes. Accuracy decreased to 62.0% when also smaller nodes (medium-large) were taken for the parameter of metastases. FDG-PET/CT proved low sensitivity and high specificity. Low sensitivity was based on low detection rate (32.6%) when compared nodes imaged by FDG-PET/CT to nodes found by surgery, and in inability to detect micrometastases. Sensitivity increased when also medium-large LNs were taken for positive, but specificity and accuracy decreased.

  12. Conformational effects on circular dichroism in the photoelectron angular distribution.

    PubMed

    Di Tommaso, Devis; Stener, Mauro; Fronzoni, Giovanna; Decleva, Piero

    2006-04-10

    The B-spline density-functional method has been applied to the conformers of the (1R, 2R)-1,2-dibromo-1,2-dichloro-1,2-difluoroethane molecule. The cross section, asymmetry, and dichroic parameters relative to core and valence orbitals, which do not change their nature along the conformational curve, have been systematically studied. While the cross section and the asymmetry parameter are weakly affected, the dichroic parameter appears to be rather sensitive to the particular conformer of the molecule, suggesting that this dynamical property could be a useful tool for conformational analysis. The computational method has also been applied to methyl rotation in methyloxirane. Unexpected and dramatic sensitivity of the dichroic-parameter profile to the methyl rotation, both in the core and valence states, has been found. Boltzmann averaging over the conformers reproduces quite closely the profiles previously obtained for the minimum-energy conformation, which is in good agreement with the experimental results.

  13. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.

  14. Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata.

    PubMed

    Chen, Xiaojuan; Chen, Zhihua; Wang, Xun; Huo, Chan; Hu, Zhiquan; Xiao, Bo; Hu, Mian

    2016-07-01

    The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms. Copyright © 2016. Published by Elsevier Ltd.

  15. The Statistical Meaning of Kurtosis and Its New Application to Identification of Persons Based on Seismic Signals

    PubMed Central

    Liang, Zhiqiang; Wei, Jianming; Zhao, Junyu; Liu, Haitao; Li, Baoqing; Shen, Jie; Zheng, Chunlei

    2008-01-01

    This paper presents a new algorithm making use of kurtosis, which is a statistical parameter, to distinguish the seismic signal generated by a person's footsteps from other signals. It is adaptive to any environment and needs no machine study or training. As persons or other targets moving on the ground generate continuous signals in the form of seismic waves, we can separate different targets based on the seismic waves they generate. The parameter of kurtosis is sensitive to impulsive signals, so it's much more sensitive to the signal generated by person footsteps than other signals generated by vehicles, winds, noise, etc. The parameter of kurtosis is usually employed in the financial analysis, but rarely used in other fields. In this paper, we make use of kurtosis to distinguish person from other targets based on its different sensitivity to different signals. Simulation and application results show that this algorithm is very effective in distinguishing person from other targets. PMID:27873804

  16. ASPASIA: A toolkit for evaluating the effects of biological interventions on SBML model behaviour.

    PubMed

    Evans, Stephanie; Alden, Kieran; Cucurull-Sanchez, Lourdes; Larminie, Christopher; Coles, Mark C; Kullberg, Marika C; Timmis, Jon

    2017-02-01

    A calibrated computational model reflects behaviours that are expected or observed in a complex system, providing a baseline upon which sensitivity analysis techniques can be used to analyse pathways that may impact model responses. However, calibration of a model where a behaviour depends on an intervention introduced after a defined time point is difficult, as model responses may be dependent on the conditions at the time the intervention is applied. We present ASPASIA (Automated Simulation Parameter Alteration and SensItivity Analysis), a cross-platform, open-source Java toolkit that addresses a key deficiency in software tools for understanding the impact an intervention has on system behaviour for models specified in Systems Biology Markup Language (SBML). ASPASIA can generate and modify models using SBML solver output as an initial parameter set, allowing interventions to be applied once a steady state has been reached. Additionally, multiple SBML models can be generated where a subset of parameter values are perturbed using local and global sensitivity analysis techniques, revealing the model's sensitivity to the intervention. To illustrate the capabilities of ASPASIA, we demonstrate how this tool has generated novel hypotheses regarding the mechanisms by which Th17-cell plasticity may be controlled in vivo. By using ASPASIA in conjunction with an SBML model of Th17-cell polarisation, we predict that promotion of the Th1-associated transcription factor T-bet, rather than inhibition of the Th17-associated transcription factor RORγt, is sufficient to drive switching of Th17 cells towards an IFN-γ-producing phenotype. Our approach can be applied to all SBML-encoded models to predict the effect that intervention strategies have on system behaviour. ASPASIA, released under the Artistic License (2.0), can be downloaded from http://www.york.ac.uk/ycil/software.

  17. Dimethylsulfide model calibration and parametric sensitivity analysis for the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Gabric, Albert J.; Zeng, Meifang; Xi, Jiaojiao; Jiang, Limei; Zhao, Li

    2017-09-01

    Sea-to-air fluxes of marine biogenic aerosols have the potential to modify cloud microphysics and regional radiative budgets, and thus moderate Earth's warming. Polar regions play a critical role in the evolution of global climate. In this work, we use a well-established biogeochemical model to simulate the DMS flux from the Greenland Sea (20°W-10°E and 70°N-80°N) for the period 2003-2004. Parameter sensitivity analysis is employed to identify the most sensitive parameters in the model. A genetic algorithm (GA) technique is used for DMS model parameter calibration. Data from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive the DMS model under 4 × CO2 conditions. DMS flux under quadrupled CO2 levels increases more than 300% compared with late 20th century levels (1 × CO2). Reasons for the increase in DMS flux include changes in the ocean state-namely an increase in sea surface temperature (SST) and loss of sea ice-and an increase in DMS transfer velocity, especially in spring and summer. Such a large increase in DMS flux could slow the rate of warming in the Arctic via radiative budget changes associated with DMS-derived aerosols.

  18. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Ning, Chao-lie; Li, Bing

    2017-03-01

    A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.

  19. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.

  20. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529

  1. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    PubMed

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  2. Sensitivity analysis of a data assimilation technique for hindcasting and forecasting hydrodynamics of a complex coastal water body

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Hartnett, Michael

    2017-02-01

    Accurate forecasting of coastal surface currents is of great economic importance due to marine activities such as marine renewable energy and fish farms in coastal regions in recent twenty years. Advanced oceanographic observation systems such as satellites and radars can provide many parameters of interest, such as surface currents and waves, with fine spatial resolution in near real time. To enhance modelling capability, data assimilation (DA) techniques which combine the available measurements with the hydrodynamic models have been used since the 1990s in oceanography. Assimilating measurements into hydrodynamic models makes the original model background states follow the observation trajectory, then uses it to provide more accurate forecasting information. Galway Bay is an open, wind dominated water body on which two coastal radars are deployed. An efficient and easy to implement sequential DA algorithm named Optimal Interpolation (OI) was used to blend radar surface current data into a three-dimensional Environmental Fluid Dynamics Code (EFDC) model. Two empirical parameters, horizontal correlation length and DA cycle length (CL), are inherent within OI. No guidance has previously been published regarding selection of appropriate values of these parameters or how sensitive OI DA is to variations in their values. Detailed sensitivity analysis has been performed on both of these parameters and results presented. Appropriate value of DA CL was examined and determined on producing the minimum Root-Mean-Square-Error (RMSE) between radar data and model background states. Analysis was performed to evaluate assimilation index (AI) of using an OI DA algorithm in the model. AI of the half-day forecasting mean vectors' directions was over 50% in the best assimilation model. The ability of using OI to improve model forecasts was also assessed and is reported upon.

  3. Sensitivity analysis of urban flood flows to hydraulic controls

    NASA Astrophysics Data System (ADS)

    Chen, Shangzhi; Garambois, Pierre-André; Finaud-Guyot, Pascal; Dellinger, Guilhem; Terfous, Abdelali; Ghenaim, Abdallah

    2017-04-01

    Flooding represents one of the most significant natural hazards on each continent and particularly in highly populated areas. Improving the accuracy and robustness of prediction systems has become a priority. However, in situ measurements of floods remain difficult while a better understanding of flood flow spatiotemporal dynamics along with dataset for model validations appear essential. The present contribution is based on a unique experimental device at the scale 1/200, able to produce urban flooding with flood flows corresponding to frequent to rare return periods. The influence of 1D Saint Venant and 2D Shallow water model input parameters on simulated flows is assessed using global sensitivity analysis (GSA). The tested parameters are: global and local boundary conditions (water heights and discharge), spatially uniform or distributed friction coefficient and or porosity respectively tested in various ranges centered around their nominal values - calibrated thanks to accurate experimental data and related uncertainties. For various experimental configurations a variance decomposition method (ANOVA) is used to calculate spatially distributed Sobol' sensitivity indices (Si's). The sensitivity of water depth to input parameters on two main streets of the experimental device is presented here. Results show that the closer from the downstream boundary condition on water height, the higher the Sobol' index as predicted by hydraulic theory for subcritical flow, while interestingly the sensitivity to friction decreases. The sensitivity indices of all lateral inflows, representing crossroads in 1D, are also quantified in this study along with their asymptotic trends along flow distance. The relationship between lateral discharge magnitude and resulting sensitivity index of water depth is investigated. Concerning simulations with distributed friction coefficients, crossroad friction is shown to have much higher influence on upstream water depth profile than street friction coefficients. This methodology could be applied to any urban flood configuration in order to better understand flow dynamics and repartition but also guide model calibration in the light of flow controls.

  4. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    NASA Astrophysics Data System (ADS)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on the aquifer inertia and climatic conditions. The groundwater levels variations during recharge (increase) are sensitive to the storage coefficient whereas the groundwater levels variations after recharge (decrease) are sensitive to the hydraulic conductivity. The performed model calibration on synthetic data sets shows that the parameters and recharge are estimated quite accurately.

  5. Sensitivity analysis of the electrostatic force distance curve using Sobol’s method and design of experiments

    NASA Astrophysics Data System (ADS)

    Alhossen, I.; Villeneuve-Faure, C.; Baudoin, F.; Bugarin, F.; Segonds, S.

    2017-01-01

    Previous studies have demonstrated that the electrostatic force distance curve (EFDC) is a relevant way of probing injected charge in 3D. However, the EFDC needs a thorough investigation to be accurately analyzed and to provide information about charge localization. Interpreting the EFDC in terms of charge distribution is not straightforward from an experimental point of view. In this paper, a sensitivity analysis of the EFDC is studied using buried electrodes as a first approximation. In particular, the influence of input factors such as the electrode width, depth and applied potential are investigated. To reach this goal, the EFDC is fitted to a law described by four parameters, called logistic law, and the influence of the electrode parameters on the law parameters has been investigated. Then, two methods are applied—Sobol’s method and the factorial design of experiment—to quantify the effect of each factor on each parameter of the logistic law. Complementary results are obtained from both methods, demonstrating that the EFDC is not the result of the superposition of the contribution of each electrode parameter, but that it exhibits a strong contribution from electrode parameter interaction. Furthermore, thanks to these results, a matricial model has been developed to predict EFDCs for any combination of electrode characteristics. A good correlation is observed with the experiments, and this is promising for charge investigation using an EFDC.

  6. Blurring the Inputs: A Natural Language Approach to Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Thompson, Richard A.; Johnston, Christopher O.

    2007-01-01

    To document model parameter uncertainties and to automate sensitivity analyses for numerical simulation codes, a natural-language-based method to specify tolerances has been developed. With this new method, uncertainties are expressed in a natural manner, i.e., as one would on an engineering drawing, namely, 5.25 +/- 0.01. This approach is robust and readily adapted to various application domains because it does not rely on parsing the particular structure of input file formats. Instead, tolerances of a standard format are added to existing fields within an input file. As a demonstration of the power of this simple, natural language approach, a Monte Carlo sensitivity analysis is performed for three disparate simulation codes: fluid dynamics (LAURA), radiation (HARA), and ablation (FIAT). Effort required to harness each code for sensitivity analysis was recorded to demonstrate the generality and flexibility of this new approach.

  7. Global sensitivity analysis in wind energy assessment

    NASA Astrophysics Data System (ADS)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present research show that the brute force method is best for wind assessment purpose, SBSS outperforms other sampling strategies in the majority of cases. The results indicate that the Weibull scale parameter, turbine lifetime and Weibull shape parameter are the three most influential variables in the case study setting. The following conclusions can be drawn from these results: 1) SBSS should be recommended for use in Monte Carlo experiments, 2) The brute force method should be recommended for conducting sensitivity analysis in wind resource assessment, and 3) Little variation in the Weibull scale causes significant variation in energy production. The presence of the two distribution parameters in the top three influential variables (the Weibull shape and scale) emphasizes the importance of accuracy of (a) choosing the distribution to model wind regime at a site and (b) estimating probability distribution parameters. This can be labeled as the most important conclusion of this research because it opens a field for further research, which the authors see could change the wind energy field tremendously.

  8. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease

    PubMed Central

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982

  9. Determination of T-2 and HT-2 toxins from maize by direct analysis in real time mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Direct analysis in real time (DART) ionization coupled to mass spectrometry (MS) was used for the rapid quantitative analysis of T-2 toxin, and the related HT-2 toxin, extracted from corn. Sample preparation procedures and instrument parameters were optimized to obtain sensitive and accurate determi...

  10. Analytic uncertainty and sensitivity analysis of models with input correlations

    NASA Astrophysics Data System (ADS)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  11. [Analysis and experimental verification of sensitivity and SNR of laser warning receiver].

    PubMed

    Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue

    2009-01-01

    In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.

  12. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  13. Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems

    PubMed Central

    Barreiros, Willian; Teodoro, George; Kurc, Tahsin; Kong, Jun; Melo, Alba C. M. A.; Saltz, Joel

    2017-01-01

    We investigate efficient sensitivity analysis (SA) of algorithms that segment and classify image features in a large dataset of high-resolution images. Algorithm SA is the process of evaluating variations of methods and parameter values to quantify differences in the output. A SA can be very compute demanding because it requires re-processing the input dataset several times with different parameters to assess variations in output. In this work, we introduce strategies to efficiently speed up SA via runtime optimizations targeting distributed hybrid systems and reuse of computations from runs with different parameters. We evaluate our approach using a cancer image analysis workflow on a hybrid cluster with 256 nodes, each with an Intel Phi and a dual socket CPU. The SA attained a parallel efficiency of over 90% on 256 nodes. The cooperative execution using the CPUs and the Phi available in each node with smart task assignment strategies resulted in an additional speedup of about 2×. Finally, multi-level computation reuse lead to an additional speedup of up to 2.46× on the parallel version. The level of performance attained with the proposed optimizations will allow the use of SA in large-scale studies. PMID:29081725

  14. Validation and Parameter Sensitivity Tests for Reconstructing Swell Field Based on an Ensemble Kalman Filter

    PubMed Central

    Wang, Xuan; Tandeo, Pierre; Fablet, Ronan; Husson, Romain; Guan, Lei; Chen, Ge

    2016-01-01

    The swell propagation model built on geometric optics is known to work well when simulating radiated swells from a far located storm. Based on this simple approximation, satellites have acquired plenty of large samples on basin-traversing swells induced by fierce storms situated in mid-latitudes. How to routinely reconstruct swell fields with these irregularly sampled observations from space via known swell propagation principle requires more examination. In this study, we apply 3-h interval pseudo SAR observations in the ensemble Kalman filter (EnKF) to reconstruct a swell field in ocean basin, and compare it with buoy swell partitions and polynomial regression results. As validated against in situ measurements, EnKF works well in terms of spatial–temporal consistency in far-field swell propagation scenarios. Using this framework, we further address the influence of EnKF parameters, and perform a sensitivity analysis to evaluate estimations made under different sets of parameters. Such analysis is of key interest with respect to future multiple-source routinely recorded swell field data. Satellite-derived swell data can serve as a valuable complementary dataset to in situ or wave re-analysis datasets. PMID:27898005

  15. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1).

    PubMed

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.

  16. PRospective Imaging of CErvical cancer and neoadjuvant treatment (PRICE) study: role of ultrasound to predict partial response in locally advanced cervical cancer patients undergoing chemoradiation and radical surgery.

    PubMed

    Testa, A C; Ferrandina, G; Moro, F; Pasciuto, T; Moruzzi, M C; De Blasis, I; Mascilini, F; Foti, E; Autorino, R; Collarino, A; Gui, B; Zannoni, G F; Gambacorta, M A; Valentini, A L; Rufini, V; Scambia, G

    2018-05-01

    Chemoradiation-based neoadjuvant treatment followed by radical surgery is an alternative therapeutic strategy for locally advanced cervical cancer (LACC), but ultrasound variables used to predict partial response to neoadjuvant treatment are not well defined. Our goal was to analyze prospectively the potential role of transvaginal ultrasound in early prediction of partial pathological response, assessed in terms of residual disease at histology, in a large, single-institution series of LACC patients triaged to neoadjuvant treatment followed by radical surgery. Between October 2010 and June 2014, we screened 108 women with histologically documented LACC Stage IB2-IVA, of whom 88 were included in the final analysis. Tumor volume, three-dimensional (3D) power Doppler indices and contrast parameters were obtained before (baseline examination) and after 2 weeks of treatment. The pathological response was defined as complete (absence of any residual tumor after treatment) or partial (microscopic and/or macroscopic residual tumor at pathological examination). Complete-response and partial-response groups were compared and receiver-operating characteristics (ROC) curves were generated for ultrasound variables that were statistically significant on univariate analysis to evaluate their diagnostic ability to predict partial pathological response. There was a complete pathological response to neoadjuvant therapy in 40 (45.5%) patients and a partial response in 48 (54.5%). At baseline examination, tumor volume did not differ between the two groups. However, after 2 weeks of neoadjuvant treatment, the tumor volume was significantly greater in patients with partial response than it was in those with complete response (P = 0.019). Among the 3D vascular indices, the vascularization index (VI) was significantly lower in the partial-response compared with the complete-response group, both before and after 2 weeks of treatment (P = 0.037 and P = 0.024, respectively). At baseline examination in the contrast analysis, women with partial response had lower tumor peak enhancement (PE) as well as lower tumor wash-in rate (WiR) and longer tumor rise time (RT) compared with complete responders (P = 0.006, P = 0.003, P = 0.038, respectively). There was no difference in terms of contrast parameters after 2 weeks of treatment. ROC-curve analysis of baseline parameters showed that the best cut-offs for predicting partial pathological response were 41.5% for VI (sensitivity, 63.6%; specificity, 66.7%); 16123.5 auxiliary units for tumor PE (sensitivity, 47.9%; specificity, 84.2%); 7.8 s for tumor RT (sensitivity, 68.8%; specificity, 57.9%); and 4902 for tumor WiR (sensitivity, 77.1%; specificity, 60.5%). ROC curves of parameters after 2 weeks of treatment showed that the best cut-off for predicting partial pathological response was 18.1 cm 3 for tumor volume (sensitivity, 70.8%; specificity 60.0%) and 39.5% for VI (sensitivity; 62.5%; specificity, 73.5%). Ultrasound and contrast parameters differ between LACC patients with complete response and those with partial response before and after 2 weeks of neoadjuvant treatment. However, neither ultrasound parameters before treatment nor those after 2 weeks of treatment had cut-off values with acceptable sensitivity and specificity for predicting partial pathological response to neoadjuvant therapy. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  17. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE PAGES

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    2016-11-08

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  18. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  19. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  20. Design sensitivity analysis and optimization tool (DSO) for sizing design applications

    NASA Technical Reports Server (NTRS)

    Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa

    1992-01-01

    The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.

  1. Study of the pathogenesis of Ebola fever in laboratory animals with different sensitivity to this virus.

    PubMed

    Chepurnov, A A; Dadaeva, A A; Kolesnikov, S I

    2001-12-01

    Pathophysiological parameters were compared in animals with different sensitivity to Ebola virus infected with this virus. Analysis of the results showed the differences in immune reactions underlying the difference between Ebola-sensitive and Ebola-resistant animals. No neutrophil activation in response to Ebola virus injection was noted in Ebola-sensitive animal. Phagocytic activity of neutrophils in these animals inversely correlated with animal sensitivity to Ebola virus. Animal susceptibility to Ebola virus directly correlated with the decrease in the number of circulating T and B cells. We conclude that the immune system plays the key role in animal susceptibility and resistance to Ebola virus.

  2. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE PAGES

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; ...

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  3. The management of patients with T1 adenocarcinoma of the low rectum: a decision analysis.

    PubMed

    Johnston, Calvin F; Tomlinson, George; Temple, Larissa K; Baxter, Nancy N

    2013-04-01

    Decision making for patients with T1 adenocarcinoma of the low rectum, when treatment options are limited to a transanal local excision or abdominoperineal resection, is challenging. The aim of this study was to develop a contemporary decision analysis to assist patients and clinicians in balancing the goals of maximizing life expectancy and quality of life in this situation. We constructed a Markov-type microsimulation in open-source software. Recurrence rates and quality-of-life parameters were elicited by systematic literature reviews. Sensitivity analyses were performed on key model parameters. Our base case for analysis was a 65-year-old man with low-lying T1N0 rectal cancer. We determined the sensitivity of our model for sex, age up to 80, and T stage. The main outcome measured was quality-adjusted life-years. In the base case, selecting transanal local excision over abdominoperineal resection resulted in a loss of 0.53 years of life expectancy but a gain of 0.97 quality-adjusted life-years. One-way sensitivity analysis demonstrated a health state utility value threshold for permanent colostomy of 0.93. This value ranged from 0.88 to 1.0 based on tumor recurrence risk. There were no other model sensitivities. Some model parameter estimates were based on weak data. In our model, transanal local excision was found to be the preferable approach for most patients. An abdominoperineal resection has a 3.5% longer life expectancy, but this advantage is lost when the quality-of-life reduction reported by stoma patients is weighed in. The minority group in whom abdominoperineal resection is preferred are those who are unwilling to sacrifice 7% of their life expectancy to avoid a permanent stoma. This is estimated to be approximately 25% of all patients. The threshold increases to 12% of life expectancy in high-risk tumors. No other factors are found to be relevant to the decision.

  4. Heat and mass transport during microwave heating of mashed potato in domestic oven--model development, validation, and sensitivity analysis.

    PubMed

    Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan

    2014-10-01

    A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®

  5. Sensitivity analysis of eigenvalues for an electro-hydraulic servomechanism

    NASA Astrophysics Data System (ADS)

    Stoia-Djeska, M.; Safta, C. A.; Halanay, A.; Petrescu, C.

    2012-11-01

    Electro-hydraulic servomechanisms (EHSM) are important components of flight control systems and their role is to control the movement of the flying control surfaces in response to the movement of the cockpit controls. As flight-control systems, the EHSMs have a fast dynamic response, a high power to inertia ratio and high control accuracy. The paper is devoted to the study of the sensitivity for an electro-hydraulic servomechanism used for an aircraft aileron action. The mathematical model of the EHSM used in this paper includes a large number of parameters whose actual values may vary within some ranges of uncertainty. It consists in a nonlinear ordinary differential equation system composed by the mass and energy conservation equations, the actuator movement equations and the controller equation. In this work the focus is on the sensitivities of the eigenvalues of the linearized homogeneous system, which are the partial derivatives of the eigenvalues of the state-space system with respect the parameters. These are obtained using a modal approach based on the eigenvectors of the state-space direct and adjoint systems. To calculate the eigenvalues and their sensitivity the system's Jacobian and its partial derivatives with respect the parameters are determined. The calculation of the derivative of the Jacobian matrix with respect to the parameters is not a simple task and for many situations it must be done numerically. The system stability is studied in relation with three parameters: m, the equivalent inertial load of primary control surface reduced to the actuator rod; B, the bulk modulus of oil and p a pressure supply proportionality coefficient. All the sensitivities calculated in this work are in good agreement with those obtained through recalculations.

  6. Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition

    PubMed Central

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA – a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits. PMID:24367574

  7. Switch of sensitivity dynamics revealed with DyGloSA toolbox for dynamical global sensitivity analysis as an early warning for system's critical transition.

    PubMed

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.

  8. Sensitivity study and parameter optimization of OCD tool for 14nm finFET process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping

    2016-03-01

    Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.

  9. Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Clark, Martyn P.

    2010-10-01

    Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.

  10. Genetic algorithm applied to a Soil-Vegetation-Atmosphere system: Sensitivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Sébastien; Jacques, Diederik; Mallants, Dirk

    2010-05-01

    Numerical models are of precious help for predicting water fluxes in the vadose zone and more specifically in Soil-Vegetation-Atmosphere (SVA) systems. For such simulations, robust models and representative soil hydraulic parameters are required. Calibration of unsaturated hydraulic properties is known to be a difficult optimization problem due to the high non-linearity of the water flow equations. Therefore, robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. Additionally, GAs offer the opportunity to assess the confidence in the hydraulic parameter estimations, because of the large number of model realizations. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the Campine region in the north of Belgium. Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step in two lysimeters. The water table level, which is varying between 95 and 170 cm, has been recorded with intervals of 0.5 hour. The leaf area index was measured as well at some selected time moments during the year in order to evaluate the energy which reaches the soil and to deduce the potential evaporation. Water contents at several depths have been recorded. Based on the profile description, five soil layers have been distinguished in the podzol. Two models have been used for simulating water fluxes: (i) a mechanistic model, the HYDRUS-1D model, which solves the Richards' equation, and (ii) a compartmental model, which treats the soil profile as a bucket into which water flows until its maximum capacity is reached. A global sensitivity analysis (Morris' one-at-a-time sensitivity analysis) was run previously to the calibration, in order to check the sensitivity in the chosen parameter search space. For the inversion procedure a genetical algorithm (GA) was used. Specific features such as elitism, roulette-wheel process for selection operator and island theory were implemented. Optimization was based on the water content measurements recorded at several depths. Ten scenarios have been elaborated and applied on the two lysimeters in order to investigate the impact of the conceptual model in terms of processes description (mechanistic or compartmental) and geometry (number of horizons in the profile description) on the calibration accuracy. Calibration leads to a good agreement with the measured water contents. The most critical parameters for improving the goodness of fit are the number of horizons and the type of process description. Best fit are found for a mechanistic model with 5 horizons resulting in absolute differences between observed and simulated water contents less than 0.02 cm3cm-3 in average. Parameter estimate analysis shows that layers thicknesses are poorly constrained whereas hydraulic parameters are much well defined.

  11. Performance evaluation of spectral vegetation indices using a statistical sensitivity function

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2007-01-01

    A great number of spectral vegetation indices (VIs) have been developed to estimate biophysical parameters of vegetation. Traditional techniques for evaluating the performance of VIs are regression-based statistics, such as the coefficient of determination and root mean square error. These statistics, however, are not capable of quantifying the detailed relationship between VIs and biophysical parameters because the sensitivity of a VI is usually a function of the biophysical parameter instead of a constant. To better quantify this relationship, we developed a “sensitivity function” for measuring the sensitivity of a VI to biophysical parameters. The sensitivity function is defined as the first derivative of the regression function, divided by the standard error of the dependent variable prediction. The function elucidates the change in sensitivity over the range of the biophysical parameter. The Student's t- or z-statistic can be used to test the significance of VI sensitivity. Additionally, we developed a “relative sensitivity function” that compares the sensitivities of two VIs when the biophysical parameters are unavailable.

  12. Parameter sensitivity analysis of the mixed Green-Ampt/Curve-Number method for rainfall excess estimation in small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Romano, N.; Petroselli, A.; Grimaldi, S.

    2012-04-01

    With the aim of combining the practical advantages of the Soil Conservation Service - Curve Number (SCS-CN) method and Green-Ampt (GA) infiltration model, we have developed a mixed procedure, which is referred to as CN4GA (Curve Number for Green-Ampt). The basic concept is that, for a given storm, the computed SCS-CN total net rainfall amount is used to calibrate the soil hydraulic conductivity parameter of the Green-Ampt model so as to distribute in time the information provided by the SCS-CN method. In a previous contribution, the proposed mixed procedure was evaluated on 100 observed events showing encouraging results. In this study, a sensitivity analysis is carried out to further explore the feasibility of applying the CN4GA tool in small ungauged catchments. The proposed mixed procedure constrains the GA model with boundary and initial conditions so that the GA soil hydraulic parameters are expected to be insensitive toward the net hyetograph peak. To verify and evaluate this behaviour, synthetic design hyetograph and synthetic rainfall time series are selected and used in a Monte Carlo analysis. The results are encouraging and confirm that the parameter variability makes the proposed method an appropriate tool for hydrologic predictions in ungauged catchments. Keywords: SCS-CN method, Green-Ampt method, rainfall excess, ungauged basins, design hydrograph, rainfall-runoff modelling.

  13. Sensitivity Analysis and Requirements for Temporally and Spatially Resolved Thermometry Using Neutron Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Carlos; Barnes, Cris William; Mocko, Michael Jeffrey

    This report is intended to examine the use of neutron resonance spectroscopy (NRS) to make time- dependent and spatially-resolved temperature measurements of materials in extreme conditions. Specifically, the sensitivities of the temperature estimate on neutron-beam and diagnostic parameters is examined. Based on that examination, requirements are set on a pulsed neutron-source and diagnostics to make a meaningful measurement.

  14. Understanding hydrological and nitrogen interactions by sensitivity analysis of a catchment-scale nitrogen model

    NASA Astrophysics Data System (ADS)

    Medici, Chiara; Wade, Andrew; Frances, Felix

    2010-05-01

    Nitrogen is present in both terrestrial and aquatic ecosystems and research is needed to understand its storage, transportation and transformations in river catchments world-wide because of its importance in controlling plant growth and freshwater trophic status (Vitousek et al. 2009; Chu et al. 2008; Schlesinger et al 2006; Ocampo et al. 2006; Green et al., 2004; Arheimer et al., 1996). Numerous mathematical models have been developed to describe the nitrogen dynamics, but there is a substantial gap between the outputs now expected from these models and what modellers are able to provide with scientific justification (McIntyre et al., 2005). In fact, models will always necessarily be simplification of reality; hence simplifying assumptions are sources of uncertainty that must be well understood for an accurate model results interpretation. Therefore, estimating prediction uncertainties in water quality modelling is becoming increasingly appreciated (Dean et al., 2009, Kruger et al., 2007, Rode et al., 2007). In this work the lumped LU4-N model (Medici et al., 2008; Medici et al., EGU2009-7497) is subjected to an extensive regionalised sensitivity analysis (GSA, based on Monte Carlo simulations) in application to the Fuirosos catchment, Catalonia. The main results are: 1) the hydrological model is greatly affected by the maximum static storage water content (Hu_max), which defines the amount of water held in soil that can leave the catchment only by evapotranspiration. Thus, it defines also the amount of water not retained that is free to move and supplies the other model tanks; 2) the use of several objective functions in order to take into account different hydrograph characteristic helped to constrain parameter values; 3) concerning nitrogen, to obtain a sufficient level of behavioural parameter sets for the statistical analysis, not very severe criteria could be adopted; 4) stream water concentrations are sensitive to the shallow aquifer parameters, especially the nitrification constant (Knitr-aquif) and also to the certain soil parameters, like the mineralization constant (Kmin), the annual maximum ammonium uptake (MaxUPNH4) and the mineralization, nitrification and immobilisation thresholds (Umin, Unitr and Uimmob). Moreover the results give a clear indication that the hydrological model greatly affects the streamwater nitrate and ammonium concentrations; 5) result shows that the LU4-N model succeeded in achieving near-optimum fits simultaneously to flow and nitrate, but not ammonium; 6) however, the optimum flow model has not produced a near-optimum nitrate model. The analysis of this result indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters instead of calibrating all parameters together, may not be the best strategy as pointed out for another study by McIntyre et al., 2005 ; 7) a final analysis seems also to support the idea that to obtain a satisfactory nitrogen simulation necessarily the flow should be acceptably represented, which lead to the conclusion that observed stream concentrations may indirectly help to calibrated the rainfall-runoff model, or at least the parameters to which they are sensitive.

  15. Event-scale power law recession analysis: quantifying methodological uncertainty

    NASA Astrophysics Data System (ADS)

    Dralle, David N.; Karst, Nathaniel J.; Charalampous, Kyriakos; Veenstra, Andrew; Thompson, Sally E.

    2017-01-01

    The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoretical explanations for the emergence of power law forms of the recession relationship, and drivers of its variability. Individually characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of models that describe populations of many recessions, but the dependence of estimated model parameters on methodological choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession definitions and fitting techniques impact parameter estimates of a widely used power law recession model. Results are relevant to watersheds that are relatively steep, forested, and rain-dominated. The highly seasonal mediterranean climate of northern California and southern Oregon ensures study catchments explore a wide range of recession behaviors and wetness states, ideal for a sensitivity analysis. In such catchments, we show the following: (i) methodological decisions, including ones that have received little attention in the literature, can impact parameter value estimates and model goodness of fit; (ii) the central tendencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter distributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship between the power-law recession scale parameter and catchment antecedent wetness varies depending on recession definition and fitting choices. Considering study results, we recommend a combination of four key methodological decisions to maximize the quality of fitted recession curves, and to minimize bias in the related populations of fitted recession parameters.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, S; Jeraj, R; Galavis, P

    Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less

  17. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  18. Assessment of bioethanol yield by S. cerevisiae grown on oil palm residues: Monte Carlo simulation and sensitivity analysis.

    PubMed

    Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah

    2015-01-01

    Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Sensitivity analysis of free vibration characteristics of an in situ railway concrete sleeper to variations of rail pad parameters

    NASA Astrophysics Data System (ADS)

    Kaewunruen, Sakdirat; Remennikov, Alex M.

    2006-11-01

    The vibration of in situ concrete sleepers in a railway track structure is a major factor causing cracking of prestressed concrete sleepers and excessive railway track maintenance cost. Not only does the ballast interact with the sleepers, but the rail pads also take part in affecting their free vibration characteristics. This paper presents a sensitivity analysis of free vibration behaviors of an in situ railway concrete sleeper (standard gauge sleeper), incorporating sleeper/ballast interaction, subjected to the variations of rail pad properties. Through finite element analysis, Timoshenko-beam and spring elements were used in the in situ railway concrete sleeper modeling. This model highlights the influence of rail pad parameters on the free vibration characteristics of in situ sleepers. In addition, information on the first five flexural vibration modes indicates the dynamic performance of railway track when using different types of rail pads, as it plays a vital role in the cracking deterioration of concrete sleepers.

  20. Sensitivity Analysis of Flutter Response of a Wing Incorporating Finite-Span Corrections

    NASA Technical Reports Server (NTRS)

    Issac, Jason Cherian; Kapania, Rakesh K.; Barthelemy, Jean-Francois M.

    1994-01-01

    Flutter analysis of a wing is performed in compressible flow using state-space representation of the unsteady aerodynamic behavior. Three different expressions are used to incorporate corrections due to the finite-span effects of the wing in estimating the lift-curve slope. The structural formulation is based on a Rayleigh-Pitz technique with Chebyshev polynomials used for the wing deflections. The aeroelastic equations are solved as an eigen-value problem to determine the flutter speed of the wing. The flutter speeds are found to be higher in these cases, when compared to that obtained without accounting for the finite-span effects. The derivatives of the flutter speed with respect to the shape parameters, namely: aspect ratio, area, taper ratio and sweep angle, are calculated analytically. The shape sensitivity derivatives give a linear approximation to the flutter speed curves over a range of values of the shape parameter which is perturbed. Flutter and sensitivity calculations are performed on a wing using a lifting-surface unsteady aerodynamic theory using modules from a system of programs called FAST.

Top