Sample records for parametric amplifiers

  1. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  2. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  3. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  4. Problems of the design of low-noise input devices. [parametric amplifiers

    NASA Technical Reports Server (NTRS)

    Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.

    1974-01-01

    An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.

  5. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  6. Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Koshino, K.; Nakamura, Y.

    While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

  7. Investigation of the photon statistics of parametric fluorescence in a traveling-wave parametric amplifier by means of self-homodyne tomography.

    PubMed

    Vasilyev, M; Choi, S K; Kumar, P; D'Ariano, G M

    1998-09-01

    Photon-number distributions for parametric fluorescence from a nondegenerate optical parametric amplifier are measured with a novel self-homodyne technique. These distributions exhibit the thermal-state character predicted by theory. However, a difference between the fluorescence gain and the signal gain of the parametric amplifier is observed. We attribute this difference to a change in the signal-beam profile during the traveling-wave pulsed amplification process.

  8. Nearly noiseless amplification of microwave signals with a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Castellanos-Beltran, Manuel

    2009-03-01

    A degenerate parametric amplifier transforms an incident coherent state by amplifying one of its quadrature components while deamplifying the other. This transformation, when performed by an ideal parametric amplifier, is completely deterministic and reversible; therefore the amplifier in principle can be noiseless. We attempt to realize a noiseless amplifier of this type at microwave frequencies with a Josephson parametric amplifier (JPA). To this end, we have built a superconducting microwave cavity containing many dc-SQUIDs. This arrangement creates a non-linear medium in a cavity and it is closely analogous to an optical parametric amplifier. In my talk, I will describe the current performance of this circuit, where I show I can amplify signals with less added noise than a quantum-limited amplifier that amplifies both quadratures. In addition, the JPA also squeezes the electromagnetic vacuum fluctuations by 10 dB. Finally, I will discuss our effort to put two such amplifiers in series in order to undo the first stage of squeezing with a second stage of amplification, demonstrating that the amplification process is truly reversible.[4pt] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale and K. W. Lehnert, Nature Physics, published on line, http://dx.doi.org/10.1038/nphys1090 (2008).

  9. Coherent white light amplification

    DOEpatents

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  10. Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier.

    PubMed

    Voss, Paul L; Tang, Renyong; Kumar, Prem

    2003-04-01

    We report measurement of the noise statistics of spontaneous parametric fluorescence in a fiber parametric amplifier with single-mode, single-photon resolution. We employ optical homodyne tomography for this purpose, which also provides a self-calibrating measurement of the noise figure of the amplifier. The measured photon statistics agree with quantum-mechanical predictions, and the amplifier's noise figure is found to be almost quantum limited.

  11. Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.

    1974-01-01

    The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.

  12. Characterization of a multimode coplanar waveguide parametric amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas

    2015-10-21

    We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.

  13. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  14. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  15. Josephson Parametric Reflection Amplifier with Integrated Directionality

    NASA Astrophysics Data System (ADS)

    Westig, M. P.; Klapwijk, T. M.

    2018-06-01

    A directional superconducting parametric amplifier in the GHz frequency range is designed and analyzed, suitable for low-power read-out of microwave kinetic inductance detectors employed in astrophysics and when combined with a nonreciprocal device at its input also for circuit quantum electrodynamics. It consists of a one-wavelength-long nondegenerate Josephson parametric reflection amplifier circuit. The device has two Josephson-junction oscillators, connected via a tailored impedance to an on-chip passive circuit which directs the in- to the output port. The amplifier provides a gain of 20 dB over a bandwidth of 220 MHz on the signal as well as on the idler portion of the amplified input and the total photon shot noise referred to the input corresponds to maximally approximately 1.3 photons per second per Hertz of bandwidth. We predict a factor of 4 increase in dynamic range compared to conventional Josephson parametric amplifiers.

  16. Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.

    2018-03-01

    We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.

  17. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  18. Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation

    NASA Astrophysics Data System (ADS)

    Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem

    2004-10-01

    Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.

  19. Development and fabrication of S-band chip varactor parametric amplifier

    NASA Technical Reports Server (NTRS)

    Kramer, E.

    1974-01-01

    A noncryogenic, S-band parametric amplifier operating in the 2.2 to 2.3 GHz band and having an average input noise temperature of less than 30 K was built and tested. The parametric amplifier module occupies a volume of less than 1-1/4 cubic feet and weighs less than 60 pounds. The module is designed for use in various NASA ground stations to replace larger, more complex cryogenic units which require considerably more maintenance because of the cryogenic refrigeration system employed. The amplifier can be located up to 15 feet from the power supply unit. Optimum performance was achieved through the use of high-quality unpackaged (chip) varactors in the amplifier design.

  20. Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Ališauskas, S.; Butkus, R.; Pyragaitė, V.; Smilgevičius, V.; Stabinis, A.; Piskarskas, A.

    2010-04-01

    We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.

  1. Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Chirped quasi-phase-matched optical parametric amplifiers (chirped QPM OPAs) are investigated experimentally. The measured collinear gain is constant over a broad bandwidth, which makes these devices attractive candidates for use in femtosecond amplifier systems. The experiment also shows that chirped QPM OPAs support noncollinear gain-guided modes. These modes can dominate the desired collinear gain and generate intense parametric fluorescence. Finally, design guidelines to mitigate these parasitic processes are discussed.

  2. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  3. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.

    PubMed

    Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald

    2015-09-07

    We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

  4. Temporal-contrast measurements of a white-light-seeded noncollinear optical parametric amplifier

    DOE PAGES

    Bromage, J.; Dorrer, C.; Zuegel, J. D.

    2015-09-01

    Ultra-intense optical parametric chirped-pulse systems require front ends with broad bandwidth and high temporal contrast. Temporal cross-correlation measurements of a white-light–seeded noncollinear optical parametric amplifier (NOPA) show that its prepulse contrast exceeds the 120 dB dynamic range of the broadband NOPA-based cross-correlator.

  5. Enhanced force sensitivity and noise squeezing in an electromechanical resonator coupled to a nanotransistor

    NASA Astrophysics Data System (ADS)

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2010-12-01

    A nanofield-effect transistor (nano-FET) is coupled to a massive piezoelectricity based electromechanical resonator integrated with a parametric amplifier. The mechanical parametric amplifier can enhance the resonator's displacement and the resulting electrical signal is further amplified by the nano-FET. This hybrid amplification scheme yields an increase in the mechanical displacement signal by 70 dB resulting in a force sensitivity of 200 aN Hz-1/2 at 3 K. The mechanical parametric amplifier can also squeeze the displacement noise in one oscillation phase by 5 dB enabling a factor of 4 reduction in the thermomechanical noise force level.

  6. Experimental study of microwave photon statistics under parametric amplification from a single-mode thermal state in a cavity

    NASA Astrophysics Data System (ADS)

    Galeazzi, G.; Lombardi, A.; Ruoso, G.; Braggio, C.; Carugno, G.; Della Valle, F.; Zanello, D.; Dodonov, V. V.

    2013-11-01

    In this paper we present theoretical and experimental studies of the modifications of the thermal spectrum inside a microwave resonator due to a parametric amplification process. Both the degenerate and nondegenerate amplifiers are discussed. Theoretical calculations are compared with measurements performed with a microwave cavity parametric amplifier.

  7. Injection-seeded optical parametric oscillator and system

    DOEpatents

    Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.

    2007-10-09

    Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.

  8. Dual frequency parametric excitation of a nonlinear, multi degree of freedom mechanical amplifier with electronically modified topology

    NASA Astrophysics Data System (ADS)

    Dolev, A.; Bucher, I.

    2018-04-01

    Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.

  9. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  10. Parametric traveling wave amplifier with a low pump frequency

    NASA Astrophysics Data System (ADS)

    Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.

    1983-01-01

    Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.

  11. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  12. Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Kumar, Prem

    2004-03-01

    The nonzero response time of the Kerr [chi (3)] nonlinearity determines the quantum-limited noise figure of c3 parametric amplifiers. This nonzero response time of the nonlinearity requires coupling of the parametric amplification process to a molecular-vibration phonon bath, causing the addition of excess noise through Raman gain or loss at temperatures above 0 K. The effect of this excess noise on the noise figure can be surprisingly significant. We derive analytical expressions for this quantum-limited noise figure for phase-insensitive operation of a chi (3) amplifier and show good agreement with published noise-figure measurements.

  13. Efficient two-stage dual-beam noncollinear optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.

    2018-06-01

    We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.

  14. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  15. A study of microwave downcoverters operating in the K sub u band

    NASA Technical Reports Server (NTRS)

    Fellers, R. G.; Simpson, T. L.; Tseng, B.

    1982-01-01

    A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated.

  16. 5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz.

    PubMed

    Adachi, S; Ishii, N; Kanai, T; Kosuge, A; Itatani, J; Kobayashi, Y; Yoshitomi, D; Torizuka, K; Watanabe, S

    2008-09-15

    We report on the development of an optical parametric chirpedpulse amplifier at a 1-kHz repetition rate with a 5.5-fs pulse duration, a 2.7-mJ pulse energy and carrier-envelope phase-control. The amplifier is pumped by a 450-nm pulse from a frequency-doubled Ti:sapphire laser.

  17. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  18. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  19. Gain statistics of a fiber optical parametric amplifier with a temporally incoherent pump.

    PubMed

    Xu, Y Q; Murdoch, S G

    2010-03-15

    We present an investigation of the statistics of the gain fluctuations of a fiber optical parametric amplifier pumped with a temporally incoherent pump. We derive a simple expression for the probability distribution of the gain of the amplified optical signal. The gain statistics are shown to be a strong function of the signal detuning and allow the possibility of generating optical gain distributions with controllable long-tails. Very good agreement is found between this theory and the experimentally measured gain distributions of an incoherently pumped amplifier.

  20. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier.

    PubMed

    Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius

    2017-02-15

    We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.

  1. Experimental sub-Rayleigh resolution by an unseeded high-gain optical parametric amplifier for quantum lithography

    NASA Astrophysics Data System (ADS)

    Sciarrino, Fabio; Vitelli, Chiara; de Martini, Francesco; Glasser, Ryan; Cable, Hugo; Dowling, Jonathan P.

    2008-01-01

    Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interferometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric amplifier can be intense yet exhibits quantum features, namely, sub-Rayleigh fringes, as proposed by [Agarwal , Phys. Rev. Lett. 86, 1389 (2001)]. We investigate multiphoton states generated by a high-gain optical parametric amplifier operating with a quantum vacuum input for gain values up to 2.5. The visibility has then been increased by means of three-photon absorption. The present paper opens interesting perspectives for the implementation of such an advanced interferometrical setup.

  2. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    PubMed

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  3. Low Noise Optical Amplifiers

    DTIC Science & Technology

    2010-05-01

    Karsten Rottwitt DTU Fotonik Department of Photonics Engineering, Technical University of Denmark - 2 - TABLE OF...at DTU Fotonik, has intensified through two new ph.d positions within parametric amplifiers, one partly funded through a research program on phase...Activities: As indicated in the above DTU Fotonik now has significant activities on using parametric processes in optical fibers. This includes

  4. An Optical Parametric Amplifier for Profiling Gases of Atmospheric Interest

    NASA Technical Reports Server (NTRS)

    Heaps, William (Technical Monitor); Burris, John; Richter, Dale

    2004-01-01

    This paper describes the development of a lidar transmitter using an optical parametric amplifier. It is designed for profiling gases of atmospheric interest at high spatial and temporal precision in the near-IR. Discussions on desirable characteristics for such a transmitter with specific reference to the case of CO, are made.

  5. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Li, D.; Irwin, K. D.; Bockstiegel, C.; Hubmayr, J.; Ullom, J. N.; Vissers, M. R.; Gao, J.

    2017-04-01

    We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.

  6. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    DOE PAGES

    Chaudhuri, S.; Li, D.; Irwin, K. D.; ...

    2017-04-10

    Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less

  7. Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, S.; Li, D.; Irwin, K. D.

    Here, we present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstrate two amplifier designs implementing different phase matching techniques: periodic impedance loading and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 Ω characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. In conclusion, with a transmission line length of 20 cm, we have achieved gainsmore » of 15 dB over several GHz of bandwidth.« less

  8. 20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier

    PubMed Central

    Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh

    2017-01-01

    This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636

  9. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A

    2012-12-01

    It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.

  10. Quantum Illumination-Based Target Detection and Discrimination

    DTIC Science & Technology

    2014-06-30

    amplifier (EDFA) was combined with the signal to simulate a high-noise environment, with a noise photon number per mode NB in the range 40–300. The...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement , parametric downconversion, optical parametric amplifiers...laser system of the same average transmitted photon number, when the target return has random-amplitude behavior. Receiver operating characteristic

  11. Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits

    DTIC Science & Technology

    2017-08-29

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N

  12. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  13. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.

  14. Experimental realization of a feedback optical parametric amplifier with four-wave mixing

    NASA Astrophysics Data System (ADS)

    Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai

    2018-04-01

    Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.

  15. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  16. Josephson parametric converter saturation and higher order effects

    NASA Astrophysics Data System (ADS)

    Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.

    2017-11-01

    Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.

  17. Sensitivity enhancement of remotely coupled NMR detectors using wirelessly powered parametric amplification.

    PubMed

    Qian, Chunqi; Murphy-Boesch, Joseph; Dodd, Stephen; Koretsky, Alan

    2012-09-01

    A completely wireless detection coil with an integrated parametric amplifier has been constructed to provide local amplification and transmission of MR signals. The sample coil is one element of a parametric amplifier using a zero-bias diode that mixes the weak MR signal with a strong pump signal that is obtained from an inductively coupled external loop. The NMR sample coil develops current gain via reduction in the effective coil resistance. Higher gain can be obtained by adjusting the level of the pumping power closer to the oscillation threshold, but the gain is ultimately constrained by the bandwidth requirement of MRI experiments. A feasibility study here shows that on a NaCl/D(2) O phantom, (23) Na signals with 20 dB of gain can be readily obtained with a concomitant bandwidth of 144 kHz. This gain is high enough that the integrated coil with parametric amplifier, which is coupled inductively to external loops, can provide sensitivity approaching that of direct wire connection. Copyright © 2012 Wiley Periodicals, Inc.

  18. Field-quadrature and photon-number correlations produced by parametric processes.

    PubMed

    McKinstrie, C J; Karlsson, M; Tong, Z

    2010-09-13

    In a previous paper [Opt. Express 13, 4986 (2005)], formulas were derived for the field-quadrature and photon-number variances produced by multiple-mode parametric processes. In this paper, formulas are derived for the quadrature and number correlations. The number formulas are used to analyze the properties of basic devices, such as two-mode amplifiers, attenuators and frequency convertors, and composite systems made from these devices, such as cascaded parametric amplifiers and communication links. Amplifiers generate idlers that are correlated with the amplified signals, or correlate pre-existing pairs of modes, whereas attenuators decorrelate pre-existing modes. Both types of device modify the signal-to-noise ratios (SNRs) of the modes on which they act. Amplifiers decrease or increase the mode SNRs, depending on whether they are operated in phase-insensitive (PI) or phase-sensitive (PS) manners, respectively, whereas attenuators always decrease these SNRs. Two-mode PS links are sequences of transmission fibers (attenuators) followed by two-mode PS amplifiers. Not only do these PS links have noise figures that are 6-dB lower than those of the corresponding PI links, they also produce idlers that are (almost) completely correlated with the signals. By detecting the signals and idlers, one can eliminate the effects of electronic noise in the detectors.

  19. Josephson Parametric Amplifer Based on a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Li, Juliang; Rimberg, A. J.

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a Josephson parametric amplifier. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane, which forms a SQUID loop. Both the flux threading the loop as well as the gate charge can be modulated, and each can provide the parametric pumping. The reflected signal from the cCPT is further amplified by both SLUG and HEMT amplifiers for characterizing the parametric amplification. A first application of the parametric amplification is to improve the charge sensitivity of a single electron charge detector. This can be done either by pumping on a side band or by shifting the charge state of the cCPT near a bifurcation point. Stimulated emission has been also observed when the cCPT is pumped at twice the resonant frequency in the absence of an input signal. This could allow investigation of the dynamic Casimir effect as well as generation of non-classical photon states. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  20. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  1. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier

    PubMed Central

    Kang, Jiqiang; Wei, Xiaoming; Li, Bowen; Wang, Xie; Yu, Luoqin; Tan, Sisi; Jinata, Chandra; Wong, Kenneth K. Y.

    2016-01-01

    We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems. PMID:27446655

  2. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T. C.; Mutus, J. Y.; Hoi, I.-C.

    Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB acrossmore » a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.« less

  3. Integrated-circuit balanced parametric amplifier

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.

  4. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  5. Minimum Uncertainty Coherent States Attached to Nondegenerate Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Dehghani, A.; Mojaveri, B.

    2015-06-01

    Exact analytical solutions for the two-mode nondegenerate parametric amplifier have been obtained by using the transformation from the two-dimensional harmonic oscillator Hamiltonian. Some important physical properties such as quantum statistics and quadrature squeezing of the corresponding states are investigated. In addition, these states carry classical features such as Poissonian statistics and minimize the Heisenberg uncertainty relation of a pair of the coordinate and the momentum operators.

  6. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Mota, R. D.; Granados, V. D.

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  7. Microwave Semiconductor Equipment Produced in Poland,

    DTIC Science & Technology

    1984-01-20

    was started on varactors for parametric amplifiers, which took place in the Institute for Basic Problems of Technology of the PAN [1. The research unit...technology of varactors intended for parametric amplifiers and harmonic generators. As a result of this a series of types of germanium, silicon and gallium...arsenide varactors were produced [2-141. These varactors were used for example in Avia A and Avia B radar. The working out of the production of

  8. Generation and parametric amplification of broadband chirped pulses in the near-infrared

    NASA Astrophysics Data System (ADS)

    Marcinkevičiūtė, A.; Michailovas, K.; Butkus, R.

    2018-05-01

    We demonstrate generation and optical parametric amplification of broadband chirped pulses in the range of 1.8- 2 . 5 μm. The setup is built around Ti:sapphire oscillator as a seed source and 1 kHz Nd:YAG laser system as a pump source. Visible broadband seed pulses are temporally stretched and amplified in a non-collinear optical parametric amplifier before being mixed with fundamental harmonic of the pump laser. Difference frequency generation between positively-chirped broadband pulses centered at 0 . 7 μm and non-chirped narrowband pulses at 1064 nm produces negatively-chirped wide spectral bandwidth pulses in the infrared. After subsequent parametric amplification, pulses with more than 0.5 mJ energy were obtained with spectral bandwidth supporting transform-limited pulse durations as short as 23 fs.

  9. Generation of squeezed microwave states by a dc-pumped degenerate parametric Josephson junction oscillator

    NASA Astrophysics Data System (ADS)

    Kaertner, Franz X.; Russer, Peter

    1990-11-01

    The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.

  10. Research on High-Intensity Picosecond Pump Laser in Short Pulse Optical Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Pan, Xue; Peng, Yu-Jie; Wang, Jiang-Feng; Lu, Xing-Hua; Ouyang, Xiao-Ping; Chen, Jia-Lin; Jiang, You-En; Fan, Wei; Li, Xue-Chun

    2013-01-01

    A 527 nm pump laser generating 1.7 mJ energy with peak power of more than 0.12 GW is demonstrated. The theoretical simulation result shows that it has 106 gain in the picosecond-pump optical parametric chirped pulse amplification when the pump laser peak power is 0.1 GW and the intensity is more than 5 GW/cm2, and that it can limit the parametric fluorescence in the picosecond time scale of pump duration. The pump laser system adopts a master-oscillator power amplifier, which integrates a more than 30 pJ fiber-based oscillator with a 150 μJ regenerative amplifier and a relay-imaged four-pass diode-pump Nd glass amplifier to generate a 1 Hz top hat spatial beam and about 14 ps temporal Guassian pulse with <2% pulse-to-pulse energy stability. The output energy of the power amplifier is limited to 4 mJ for B-integral concern, and the frequency doubling efficiency can reach 65% with input intensity 10 GW/cm2.

  11. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    NASA Astrophysics Data System (ADS)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  12. The effect of pumping noise on the characteristics of a single-stage parametric amplifier

    NASA Astrophysics Data System (ADS)

    Medvedev, S. Iu.; Muzychuk, O. V.

    1983-10-01

    An analysis is made of the operation of a single-stage parametric amplifier based on a varactor with a sharp transition. Analytical expressions are obtained for the statistical moments of the output signal, the signal-noise ratio, and other characteristics in the case when the output signal and the pump are a mixture of harmonic oscillation and Gaussian noise. It is shown that, when a noise component is present in the pump, an increase of its harmonic component to values close to the threshold leads to a sharp decrease in the signal-noise ratio at the amplifier output.

  13. Theory and Simulation of Gain-Guided Noncollinear Modes in Chirped Quasi-Phase-Matched Optical Parametric Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    Chirped quasi-phase-matched (QPM) gratings offer essentially constant gain over wide bandwidths, making them promising candidates for short-pulse optical parametric amplifiers. However, experiments have shown that high-gain non-collinear processes exist in spite of the dephasing caused by the non-uniformity of the QPM grating and compete with the desired collinear broadband gain of the amplifier. In this paper, these non-collinear gain-guided modes are investigated numerically and analytically in a model that includes longitudinal non-uniformity of the phase-matching profile, lateral localization of the pump beam and non-collinear propagation of the interacting waves.

  14. High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control.

    PubMed

    Zinkstok, R Th; Witte, S; Hogervorst, W; Eikema, K S E

    2005-01-01

    Phase-stable parametric chirped-pulse amplification of ultrashort pulses from a carrier-envelope phase-stabilized mode-locked Ti:sapphire oscillator (11.0 fs) to 0.25 mJ/pulse at 1 kHz is demonstrated. Compression with a grating compressor and a LCD shaper yields near-Fourier-limited 11.8-fs pulses with an energy of 0.12 mJ. The amplifier is pumped by 532-nm pulses from a synchronized mode-locked laser, Nd:YAG amplifier system. This approach is shown to be promising for the next generation of ultrafast amplifiers aimed at producing terawatt-level phase-controlled few-cycle laser pulses.

  15. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    DOE PAGES

    Isaienko, Oleksandr; Robel, Istvan

    2016-03-15

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ (2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P NL of the impulsively excited phonons and those of parametrically amplified waves.« less

  16. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  17. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  18. Ghost imaging via optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-10-01

    We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.

  19. Narrowband, tunable, 2 µm optical parametric master-oscillator power amplifier with large-aperture periodically poled Rb:KTP

    NASA Astrophysics Data System (ADS)

    Coetzee, R. S.; Zheng, X.; Fregnani, L.; Laurell, F.; Pasiskevicius, V.

    2018-06-01

    A high-energy, ns, narrow-linewidth optical parametric oscillator and amplifier system based on large-aperture periodically poled Rb:KTP is presented. The 2 µm seed source is a singly resonant OPO locked with a transversely chirped volume Bragg grating, allowing a wavelength tuning of 21 nm and output linewidth of 0.56 nm. A maximum output energy of 52 mJ and conversion efficiency of 36% was obtained from the amplifier for a pump energy of 140 mJ. The high-energy and the robust and narrow dual-wavelength spectra obtained make this system an ideal pump source for difference frequency generation-based THz generation schemes.

  20. Imaging non-Gaussian output fields produced by Josephson parametric amplifiers: experiments

    NASA Astrophysics Data System (ADS)

    Toyli, D. M.; Venkatramani, A. V.; Boutin, S.; Eddins, A.; Didier, N.; Clerk, A. A.; Blais, A.; Siddiqi, I.

    2015-03-01

    In recent years, squeezed microwave states have become the focus of intense research motivated by applications in continuous-variables quantum computation and precision qubit measurement. Despite numerous demonstrations of vacuum squeezing with superconducting parametric amplifiers such as the Josephson parametric amplifier (JPA), most experiments have also suggested that the squeezed output field becomes non-ideal at the large (> 10dB) signal gains required for low-noise qubit measurement. Here we describe a systematic experimental study of JPA squeezing performance in this regime for varying lumped-element device designs and pumping methods. We reconstruct the JPA output fields through homodyne detection of the field moments and quantify the deviations from an ideal squeezed state using maximal entropy techniques. These methods provide a powerful diagnostic tool to understand how effects such as gain compression impact JPA squeezing. Our results highlight the importance of weak device nonlinearity for generating highly squeezed states. This work is supported by ARO and ONR.

  1. Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Köprülü, Kahraman G.; Kumar, Prem

    2006-04-01

    We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a χ(3) nonlinear medium. The nonzero response time of the Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3) parametric amplification, as well as the limit on quadrature squeezing. This nonzero response time of the nonlinearity requires coupling of the parametric process to a molecular vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency nondegenerate and frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency nondegenerate quadrature squeezing. We show that our nondegenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.

  2. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    PubMed

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  3. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE PAGES

    Dorrer, C.; Consentino, A.; Cuffney, R.; ...

    2017-10-18

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  4. Spectrally tunable, temporally shaped parametric front end to seed high-energy Nd:glass laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrer, C.; Consentino, A.; Cuffney, R.

    Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less

  5. The 12 GHz mixer/local oscillator and parametric amplifier. [considering all solid state circuitry

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1976-01-01

    The results of the initial implementation of the proposed design, the design modifications, and limitations are presented. Also included are data on component parts of the breadboard amplifier and the converter.

  6. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  7. Quadrature demultiplexing using a degenerate vector parametric amplifier.

    PubMed

    Lorences-Riesgo, Abel; Liu, Lan; Olsson, Samuel L I; Malik, Rohit; Kumpera, Aleš; Lundström, Carl; Radic, Stojan; Karlsson, Magnus; Andrekson, Peter A

    2014-12-01

    We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10(-9). The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.

  8. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    PubMed

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  9. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  10. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    PubMed

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  11. Frequency non-degenerate phase-sensitive optical parametric amplification based on four-wave-mixing in width-modulated silicon waveguides.

    PubMed

    Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Xuefeng

    2014-12-15

    A width-modulated silicon waveguide is proposed to realize non-degenerate phase sensitive optical parametric amplification. It is found that the relative phase at the input of the phase sensitive amplifier (PSA) θIn-PSA can be tuned by tailoring the width and length of the second segment of the width-modulated silicon waveguide, which will influence the gain in the parametric amplification process. The maximum gain of PSA is larger by 9 dB compared with the phase insensitive amplifier (PIA) gain, and the gain bandwidth of PSA is larger by 35 nm compared with the gain bandwidth of PIA. Our on-chip PSA can find important potential applications in highly integrated optical circuits for optical chip-to-chip communication and computers.

  12. Markovian Dynamics of Josephson Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  13. Quantum tomography enhanced through parametric amplification

    NASA Astrophysics Data System (ADS)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  14. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  15. Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pogorzalek, Stefan; Fedorov, Kirill G.; Zhong, Ling; Goetz, Jan; Wulschner, Friedrich; Fischer, Michael; Eder, Peter; Xie, Edwar; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Nakamura, Yasunobu; Marx, Achim; Deppe, Frank; Gross, Rudolf

    2017-08-01

    Josephson parametric amplifiers (JPAs) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs exhibiting a hysteretic dependence of the resonant frequency on the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices, which provide the JPA nonlinearity for a nonzero screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.

  16. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    PubMed

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  17. Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr³⁺:YSO.

    PubMed

    Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng

    2015-10-15

    We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).

  18. Generation of polarization squeezed light with an optical parametric amplifier at 795 nm

    NASA Astrophysics Data System (ADS)

    Han, Yashuai; Wen, Xin; Liu, Jinyu; He, Jun; Wang, Junmin

    2018-06-01

    We report the experimental demonstration of polarization squeezed beam at 795 nm by combining a quadrature amplitude squeezed beam with an in-phase bright coherent beam. The quadrature amplitude squeezed beam is generated by a degenerate optical parametric amplifier based on a PPKTP crystal. Stokes operators Sˆ2 squeezing of -3.8 dB and Sˆ3 anti-squeezing of +5.0 dB have been observed. This polarization squeezed beam resonant to rubidium D1 line has potential applications in quantum information networks and precision measurement beyond the shot noise limit.

  19. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    PubMed

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  20. Squeezing with a flux-driven Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2014-03-01

    Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.

  1. Quantum Lidar - Remote Sensing at the Ultimate Limit

    DTIC Science & Technology

    2009-07-01

    of Lossy Propaga- tion of Non-Classical Dual-Mode Entangled Photon States 57 34 Decay of Coherence for a N00N State (N=10) as a Function of...resolution could be beaten by exploiting entangled photons [Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We...spontaneous parametric down conversion (SPDC), optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled - photon Laser (EPL

  2. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  3. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less

  4. Experimental implementation of a nonlinear beamsplitter based on a phase-sensitive parametric amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yami; Feng, Jingliang; Cao, Leiming

    2016-03-28

    Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of themore » two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.« less

  5. Photon statistics of shot noise measured using a Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Simoneau, Jean Olivier; Virally, Stéphane; Lupien, Christian; Reulet, Bertrand

    2015-03-01

    Quantum measurements are very sensitive to external noise sources. Such measurements require careful amplification chain design so as not to overwhelm the signal with extraneous noise. A quantum-limited amplifier, like the Josephson parametric amplifier (paramp), is thus an ideal candidate for this purpose. We used a paramp to investigate the quantum noise of a tunnel junction. This measurement scheme allowed us to improve upon previous observations of shot noise by an order of magnitude in terms of noise temperature. With this setup, we have measured the second and fourth cumulants of current fluctuations generated by the tunnel junction within a 40 MHz bandwidth around 6 GHz. From theses measurements, we deduce the variance of the photon number fluctuations for various bias schemes of the junction. In particular, we investigate the regime where the junction emits pairs of photons.

  6. Experimental demonstration of fiber optical parametric chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Cheung, Kim K. Y.; Chui, P. C.; Wong, Kenneth K. Y.

    2010-02-01

    A fiber optical parametric chirped-pulse amplifier (FOPCPA) is experimentally demonstrated. A 1.76 ps signal at 1542 nm with a peak power of 20 mW is broadened to 40 ps, and then amplified by a 100-ps pulsed pump at 1560 nm. The corresponding idler at 1578 nm is generated as the FOPCPA output. The same medium used to stretch the signal is deployed to compress the idler to 3.8 ps, and another spool of fiber is deployed to further compress the idler to 1.87 ps. The peak power of the compressed idler is 2 W, which corresponds to a gain of 20 dB.

  7. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  8. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    PubMed

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  9. Generation of 8.3 dB continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm

    NASA Astrophysics Data System (ADS)

    Jinxia, Feng; Zhenju, Wan; Yuanji, Li; Kuanshou, Zhang

    2018-01-01

    Continuous variable quantum entanglement at a telecommunication wavelength of 1550 nm is experimentally generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO4 crystal. The triply resonant of the nondegenerate optical parametric amplifier is adjusted by tuning the crystal temperature and tilting the orientation of the crystal in the optical cavity. Einstein-Podolsky-Rosen-entangled beams with quantum correlations of 8.3 dB for both the amplitude and phase quadratures are experimentally generated. This system can be used for continuous variable fibre-based quantum communication.

  10. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    PubMed

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  11. Millijoule-level 20 ps Nd:YAG oscillator-amplifier laser system for investigation of stimulated Raman scattering and optical parametric generation

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Kubecek, Vàclav

    2012-06-01

    We report on quasi-continuously pumped oscillator-amplifier laser system. The laser oscillator was based on highly 2.4 at.% doped crystalline Nd:YAG in a bounce geometry and passively mode locked by a semiconductor saturable absorber mirror. Using the cavity dumping technique, 19 ps pulses with the energy of 20 μJ and Gaussian spatial beam profile were generated directly from the oscillator at the repetition rate up to 50 Hz. For applications requiring more energetic pulses the amplification was studied using either an identical highly doped Nd:YAG module in bounce geometry or flashlamp pumped Nd:YAG laser rod. Using compact all diode pumped oscillator-amplifier system, 130 μJ pulses were generated. The flashlamp pumped amplifier with 100 mm long Nd:YAG enabled to obtain higher energy. In the single pass configuration the pulse was amplified to 4.5 mJ, using the double pass configuration the pulse energy was further increased up to 20 mJ with the duration of 25 ps at 10 Hz. The developed laser system was used for investigation of stimulated Raman scattering in Strontium Barium Niobate and optical parametric generation in CdSiP2.

  12. OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.; ...

    2015-09-01

    OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.

  13. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  14. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  15. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain.

    PubMed

    Kral, L

    2007-05-01

    We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.

  16. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    NASA Astrophysics Data System (ADS)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (<50 femtosecond) laser pulses from a commercial regenerative amplifier, optical parametric amplifier, and a home-built non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  17. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  18. 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    He, Huijun; Wang, Zhaohua; Hu, Chenyang; Jiang, Jianwang; Qin, Shuang; He, Peng; Zhang, Ninghua; Yang, Peilong; Li, Zhiyuan; Wei, Zhiyi

    2018-02-01

    We report on a 520-µJ, 1-kHz mid-infrared femtosecond optical parametric amplifier system driven by a Ti:sapphire laser system. The seeding signal was generated from white-light continuum in YAG plate and then amplified in four non-collinear amplification stages and the idler was obtained in the last stage with central wavelength at 2.8 µm and bandwidth of 525 nm. To maximize the bandwidth of the idler, a theoretical method was developed to give an optimum non-collinear angle and estimate the conversion efficiency and output spectrum. As an experimental result, laser pulse energy up to 1.8 mJ for signal wave and 520 µJ for idler wave were obtained in the last stage under 10-mJ pump energy, corresponding to a pump-to-idler conversion efficiency of 5.2%, which meets well with the numerical calculation.

  19. High contrast research in the Nd:glass laser system based on optical parametric amplification temporal cleaning device

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoming; Leng, Yuxin; Sui, Zhan; Li, Yanyan; Zhang, Zongxin; Xu, Yi; Guo, Xiaoyang; Liu, Yanqi; Li, Ruxin; Xu, Zhizhan

    2014-02-01

    We demonstrate high amplified spontaneous emission (ASE) contrast pulses in a Nd:glass laser system based on the hybrid double chirped pulse amplification (double CPA) scheme. By an OPA temporal cleaning device, ~100 uJ/46 fs/ 1011 clean pulses are generated and amplified in the next Nd:glass laser. After compressor, >150 mJ/~0.5 ps/1 Hz pulses can be obtained. The ASE temporal contrast of amplified pulses is ~1011 with energy gain ~2.5×104 in the Nd:glass amplifiers.

  20. Experimental Study of SBS Suppression via White Noise Phase Modulation

    DTIC Science & Technology

    2014-02-10

    fiber optical parametric amplifiers,” Opt. Communications 283, 2607-2610 (2010). [8] Coles, J. B., Kuo, B. P.-P., Alie , N., Moro, S., Bres, C.-S...V., Farley, K., Leveille, R., Galipeau, J., Majid , I., Christensen, S., Samson, B., Tankala, K. “kW level narrow linewidth Yb fiber amplifiers for

  1. Nd : glass rod laser with an output energy of 500 J

    NASA Astrophysics Data System (ADS)

    Shaykin, A. A.; Kuzmin, A. A.; Shaikin, I. A.; Burdonov, K. F.; Khazanov, E. A.

    2016-04-01

    The energy of two orthogonally polarised pulses injected into an available multistage amplifier based on neodymium phosphate glass rods was increased from 300 to 500 J (in both pulses). The second output pulse with an energy of 200 J will be used to pump an additional parametric amplifier of a petawatt laser.

  2. Fiber optical parametric amplifiers in optical communication systems

    PubMed Central

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  3. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    NASA Astrophysics Data System (ADS)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  4. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    PubMed

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  5. Demonstration of optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber pumped by a picosecond mode-locked ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Si-Gang; Wang, Xiao-Jian; Gou, Dou-Dou; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong

    2014-01-01

    We report the experimental demonstration of the optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber (PCF) with a zero group velocity dispersion (GVD) wavelength of 1062 nm pumped by a homemade tunable picosecond mode-locked ytterbium-doped fiber laser. A broad parametric gain band is obtained by pumping the PCF in the anomalous GVD regime with a relatively low power. Two separated narrow parametric gain bands are observed by pumping the PCF in the normal GVD regime. The peak of the parametric gain profile can be tuned from 927 to 1038 nm and from 1099 to 1228 nm. This widely tunable parametric gain band can be used for a broad band optical parametric amplifier, large span wavelength conversion or a tunable optical parametric oscillator.

  6. Power enhanced frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    A frequency conversion system includes at least one source providing a first near-IR wavelength output including a gain medium for providing high power amplification, such as double clad fiber amplifier, a double clad fiber laser or a semiconductor tapered amplifier to enhance the power output level of the near-IR wavelength output. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Ra-man/Brillouin amplifier or oscillator between the high power source and the NFM device.

  7. Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration.

    PubMed

    Okamura, Kotaro; Kobayashi, Takayoshi

    2011-01-15

    The visible second harmonic of the idler output from a noncollinear optical parametric amplifier was compressed using adaptive dispersion control with a deformable mirror. The amplifier was pumped by and seeded in the signal path by a common 400 nm second-harmonic pulse from a Ti:sapphire regenerative amplifier. Thus, both the idler output and the second harmonic of the idler were passively carrier-envelope phase stabilized. The shortest pulse duration achieved was below 3 fs.

  8. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    PubMed

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  9. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  10. Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rytikov, G. O.; Chekhova, M. V.

    2008-12-15

    Generation of 'twin beams' (of light with two-mode compression) in single-pass optical parametric amplifier (a crystal with a nonzero quadratic susceptibility) is considered. Radiation at the output of the nonlinear crystal is essentially multimode, which raises the question about the effect of the detection volume on the extent of suppression of noise from the difference photocurrent of the detectors. In addition, the longitudinal as well as transverse size of the region in which parametric transformation takes place is of fundamental importance. It is shown that maximal suppression of noise from difference photocurrent requires a high degree of entanglement of two-photonmore » light at the outlet of the parametric amplifier, which is defined by Federov et al. [Phys. Rev. A 77, 032336 (2008)] as the ratio of the intensity distribution width to the correlation function width. The detection volume should be chosen taking into account both these quantities. Various modes of single-pass generation of twin beams (noncollinear frequency-degenerate and collinear frequency-nondegenerate synchronism of type I, as well as collinear frequency-degenerate synchronism of type II) are considered in connection with the degree of entanglement.« less

  11. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  12. Observation of quantum jumps in a superconducting quantum bit

    NASA Astrophysics Data System (ADS)

    Vijay, R.

    2011-03-01

    Superconducting qubit technology has made great advances since the first demonstration of coherent oscillations more than 10 years ago. Coherence times have improved by several orders of magnitude and significant progress has been made in qubit state readout fidelity. However, a fast, high-fidelity, quantum non-demolition measurement scheme which is essential to implement quantum error correction has so far been missing. We demonstrate such a scheme for the first time where we continuously measure the state of a superconducting quantum bit using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time. The key development enabling this experiment is the use of a low quality factor (Q), nonlinear resonator to implement a phase-sensitive parametric amplifier operating near the quantum limit. The nonlinear resonator was constructed using a two junction SQUID shunted with an on-chip capacitor. The SQUID allowed us to tune the operating band of the amplifier and the low Q provided us with a bandwidth greater than 10 MHz, sufficient to observe jumps in the qubit state in real time. I will briefly describe the operation of the parametric amplifier and discuss how it was used to measure the state of a transmon qubit in the circuit QED architecture. I will discuss measurement fidelity and the statistics of the quantum jumps. I will conclude by discussing the implications of this development for quantum information processing and further improvements to the measurement technique. We acknowledge support from AFOSR and the Hertz Foundation.

  13. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  14. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  15. Multi-dressing suppression and enhancement and all-optical switching in parametrically amplified four-wave mixing

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Zhang, Dan; Sun, Ming; Li, Kangkang; Wang, Zhiguo; Zhang, Yanpeng

    2018-04-01

    We study different dressing effects in parametrically amplified four-wave mixing (PA-FWM) processes. By seeding a weak probe laser into the Stokes or anti-Stokes channel of the FWM, the gain process is generated in the so-called bright twin beams which are the probe and conjugate beams. The dressing types dramatically affect the gain factors in both the probe and conjugate channels. The gain factor of the FWM signal decreases under the cascade-type dressing and the signal's shape splits into two dips under this dressing type. However, the intensity of the FWM signal changes from suppression to enhancement under the parallel-type dressing. We will apply this switching process to all-optical switching.

  16. Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology,

  17. Multi-mode of Four and Six Wave Parametric Amplified Process

    NASA Astrophysics Data System (ADS)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  18. Multi-mode of Four and Six Wave Parametric Amplified Process.

    PubMed

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-03

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  19. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    PubMed

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  20. Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.

    2018-03-01

    Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.

  1. Josephson junction microwave amplifier in self-organized noise compression mode

    PubMed Central

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Seppä, Heikki; Hakonen, Pertti

    2012-01-01

    The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation. PMID:22355788

  2. Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.

    1994-01-01

    Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.

  3. Implementing quantum optics with parametrically driven superconducting circuits

    NASA Astrophysics Data System (ADS)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  4. Advanced Concepts in Josephson Junction Reflection Amplifiers

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti

    2014-06-01

    Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.

  5. Nanoscale electromechanical parametric amplifier

    DOEpatents

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  6. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.

    PubMed

    Co, Dick T; Lockard, Jenny V; McCamant, David W; Wasielewski, Michael R

    2010-04-01

    Narrow-bandwidth (approximately 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium:sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase- and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses.

  7. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  8. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    PubMed

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  9. Three-wave interaction solitons in optical parametric amplification.

    PubMed

    Ibragimov, E; Struthers, A A; Kaup, D J; Khaydarov, J D; Singer, K D

    1999-05-01

    This paper applies three-wave interaction (TWI)-soliton theory to optical parametric amplification when the signal, idler, and pump wave can all contain TWI solitons. We use an analogy between two different velocity regimes to compare the theory with output from an experimental synchronously pumped optical parametric amplifier. The theory explains the observed inability to compress the intermediate group-velocity wave and 20-fold pulse compression in this experiment. The theory and supporting numerics show that one can effectively control the shape and energy of the optical pulses by shifting the TWI solitons in the pulses.

  10. Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun

    2014-05-01

    By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.

  11. Broadly tunable picosecond ir source

    DOEpatents

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1980-04-23

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 ..mu..m picosecond pulses (1) pass through a 4.5 cm long LiNbO/sub 3/ optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO/sub 3/ optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 ..mu..m along both pump lines are 6 to 8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 ..mu..m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 ..mu..J of tunable radiation over the 14.8 to 18.5 ..mu..m region. The bandwidth and wavelength of both the 2 and 16 ..mu..m radiation output are controlled solely by the diffraction grating.

  12. Phase-sensitive, through-amplification with a double-pumped JPC

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.

    The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.

  13. Theory of parametrically amplified electron-phonon superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less

  14. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    NASA Astrophysics Data System (ADS)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  15. Broadly tunable picosecond IR source

    DOEpatents

    Campillo, Anthony J.; Hyer, Ronald C.; Shapiro, Stanley J.

    1982-01-01

    A picosecond traveling-wave parametric device capable of controlled spectral bandwidth and wavelength in the infrared is reported. Intense 1.064 .mu.m picosecond pulses (1) pass through a 4.5 cm long LiNbO.sub.3 optical parametric oscillator crystal (2) set at its degeneracy angle. A broad band emerges, and a simple grating (3) and mirror (4) arrangement is used to inject a selected narrow-band into a 2 cm long LiNbO.sub.3 optical parametric amplifier crystal (5) along a second pump line. Typical input energies at 1.064 .mu.m along both pump lines are 6-8 mJ for the oscillator and 10 mJ for the amplifier. This yields 1 mJ of tunable output in the range 1.98 to 2.38 .mu.m which when down-converted in a 1 cm long CdSe crystal mixer (6) gives 2 .mu.J of tunable radiation over the 14.8 to 18.5 .mu.m region. The bandwidth and wavelength of both the 2 and 16 .mu.m radiation output are controlled solely by the diffraction grating.

  16. Ultrasensitive Electrometry with a Cavity-Embedded Cooper Pair Transistor

    NASA Astrophysics Data System (ADS)

    Rimberg, A. J.; Li, Juliang

    In this experiment a cavity-embedded Cooper-pair transistor (cCPT) is used as a potentially quantum-limited electrometer. The cCPT consists of a Cooper pair transistor placed at the voltage antinode of a 5.7 GHz shorted quarter-wave resonator so that the CPT provides a galvanic connection between the cavity's central conductor and ground plane. The quantum inductance of the CPT, which appears in parallel with the effective inductance of the cavity resonance, can be modulated by application of either a gate voltage to the CPT island or a flux bias to the CPT/cavity loop. Changes in the CPT inductance shift the cavity resonant frequency, and therefore the phase of a microwave signal reflected from the cavity. The reflected wave is amplified by both SLUG and HEMT amplifiers before its phase is measured. The cCPT can also be operated as a Josephson parametric amplifier (JPA). A pump tone at 11.4 GHz sent into the flux bias line has been shown to provide about 10dB gain. The possibility of parametrically amplifying the side bands produced by a charge detection measurement, thereby increasing the overall sensitivity of the cCPT, will also be investigated. Supported by Grants ARO W911NF-13-10377 and NSF DMR 1507400.

  17. Project Echo: 961-Mc Lower - Sideband Up - Converter for Satellite-Tracking Radar

    NASA Technical Reports Server (NTRS)

    Uenohara, M.; Seidel, H.

    1961-01-01

    A 961-Mc lower-sideband up-converter was specially designed to serve as preamplifier for the satellite-tracking radar used in Project Echo. The amplifier and its power supply are separately boxed and are installed directly behind the tracking antenna. The amplifier has been functioning most satisfactorily and has been used in routine manner to track the Echo satellite from horizon to horizon. This paper describes the design considerations, and details the special steps taken to ensure that the amplifier met the particular system needs of low noise, absolute stability, insensitivity to temperature fluctuations, and high input-power level before the onset of gain compression. The satisfactory operation of this amplifier confirms the great potentiality of parametric amplifiers as stable, low-noise, high-frequency receivers.

  18. Nonlinear optical interactions in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  19. Application of Twin Beams in Mach-Zehnder Interferometer

    NASA Technical Reports Server (NTRS)

    Zhang, J. X.; Xie, C. D.; Peng, K. C.

    1996-01-01

    Using the twin beams generated from parametric amplifier to drive the two port of a Mach-Zehnder interferometer, it is shown that the minimum detectable optical phase shift can be largly reduced to the Heisenberg limit(1/n) which is far below the Shot Noise Limit(1/square root of n) the large gain limit. The dependence of the minimum detectable phase shift on parametric gain and the inefficient photodetectors has been discussed.

  20. Four photon parametric amplification. [in unbiased Josephson junction

    NASA Technical Reports Server (NTRS)

    Parrish, P. T.; Feldman, M. J.; Ohta, H.; Chiao, R. Y.

    1974-01-01

    An analysis is presented describing four-photon parametric amplification in an unbiased Josephson junction. Central to the theory is the model of the Josephson effect as a nonlinear inductance. Linear, small signal analysis is applied to the two-fluid model of the Josephson junction. The gain, gain-bandwidth product, high frequency limit, and effective noise temperature are calculated for a cavity reflection amplifier. The analysis is extended to multiple (series-connected) junctions and subharmonic pumping.

  1. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Kenany, S.; Anil, M. A.; Backes, K. M.

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  2. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range

    DOE PAGES

    Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...

    2017-02-09

    We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.

  3. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor, E-mail: ijovanovic@psu.edu

    2014-02-15

    We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB{sub 2}O{sub 4} nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification.

  4. Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.

    2015-02-01

    The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.

  5. Final EDP Ti: sapphire amplifiers for ELI project

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Kalashnikov, Mikhail; Osvay, Károly

    2015-05-01

    Recently several ultrahigh intensity Chirped Pulse Amplification (CPA) laser systems have reached petawatt output powers [1, 2] setting the next milestone at tens or even hundreds petawatts for the next three to ten years [3, 4]. These remarkable results were reached when laser amplifiers (opposite to Optical Parametric Amplification (OPA) [5]) were used as final ones and from them Ti:Sapphire crystals supposed to be the working horses as well in the future design of these laser systems. Nevertheless, the main limitation that arises on the path toward ultrahigh output power and intensity is the restriction on the pumping and extraction energy imposed by Transverse Amplified Spontaneous Emission (TASE) [6] and/or transverse parasitic generation (TPG) [7] within the large aperture of the disc-shape amplifier volume.

  6. Circulation and Directional Amplification in the Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  7. A numerical study on piezoelectric energy harvesting by combining transverse galloping and parametric instability phenomena

    NASA Astrophysics Data System (ADS)

    Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo

    2017-12-01

    This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.

  8. Fiber Optical Parametric Oscillator for High Power, High Efficiency Short-Wavelength Generation

    DTIC Science & Technology

    2010-12-05

    the spectral region about 1550 nm, this project has explored the possibility of using ytterbium - doped fiber lasers (YDFL) and amplifiers (YDFA) as...integration. From this point of view, an ytterbium - doped fiber -based pump source looks most attractive. Of particular interest is the master- oscillator... ytterbium - doped fiber amplifiers (YDFA). The MOPA constructed for this work is shown in Figure 1. It consists of a CW fiber ring-laser centered at

  9. Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.

    2016-08-01

    We study the evolution of odd compass states (specific superpositions of four coherent states), governed by the standard master equation with phase-sensitive amplifying/attenuating terms, in the presence of a Hamiltonian describing a parametric degenerate linear amplifier. Explicit expressions for the time-dependent Wigner function are obtained. The time of disappearance of the so called ;sub-Planck structures; is calculated using the negative value of the Wigner function at the origin of phase space. It is shown that this value rapidly decreases during a short ;conventional interference degradation time; (CIDT), which is inversely proportional to the size of quantum superposition, provided the anti-Hermitian terms in the master equation are of the same order (or stronger) as the Hermitian ones (governing the parametric amplification). The CIDT is compared with the final positivization time (FPT), when the Wigner function becomes positive. It appears that the FPT does not depend on the size of superpositions, moreover, it can be much bigger in the amplifying media than in the attenuating ones. Paradoxically, strengthening the Hamiltonian part results in decreasing the CIDT, so that the CIDT almost does not depend on the size of superpositions in the asymptotical case of very weak reservoir coupling. We also analyze the evolution of the Mandel factor, showing that for some sets of parameters this factor remains significantly negative, even when the Wigner function becomes positive.

  10. Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers.

    PubMed

    Chen, Wei; Fan, Jintao; Ge, Aichen; Song, Huanyu; Song, Youjian; Liu, Bowen; Chai, Lu; Wang, Chingyue; Hu, Minglie

    2017-12-11

    We characterize the relative intensity noise (RIN) and relative timing jitter (RTJ) between the signal and pump pulses of optical parametric amplifiers (OPAs) seeded by three different seed sources. Compared to a white-light continuum (WLC) seeded- and an optical parametric generator (OPG) seeded OPA, the narrowband CW seeded OPA exhibits the lowest root-mean-square (RMS) RIN and RTJ of 0.79% and 0.32 fs, respectively, integrated from 1 kHz to the Nyquist frequency of 1.25 MHz. An improved numerical model based on a forward Maxwell equation (FME) is built to investigate the transfers of the pump and seed's noise to the resulting OPAs' intensity and temporal fluctuation. Both the experimental and numerical study indicate that the low level of noise from the narrowband CW seeded OPA is attributed to the elimination of the RIN and RTJ coupled from the noise of seed source, being one of the important contributions to RIN and timing jitter in the other two OPAs. The approach to achieve lower level of noise from this CW seeded OPA by driving it close to saturation is also discussed with the same numerical model.

  11. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm.

  12. Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Kawanaka, J.; Tsubakimoto, K.; Yoshida, H.; Fujioka, K.; Fujimoto, Y.; Tokita, S.; Jitsuno, T.; Miyanaga, N.; Gekko-EXA Design Team

    2016-03-01

    A 50 PW ultrahigh-peak-power laser has been conceptually designed, which is based on optical parametric chirped pulse amplification (OPCPA). A 250 J DPSSL and a flash- lamp-pumped kJ laser are adopted as new repeatable pump source. The existed LFEX-laser with more than ten kilo joules are used in the final amplifier stage and the OPCPA with the 2x2 tiled pump beams in random phase has been proposed with several ten centimeter aperture. A pulse duration of amplified pulses is set at less than 10 fs. A broadband OPCPA with ∼500 nm of the gain spectral width near 1 μm is required. A partially deuterated KDP (p-DKDP) crystal is one of the most promising nonlinear crystals and our numerical calculation ensured such ultra-broad gain width. p-DKDP crystals with several deuteration ratio have been successfully grown.

  13. Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong

    2018-06-01

    A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

  14. Flat and ultra-broadband two-pump fiber optical parametric amplifiers based on photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Zhu, Hongna; Li, Peipei; Taccheo, Stefano; Zhu, Yuanna; Gao, Xiaorong; Wang, Zeyong

    2018-03-01

    A two-pump fiber optical parametric amplifier (FOPA) based on the photonic crystal fiber (PCF) in the telecommunication region is investigated numerically. The fiber loss and pump depletion are considered. The influences of the fiber length, input signal power, input pump power, and the center pump wavelength on the gain bandwidth, flatness, and peak gain are discussed. The 6-wave model-based analysis of two-pump FOPA is also achieved and compared with that based on the 4-wave model; furthermore, the gain properties of the FOPA based on the 6-wave model are optimized and investigated. The comparison results show that the PCF-based two-pump FOPA achieves flatter and wider gain spectra with less fiber length and input pump power compared to the two-pump FOPA based on the normal highly nonlinear fiber, where the obtained results show the great potential of the FOPA for the optical communication system.

  15. Optomechanical entanglement via non-degenerate parametric interactions

    NASA Astrophysics Data System (ADS)

    Ahmed, Rizwan; Qamar, Shahid

    2017-10-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement.

  16. Phase-sensitive fiber-based parametric all-optical switch.

    PubMed

    Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A

    2015-12-28

    We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.

  17. Mid-infrared wavelength- and frequency-modulation spectroscopy with a pump-modulated singly-resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Lindsay, I. D.; Groß, P.; Lee, C. J.; Adhimoolam, B.; Boller, K.-J.

    2006-12-01

    We describe the implementation of the wavelength- and frequency-modulation spectroscopy techniques using a singly-resonant optical parametric oscillator (OPO) pumped by a fiber-amplified diode laser. Frequency modulation of the diode laser was transferred to the OPO’s mid-infrared idler output, avoiding the need for external modulation devices. This approach thus provides a means of implementing these important techniques with powerful, widely tunable, mid-infrared sources while retaining the simple, flexible modulation properties of diode lasers.

  18. Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode

    NASA Astrophysics Data System (ADS)

    Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David

    In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.

  19. Influence of interfacial Dzyaloshinskii-Moriya interaction on the parametric amplification of spin waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Roman, E-mail: verrv@ukr.net; Tiberkevich, Vasil; Slavin, Andrei

    2015-09-14

    The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) on the parametric amplification of spin waves propagating in ultrathin ferromagnetic film is considered theoretically. It is shown that the IDMI changes the relation between the group velocities of the signal and idler spin waves in a parametric amplifier, which may result in the complete vanishing of the reversed idler wave. In the optimized case, the idler spin wave does not propagate from the pumping region at all, which increases the efficiency of the amplification of the signal wave and suppresses the spurious impact of the idler waves on neighboring spin-wave processingmore » devices.« less

  20. Small signal amplifiers and converters for millimeter wave Satcom systems

    NASA Technical Reports Server (NTRS)

    Okean, H. C.

    1979-01-01

    This paper describes the current state of the art and the various design tradeoffs encompassing the variety of small signal active circuit 'building blocks' deployed in millimeter wave Satcom receivers and transmitters. Included in this catagory are such low noise receiver components as parametric and FET amplifiers and low loss mixer downconverters as well as low level transmitter driver components such as resistive and varactor upconverters. Current and projected state of the art performance data will be presented along with specific examples of operating hardware.

  1. Sub-Nanosecond Infrared Optical Parametric Pulse Generation in Periodically Poled Lithium Niobate Pumped by a Seeded Fiber Amplifier

    DTIC Science & Technology

    2008-02-01

    Photonics. New York: John J. Wiley & Sons, Inc, 1991. 30. “How to (Maybe) Measure Laser Beam Quality” Prof. A. E. Siegman Tutorial Presentation at...Deterministic Nanosecond Laser -Induced Breakdown Thresholds in Pure and Yb3+ Doped Fused Silica,” Proc. of SPIE 6453 (2007) 37. Siegman , A.E...seeded at one end and pumped at the other end, using dichroic filters to protect the pump and seed lasers , creating a fiber amplifier. The seed laser

  2. Spatial filters for high-peak-power multistage laser amplifiers.

    PubMed

    Potemkin, A K; Barmashova, T V; Kirsanov, A V; Martyanov, M A; Khazanov, E A; Shaykin, A A

    2007-07-10

    We describe spatial filters used in a Nd:glass laser with an output pulse energy up to 300 J and a pulse duration of 1 ns. This laser is designed for pumping of a chirped-pulse optical parametric amplifier. We present data required to choose the shape and diameter of a spatial filter lens, taking into account aberrations caused by spherical surfaces. Calculation of the optimal pinhole diameter is presented. Design features of the spatial filters and the procedure of their alignment are discussed in detail.

  3. High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing.

    PubMed

    Bagnoud, Vincent; Guardalben, Mark J; Puth, Jason; Zuegel, Jonathan D; Mooney, Ted; Dumas, Paul

    2005-01-10

    A high-energy, high-average-power laser system, optimized to efficiently pump a high-performance optical parametric chirped-pulse amplifier at 527 nm, has been demonstrated. The crystal large-aperture ring amplifier employs two flash-lamp-pumped, 25.4-mm-diameter Nd:YLF rods. The transmitted wave front of these rods is corrected by magnetorheological finishing to achieve nearly diffraction-limited output performance with frequency-doubled pulse energies up to 1.8 J at 5 Hz.

  4. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    DTIC Science & Technology

    2010-07-27

    provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently... PERSON A. GAVRIELIDES a. REPORT UNCLAS b. ABSTRACT UNCLAS c. THIS PAGE UNCLAS 19b. TELEPHONE NUMBER (Include area code) +44 (0)1895 616205...PS) FOPAs are discussed, and the phase-squeezing behavior of PS-FOPAs is characterized in Sec V. In Sec. VI, we present measurements of the noise

  5. A depolarization and attenuation experiment using the CTS satellite. [meteorological radar

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Holt, S. B., Jr.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Stutzman, W. L.; Wiley, P. H.

    1977-01-01

    Rain attenuation and depolarization data collected on the communications technology satellite 11.7 GHz downlink, and changes made in equipment following rain leak damage to the parametric amplifier are discussed. A 15 GHz radar system is described.

  6. Variational and WKB Descriptions of Laterally Localized Eigenmodes in Non-Collinear Optical Parametric Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afeyan, Bedros; Charbonneau-Lefort, Mathieu; Fejer, Martin

    With a finite lateral width pump, non-collinear interactions result in metastable or stable laterally localized bound states. The physical processes involved are group velocity walk-off, diffraction, chirped QPM gratings and different pump shapes.

  7. Development of the 1.6μm OPG/OPA system wavelength-controlled precisely for CO2 DIAL

    NASA Astrophysics Data System (ADS)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2010-12-01

    We developed an optical parametric oscillator (OPO) laser system for 1.6μm CO2 DIAL1). In order to improve the measurement accuracy of CO2 profiles, development of high power and wavelength stabilized laser system has been conducted. We report a new high-power 1.6μm laser transmitter based on a parametric master oscillator-power amplifier (MOPA) system pumped by a LD-pumped Q-switched Nd:YAG laser which has the injection seed laser locked to the iodine absorption line. The master oscillator is an optical parametric generator (OPG), based on an MgO-doped periodically poled LiTaO3 (PPMgLT) crystal. The OPOs require either active control of the cavity length or slight misalignment of the cavity. On the other hand, the OPGs do not require a cavity and instead rely on sufficient conversion efficiency to be obtained with a single pass through the crystal. The single-frequency oscillation of the OPG was achieved by injection seeding. The 1.6μm emission of the OPG is amplified by two-stage optical parametric amplifiers (OPAs). The each PPMgLT crystal was mounted on the copper holder, and the temperature control of the each holder was carried out within 0.01 K. The wavelength feedback system of the Nd:YAG seed laser is performed with the side locking of the iodine absorption spectrum (line No.1107) and the frequency stability is realized within 10 MHz rms. Stabilization of the 1.6μm DFB seed laser is estimated to within 4 MHz rms at the CO2 absorption line center and within 1.8 MHz rms at the CO2 absorption line slope using the wavelength control unit. We demonstrated single-longitudinal-mode emission with the OPG and two OPAs. The beam quality was TEM00 mode, the pulse energy was 12 mJ at 500 Hz repetition rate and the frequency stability was less than 10MHz rms. The unique performances of this optical parametric system make a relevant transmitter for CO2 DIAL. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. Reference (1) D. Sakaisawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009.

  8. Phase noise suppression through parametric filtering

    NASA Astrophysics Data System (ADS)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  9. A micromachined device describing over a hundred orders of parametric resonance

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.

    2018-04-01

    Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.

  10. Ultrashort pulse CPA-free Ho:YLF linear amplifier

    NASA Astrophysics Data System (ADS)

    Hinkelmann, Moritz; Wandt, Dieter; Morgner, Uwe; Neumann, Jörg; Kracht, Dietmar

    2018-02-01

    We present CPA-free linear amplification of 6:3 ps pulses in Ho:YLF crystals up to 100 μJ pulse energy at 10 kHz repetition rate. The seed pulses at a wavelength of 2:05 μm are provided by a Ho-based all-fiber system consisting of a soliton oscillator and a subsequent pre-amplifier followed by a free-space AOM as pulse-picker. Considering the achieved pulse peak power at MW-level, this system is a powerful tool for efficient pumping of parametric amplifiers addressing the highly demanded mid-IR spectral region. In detailed numerical simulations we verified our experimental results and discuss scaling options for pulse duration and energy.

  11. Decoherence of odd compass states in the phase-sensitive amplifying/dissipating environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodonov, V.V., E-mail: vdodonov@fis.unb.br; Valverde, C.; Universidade Paulista, BR 153, km 7, 74845-090 Goiânia, GO

    2016-08-15

    We study the evolution of odd compass states (specific superpositions of four coherent states), governed by the standard master equation with phase-sensitive amplifying/attenuating terms, in the presence of a Hamiltonian describing a parametric degenerate linear amplifier. Explicit expressions for the time-dependent Wigner function are obtained. The time of disappearance of the so called “sub-Planck structures” is calculated using the negative value of the Wigner function at the origin of phase space. It is shown that this value rapidly decreases during a short “conventional interference degradation time” (CIDT), which is inversely proportional to the size of quantum superposition, provided the anti-Hermitianmore » terms in the master equation are of the same order (or stronger) as the Hermitian ones (governing the parametric amplification). The CIDT is compared with the final positivization time (FPT), when the Wigner function becomes positive. It appears that the FPT does not depend on the size of superpositions, moreover, it can be much bigger in the amplifying media than in the attenuating ones. Paradoxically, strengthening the Hamiltonian part results in decreasing the CIDT, so that the CIDT almost does not depend on the size of superpositions in the asymptotical case of very weak reservoir coupling. We also analyze the evolution of the Mandel factor, showing that for some sets of parameters this factor remains significantly negative, even when the Wigner function becomes positive.« less

  12. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    NASA Astrophysics Data System (ADS)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  13. High-energy ultra-short pulse thin-disk lasers: new developments and applications

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Klingebiel, Sandro; Schultze, Marcel; Tesseit, Catherine Y.; Bessing, Robert; Häfner, Matthias; Prinz, Stefan; Sutter, Dirk; Metzger, Thomas

    2016-03-01

    We report on the latest developments at TRUMPF Scientific Lasers in the field of ultra-short pulse lasers with highest output energies and powers. All systems are based on the mature and industrialized thin-disk technology of TRUMPF. Thin Yb:YAG disks provide a reliable and efficient solution for power and energy scaling to Joule- and kW-class picosecond laser systems. Due to its efficient one dimensional heat removal, the thin-disk exhibits low distortions and thermal lensing even when pumped under extremely high pump power densities of 10kW/cm². Currently TRUMPF Scientific Lasers develops regenerative amplifiers with highest average powers, optical parametric amplifiers and synchronization schemes. The first few-ps kHz multi-mJ thin-disk regenerative amplifier based on the TRUMPF thindisk technology was developed at the LMU Munich in 20081. Since the average power and energy have continuously been increased, reaching more than 300W (10kHz repetition rate) and 200mJ (1kHz repetition rate) at pulse durations below 2ps. First experiments have shown that the current thin-disk technology supports ultra-short pulse laser solutions >1kW of average power. Based on few-picosecond thin-disk regenerative amplifiers few-cycle optical parametric chirped pulse amplifiers (OPCPA) can be realized. These systems have proven to be the only method for scaling few-cycle pulses to the multi-mJ energy level. OPA based few-cycle systems will allow for many applications such as attosecond spectroscopy, THz spectroscopy and imaging, laser wake field acceleration, table-top few-fs accelerators and laser-driven coherent X-ray undulator sources. Furthermore, high-energy picosecond sources can directly be used for a variety of applications such as X-ray generation or in atmospheric research.

  14. Four modes of optical parametric operation for squeezed state generation

    NASA Astrophysics Data System (ADS)

    Andersen, U. L.; Buchler, B. C.; Lam, P. K.; Wu, J. W.; Gao, J. R.; Bachor, H.-A.

    2003-11-01

    We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments of the squeezed quadrature.

  15. Amplification of microwaves by superconducting microbridges in a four-wave parametric mode

    NASA Technical Reports Server (NTRS)

    Parrish, P. T.; Chiao, R. Y.

    1974-01-01

    Parametric amplification of microwaves was observed using thin-film junctions of the Anderson-Dayem type. A series of 80 such junctions were incorporated into the upper conductor of a broadband 50-ohm microstrip transmission line with no DC bias. The amplifier was operated in the 'doubly degenerate' mode with signal, pump, and idler frequencies closely and equally spaced. An electronic gain of 12 dB at 10 GHz was observed. The bandwidth was measured to be 1 GHz and the noise temperature to be less than 20 K.

  16. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  17. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.

    2014-12-01

    In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.

  18. Ultra-flat wideband single-pump Raman-enhanced parametric amplification.

    PubMed

    Gordienko, V; Stephens, M F C; El-Taher, A E; Doran, N J

    2017-03-06

    We experimentally optimize a single pump fiber optical parametric amplifier in terms of gain spectral bandwidth and gain variation (GV). We find that optimal performance is achieved with the pump tuned to the zero-dispersion wavelength of dispersion stable highly nonlinear fiber (HNLF). We demonstrate further improvement of parametric gain bandwidth and GV by decreasing the HNLF length. We discover that Raman and parametric gain spectra produced by the same pump may be merged together to enhance overall gain bandwidth, while keeping GV low. Consequently, we report an ultra-flat gain of 9.6 ± 0.5 dB over a range of 111 nm (12.8 THz) on one side of the pump. Additionally, we demonstrate amplification of a 60 Gbit/s QPSK signal tuned over a portion of the available bandwidth with OSNR penalty less than 1 dB for Q2 below 14 dB.

  19. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  20. Radial forcing and Edgar Allan Poe's lengthening pendulum

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Blasing, David; Whitney, Heather M.

    2013-09-01

    Inspired by Edgar Allan Poe's The Pit and the Pendulum, we investigate a radially driven, lengthening pendulum. We first show that increasing the length of an undriven pendulum at a uniform rate does not amplify the oscillations in a manner consistent with the behavior of the scythe in Poe's story. We discuss parametric amplification and the transfer of energy (through the parameter of the pendulum's length) to the oscillating part of the system. In this manner, radial driving can easily and intuitively be understood, and the fundamental concept applied in many other areas. We propose and show by a numerical model that appropriately timed radial forcing can increase the oscillation amplitude in a manner consistent with Poe's story. Our analysis contributes a computational exploration of the complex harmonic motion that can result from radially driving a pendulum and sheds light on a mechanism by which oscillations can be amplified parametrically. These insights should prove especially valuable in the undergraduate physics classroom, where investigations into pendulums and oscillations are commonplace.

  1. Ultrafast spectroscopy of coherent phonon in carbon nanotubes using sub-5-fs visible pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takayoshi; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 Japan; Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

    2016-02-01

    In the last two decades, nano materials are attracting many scientists’ interest for both basic and application viewpoints. In order to understand the properties of nano systems it is needed to understand the dynamic properties which control the specific properties of the systems. All the primary processes in nano systems are taking place in femtosecond regime. Our group has been able to stably generate visible to near-infrared sub-5-fs laser pulses using a noncollinear optical parametric amplifier (NOPA) by the combination of various novel techniques including non-collinear optical parametric amplifier, pulse compression by a prism pair and grating pair. We applymore » the sub-5-fs pulses to study real-time coherent phonon in a one-dimensional system of carbon nanotubes. We determine exciton-phonon coupling mechanisms by observing the breathing mode in semiconducting carbon nanotubes and show the effect of electronic transition affected by the vibrational mode.« less

  2. Ultra-Broadband Infrared Pulses from a Potassium-Titanyl Phosphate Optical Parametric Amplifier for VIS-IR-SFG Spectroscopy

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Borguet, Eric

    A non-collinear KTP-OPA to provide ultra-broadband mid-infrared pulses was designed and characterized. With proper pulse-front and phase correction, the system has a potential for high-time resolution vibrational VIS-IR-SFG spectroscopy.

  3. Parametric amplification of a superconducting plasma wave

    DOE PAGES

    Rajasekaran, S.; Casandruc, E.; Laplace, Y.; ...

    2016-07-11

    Many applications in photonics require all-optical manipulation of plasma waves, which can concentrate electromagnetic energy on sub-wavelength length scales. This is difficult in metallic plasmas because of their small optical nonlinearities. Some layered superconductors support Josephson plasma waves, involving oscillatory tunnelling of the superfluid between capacitively coupled planes. Josephson plasma waves are also highly nonlinear, and exhibit striking phenomena such as cooperative emission of coherent terahertz radiation, superconductor–metal oscillations and soliton formation. In this paper, we show that terahertz Josephson plasma waves can be parametrically amplified through the cubic tunnelling nonlinearity in a cuprate superconductor. Finally, parametric amplification is sensitivemore » to the relative phase between pump and seed waves, and may be optimized to achieve squeezing of the order-parameter phase fluctuations or terahertz single-photon devices.« less

  4. Phase-matching properties of LiGaSe2 for SHG and SFG in the 1.026-10.5910 μm range.

    PubMed

    Miyata, Kentaro; Petrov, Valentin; Kato, Kiyoshi

    2017-08-01

    This paper reports on the new experimental results for second-harmonic generation and sum-frequency generation in LiGaSe 2 in the 1.026-10.5910 μm range, and the improved Sellmeier equations that provide a good reproduction of the present experimental results, as well as the published data points for a Ti:Al 2 O 3 laser (λ=0.8200  μm)-pumped optical parametric amplifier and a Nd:YAG laser-pumped optical parametric oscillator in the mid-IR.

  5. OPO performance with a long pulse length, single frequency Nd:YAG laser pump. [Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.

    1988-01-01

    With the advent of new nonlinear materials and single-frequency pump sources, there is renewed interest in optical parametric oscillators (OPOs). A single-mode diode-laser-pumped monolithic Nd:YAG nonplanar ring laser that is both amplified and frequency doubled is used to pump a monolithic MgO:LiNbO3 pulsed singly resonant OPO. The OPO signal output was temperature tuned from 834 to 958 nm, producing an idler tuning from 1.47 to 1.2 microns. Efforts toward a CW all-solid-state doubly resonant OPO are also described.

  6. On the Bias-Amplifying Effect of Near Instruments in Observational Studies

    ERIC Educational Resources Information Center

    Steiner, Peter M.; Kim, Yongnam

    2014-01-01

    In contrast to randomized experiments, the estimation of unbiased treatment effects from observational data requires an analysis that conditions on all confounding covariates. Conditioning on covariates can be done via standard parametric regression techniques or nonparametric matching like propensity score (PS) matching. The regression or…

  7. High power pulsed sources based on fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  8. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  9. Solid state SPS microwave generation and transmission study. Volume 2, phase 2: Appendices

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for SPS was further defined. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. Basic solid state microwave devices were defined and modeled. An initial conceptual subsystems and system design was performed as well as sidelobe control and system selection. The selected system concept and parametric solid state microwave power transmission system data were assessed relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers and Gaussian tapers. A hybrid concept using tubes and solid state was evaluated. Thermal analyses are included with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  10. Carrier-envelope phase-controlled quantum interference in optical poling.

    PubMed

    Adachi, Shunsuke; Kobayashi, Takayoshi

    2005-04-22

    We demonstrate the efficiency of the optical poling process that depends on the CE phase-controlled quantum interference. For the experiment we employed our noncollinear optical parametric amplifier system for the self-stabilization of the CE phase, with the f-to-2f spectral interferometry system to control the CE phase.

  11. Methods and devices for generation of broadband pulsed radiation

    DOEpatents

    Borguet, Eric; Isaienko, Oleksandr

    2013-05-14

    Methods and apparatus for non-collinear optical parametric ampliffication (NOPA) are provided. Broadband phase matching is achieved with a non-collinear geometry and a divergent signal seed to provide bandwidth gain. A chirp may be introduced into the pump pulse such that the white light seed is amplified in a broad spectral region.

  12. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor.

    PubMed

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-14

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level "double-Λ" configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  13. High peak-power mid-infrared ZnGeP₂ optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system.

    PubMed

    Gebhardt, Martin; Gaida, Christian; Kadwani, Pankaj; Sincore, Alex; Gehlich, Nils; Jeon, Cheonha; Shah, Lawrence; Richardson, Martin

    2014-03-01

    We report on the utilization of a novel Tm:fiber laser source for mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumping. The pump laser is built in a master oscillator power-amplifier configuration delivering up to 3.36 W of polarized, diffraction limited output power with 7 ns pulse duration and 4 kHz repetition rate. This corresponds to a peak power of ∼121  kW and a pulse energy of ∼0.84  mJ. With this source, we generated 27.9 kW of total mid-IR peak power in a doubly resonant oscillator (DRO) configuration. This is, to the best of our knowledge, the highest ever demonstrated mid-IR peak power from a directly Tm:fiber laser pumped ZGP OPO. Moreover, a DRO output with about 284 μJ of total mid-IR pulse energy was demonstrated using 100 ns pump pulses. The wavelength tuning of the idler was extended to 6 μm with lower output power in another OPO experiment.

  14. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  15. Advanced laser architectures for high power eyesafe illuminators

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pati, B.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2018-02-01

    Q-Peak has demonstrated a novel pulsed eyesafe laser architecture operating with >50 mJ pulse energies at Pulse Repetition Frequencies (PRFs) as high as 320 Hz. The design leverages an Optical Parametric Oscillator (OPO) and Optical Parametric Amplifier (OPA) geometry, which provides the unique capability for high power in a comparatively compact package, while also offering the potential for additional eyesafe power scaling. The laser consists of a Commercial Off-the-Shelf (COTS) Q-switched front-end seed laser to produce pulse-widths around 10 ns at 1.06-μm, which is then followed by a pair of Multi-Pass Amplifier (MPA) architectures (comprised of side-pumped, multi-pass Nd:YAG slabs with a compact diode-pump-array imaging system), and finally involving two sequential nonlinear optical conversion architectures for transfer into the eyesafe regime. The initial seed beam is first amplified through the MPA, and then split into parallel optical paths. An OPO provides effective nonlinear conversion on one optical path, while a second MPA further amplifies the 1.06-μm beam for use in pumping an OPA on the second optical path. These paths are then recombined prior to seeding the OPA. Each nonlinear conversion subsystem utilizes Potassium Titanyl Arsenate (KTA) for effective nonlinear conversion with lower risk to optical damage. This laser architecture efficiently produces pulse energies of >50 mJ in the eyesafe band at PRFs as high as 320 Hz, and has been designed to fit within a volume of 4,500 in3 (0.074 m3 ). We will discuss theoretical and experimental details of the nonlinear optical system for achieving higher eyesafe powers.

  16. Josephson Metamaterial with a Widely Tunable Positive or Negative Kerr Constant

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyuan; Huang, W.; Gershenson, M. E.; Bell, M. T.

    2017-11-01

    We report on the microwave characterization of a novel one-dimensional Josephson metamaterial composed of a chain of asymmetric superconducting quantum interference devices with nearest-neighbor coupling through common Josephson junctions. This metamaterial demonstrates a strong Kerr nonlinearity, with a Kerr constant tunable over a wide range, from positive to negative values, by a magnetic flux threading the superconducting quantum interference devices. The experimental results are in good agreement with the theory of nonlinear effects in Josephson chains. The metamaterial is very promising as an active medium for Josephson traveling-wave parametric amplifiers; its use facilitates phase matching in a four-wave-mixing process for efficient parametric gain.

  17. Methane Measurements from Space: Technical Challenges and Solutions

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Kawa, Stephan; Mao, Jianping

    2017-01-01

    We report on an airborne demonstration of atmospheric methane (CH4) measurements with an Integrated Path Differential Absorption (IPDA) lidar using an optical parametric oscillator (OPO) and optical parametric amplifier (OPA) laser transmitter and a sensitive avalanche photo detector. The lidar measures the CH4 absorption at multiple, discrete wavelengths around 1650.9 nm. In September 2015, the instrument was deployed on NASAs DC-8 airborne laboratory and measured atmospheric methane over a wide range of topography and weather conditions from altitudes of 3 km to 13 km. In this paper, we will review the results from our flights, and identify areas of improvement.

  18. Quantum noise and squeezing in optical parametric oscillator with arbitrary output coupling

    NASA Technical Reports Server (NTRS)

    Prasad, Sudhakar

    1993-01-01

    The redistribution of intrinsic quantum noise in the quadratures of the field generated in a sub-threshold degenerate optical parametric oscillator exhibits interesting dependences on the individual output mirror transmittances, when they are included exactly. We present a physical picture of this problem, based on mirror boundary conditions, which is valid for arbitrary transmittances. Hence, our picture applies uniformly to all values of the cavity Q factor representing, in the opposite extremes, both perfect oscillator and amplifier configurations. Beginning with a classical second-harmonic pump, we shall generalize our analysis to the finite amplitude and phase fluctuations of the pump.

  19. Methane measurements from space: technical challenges and solutions

    NASA Astrophysics Data System (ADS)

    Riris, Haris; Numata, Kenji; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Kawa, Stephan; Mao, Jianping

    2017-05-01

    We report on an airborne demonstration of atmospheric methane (CH4) measurements with an Integrated Path Differential Absorption (IPDA) lidar using an optical parametric oscillator (OPO) and optical parametric amplifier (OPA) laser transmitter and a sensitive avalanche photo detector. The lidar measures the CH4 absorption at multiple, discrete wavelengths around 1650.9 nm. In September 2015, the instrument was deployed on NASA's DC-8 airborne laboratory and measured atmospheric methane over a wide range of topography and weather conditions from altitudes of 3 km to 13 km. In this paper, we will review the results from our flights, and identify areas of improvement.

  20. First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier.

    PubMed

    Umeki, T; Tadanaga, O; Asobe, M; Miyamoto, Y; Takenouchi, H

    2014-02-10

    We demonstrate the phase sensitive amplification of a high-order quadrature amplitude modulation (QAM) signal using non-degenerate parametric amplification in a periodically poled lithium niobate (PPLN) waveguide. The interaction between the pump, signal, and phase-conjugated idler enables us to amplify arbitrary phase components of the signal. The 16QAM signals are amplified without distortion because of the high gain linearity of the PPLN-based phase sensitive amplifier (PSA). Both the phase and amplitude noise reduction capabilities of the PSA are ensured. Phase noise cancellation is achieved by using the interaction with the phase-conjugated idler. A degraded signal-to-noise ratio (SNR) is restored by using the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. The applicability of the simultaneous amplification of multi-carrier signals and the amplification of two independent polarization signals are also confirmed with a view to realizing ultra-high spectrally efficient signal amplification.

  1. Fiber Lasers and Amplifiers for Space-based Science and Exploration

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Coyle, Barry; Numata, Kenji; Camp, Jordan; Abshire, James B.; Allan, Graham R.; Li, Steven X.; hide

    2012-01-01

    We present current and near-term uses of high-power fiber lasers and amplifiers for NASA science and spacecraft applications. Fiber lasers and amplifiers offer numerous advantages for the deployment of instruments on exploration and science remote sensing satellites. Ground-based and airborne systems provide an evolutionary path to space and a means for calibration and verification of space-borne systems. NASA fiber-laser-based instruments include laser sounders and lidars for measuring atmospheric carbon dioxide, oxygen, water vapor and methane and a pulsed or pseudo-noise (PN) code laser ranging system in the near infrared (NIR) wavelength band. The associated fiber transmitters include high-power erbium, ytterbium, and neodymium systems and a fiber laser pumped optical parametric oscillator. We discuss recent experimental progress on these systems and instrument prototypes for ongoing development efforts.

  2. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  3. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    PubMed Central

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-01-01

    We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966

  4. Solid state SPS microwave generation and transmission study. Volume 1: Phase 2

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.

    1980-01-01

    The solid state sandwich concept for Solar Power Station (SPS) was investigated. The design effort concentrated on the spacetenna, but did include some system analysis for parametric comparison reasons. The study specifically included definition and math modeling of basic solid state microwave devices, an initial conceptual subsystems and system design, sidelobe control and system selection, an assessment of selected system concept and parametric solid state microwave power transmission system data relevant to the SPS concept. Although device efficiency was not a goal, the sensitivities to design of this efficiency were parametrically treated. Sidelobe control consisted of various single step tapers, multistep tapers, and Gaussian tapers. A preliminary assessment of a hybrid concept using tubes and solid state is also included. There is a considerable amount of thermal analysis provided with emphasis on sensitivities to waste heat radiator form factor, emissivity, absorptivity, amplifier efficiency, material and junction temperature.

  5. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer.

    PubMed

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V

    2016-10-28

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02)  THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.

  6. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  7. Parametric instabilities and their control in multidimensional nonuniform gain media

    NASA Astrophysics Data System (ADS)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    2007-11-01

    In order to control parametric instabilities in large scale long pulse laser produced plasmas, optical mixing techniques seem most promising [1]. We examine ways of controlling the growth of some modes while creating other unstable ones in nonuniform gain media, including the effects of transverse localization of the pump wave. We show that multidimensional effects are essential to understand laser-gain medium interactions [2] and that one dimensional models such as the celebrated Rosenbluth result [3] can be misleading [4]. These findings are verified in experiments carried out in a chirped quasi-phase-matched gratings in optical parametric amplifiers where thousands of shots can be taken and statistically significant and stable results obtained. [1] B. Afeyan, et al., IFSA Proceedings, 2003. [2] M. M. Sushchik and G. I. Freidman, Radiofizika 13, 1354 (1970). [3] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972). [4] M. Charbonneau-Lefort, PhD thesis, Stanford University, 2007.

  8. A tunable mid-infrared laser source for remote sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Many remote sensing needs can be effectively addressed with a tunable laser source in the mid infrared. One potential laser source is an optical parametric oscillator and amplifier system pumped by a near infrared solid state laser. Advantages of such a system and progress made at NASA Langley Research Center to date on such a system are described.

  9. Fabrication and characterization of ultra-low noise narrow and wide band Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Huang, Keqiang; Guo, Qiujiang; Song, Chao; Zheng, Yarui; Deng, Hui; Wu, Yulin; Jin, Yirong; Zhu, Xiaobo; Zheng, Dongning

    2017-08-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 91321208, 11374344, 11404386, 11574380, and 11674376), the Ministry of Science and Technology of China (Grant Nos. 2014CB921401 and 2016YFA0300601), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  10. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maji, Partha Sona; Roy Chaudhuri, Partha

    In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As{sub 2}S{sub 3}. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nmmore » around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er{sup 3+})-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.« less

  11. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

    PubMed Central

    Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.

    2017-01-01

    CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064

  12. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    NASA Astrophysics Data System (ADS)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  13. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Pirro, P.; Hillebrands, B.

    2017-06-01

    Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.

  14. Fiber-coupled three-micron pulsed laser source for CFRP laser treatment

    NASA Astrophysics Data System (ADS)

    Nyga, Sebastian; Blass, David; Katzy, Veronika; Westphalen, Thomas; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2018-02-01

    We present a laser source providing up to 18 W and 1.5 mJ at a wavelength of 3 μm. The output is generated by frequency conversion of randomly polarized multimode radiation at 1064 nm of an Nd:YAG laser in a two-stage conversion setup. The frequency converter comprises an optical parametric oscillator and a subsequent optical parametric amplifier using PPLN as nonlinear medium in both stages. To implement fiber-based beam delivery for materials processing, we coupled the output at 3 μm to a multimode ZrF4-fiber. This source was then used to remove epoxy resin from the surface of CFRP samples.

  15. High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system.

    PubMed

    Noom, Daniel W E; Witte, Stefan; Morgenweg, Jonas; Altmann, Robert K; Eikema, Kjeld S E

    2013-08-15

    We report on a high-power quasi-CW pumped Nd:YAG laser system, producing 130 mJ, 64 ps pulses at 1064 nm wavelength with a repetition rate of 300 Hz. Pulses from a Nd:YVO(4) oscillator are first amplified by a regenerative amplifier to the millijoule level and then further amplified in quasi-CW diode-pumped Nd:YAG modules. Pulsed diode pumping enables a high gain at repetition rates of several hundred hertz, while keeping thermal effects manageable. Birefringence compensation and multiple thermal-lensing-compensated relay-imaging stages are used to maintain a top-hat beam profile. After frequency doubling, 75 mJ pulses are obtained at 532 nm. The intensity stability is better than 1.1%, which makes this laser an attractive pump source for a high-repetition-rate optical parametric amplification system.

  16. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier

    DTIC Science & Technology

    2011-11-11

    compressed through a CaF2 prism pair at Brewster angle , and directed to the second OPA stage after a periscope flipping its polarization. The 90% part of...FWHM pulse duration. HHG setup The OPA pulses are sent into a vacuum chamber and focused in an Argon ( lens focal length 150 mm) or Helium (focal

  17. Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses

    NASA Astrophysics Data System (ADS)

    Garca Fernández, P.; Colet, P.; Toral, R.; San Miguel, M.; Bermejo, F. J.

    1991-05-01

    The squeezing properties of a model of a degenerate parametric amplifier with absorption losses and an added fourth-order nonlinearity have been analyzed. The approach used consists of obtaining the Langevin equation for the optical field from the Heisenberg equation provided that a linearization procedure is valid. The steady states of the deterministic equations have been obtained and their local stability has been analyzed. The stationary covariance matrix has been calculated below and above threshold. Below threshold, a squeezed vacuum state is obtained and the nonlinear effects in the fluctuations have been taken into account by a Gaussian decoupling. In the case above threshold, a phase-squeezed coherent state is obtained and numerical simulations allowed to compute the time interval, depending on the loss parameter, on which the system jumps from one stable state to the other. Finally, the variances numerically determined have been compared with those obtained from the linearized theory and the limits of validity of the linear theory have been analyzed. It has become clear that the nonlinear contribution may perhaps be profitably used for the construction of above-threshold squeezing devices.

  18. Noiseless optical amplification in quasi-phase-matched bulk lithium niobate

    NASA Astrophysics Data System (ADS)

    Lovering, D. J.; Levenson, J. A.; Vidakovic, P.; Webjörn, J.; Russell, P. St. J.

    1996-09-01

    An optical parametric amplifier (OPA) has been demonstrated in bulk, periodically poled lithium niobate and is shown to operate with a noise figure well below the classical limit. In contrast to conventional OPA's, this device uses quasi-phase matching to provide the coupling between the pump and the signal. Comparison of the measured performance with that of a theoretical model reveals that the main intrinsic contribution to the output noise is due to spatial and temporal mode mixing, which arises as a consequence of tight focusing of the incident beams. Factors that affect the performance of this amplifier are identified theoretically and their relative importance investigated for both amplification and squeezing.

  19. kW picosecond thin-disk regenerative amplifier

    NASA Astrophysics Data System (ADS)

    Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas

    2018-02-01

    TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.

  20. Single photons to multiple octaves: Engineering nonlinear optics in micro- and nano-structured media

    DTIC Science & Technology

    2017-05-18

    generation and amplification of ultrafast IR pulses. Both efforts took advantage of microstructured nonlinear media, e.g. quasi -phasematched (QPM...enhance the wave-mixing efficiency, especially for low-power devices. Because errors in fabrication of waveguides and quasi - phasematching gratings are... experimental demonstration of optical parametric chirped pulse amplifiers (OPCPA) in apodized aperiodic QPMgratings for high repetition rate, high

  1. USSR Report, Physics and Mathematics.

    DTIC Science & Technology

    1987-03-12

    reveal that the threshold of explosive absorption depends on both the laser beam diameter and the laser pulse duration. Estimates indicate the possi...Phenomena in Parametric Generators and Amplifiers of Ultrashort Light Pulses (A. Piskarkas, A. Stabinis, et al.; USPEKHI FIZICHESKIKH NAUK, No 1, Sep...Resolution of Picosecond Absorption Spectrometer by Selection of Length of Laser Light Pulses (B. N. Korvatovskiy, V. V. Gorokhov, et al.; KVANTOVAYA

  2. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  3. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  4. Subharmonics, Chaos, and Beyond

    NASA Technical Reports Server (NTRS)

    Adler, Laszlo; Yost, William T.; Cantrell, John H.

    2011-01-01

    While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled cavity, which is formed by a narrow band transducer and a plane reflector, subharmonics of the driver's frequency were observed in addition to the expected harmonic structure. Subsequently it was realized that the system was one of the many examples where parametric resonance takes place and in which the observed subharmonics are parametrically generated. Parametric resonance occurs in any physical system which has a periodically modulated natural frequency. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude so that the system becomes increasingly nonlinear in response. The nonlinear features were recently investigated and are the objective of this presentation. An ultrasonic interferometer with optical precision was built. The transducers were compressional undamped quartz and Lithium Niobate crystals ranging from 1-10 Mhz, and driven by a high power amplifier. Both an optical diffraction system and a receive transducer attached to an aligned reflector with lapped flat and parallel surfaces were used to observe the generated frequency components in the cavity.

  5. Parabose Squeezed Operator and Its Applications

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Min; Jing, Si-Cong

    2001-03-01

    By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuum state are calculated, which generalize the relevant results from ordinary Bose statistics to the parabose case. The project supported by National Natural Science Foundation of China under Grant Nos 19771077, 10075042, and LWTZ 1298 of the Chinese Academy of Sciences

  6. Quantum noise in SIS mixers

    NASA Astrophysics Data System (ADS)

    Zorin, A. B.

    1985-03-01

    In the present, quantum-statistical analysis of SIS heterodyne mixer performance, the conventional three-port model of the mixer circuit and the microscopic theory of superconducting tunnel junctions are used to derive a general expression for a noise parameter previously used for the case of parametric amplifiers. This expression is numerically evaluated for various quasiparticle current step widths, dc bias voltages, local oscillator powers, signal frequencies, signal source admittances, and operation temperatures.

  7. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs.

    PubMed

    Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y

    2016-07-26

    One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.

  8. Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier

    NASA Astrophysics Data System (ADS)

    Erickson, R. P.; Pappas, D. P.

    2017-03-01

    We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).

  9. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and simulation. To conclude, this article is intended as a tutorial, a review, and a systematic treatise on the subject, supported by extensive experiments.

  10. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Fleury, Romain

    2018-02-01

    We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.

  11. Classical imaging with undetected light

    NASA Astrophysics Data System (ADS)

    Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.

    2018-03-01

    We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.

  12. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Grupp, Alexander; Budweg, Arne; Fischer, Marco P.; Allerbeck, Jonas; Soavi, Giancarlo; Leitenstorfer, Alfred; Brida, Daniele

    2018-01-01

    Femtosecond systems based on ytterbium as active medium are ideal for driving ultrafast optical parametric amplifiers in a broad frequency range. The excellent stability of the source and the repetition rate tunable to up to hundreds of kHz allow for the implementation of an advanced two-color pump probe setup with the capability to achieve excellent signal-to-noise performances with sub-10 fs temporal resolution.

  13. 1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA.

    PubMed

    Hudson, Darren D; Baudisch, Matthias; Werdehausen, Daniel; Eggleton, Benjamin J; Biegert, Jens

    2014-10-01

    Using a 3.1-μm optical parametric chirped-pulse amplifier (OPCPA), we generate a supercontinuum in a step-index chalcogenide fiber that spans from 1.6 to 5.9 μm at the -20  dB points. The rugged step-index geometry allows for long-term operation, while the spectral bandwidth is limited by the transmission of the As2S3 fiber.

  14. Single-cycle Pulse Synthesis by Coherent Superposition of Ultra-broadband Optical Parametric Amplifiers

    DTIC Science & Technology

    2011-08-01

    Giulio Cerullo Politecnico di Milano Department of Physics Piazza Leonardo da Vinci 32 Milano, Italy 20133 EOARD GRANT 09-3101...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Politecnico di Milano Department of Physics Piazza Leonardo da Vinci 32 Milano...Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy, 4DESY-Center for Free-Electron Laser Science and Hamburg University, Notkestraße 85, D-22607 Hamburg

  15. Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad

    2014-11-01

    In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.

  16. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wei, E-mail: wei-g@163.com, E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometricalmore » frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.« less

  17. Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier.

    PubMed

    Ahrens, J; Prochnow, O; Binhammer, T; Lang, T; Schulz, B; Frede, M; Morgner, U

    2016-04-18

    We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.

  18. Performance of MgO:PPLN, KTA, and KNbO₃ for mid-wave infrared broadband parametric amplification at high average power.

    PubMed

    Baudisch, M; Hemmer, M; Pires, H; Biegert, J

    2014-10-15

    The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8  GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4  GW/cm².

  19. Generation and subsequent amplification of few-cycle femtosecond pulses from a picosecond pump laser

    NASA Astrophysics Data System (ADS)

    Mukhin, I. B.; Kuznetsov, I. I.; Palashov, O. V.

    2018-04-01

    Using a new approach, in which generation of femtosecond pulses as short as a few field cycles is implemented directly from the radiation of a picosecond pump laser, pulses with the microjoule energy, the repetition rate 10 kHz, and the duration less than 26 fs are generated in the spectral range 1.3 ‑ 1.4 μm. In the process of generating this radiation, use was made of a method providing passive phase stabilisation of the carrier oscillation of the electromagnetic field and its slow envelope. The radiation spectrum was converted into the range of parametric amplification in the BBO crystal by the broadband second harmonic generation; the pulse was parametrically amplified up to the microjoule level and compressed by chirped mirrors to a duration of 28 fs.

  20. Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.901-10.5910  μm range.

    PubMed

    Kato, Kiyoshi; Miyata, Kentaro; Petrov, Valentin

    2017-04-10

    We report new experimental results on the phase-matching properties of a BaGa4Se7 crystal for harmonic generation of a Nd:YAG laser-pumped AgGaS2 optical parametric oscillator (OPO) and a CO2 laser in the 0.901-10.5910 μm range. In addition, we present new Sellmeier equations that provide a good reproduction of the present experimental results as well as the published data points for a Nd:YAG laser-pumped OPO and an optical parametric amplifier (OPA) in the 3.10-15.22 μm range and a Ho:YAG laser-pumped OPA in the 3.49-5.18 μm range.

  1. Quantum memory for squeezed light.

    PubMed

    Appel, Jürgen; Figueroa, Eden; Korystov, Dmitry; Lobino, M; Lvovsky, A I

    2008-03-07

    We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 mus using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+/-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.

  2. In vivo multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure

    PubMed Central

    Miller, David R.; Hassan, Ahmed M.; Jarrett, Jeremy W.; Medina, Flor A.; Perillo, Evan P.; Hagan, Kristen; Shams Kazmi, S. M.; Clark, Taylor A.; Sullender, Colin T.; Jones, Theresa A.; Zemelman, Boris V.; Dunn, Andrew K.

    2017-01-01

    We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. By combining the high repetition rate (511 kHz) and high pulse energy (400 nJ) of our amplifier laser system, we demonstrate imaging of vasculature labeled with Texas Red and Indocyanine Green, and neurons expressing tdTomato and yellow fluorescent protein. We measure the blood flow speed of a single capillary at a depth of 1.2 mm, and image vasculature to a depth of 1.53 mm with fine axial steps (5 μm) and reasonable acquisition times. The high image quality enabled analysis of vascular morphology at depths to 1.45 mm. PMID:28717582

  3. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    NASA Astrophysics Data System (ADS)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Yuli; Zou Xubo; Guo Guangcan

    We investigate the economical Gaussian cloning of coherent states with the known phase, which produces M copies from N input replica and can be implemented with degenerate parametric amplifiers and beam splitters.The achievable fidelity of single copy is given by 2M{radical}(N)/[{radical}(N)(M-1)+{radical}((1+N)(M{sup 2}+N))], which is bigger than the optimal fidelity of the universal Gaussian cloning. The cloning machine presented here works without ancillary optical modes and can be regarded as the continuous variable generalization of the economical cloning machine for qudits.

  5. Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators

    NASA Astrophysics Data System (ADS)

    Shinjo, Ami; Hashiyama, Naoyuki; Koshio, Akane; Eto, Yujiro; Hirano, Takuya

    2016-10-01

    The continuous-variable (CV) Einstein-Podolsky-Rosen (EPR) paradox and steering are demonstrated using a pulsed light source and waveguides. We shorten the duration of the local oscillator (LO) pulse by using parametric amplification to improve the temporal mode-matching between the entangled pulse and the LO pulse. After correcting for the amplifier noise, the product of the measured conditional variance of the quadrature-phase amplitudes is 0.74 < 1, which satisfies the EPR-Reid criterion.

  6. Ultrafast polarisation spectroscopy of photoinduced charges in a conjugated polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A A; Loosdrecht, P van; Pshenichnikov, M S

    2009-07-31

    Tunable optical parametric generators and amplifiers (OPA), proposed and developed by Akhmanov and his colleagues, have become the working horses in exploration of dynamical processes in physics, chemistry, and biology. In this paper, we demonstrate the possibility of using ultrafast polarisation-sensitive two-colour spectroscopy, performed with a set of two OPAs, to study charge photogeneration and transport in conjugated polymers and their donor-acceptor blends. (special issue devoted to the 80th birthday of S.A. Akhmanov)

  7. Photon Statistics of Propagating Thermal Microwaves.

    PubMed

    Goetz, J; Pogorzalek, S; Deppe, F; Fedorov, K G; Eder, P; Fischer, M; Wulschner, F; Xie, E; Marx, A; Gross, R

    2017-03-10

    In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n^{2}+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05≲n≲1.5. We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.

  8. Photon Statistics of Propagating Thermal Microwaves

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Pogorzalek, S.; Deppe, F.; Fedorov, K. G.; Eder, P.; Fischer, M.; Wulschner, F.; Xie, E.; Marx, A.; Gross, R.

    2017-03-01

    In experiments with superconducting quantum circuits, characterizing the photon statistics of propagating microwave fields is a fundamental task. We quantify the n2+n photon number variance of thermal microwave photons emitted from a blackbody radiator for mean photon numbers, 0.05 ≲n ≲1.5 . We probe the fields using either correlation measurements or a transmon qubit coupled to a microwave resonator. Our experiments provide a precise quantitative characterization of weak microwave states and information on the noise emitted by a Josephson parametric amplifier.

  9. In vivo multiphoton microscopy beyond 1 mm in the brain

    NASA Astrophysics Data System (ADS)

    Miller, David R.; Medina, Flor A.; Hassan, Ahmed; Perillo, Evan P.; Hagan, Kristen; Kazmi, S. M. Shams; Zemelman, Boris V.; Dunn, Andrew K.

    2017-02-01

    We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. We demonstrate an imaging depth of 1,200 μm in vasculature and 1,160 μm in neurons. We also demonstrate deep-tissue imaging using Indocyanine Green (ICG), which is FDA approved and a promising route to translate multiphoton microscopy to human applications.

  10. Entanglement-seeded, dual, optical parametric amplification: Applications to quantum imaging and metrology

    NASA Astrophysics Data System (ADS)

    Glasser, Ryan T.; Cable, Hugo; Dowling, Jonathan P.; de Martini, Francesco; Sciarrino, Fabio; Vitelli, Chiara

    2008-07-01

    The study of optical parametric amplifiers (OPAs) has been successful in describing and creating nonclassical light for use in fields such as quantum metrology and quantum lithography [Agarwal , J. Opt. Soc. Am. B 24, 2 (2007)]. In this paper we present the theory of an OPA scheme utilizing an entangled state input. The scheme involves two identical OPAs seeded with the maximally path-entangled ∣N00N⟩ state (∣2,0⟩+∣0,2⟩)/2 . The stimulated amplification results in output state probability amplitudes that have a dependence on the number of photons in each mode, which differs greatly from two-mode squeezed vacuum. A large family of entangled output states are found. Specific output states allow for the heralded creation of N=4 N00N states, which may be used for quantum lithography, to write sub-Rayleigh fringe patterns, and for quantum interferometry, to achieve Heisenberg-limited phase measurement sensitivity.

  11. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    PubMed

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  12. Parametrically coupled fermionic oscillators: Correlation functions and phase-space description

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab

    2015-01-01

    A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.

  13. Reconfigurable fuzzy cell

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor)

    1993-01-01

    This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.

  14. High peak-power laser system tuneable from 8 to 10 μm

    NASA Astrophysics Data System (ADS)

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gérard, Bruno; Ostendorf, Ralf; Wagner, Joachim; Lallier, Eric

    2017-04-01

    A high peak-power rapidly tuneable laser system in the long-wave infrared is obtained using an external cavity quantum-cascade laser (EC-QCL) broadly tuneable from 8 to 10 μm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs). To provide an efficient amplification, the nonlinear crystal is pumped by a pulsed fiber laser source. With a pump laser source tuneable around 2 μm, quasi phase-matching remains satisfied with a fixed grating period in the OP-GaAs crystal when the EC-QCL wavelength is swept from 8 to 10 μm. The OPA demonstrates parametric amplification from 8 to 10 μm and achieves output peak powers up to 140 W, with spectral linewidths below 3.5 cm-1 and a beam profile quality (M2) below 3.4 in both horizontal and vertical directions.

  15. Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping; hide

    2016-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.

  16. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  17. Tri-band optical coherence tomography for lipid and vessel spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Yu, Luoqin; Kang, Jiqiang; Wang, Xie; Wei, Xiaoming; Chan, Kin-Tak; Lee, Nikki P.; Wong, Kenneth K. Y.

    2016-03-01

    Optical coherence tomography (OCT) has been utilized for various functional imaging applications. One of its highlights comes from spectroscopic imaging, which can simultaneously obtain both morphologic and spectroscopic information. Assisting diagnosis and therapeutic intervention of coronary artery disease is one of the major directions in spectroscopic OCT applications. Previously Tanaka et al. have developed a spectral domain OCT (SDOCT) to image lipid distribution within blood vessel [1]. In the meantime, Fleming et al. have demonstrated optical frequency domain imaging (OFDI) by a 1.3-μm swept source and quadratic discriminant analysis model [2]. However, these systems suffered from burdensome computation as the optical properties' variation was calculated from a single-band illumination that provided limited contrast. On the other hand, multi-band OCT facilitates contrast enhancement with separated wavelength bands, which further offers an easier way to distinguish different materials. Federici and Dubois [3] and Tsai and Chan [4] have demonstrated tri-band OCT systems to further enhance the image contrast. However, these previous work provided under-explored functional properties. Our group has reported a dual-band OCT system based on parametrically amplified Fourier domain mode-locked (FDML) laser with time multiplexing scheme [5] and a dual-band FDML laser OCT system with wavelength-division multiplexing [6]. Fiber optical parametric amplifier (OPA) can be ideally incorporated in multi-band spectroscopic OCT system as it has a broad amplification window and offers an additional output range at idler band, which is phase matched with the signal band. The sweeping ranges can thus overcome traditional wavelength bands that are limited by intra-cavity amplifiers in FDML lasers. Here, we combines the dual-band FDML laser together with fiber OPA, which consequently renders a simultaneous tri-band output at 1.3, 1.5, and 1.6 μm, for intravascular applications. Lipid and blood vessel distribution can be subsequently visualized with the tri-band OCT system by ex vivo experiments using porcine artery model with artificial lipid plaques.

  18. Microwave amplification based on quasiparticle SIS up and down frequency converters

    NASA Astrophysics Data System (ADS)

    Kojima, T.; Uzawa, Y.; Shan, W.

    2018-02-01

    Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS) tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.

  19. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  20. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  1. Frequency conversion system

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  2. Entropy generation in Gaussian quantum transformations: applying the replica method to continuous-variable quantum information theory

    NASA Astrophysics Data System (ADS)

    Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.

    2016-02-01

    In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.

  3. Lip-reading enhancement for law enforcement

    NASA Astrophysics Data System (ADS)

    Theobald, Barry J.; Harvey, Richard; Cox, Stephen J.; Lewis, Colin; Owen, Gari P.

    2006-09-01

    Accurate lip-reading techniques would be of enormous benefit for agencies involved in counter-terrorism and other law-enforcement areas. Unfortunately, there are very few skilled lip-readers, and it is apparently a difficult skill to transmit, so the area is under-resourced. In this paper we investigate the possibility of making the lip-reading task more amenable to a wider range of operators by enhancing lip movements in video sequences using active appearance models. These are generative, parametric models commonly used to track faces in images and video sequences. The parametric nature of the model allows a face in an image to be encoded in terms of a few tens of parameters, while the generative nature allows faces to be re-synthesised using the parameters. The aim of this study is to determine if exaggerating lip-motions in video sequences by amplifying the parameters of the model improves lip-reading ability. We also present results of lip-reading tests undertaken by experienced (but non-expert) adult subjects who claim to use lip-reading in their speech recognition process. The results, which are comparisons of word error-rates on unprocessed and processed video, are mixed. We find that there appears to be the potential to improve the word error rate but, for the method to improve the intelligibility there is need for more sophisticated tracking and visual modelling. Our technique can also act as an expression or visual gesture amplifier and so has applications to animation and the presentation of information via avatars or synthetic humans.

  4. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  5. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  6. Discretization analysis of bifurcation based nonlinear amplifiers

    NASA Astrophysics Data System (ADS)

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang

    2017-09-01

    Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.

  7. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approachesmore » the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.« less

  8. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    NASA Astrophysics Data System (ADS)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  9. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    NASA Astrophysics Data System (ADS)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.

  10. Sqeezing generated by a nonlinear master equation and by amplifying-dissipative Hamiltonians

    NASA Technical Reports Server (NTRS)

    Dodonov, V. V.; Marchiolli, M. A.; Mizrahi, Solomon S.; Moussa, M. H. Y.

    1994-01-01

    In the first part of this contribution we show that the master equation derived from the generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one of the quadratures. In the second part we consider two familiar Hamiltonians, the Bateman- Caldirola-Kanai and the optical parametric oscillator; going back to their classical Lagrangian form we introduce a stochastic force and a dissipative factor. From this new Lagrangian we obtain a modified Hamiltonian that treats adequately the simultaneous amplification and dissipation phenomena, presenting squeezing, too.

  11. Airborne Measurements of Atmospheric Methane Column Abundance Made Using a Pulsed IPDA Lidar

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anamd; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B.

    2012-01-01

    We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection IPDA lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier (OPA) pumped by a Nd:YAG laser and the receiver used a photomultiplier detector and photon counting electronics. The results follow the expected changes with aircraft altitude and the measured line shapes and optical depths show good agreement with theoretical calculations.

  12. A Lidar for Making Range Resolved CO2 Measurements within the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Burris, John; Riris, Haris; Andrews, Arlyn; Krainak, Mike; Sun, Xiaoli; Abshire, Jim; Colarco, Amelia; Heaps, William

    2006-01-01

    A ground based differential absorption lidar is under development at NASA's Goddard Space Flight Center to make range resolved measurements of CO2 within the planetary boundary layer. This is a direct detection lidar designed for both photon counting and analog use. Technology being developed for this instrument will be discussed including efforts in fiber lasers, optical parametric amplifiers and both InGaAs and HgCdTe solid-state detectors. The capabilities of this system are investigated and preliminary results presented.

  13. Satellite Power Systems (SPS) concept definition study. Volume 6: In-depth element investigation

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    The fabrication parameters of GaAs MESFET solid-state amplifiers considering a power added conversion efficiency of at least 80% and power gains of at least 10dB were determined. Operating frequency was 2.45 GHz although 914 MHz was also considered. Basic circuit to be considered was either Class C or Class E amplification. Two modeling programs were utilized. The results of several computer calculations considering differing loads, temperatures, and efficiencies are presented. Parametric data in both tabular and plotted form are presented.

  14. Thermal preparation of an entangled steady state of distant driven spin ensembles

    NASA Astrophysics Data System (ADS)

    Teper, Natalia

    2018-02-01

    Entanglement properties are studied in the continuous-variable system of three nitrogen-vacancy center ensembles cou-pled to separate transmission line resonators interconnected by current-biased Josephson junction. The circuit is enhanced by Josephson parametric amplifier, which serves as source of squeezed microwave field. Bosonic modes of nitrogen-vacancy-center ensembles exhibit steady state entanglement for certain range of parameters. Squeezed microwave field can be consider as a driving force of entanglement. Proposed scheme provides generating entanglement for each of the three pairs of spin ensembles.

  15. Complete energy conversion by autoresonant three-wave mixing in nonuniform media.

    PubMed

    Yaakobi, O; Caspani, L; Clerici, M; Vidal, F; Morandotti, R

    2013-01-28

    Resonant three-wave interactions appear in many fields of physics e.g. nonlinear optics, plasma physics, acoustics and hydrodynamics. A general theory of autoresonant three-wave mixing in a nonuniform media is derived analytically and demonstrated numerically. It is shown that due to the medium nonuniformity, a stable phase-locked evolution is automatically established. For a weak nonuniformity, the efficiency of the energy conversion between the interacting waves can reach almost 100%. One of the potential applications of our theory is the design of highly-efficient optical parametric amplifiers.

  16. Simultaneous parametric generation and up-conversion of entangled optical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r

    A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less

  17. 140 W peak power laser system tunable in the LWIR.

    PubMed

    Gutty, François; Grisard, Arnaud; Larat, Christian; Papillon, Dominique; Schwarz, Muriel; Gerard, Bruno; Ostendorf, Ralf; Rattunde, Marcel; Wagner, Joachim; Lallier, Eric

    2017-08-07

    We present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm. The OPA demonstrates parametric amplification from 8 µm to 10 µm and achieves output peak powers up to 140 W with spectral linewidths below 3.5 cm -1 . The beam profile quality (M 2 ) remains below 3.4 in both horizontal and vertical directions. Compared to the EC-QCL, the linewidth broadening is attributed to a coupling with the OPA.

  18. Two-octave spanning single pump parametric amplification at 1550 nm in a host lead-silicate binary multi-clad microstructure fiber: Influence of multi-order dispersion engineering

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sudip K.; Khan, Saba N.; Chaudhuri, Partha Roy

    2014-12-01

    An ultra-wide 1646 nm (1084-2730 nm), continuous-wave single pump parametric amplification spanning from near-infrared to short-wave infrared band (NIR-SWIR) in a host lead-silicate based binary multi-clad microstructure fiber (BMMF) is analyzed and reported. This ultra-broad band (widest reported to date) parametric amplification with gain more than 10 dB is theoretically achieved by a combination of low input pump power source ~7 W and a short-length of ~70 cm of nonlinear-BMMF through accurately engineered multi-order dispersion coefficients. A highly efficient theoretical formulation based on four-wave-mixing (FWM) is worked out to determine fiber's chromatic dispersion (D) profile which is used to optimise the gain-bandwidth and ripple of the parametric gain profile. It is seen that by appropriately controlling the higher-order dispersion coefficient (up-to sixth order), a great enhancement in the gain-bandwidth (2-3 times) can be achieved when operated very close to zero-dispersion wavelength (ZDW) in the anomalous dispersion regime. Moreover, the proposed theoretical model can predict the maximum realizable spectral width and the required pump-detuning (w.r.t ZDW) of any advanced complex microstructured fiber. Our thorough investigation of the wide variety of broadband gain spectra obtained as an integral part of this research work opens up the way for realizing amplification in the region (SWIR) located far from the pump (NIR) where good amplifiers currently do not exist.

  19. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  20. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Wen, P. Y.; Kockum, A. F.; Ian, H.; Chen, J. C.; Nori, F.; Hoi, I.-C.

    2018-02-01

    Amplification of optical or microwave fields is often achieved by strongly driving a medium to induce population inversion such that a weak probe can be amplified through stimulated emission. Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a 7% amplitude gain for a weak probe at frequencies in between the triplet. This amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-state basis, but instead results from a four-photon process that converts energy from the strong drive to the weak probe. We find excellent agreement between the experimental results and numerical simulations without any free fitting parameters. Since our device consists of a single two-level artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental version of a four-wave-mixing parametric amplifier.

  1. Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Fattahi, Hanieh

    2016-10-01

    This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.

  2. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    PubMed

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  3. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  4. Correlation and squeezing for optical transistor and intensity router applications in diamond NV center.

    PubMed

    Ahmed, Noor; Khan, Ghulam Abbas; Wang, Ruimin; Hou, Jingru; Gong, Rui; Yang, Lingmeng; Zhang, Yanpeng

    2017-05-01

    We study an optical transistor (switch and amplifier) and router by spontaneous parametric four-wave mixing and fluorescence in diamond nitrogen-vacancy (NV) center. The routing results from three peaks of fluorescence signal in the time domain, while the switching and amplification are realized by correlation and squeezing. The intensity switching speed is about 17 ns. The optical transistor and router are controlled by the power of incident beams. Our experimental results provide that the advance technique of peak division and channel equalization ratio of about 90% are applicable to all optical switching and routing.

  5. Controlling quantum interference in phase space with amplitude.

    PubMed

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-05-23

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.

  6. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  7. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  8. Deterministic quantum teleportation with feed-forward in a solid state system.

    PubMed

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  9. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  10. Upconversion of the mid-IR pulses to the near-IR in LiGaS2

    NASA Astrophysics Data System (ADS)

    Kato, Kiyoshi; Umemura, Nobuhiro; Okamoto, Takuya; Petrov, Valentin

    2018-02-01

    This paper reports on the phase-matching properties of LiGaS2 for upconverting a Nd:YAG laser-pumped KTP and AgGaS2 optical parametric oscillator (OPO) at mid-IR to the near-IR by mixing with its pump source together with the new Sellmeier equations that provide a good reproduction of the present experimental results as well as the published data points of second-harmonic generation (SHG) and sum-frequency generation (SFG) of a CO2 laser, a Ti:Al2O3 laser-pumped optical parametric amplifier (OPA), and a Nd:YAG laser-pumped OPO in the mid-IR. This index formula gives the important information that group velocity mismatch (GVM) (Δsp = 1/υs - 1/υp) of LiGaS2 in the 4 - 11 μm range is 12 27 fs/mm lower than that of the widely used LiInS2, which makes it ideal for the upconversion of the mid-IR femtosecond pulses having large spectral bandwidths to the near-IR.

  11. Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Momeni, F.; Naderi, M. H.

    2018-05-01

    In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.

  12. Distributed parametric amplifier for RZ-DPSK signal transmission system.

    PubMed

    Xu, Xing; Zhang, Chi; Yuk, T I; Wong, Kenneth K Y

    2012-08-13

    We have experimentally demonstrated a single pump distributed parametric amplification (DPA) system for differential phase shift keying (DPSK) signal in a spool of dispersion-shifted fiber (DSF). The gain spectrum of single pump DPA is thoroughly investigated by both simulation and experiment, and a possible reference for optimal input pump power and fiber length relationship is provided to DPA based applications. Furthermore, DPSK format is compared with on-off keying (OOK) within DPA scheme. Eight WDM signal channels at 10-Gb/s are utilized, and approximately 0.5-dB power penalties at the bit-error rate (BER) of 10(-9) are achieved for return-to-zero DPSK (RZ-DPSK), comparing to larger than 1.5-dB with OOK format. In order to improve the system power efficiency, at the receiver, the pump is recycled by a photovoltaic cell and the converted energy can be used by potential low-power-consuming devices, i.e sensors or small-scale electronic circuits. Additionally, with suitable components, the whole DPA concept could be directly applied to the 1.3-μm telecommunication window along the most commonly used single-mode fiber (SMF).

  13. Correlation and squeezing for optical transistor and intensity for router applications in Pr3+:YSO.

    PubMed

    Khan, Ghulam Abbas; Li, Changbiao; Raza, Faizan; Ahmed, Noor; Mahesar, Abdul Rasheed; Ahmed, Irfan; Zhang, Yanpeng

    2017-06-14

    We realized an optical transistor and router utilizing multi-order fluorescence and spontaneous parametric four-wave mixing. Specifically, the optical routing action was derived from the results of splitting in the intensity signal due to a dressing effect, whereas the transistor as a switch and amplifier was realized by a switching correlation and squeezing via a nonlinear phase. A substantial enhancement of the optical contrast was observed for switching applications using correlation and squeezing contrary to the intensity signal. Moreover, the controlling parameters were also configured to devise a control mechanism for the optical transistor and router.

  14. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  15. Engineering Novel Detectors and Sensors for MRI

    PubMed Central

    Qian, Chunqi; Zabow, Gary; Koretsky, Alan

    2013-01-01

    Increasing detection sensitivity and image contrast have always been major topics of research in MRI. In this perspective, we summarize two engineering approaches to make detectors and sensors that have potential to extend the capability of MRI. The first approach is to integrate miniaturized detectors with a wireless powered parametric amplifier to enhance the detection sensitivity of remotely coupled detectors. The second approach is to microfabricate contrast agents with encoded multispectral frequency shifts, whose properties can be specified and fine-tuned by geometry. These two complementary approaches will benefit from the rapid development in nanotechnology and microfabrication which should enable new opportunities for MRI. PMID:23245489

  16. General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

    NASA Astrophysics Data System (ADS)

    Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.

    2018-02-01

    We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.

  17. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  18. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  19. Correlation of photon pairs from the double Raman amplifier: Generalized analytical quantum Langevin theory

    NASA Astrophysics Data System (ADS)

    Raymond Ooi, C. H.; Sun, Qingqing; Zubairy, M. Suhail; Scully, Marlan O.

    2007-01-01

    We present a largely analytical theory for two-photon correlations G(2) between Stokes (s) and anti-Stokes (a) photon pairs from an extended medium (amplifier) composed of double- Λ atoms in counterpropagating geometry. We generalize the parametric coupled equations with quantum Langevin noise given in a beautiful experimental paper of Balic [Phys. Rev. Lett. 94, 183601 (2005)] beyond adiabatic approximation and valid for arbitrary strength and detuning of laser fields. We derive an analytical formula for cross correlation Gas(2)=⟨Ês†(L)Êa†(0,τ)Êa(0,τ)Ês(L)⟩ and use it to obtain results that are in good quantitative agreement with the experimental data. Results for Gas(2) obtained using our coupled equations are in good quantitative agreement with the results using the equations of Balic , while perfect agreement is obtained for sufficiently large detuning. We also compute the reverse correlation Gsa(2) which turns out to be negligibly small and remains classical while the cross correlation violates the Cauchy-Schwartz inequality by a factor of more than a hundred.

  20. Carrier-envelope-phase stabilized terawatt class laser at 1 kHz with a wavelength tunable option

    DOE PAGES

    Langdon, Benjamin; Garlick, Jonathan; Ren, Xiaoming; ...

    2015-02-12

    We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded opticalmore » parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale.« less

  1. Naturally stable Sagnac–Michelson nonlinear interferometer

    DOE PAGES

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-11-16

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haixia; Zhang, Jing

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme losesmore » the output of phase-conjugate clones and is regarded as irreversible quantum cloning.« less

  3. Josephson Parametric Amplification for Circuit Quantum Electrodynamics: Theory and Implementation

    DTIC Science & Technology

    2013-05-01

    Here, cin1 can be time-dependent – the factor of e−iωpt is there simply for calculational convenience, allowing us to “ peel off” the time...iω0c(t)− iK ( c†(t)Ne−2iφB + 2c(t)N ) − √ 2γ1c in 1 (t)− (γ1 + γ2)c(t). (2.50) Note that peeling off the e−iωpt term from the signal allowed us to...that 4.2 Amplifier Implementation and Characterization 74 (a) (b) (c) (d) 1 cm 2 mm 1 mm 1 banana 50 µm 50 µm 20 µm (e) (f) (g) Isolator Magnetic

  4. Non-classicality criteria: Glauber-Sudarshan P function and Mandel ? parameter

    NASA Astrophysics Data System (ADS)

    Alexanian, Moorad

    2018-01-01

    We calculate exactly the quantum mechanical, temporal Wigner quasiprobability density for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state. The Wigner function allows us to calculate the fluctuations in photon number and the quadrature variance. We contrast the difference between the non-classicality criteria, which is independent of the displacement parameter ?, based on the Glauber-Sudarshan quasiprobability distribution ? and the classical/non-classical behaviour of the Mandel ? parameter, which depends strongly on ?. We find a phase transition as a function of ? such that at the critical point ?, ?, as a function of ?, goes from strictly classical, for ?, to a mixed classical/non-classical behaviour, for ?.

  5. Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20  μm.

    PubMed

    Steinle, Tobias; Mörz, Florian; Steinmann, Andy; Giessen, Harald

    2016-11-01

    A highly stable 350 fs laser system with a gap-free tunability from 1.33 to 2.0 μm and 2.13 to 20 μm is demonstrated. Nanojoule-level pulse energy is achieved in the mid-infrared at a 43 MHz repetition rate. The system utilizes a post-amplified fiber-feedback optical parametric oscillator followed by difference frequency generation between the signal and idler. No locking or synchronization electronics are required to achieve outstanding free-running output power and spectral stability of the whole system. Ultra-low intensity noise, close to the pump laser's noise figure, enables shot-noise limited measurements.

  6. Observation of two-photon interference with continuous variables by homodyne detection

    NASA Astrophysics Data System (ADS)

    Wu, Daohua; Kawamoto, Kota; Guo, Xiaomin; Kasai, Katsuyuki; Watanabe, Masayoshi; Zhang, Yun

    2017-10-01

    We experimentally observed a two-photon interference between a squeezed vacuum state from an optical parametric amplifier and a weak coherent state on a beam splitter with continuous variables. The photon statistics properties of the mixed field were investigated by calculating the correlations among four permutations of measured quadratures components, which were obtained by two homodyne detection systems. This also means that the two-photon interference occurred at analysis frequency differing from the previous two-photon interference reports. The nonclassical effect of photon anti-bunching occurred when an amplitude squeezed vacuum state acted as one of interference sources. On the other hand, the photon bunching effect appeared when a phase squeezed vacuum state was employed.

  7. Discrete photon statistics from continuous microwave measurements

    NASA Astrophysics Data System (ADS)

    Virally, Stéphane; Simoneau, Jean Olivier; Lupien, Christian; Reulet, Bertrand

    2016-04-01

    Photocount statistics are an important tool for the characterization of electromagnetic fields, especially for fields with an irrelevant phase. In the microwave domain, continuous rather than discrete measurements are the norm. Using a different approach, we recover discrete photon statistics from the cumulants of a continuous distribution of field quadrature measurements. The use of cumulants allows the separation between the signal of interest and experimental noise. Using a parametric amplifier as the first stage of the amplification chain, we extract useful data from up to the sixth cumulant of the continuous distribution of a coherent field, hence recovering up to the third moment of the discrete statistics associated with a signal with much less than one average photon.

  8. The NASA-LeRC wind turbine sound prediction code

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1981-01-01

    Development of the wind turbine sound prediction code began as part of an effort understand and reduce the noise generated by Mod-1. Tone sound levels predicted with this code are in good agreement with measured data taken in the vicinity Mod-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may amplify the actual sound levels by 6 dB. Parametric analysis using the code shows that the predominant contributors to Mod-1 rotor noise are (1) the velocity deficit in the wake of the support tower, (2) the high rotor speed, and (3) off-optimum operation.

  9. High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2

    NASA Astrophysics Data System (ADS)

    Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.

    2012-06-01

    We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.

  10. OBIST methodology incorporating modified sensitivity of pulses for active analogue filter components

    NASA Astrophysics Data System (ADS)

    Khade, R. H.; Chaudhari, D. S.

    2018-03-01

    In this paper, oscillation-based built-in self-test method is used to diagnose catastrophic and parametric faults in integrated circuits. Sallen-Key low pass filter and high pass filter circuits with different gains are used to investigate defects. Variation in seven parameters of operational amplifier (OP-AMP) like gain, input impedance, output impedance, slew rate, input bias current, input offset current, input offset voltage and catastrophic as well as parametric defects in components outside OP-AMP are introduced in the circuit and simulation results are analysed. Oscillator output signal is converted to pulses which are used to generate a signature of the circuit. The signature and pulse count changes with the type of fault present in the circuit under test (CUT). The change in oscillation frequency is observed for fault detection. Designer has flexibility to predefine tolerance band of cut-off frequency and range of pulses for which circuit should be accepted. The fault coverage depends upon the required tolerance band of the CUT. We propose a modification of sensitivity of parameter (pulses) to avoid test escape and enhance yield. Result shows that the method provides 100% fault coverage for catastrophic faults.

  11. Time-multiplexed amplification in a hybrid-less and coil-less Josephson parametric converter

    NASA Astrophysics Data System (ADS)

    Abdo, Baleegh; Chavez-Garcia, Jose M.; Brink, Markus; Keefe, George; Chow, Jerry M.

    2017-02-01

    Josephson parametric converters (JPCs) are superconducting devices capable of performing nondegenerate, three-wave mixing in the microwave domain without losses. One drawback limiting their use in scalable quantum architectures is the large footprint of the auxiliary circuit needed for their operation, in particular, the use of off-chip, bulky, broadband hybrids and magnetic coils. Here, we realize a JPC that eliminates the need for these bulky components. The pump drive and flux bias are applied in the Hybrid-Less, Coil-Less (HLCL) device through an on-chip, lossless, three-port power divider and an on-chip flux line, respectively. We show that the HLCL design considerably simplifies the circuit and reduces the footprint of the device while maintaining a comparable performance to state-of-the-art JPCs. Furthermore, we exploit the tunable bandwidth property of the JPC and the added capability of applying alternating currents to the flux line in order to switch the resonance frequencies of the device, hence demonstrating time-multiplexed amplification of microwave tones that are separated by more than the dynamical bandwidth of the amplifier. Such a measurement technique can potentially serve to perform a time-multiplexed, high-fidelity readout of superconducting qubits.

  12. Observational signatures of the parametric amplification of gravitational waves during reheating after inflation

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Sachiko; Lin, Chunshan; Sasaki, Misao; Tsujikawa, Shinji

    2018-01-01

    We study the evolution of gravitational waves (GWs) during and after inflation as well as the resulting observational consequences in a Lorentz-violating massive gravity theory with one scalar (inflaton) and two tensor degrees of freedom. We consider two explicit examples of the tensor mass mg that depends either on the inflaton field ϕ or on its time derivative ϕ ˙, both of which lead to parametric excitations of GWs during reheating after inflation. The first example is Starobinsky's R2 inflation model with a ϕ -dependent mg, and the second is a low energy-scale inflation model with a ϕ ˙-dependent mg. We compute the energy density spectrum ΩGW(k ) today of the GW background. In the Starobinsky's model, we show that the GWs can be amplified up to the detectable ranges of both cosmic microwave background and DECi-hertz Interferometer Gravitational wave Observatory, but the bound from the big bang nucleosynthesis is quite tight to limit the growth. In low-scale inflation with a fast transition to the reheating stage driven by the potential V (ϕ )=M2ϕ2/2 around ϕ ≈Mpl (where Mpl is the reduced Planck mass), we find that the peak position of ΩGW(k ) induced by the parametric resonance can reach the sensitivity region of advanced LIGO for the Hubble parameter of order 1 GeV at the end of inflation. Thus, our massive gravity scenario offers exciting possibilities for probing the physics of primordial GWs at various different frequencies.

  13. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    PubMed

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America

  14. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  15. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  16. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  17. Subharmonics, chaos and beyond

    NASA Astrophysics Data System (ADS)

    Adler, Laszlo; Yost, William T.; Cantrell, John H.

    2012-05-01

    While studying finite amplitude ultrasonic wave resonance in a one dimensional liquid-filled cavity formed by a narrow band transducer and a plane reflector, subharmonics of the driver's frequency were observed (1,2) in addition to the expected harmonic structure. Subsequently, it was realized that the system was one of the many examples of parametric resonance in which the observed subharmonics are parametrically generated. The generation mechanism also requires a sufficiently high threshold value of the driving amplitude so that the system becomes increasingly nonlinear in response. The nonlinear features were recently investigated and are the focus of this paper. An ultrasonic interferometer with optical precision was built. The transducers were compressional, undamped quartz and Lithium Niobate crystals ranging from 1-10 MHz, driven by a high power amplifier. Both an optical diffraction system and a receiver transducer attached to an aligned reflector were used to observe the generated frequency components in the cavity. There are at least 5 regions of excitation that were identified. It is shown that from a region of oscillation stability into an unstable region leads to a cascade of bifurcations (subharmonics) culminating in chaotic oscillations. A further increase in the amplitude results in a reversion of the chaos into a second region of stability. A first-principle based explanation of the experimental findings is presented.

  18. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  19. Tunable light source for use in photoacoustic spectrometers

    DOEpatents

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  20. Finite-time quantum entanglement in propagating squeezed microwaves.

    PubMed

    Fedorov, K G; Pogorzalek, S; Las Heras, U; Sanz, M; Yard, P; Eder, P; Fischer, M; Goetz, J; Xie, E; Inomata, K; Nakamura, Y; Di Candia, R; Solano, E; Marx, A; Deppe, F; Gross, R

    2018-04-23

    Two-mode squeezing is a fascinating example of quantum entanglement manifested in cross-correlations of non-commuting observables between two subsystems. At the same time, these subsystems themselves may contain no quantum signatures in their self-correlations. These properties make two-mode squeezed (TMS) states an ideal resource for applications in quantum communication. Here, we generate propagating microwave TMS states by a beam splitter distributing single mode squeezing emitted from distinct Josephson parametric amplifiers along two output paths. We experimentally study the fundamental dephasing process of quantum cross-correlations in continuous-variable propagating TMS microwave states and accurately describe it with a theory model. In this way, we gain the insight into finite-time entanglement limits and predict high fidelities for benchmark quantum communication protocols such as remote state preparation and quantum teleportation.

  1. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20  km of optical fiber.

    PubMed

    Feng, Jinxia; Wan, Zhenju; Li, Yuanji; Zhang, Kuanshou

    2017-09-01

    The distribution of continuous variable (CV) Einstein-Podolsky-Rosen (EPR)-entangled beams at a telecommunication wavelength of 1550 nm over single-mode fibers is investigated. EPR-entangled beams with quantum entanglement of 8.3 dB are generated using a single nondegenerate optical parametric amplifier based on a type-II periodically poled KTiOPO 4 crystal. When one beam of the generated EPR-entangled beams is distributed over 20 km of single-mode fiber, 1.02 dB quantum entanglement can still be measured. The degradation of CV quantum entanglement in a noisy fiber channel is theoretically analyzed considering the effect of depolarized guided acoustic wave Brillouin scattering in optical fibers. The theoretical prediction is in good agreement with the experimental results.

  2. Observing single quantum trajectories of a superconducting qubit: ensemble properties and driven dynamics

    NASA Astrophysics Data System (ADS)

    Weber, Steven; Murch, K. W.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Siddiqi, I.

    2014-03-01

    We use weak measurements to track individual quantum trajectories of a superconducting qubit embedded in a microwave cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We analyze ensembles of trajectories to determine statistical properties such as the most likely path and most likely time connecting pre and post-selected quantum states. We compare our results with theoretical predictions derived from an action principle for continuous quantum measurement. Furthermore, by introducing a qubit drive, we investigate the interplay between unitary state evolution and non-unitary measurement dynamics. This work was supported by the IARPA CSQ program and the ONR.

  3. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  4. Large Dispersive Shift of Cavity Resonance Induced by a Superconducting Flux Qubit in the Straddling Regime

    NASA Astrophysics Data System (ADS)

    Inomata, Kunihiro; Yamamoto, Tsuyoshi; Billangeon, Pierre-M.; Lin, Zhirong; Nakamura, Yasunobu; Tsai, Jaw-Shen; Koshino, Kazuki

    2013-03-01

    We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator detuning of 5 GHz, is quantitatively explained by the generalized Rabi model which takes into account the contribution of the qubit higher energy levels. By applying the enhanced dispersive shift to the qubit readout, we achieved 90 % contrast of the Rabi oscillations which is mainly limited by the energy relaxation of the qubit. We also discuss the qubit readout using a Josephson parametric amplifier. This work was supported by the MEXT Kakenhi ``Quantum Cybernetics'', the JSPS through its FIRST Program, and the NICT Commissioned Research.

  5. Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.

    PubMed

    Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd

    2007-07-20

    We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

  6. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  7. Theory of type 3b solar radio bursts. [plasma interaction and electron beams

    NASA Technical Reports Server (NTRS)

    Smith, R. A.; Delanoee, J.

    1975-01-01

    During the initial space-time evolution of an electron beam injected into the corona, the strong beam-plasma interaction occurs at the head of the beam, leading to the amplification of a quasi-monochromatic large-amplitude plasma wave that stabilizes by trapping the beam particles. Oscillation of the trapped particles in the wave troughs amplifies sideband electrostatic waves. The sidebands and the main wave subsequently decay to observable transverse electromagnetic waves through the parametric decay instability. This process gives rise to the elementary striation bursts. Owing to velocity dispersion in the beam and the density gradient of the corona, the entire process may repeat at a finite number of discrete plasma levels, producing chains of elementary bursts. All the properties of the type IIIb bursts are accounted for in the context of the theory.

  8. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications

    NASA Astrophysics Data System (ADS)

    Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G.

    2009-10-01

    This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell’s theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

  9. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  10. Compact 200 kHz HHG source driven by a few-cycle OPCPA

    NASA Astrophysics Data System (ADS)

    Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.

    2018-01-01

    We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.

  11. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  12. Target Detection of Quantum Illumination Receiver Based on Photon-subtracted Entanglement State

    NASA Astrophysics Data System (ADS)

    Chi, Jiao; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2017-12-01

    We theoretically propose a quantum illumination receiver based on the ideal photon-subtracted two-mode squeezed state (PSTMSS) to efficiently detect the noise-hidden target. This receiver is generated by applying an optical parametric amplifier (OPA) to the cross correlation detection. With analyzing the output performance, it is found that OPA as a preposition technology of the receiver can contribute to the PSTMSS by significantly reducing the error probability than that of the general two-mode squeezed state (TMSS). Comparing with TMSS, the signal-to-noise ratio of quantum illumination based on ideal PSTMSS and OPA is improved more than 4 dB under an optimal gain of OPA. This work may provide a potential improvement in the application of accurate target detection when two kinds of resource have the identical real squeezing parameter.

  13. Experimental Quantum Randomness Processing Using Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  14. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  15. Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme.

    PubMed

    Mero, M; Sipos, A; Kurdi, G; Osvay, K

    2011-05-09

    Femtosecond green pulses were generated from broadband pulses centered at 800 nm and quasi-monochromatic pulses centered at 532 nm using noncollinear optical parametric chirped pulse amplification (NOPCPA) followed by sum frequency mixing. In addition to amplifying the 800-nm pulses, the NOPCPA stage pumped by a Q-switched, injection seeded Nd:YAG laser also provided broadband idler pulses at 1590 nm. The signal and idler pulses were sum frequency mixed using achromatic and chirp assisted phase matching yielding pulses near 530 nm with a bandwidth of 12 nm and an energy in excess of 200 μJ. The generated pulses were recompressed with a grating compressor to a duration of 150 fs. The technique is scalable to high energies, broader bandwidths, and shorter pulse durations with compensation for higher order chirps and dedicated engineering of the interacting beams. © 2011 Optical Society of America

  16. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    PubMed

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  17. Controllable outrigger damping system for high rise building with MR dampers

    NASA Astrophysics Data System (ADS)

    Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing

    2010-04-01

    A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.

  18. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    NASA Technical Reports Server (NTRS)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  19. Detection of stably bright squeezed light with the quantum noise reduction of 12.6  dB by mutually compensating the phase fluctuations.

    PubMed

    Yang, Wenhai; Shi, Shaoping; Wang, Yajun; Ma, Weiguang; Zheng, Yaohui; Peng, Kunchi

    2017-11-01

    We present a mutual compensation scheme of three phase fluctuations, originating from the residual amplitude modulation (RAM) in the phase modulation process, in the bright squeezed light generation system. The influence of the RAM on each locking loop is harmonized by using one electro-optic modulator (EOM), and the direction of the phase fluctuation is manipulated by positioning the photodetector (PD) that extracts the error signal before or after the optical parametric amplifier (OPA). Therefore a bright squeezed light with non-classical noise reduction of π is obtained. By fitting the squeezing and antisqueezing measurement results, we confirm that the total phase fluctuation of the system is around 3.1 mrad. The fluctuation of the noise suppression is 0.2 dB for 3 h.

  20. Side-wall spacer passivated sub-μm Josephson junction fabrication process

    NASA Astrophysics Data System (ADS)

    Grönberg, Leif; Kiviranta, Mikko; Vesterinen, Visa; Lehtinen, Janne; Simbierowicz, Slawomir; Luomahaara, Juho; Prunnila, Mika; Hassel, Juha

    2017-12-01

    We present a structure and a fabrication method for superconducting tunnel junctions down to the dimensions of 200 nm using i-line UV lithography. The key element is a sidewall-passivating spacer structure (SWAPS) which is shaped for smooth crossline contacting and low parasitic capacitance. The SWAPS structure enables formation of junctions with dimensions at or below the lithography-limited linewidth. An additional benefit is avoiding the excessive use of amorphous dielectric materials which is favorable in sub-Kelvin microwave applications often plagued by nonlinear and lossy dielectrics. We apply the structure to niobium trilayer junctions, and provide characterization results yielding evidence on wafer-scale scalability, and critical current density tuning in the range of 0.1-3.0 kA cm-2. We discuss the applicability of the junction process in the context of different applications, such as SQUID magnetometers and Josephson parametric amplifiers.

  1. First results from a microwave cavity axion search at 25 μeV : Analysis

    NASA Astrophysics Data System (ADS)

    Zhong, Ling; ADMX-HF Collaboration

    2017-01-01

    ADMX-HF searches for dark matter axions via Primakoff conversion into microwave photons in the gigahertz domain. Since 2012, tremendous effort has been made to build an axion detector working in this frequency range. By operating the system in a cryogen-free dilution refrigerator (T = 127 mK) and integrating a Josephson Parametric Amplifier (JPA), we obtain a sufficiently low system noise temperature to exclude axion models with gaγγ > 2 ×10-14GeV-1 over the mass range 23 . 55 μeV

  2. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    PubMed Central

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-01-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814

  3. Antibunching and unconventional photon blockade with Gaussian squeezed states

    NASA Astrophysics Data System (ADS)

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2014-12-01

    Photon antibunching is a quantum phenomenon typically observed in strongly nonlinear systems where photon blockade suppresses the probability of detecting two photons at the same time. Antibunching has also been reported with Gaussian states, where optimized amplitude squeezing yields classically forbidden values of the intensity correlation, g(2 )(0 ) <1 . As a consequence, observation of antibunching is not necessarily a signature of photon-photon interactions. To clarify the significance of the intensity correlations, we derive a sufficient condition for deducing whether a field is non-Gaussian based on a g(2 )(0 ) measurement. We then show that the Gaussian antibunching obtained with a degenerate parametric amplifier is close to the ideal case reached using dissipative squeezing protocols. We finally shed light on the so-called unconventional photon blockade effect predicted in a driven two-cavity setup with surprisingly weak Kerr nonlinearities, stressing that it is a particular realization of optimized Gaussian amplitude squeezing.

  4. Non-Poissonian Quantum Jumps of a Fluxonium Qubit due to Quasiparticle Excitations

    NASA Astrophysics Data System (ADS)

    Vool, U.; Pop, I. M.; Sliwa, K.; Abdo, B.; Wang, C.; Brecht, T.; Gao, Y. Y.; Shankar, S.; Hatridge, M.; Catelani, G.; Mirrahimi, M.; Frunzio, L.; Schoelkopf, R. J.; Glazman, L. I.; Devoret, M. H.

    2014-12-01

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T1 , using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  5. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  6. The NASA-LeRC wind turbine sound prediction code

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1981-01-01

    Since regular operation of the DOE/NASA MOD-1 wind turbine began in October 1979 about 10 nearby households have complained of noise from the machine. Development of the NASA-LeRC with turbine sound prediction code began in May 1980 as part of an effort to understand and reduce the noise generated by MOD-1. Tone sound levels predicted with this code are in generally good agreement with measured data taken in the vicinity MOD-1 wind turbine (less than 2 rotor diameters). Comparison in the far field indicates that propagation effects due to terrain and atmospheric conditions may be amplifying the actual sound levels by about 6 dB. Parametric analysis using the code has shown that the predominant contributions to MOD-1 rotor noise are: (1) the velocity deficit in the wake of the support tower; (2) the high rotor speed; and (3) off column operation.

  7. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    PubMed

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  8. Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo; Ridolfo, Alessandro; Di Stefano, Omar; Kockum, Anton Frisk; Nori, Franco; Savasta, Salvatore

    2018-01-01

    We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.

  9. Optical Parametric Technology for Methane Measurements

    NASA Technical Reports Server (NTRS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  10. Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

    NASA Astrophysics Data System (ADS)

    Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard

    An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.

  11. Nonlinear systems for frequency conversion from IR to RF

    NASA Astrophysics Data System (ADS)

    Dolasinski, Brian D.

    The objective of this dissertation is to evaluate and develop novel sources for tunable narrowband IR generation, tunable narrowband THz generation, and ultra-wideband RF generation to be used in possible non-destructive evaluation systems. Initially a periodically poled Lithium Niobate (PPLN) based optical parametric amplifier (OPA) is designed using a double-pass configuration where a small part of the pump is used on the first pass to generate a signal, which is reflected and filtered by an off-axis etalon. The portion of the pump that is not phase matched on the first pass is retro-reflected back into the PPLN crystal and is co-aligned with the narrow bandwidth filtered signal and amplified. We demonstrate that the system is tunable in the 1.4 microm -1.6 microm signal range with a linewidth of 5.4 GHz. Next the outputs of seeded, dual periodically poled lithium niobate (PPLN) optical parametric amplifiers (OPA) are combined in the nonlinear crystal 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) to produce a widely tunable narrowband THz source via difference frequency generation (DFG). We have demonstrated that this novel configuration enables the system to be seamlessly tuned, without mode-hops, from 1.2 THz to 26.3 THz with a minimum bandwidth of 3.1 GHz. The bandwidth of the source was measured by using the THz transmission spectrum of water vapor lines over a 3-meter path length. By selecting of the DFG pump wavelength to be at 1380 nm and the signal wavelength to tune over a range from 1380 nm to 1570 nm, we produced several maxima in the output THz spectrum that was dependent on the phase matching ability of the DAST crystal and the efficiency of our pyro-electric detector. Due to the effects of dispersive phase matching, filter absorption of the THz waves, and two-photon absorption multiple band gaps in the overall spectrum occur and are discussed. Employing the dual generator scheme, we have obtained THz images at several locations in the spectrum using an infrared camera that runs at a rate of 35 frames per second. We have demonstrated the ability to image 2 THz to 26 THz both in static and in real time conditions. We will present images of carbon fibers illuminated at different THz frequencies. Lastly, microwave generation was demonstrated by ultrafast photo-excitation experiments to induce non-equilibrium quasi-particle relaxation. Using a laser with a pulse energy of 1 mJ and a pulse duration greater than 120 fs (808 nm wavelength) incident on a charged, superconducting YBa2Cu 2O7-delta (YBCO) thin film ring, the photo-response was measured with a series of microwave antennas. From the observed nanosecond response time of the transient pulse, we extracted the frequency spectrum in the GHz regime that was dependent on the incident beam diameter, pulse duration, power, and the physical structure of the YBCO thin film.

  12. Cross-polarized wave generation (XPW) for ultrafast laser pulse characterization and intensity contrast enhancement

    NASA Astrophysics Data System (ADS)

    Iliev, Marin

    Good pulse quality, high peak power and tunable central wavelength are amongst the most desired qualities in modern lasers. The nonlinear effect cross-polarized wave generation (XPW), can be used in ultrafast laser systems to achieve various pulse quality enhancements. The XPW yield depends on the cube of the input intensity and acts as a spatio-temporal filter. It is orthogonally polarized to the input pulse and highly Gaussian. If the input pulse is well compressed, the output spectrum is smoother and broader. These features make XPW an ideal reference signal in pulse characterization techniques. This thesis presents a detailed analysis of the XPW conversion process, and describes novel applications to pulse characterization and high-quality pulse cleaning. An extensive computer model was developed to describe XPW generation via solution of the full coupled non-linear differential equations. The model accounts for dispersion inside the nonlinear crystal and uses split-step Fourier optics beam propagation to simulate the evolution of the electro-magnetic fields of the pump and XPW through free-space and imaging systems. A novel extension to the self-referenced spectral interferometry (SRSI) pulse characterization technique allows the retrieval of the energy and spectral content of the amplified spontaneous emission (ASE) present in ultrashort pulse amplifier systems. A novel double-pass XPW conversion scheme is presented. In it the beam passes through a single XPW crystal (BaF2) and is re-imaged with a curved mirror. The technique resulted in good (˜30%) efficiency without the spatial aberrations commonly seen in another arrangement that uses two crystals in succession. The modeling sheds light on the complicated nonlinear beam dynamics of the double-crystal conversion, including self- and cross-phase modulation, self-focusing, and the effects of, relative on-axis phase-difference, relative beam sizes, and wave-front curvature matching on seeded XPW conversion. Finally, a design is presented for exploiting the clean-up properties of XPW at the output of an optical parametric generation (OPA) setup in conjunction with an extremely compact prism compressor. The prisms material, separation and geometry are designed carefully to work at the correct wavelength of the OPA setup and are extrapolated to accommodate wavelengths, such as 2mum of parametric wave generation.

  13. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection.

    PubMed

    Canuto, Enrico; Acuña-Bravo, Wilber; Agostani, Marco; Bonadei, Marco

    2014-07-01

    Solenoid current regulation is well-known and standard in any proportional electro-hydraulic valve. The goal is to provide a wide-band transfer function from the reference to the measured current, thus making the solenoid a fast and ideal force actuator within the limits of the power supplier. The power supplier is usually a Pulse Width Modulation (PWM) amplifier fixing the voltage bound and the Nyquist frequency of the regulator. Typical analog regulators include three main terms: a feedforward channel, a proportional feedback channel and the electromotive force compensation. The latter compensation may be accomplished by integrative feedback. Here the problem is faced through a model-based design (Embedded Model Control), on the basis of a wide-band embedded model of the solenoid which includes the effect of eddy currents. To this end model parameters must be identified. The embedded model includes a stochastic disturbance dynamics capable of estimating and correcting the electromotive contribution together with parametric uncertainty, variability and state dependence. The embedded model which is fed by the measured current and the supplied voltage becomes a state predictor of the controllable and disturbance dynamics. The control law combines reference generator, state feedback and disturbance rejection to dispatch the PWM amplifier with the appropriate duty cycle. Modeling, identification and control design are outlined together with experimental result. Comparison with an existing analog regulator is also provided. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Broadband midinfrared frequency comb with tooth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Kevin F.; Masłowski, P.; Mills, A.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Fermann, M. E.

    2015-03-01

    Frequency combs are a massively parallel source of extremely accurate optical frequencies. Frequency combs generally operate at the visible or near-infrared wavelengths, but fundamental molecular vibrations occur at midinfrared wavelengths. We demonstrate an optically-referenced, broadband midinfrared frequency comb based on a doublyresonant optical parametric oscillator (OPO). By tuning the wavelength of the reference laser, the comb line frequencies are tuned as well. By scanning the reference wavelength, any frequency can be accessed, not just the frequencies of the base comb. Combined with our comb-resolving Fourier transform spectrometer, we can measure 200 wavenumber wide broadband absorption spectra with 200 kHz linewidth comb teeth. Our OPO is pumped by an amplified Tm fiber frequency comb, with phase-locked carrier envelope offset frequency, and repetition rate fixed by phase-locking a frequency comb line to a narrow linewidth diode laser at a telecom channel. The frequency comb is referenced to GPS by long-term stabilization of the repetition rate to a selected value using the temperature of the reference laser as the control. The resulting pump comb is about 3W of 100 fs pulses at 418 MHz repetition rate at 1950 nm. Part of the comb is used for supercontinuum generation for frequency stabilization, and the rest pumps an orientation-patterned gallium arsenide (OP-GaAs) crystal in a doubly-resonant optical parametric oscillator cavity, yielding collinear signal and idler beams from about 3 to 5.5 μm. We verify comb scanning by resolving the 200 MHz wide absorption lines of the entire fundamental CO vibrational manifold at 11 Torr pressure.

  15. Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Ehn, Andreas; Christensen, Moah; Aldén, Marcus; Bood, Joakim

    2014-04-01

    A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ϕ = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.

  16. Communication satellite payload technologies - State of the art and trends in Europe

    NASA Astrophysics Data System (ADS)

    Mica, G.; Coirault, R.

    1982-09-01

    Communication satellite payload technologies are examined, in terms of past, present, and future ESA guidelines. Various existing payload systems are presented, such as Marecs, ECS, and L-Sat (which will carry four payloads). Future services within the market include 2 Mb/sec high speed data, 2-8 Mb/sec video conference, and 64 Mb/sec television distribution, and growth in these areas is dependent on traffic requirements. Pre-operational satellites are outlined, for example Telecom 1 has an estimated system capacity of 150 Mb/sec, Italsat has an expected 1180 Mb/sec, and DFS demonstrates a possible 1540 Mb/sec capacity. It is found that the 20/30 GHz band should be applied for use in wideband and high capacity trunks among heavy traffic centers. To accommodate for the noise in this waveband, the parametric amplifier developed for L-Sat must be used. Finally, development objectives for future programs include improving spectrum and geostationary orbit utilization, cost-efficiency, and standardization of systems.

  17. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  18. Optical response of two coupled optomechanical systems in the presence of nonlinear mediums

    NASA Astrophysics Data System (ADS)

    Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.

    2018-01-01

    In this paper, we investigate response of a hybrid optomechanical system in different situations. This system is composed of two coupled optomechanical cavities, which one of them is filled with an optical parametric amplifier (OPA) and the other one encompasses a nonlinear Kerr medium. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is obtained by the quantum Langevin equations of motion in a steady state regime. The results show that the presence of OPA and the Kerr medium in the system can considerably change the behavior of both cavities. For this reason, we show that by choosing different values for the optical parameters of the system, one can switches the behaviors of the cavities between mono-, bi- and tristability. Also, we show that by changing the detunings of the cavities, one can obtain uncommon responses from the system. Furthermore, we show that it is possible to create proper optical multistability regions for both cavities.

  19. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    2015-08-01

    Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.

  20. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-02-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  1. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )<0.2 ] and low-energy laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  2. Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.

    2018-04-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.

  3. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk

    PubMed Central

    Shumakova, V.; Malevich, P.; Ališauskas, S.; Voronin, A.; Zheltikov, A. M.; Faccio, D.; Kartashov, D.; Baltuška, A.; Pugžlys, A.

    2016-01-01

    The physics of strong-field applications requires driver laser pulses that are both energetic and extremely short. Whereas optical amplifiers, laser and parametric, boost the energy, their gain bandwidth restricts the attainable pulse duration, requiring additional nonlinear spectral broadening to enable few or even single cycle compression and a corresponding peak power increase. Here we demonstrate, in the mid-infrared wavelength range that is important for scaling the ponderomotive energy in strong-field interactions, a simple energy-efficient and scalable soliton-like pulse compression in a mm-long yttrium aluminium garnet crystal with no additional dispersion management. Sub-three-cycle pulses with >0.44 TW peak power are compressed and extracted before the onset of modulation instability and multiple filamentation as a result of a favourable interplay between strong anomalous dispersion and optical nonlinearity around the wavelength of 3.9 μm. As a manifestation of the increased peak power, we show the evidence of mid-infrared pulse filamentation in atmospheric air. PMID:27620117

  4. TWT design requirements for 30/20 GHz digital communications' satellite

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Anzic, G.

    1979-01-01

    The rapid growth of communication traffic (voice, data, and video) requires the development of additional frequency bands before the 1990's. The frequencies currently in use for satellite communications at 6/4 GHz are crowded and demands for 14/12 GHz systems are increasing. Projections are that these bands will be filled to capacity by the late 1980's. The next higher frequency band allocated for satellite communications is at 30/20 GHz. For interrelated reasons of efficiency, power level, and system reliability criteria, a candidate for the downlink amplifier in a 30/20 GHz communications' satellite is a dual mode traveling wave tube (TWT) equipped with a highly efficient depressed collector. A summary is given of the analyses which determine the TWT design requirements. The overall efficiency of such a tube is then inferred from a parametric study and from experimental data on multistaged depressed collectors. The expected TWT efficiency at 4 dB below output saturation is 24 percent in the high mode and 22 percent in the low mode.

  5. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses

    PubMed Central

    Callahan, Ben J.; Sankaran, Kris; Fukuyama, Julia A.; McMurdie, Paul J.; Holmes, Susan P.

    2016-01-01

    High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene) has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or OTU composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, whether parametric or nonparametric. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests and nonparametric testing using community networks and the ggnetwork package. PMID:27508062

  6. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  7. The effect of channel deepening on tides and storm surge: A case study of Wilmington, NC

    NASA Astrophysics Data System (ADS)

    Familkhalili, R.; Talke, S. A.

    2016-09-01

    In this study we investigate the hypothesis that increasing channel depth in estuaries can amplify both tides and storm surge by developing an idealized numerical model representing the 1888, 1975, and 2015 bathymetric conditions of the Cape Fear River Estuary, NC. Archival tide gauge data recovered from the U.S. National Archives indicates that mean tidal range in Wilmington has doubled to 1.55 m since the 1880s, with a much smaller increase of 0.07 m observed near the ocean boundary. These tidal changes are reproduced by simulating channel depths of 7 m (1888 condition) and 15.5 m (modern condition). Similarly, model sensitivity studies using idealized, parametric tropical cyclones suggest that the storm surge in the worst-case, CAT-5 event may have increased from 3.8 ± 0.25 m to 5.6 ± 0.6 m since the nineteenth century. The amplification in both tides and storm surge is influenced by reduced hydraulic drag caused by greater mean depths.

  8. Quantum correlations in microwave frequency combs

    NASA Astrophysics Data System (ADS)

    Weissl, Thomas; Jolin, Shan W.; Haviland, David B.; Department of Applied Physics Team

    Non-linear superconducting resonators are used as parametric amplifiers in circuit quantum electrodynamics experiments. When a strong pump is applied to a non-linear microwave oscillator, it correlates vacuum fluctuations at signal and idler frequencies symmetrically located around the pump, resulting in two-mode squeezed vacuum. When the non-linear oscillator is pumped with a frequency comb, complex multipartite entangled states can be created as demonstrated with experiments in the optical domain. Such cluster states are considered to be a universal resource for one-way quantum computing. With our microwave measurement setup it is possible to pump and measure response at as many as 42 frequencies in parallel, with independent control over all pump amplitudes and phases. We show results of two-mode squeezing for of pairs of tones in a microwave frequency comb. The squeezing is created by four-wave mixing of a pump tone applied to a non-linear coplanar-waveguide resonator. We acknowledge financial support from the Knut and Alice Wallenberg foundation.

  9. Results from phase 1 of the HAYSTAC microwave cavity axion experiment

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Al Kenany, S.; Backes, K. M.; Brubaker, B. M.; Cahn, S. B.; Carosi, G.; Gurevich, Y. V.; Kindel, W. F.; Lamoreaux, S. K.; Lehnert, K. W.; Lewis, S. M.; Malnou, M.; Maruyama, R. H.; Palken, D. A.; Rapidis, N. M.; Root, J. R.; Simanovskaia, M.; Shokair, T. M.; Speller, D. H.; Urdinaran, I.; van Bibber, K. A.

    2018-05-01

    We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6 and 5.8 GHz. We exclude axion models with two photon coupling ga γ γ≳2 ×10-14 GeV-1 , a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15

  10. Next Generation Driver for Attosecond and Laser-plasma Physics.

    PubMed

    Rivas, D E; Borot, A; Cardenas, D E; Marcus, G; Gu, X; Herrmann, D; Xu, J; Tan, J; Kormin, D; Ma, G; Dallari, W; Tsakiris, G D; Földes, I B; Chou, S-W; Weidman, M; Bergues, B; Wittmann, T; Schröder, H; Tzallas, P; Charalambidis, D; Razskazovskaya, O; Pervak, V; Krausz, F; Veisz, L

    2017-07-12

    The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 20  W/cm 2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

  11. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission.

    PubMed

    Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra

    2014-10-20

    The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.

  12. Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    NASA Astrophysics Data System (ADS)

    Zhang, S. J.; Wang, Z. X.; Dong, T.; Wang, N. L.

    2017-10-01

    Strong-field mid-infrared pump-terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump-THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μm to 15 μm and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μm pump-THz probe measurements of a bulk EuSbTe3 single crystal. A 0:5% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.

  13. Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration.

    PubMed

    Zhu, Weida; Wang, Rui; Zhang, Chunfeng; Wang, Guodong; Liu, Yunlong; Zhao, Wei; Dai, Xingcan; Wang, Xiaoyong; Cerullo, Giulio; Cundiff, Steven; Xiao, Min

    2017-09-04

    We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.

  14. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.

    PubMed

    Gelbwaser-Klimovsky, D; Kurizki, G

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  15. Heat-machine control by quantum-state preparation: From quantum engines to refrigerators

    NASA Astrophysics Data System (ADS)

    Gelbwaser-Klimovsky, D.; Kurizki, G.

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  16. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a constant methane mixing ratio of 1.8 parts per million. The in-situ spectrometer did not show any significant deviations from the ambient concentrations. Further analysis using meteorological data from the Global Modeling and Assimilation Office (http://gmao.gsfc.nasa.gov/) to derive the theoretical optical depth also showed good agreement with the experimentally derived values. The OPA lidar system with slight modifications has also been used to measure CO2, water vapor, and CO in the near and mid-infrared spectral regions on the ground.

  17. Theory of injection locking and rapid start-up of magnetrons, and effects of manufacturing errors in terahertz traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, Phongphaeth

    In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.

  18. Lidar detection of carbon dioxide in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Maio, Giovanni; Del Franco, Mario; Aiuppa, Alessandro

    2015-06-01

    Volcanic gases give information on magmatic processes. In particular, anomalous releases of carbon dioxide precede volcanic eruptions. Up to now, this gas has been measured in volcanic plumes with conventional measurements that imply the severe risks of local sampling and can last many hours. For these reasons and for the great advantages of laser sensing, the thorough development of volcanic lidar has been undertaken at the Diagnostics and Metrology Laboratory (UTAPRAD-DIM) of the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA). In fact, lidar profiling allows one to scan remotely volcanic plumes in a fast and continuous way, and with high spatial and temporal resolution. Two differential absorption lidar instruments will be presented in this paper: BILLI (BrIdge voLcanic LIdar), based on injection seeded Nd:YAG laser, double grating dye laser, difference frequency mixing (DFM) and optical parametric amplifier (OPA), and VULLI (VULcamed Lidar), based on injection seeded Nd:YAG laser and optical parametric oscillator (OPO). The first one is funded by the ERC (European Research Council) project BRIDGE and the second one by the ERDF (European Regional Development Fund) project VULCAMED. While VULLI has not yet been tested in a volcanic site, BILLI scanned the gas emitted by Pozzuoli Solfatara (Campi Flegrei volcanic area, Naples, Italy) during a field campaign carried out from 13 to 17 October 2014. Carbon dioxide concentration maps were retrieved remotely in few minutes in the crater area. Lidar measurements were in good agreement with well-established techniques, based on different operating principles. To our knowledge, it is the first time that carbon dioxide in a volcanic plume is retrieved by lidar, representing the first direct measurement of this kind ever performed on an active volcano and showing the high potential of laser remote sensing in geophysical research.

  19. Active multispectral reflection fingerprinting of persistent chemical agents

    NASA Astrophysics Data System (ADS)

    Tholl, H. D.; Münzhuber, F.; Kunz, J.; Raab, M.; Rattunde, M.; Hugger, S.; Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Lallier, E.; Kastek, M.; Piatkowski, T.; Brygo, F.; Awanzino, C.; Wilsenack, F.; Lorenzen, A.

    2017-10-01

    Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum. The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA). The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data. The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.

  20. A cryo-cooled high-energy DPSSL system delivering ns-pulses at 10 J and 10 Hz

    NASA Astrophysics Data System (ADS)

    Ertel, Klaus; Banerjee, Saumyabrata; Butcher, Thomas J.; De Vido, Mariastefania; Mason, Paul D.; Phillips, P. J.; Richards, David; Shaikh, Waseem; Smith, Jodie M.; Greenhalgh, R. Justin S.; Hernandez-Gomez, Cristina; Collier, John L.

    2015-02-01

    Lasers generating multi-J to kJ ns-pulses are required for many types of laser-plasma interactions. Such lasers are either used directly for compressing matter to extreme densities or they serve as pump lasers for short-pulses laser chains based on large-aperture Ti:sapphire or parametric amplifiers. The thus generated high-energy fs-pulses are most useful for laser driven secondary sources of particles (electrons, protons) or photons (from THz to gamma). While proof-of-principle experiments have been carried out with flashlamp-pumped glass lasers, lasers with much higher efficiency and repetition rate are required to make this applications practically viable. We have developed a scalable new laser concept called DiPOLE (diode pumped optical laser for experiments) based on a gas-cooled ceramic Yb:YAG multi-slab architecture operating at cryogenic temperatures. While the viability of this concept has been shown earlier [1], we have now reached our target performance of 10 J pulse energy at 10 Hz repetition rate at an optical-to-optical efficiency of 21%. To the best of our knowledge, these are record values for average power and efficiency for lasers of this type. We have also upgraded the system by adding a fibre-based front-end system with arbitrary pulse shaping capability and by installing an image-relayed multipass system enabling up to eight passes of the main amplifier. We have then used this system to demonstrate frequency doubling with 65 % conversion efficiency and a long-term shot-to-shot stability of 0.5% rms over a total of nearly 2 million shots, achieved in runs extending over 4 to 6 hours.

  1. Demonstration of a 100-mJ OPO/OPA for future lidar applications and laser-induced damage threshold testing of optical components for MERLIN

    NASA Astrophysics Data System (ADS)

    Elsen, Florian; Livrozet, Marie; Strotkamp, Michael; Wüppen, Jochen; Jungbluth, Bernd; Kasemann, Raphael; Löhring, Jens; Meissner, Ansgar; Meyer, Rudolf; Hoffmann, Hans-Dieter; Poprawe, Reinhart

    2018-02-01

    In the field of atmospheric research, lidar is a powerful technology that can measure gas or aerosol concentrations, wind speed, or temperature profiles remotely. To conduct such measurements globally, spaceborne systems are advantageous. Pulse energies in the 100-mJ range are required to achieve highly accurate, longitudinal resolved measurements. Measuring concentrations of specific gases, such as CH4 or CO2, requires output wavelengths in the IR-B, which can be addressed by optical-parametric frequency conversion. An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6-μm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite methane remote-sensing lidar mission (MERLIN). To address the 100-mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With potassium titanyl phosphate as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25%. In addition to demonstrating optical performance for future lidar systems, this laser will be part of a laser-induced damage thresholds test facility, which will be used to qualify optical components especially for the MERLIN.

  2. Superconducting Detectors Come of Age, or Ready to Leave the Lab

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2008-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provide a mechanism for high sensitivity detection of submillil.neter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large-scale superconducting detection systems is now being deployed. Improved understanding of the operation of these detectors, combined with rapidly improving fabrication techniques, is quickly expanding the capability of these detectors. I will review the development and application of superconductor-based detectors, the ultimate limits to their performance, and consider prospects for their future applications. Continued advances promise to enable important new measurements in physics, and with appropriate advances in cryogenic infrastncturem, ay result in the use of these detectors in everyday monitoring applications.

  3. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    NASA Astrophysics Data System (ADS)

    Gryspolakis, Nikolaos

    The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 dB. Next, we introduce modulated channels to the amplifier in order to compare their effect on the Bit Error Rate (BER) performance. We consider the impact on FOPAs when employing different modulation formats, such as RZ, NRZ and RZ-DPSK. Carefully selected modulation formats can improve BER performance and reduce the effects of cross-phase modulation, four wave mixing (FWM) products generation or dispersion (non-linear and linear inter-channel interference). Especially for the case of FOPAs, because of the ultra-fast interaction times of the FWM phenomenon, cross gain modulation can be a great deterrent for using FOPAs. We use RZ-DPSK in order to suppress the WDM signal crosstalk. Only by using RZ-DPSK, we obtain an improved receiver sensitivity of 5 dB when operating at 40 Gb/s. Finally, we investigate ways to mitigate such effects as the ones described above (gain excursions, gain tilt, etc.). We demonstrate that by using a ring configuration with optical feedback for the first time in FOPAs, we can achieve all-optical gain clamping (AOGC), mitigating gain excursions and attaining gain, independent of channel input power for a large range of PCIP. For example, with the use of AOGC, we reduce the add/drop-induced gain excursions from 4 dB to 0.6 dB. Also, by the combined use of AOGC and RZ-DPSK, we mitigate most of the aforementioned hindrances described above.

  4. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  5. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; hide

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire astrodynamic subject. By the use of compact graphical and tabular presentation the full scope of the material is made available in an easy-to-use style. Throughout the volume the analyst is shown, by means of suitable introductions, notes, authoritative examples, and cross-references the vital interrelation of the various orbital mechanics topics in the general field of earth satellites and satellite rendezvous. The handbook is designed to give the analyst rapid, reliable access to the mathematics of orbital mechanics needed for virtually any working requirements.

  6. Dynamique de nanobulles et nanoplasmas generes autour de nanoparticules plasmoniques irradiees par des impulsions ultracourtes

    NASA Astrophysics Data System (ADS)

    Dagallier, Adrien

    L'emergence des lasers a impulsion ultrabreves et des nanotechnologies a revolutionne notre perception et notre maniere d'interagir avec l'infiniment petit. Les gigantesques intensites generees par ces impulsions plus courtes que les temps de relaxation ou de diffusion du milieu irradie induisent de nombreux phenomenes non-lineaires, du doublement de frequence a l'ablation, dans des volumes de dimension caracteristique de l'ordre de la longueur d'onde du laser. En biologie et en medecine, ces phenomenes sont utilises a des fins d'imagerie multiphotonique ou pour detruire des tissus vivants. L'introduction de nanoparticules plasmoniques, qui concentrent le champ electromagnetique incident dans des regions de dimensions nanometriques, jusqu'a une fraction de la longueur d'onde, amplifie les phenomenes non-lineaires tout en offrant un controle beaucoup plus precis de la deposition d'energie, ouvrant la voie a la detection de molecules individuelles en solution et a la nanochirurgie. La nanochirurgie repose principalement sur la formation d'une bulle de vapeur a proximite d'une membrane cellulaire. Cette bulle de vapeur perce la membrane de maniere irreversible,entrainant la cellule a sa mort, ou la perturbe temporairement, ce qui permet d'envisager de faire penetrer dans la cellule des medicaments ou des brins d'ADN pour de la therapie genique. C'est principalement la taille de la bulle qui va decider de l'issue de l'irradiation laser. Il est donc necessaire de controler finement les parametres du laser et la geometrie de la nanoparticule afin d'atteindre l'objectif fixe. Le moyen le plus direct a l'heure actuelle de valider un ensemble de conditions experimentales est de realiser l'experience en laboratoire,ce qui est long et couteux. Les modeles de dynamique de bulle existants ne prennent pas en compte les parametres de l'irradiation et ajustent souvent leurs conditions initiales a partir de leurs mesures experimentales, ce qui limite la portee du modele au cas pour lequel il est ecrit. Ce memoire se propose de predire la taille maximale ainsi que la dynamique des bulles generees par des impulsions ultrabreves en fonction uniquement de la geometrie de la particule et des parametres du laser, entre autres la duree de pulse, la longueur d'onde centrale et la fluence d'irradiation.

  7. A review of parametric approaches specific to aerodynamic design process

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li

    2018-04-01

    Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.

  8. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    Rare-earth-doped fiber lasers and amplifiers are relatively easy to efficiently produce a stable and high quality laser beam in a compact, robust, and alignment-free configuration. Recently, high power fiber laser systems have facilitated wide spread applications in academics, industries, and militaries in replacement of bulk solid-state laser systems. The master oscillator power amplifier (MOPA) composed of a highly-controlled seed, high-gain preamplifiers, and high-efficiency power amplifiers are typically utilized to scale up the pulse energy, peak power, or average power. Furthermore, a direct-current-modulated nanosecond diode laser in single transverse mode can simply provide a compact and highly-controlled seed to result in the flexible output parameters, such as repetition rate, pulse duration, and even temporal pulse shape. However, when scaling up the peak power for high intensity applications, such a versatile diode-seeded nanosecond MOPA laser system using rare-earth-doped fibers is unable to completely save its own advantages compared to bulk laser systems. Without a strong seeding among the amplifiers, the guided amplified spontaneous amplification is easy to become dominant during the amplification, leading to the harmful self-lasing or pulsing effects, and the difficulty of the quantitative numerical comparison. In this dissertation, we study a high-efficiency and intense nanosecond ytterbium fiber MOPA system with good beam quality and stability for high intensity applications. The all-PM-fiber structure is achieved with the output extinction ratio of >12 dB by optimizing the interconnection of high power optical fibers. The diode-seeded MOPA configuration without parasitic stimulated amplification (PAS) is implemented using the double-pass scheme to extract energy efficiently for scaling peak power. The broadband PAS was studied experimentally, which matches well with our numerical simulation. The 1064-nm nanosecond seed was a direct-current-modulated Fabry-Perot diode laser associated with a weak and pulsed noise spanning from 1045 to 1063 nm. Even though the contribution of input noise pulse is only <5%, it becomes a significant transient spike during amplification. The blue-shifted pulsed noise may be caused by band filling effect for quantum-well seed laser driven by high peak current. The study helps the development of adaptive pulse shaping for scaling peak power or energy at high efficiency. On the other hand, the broadband spike with a 3-dB bandwidth of 8.8 nm can support pulses to seed the amplifier for sub-nanosecond giant pulse generation. Because of the very weak seed laser, the design of high-gain preamplifier becomes critical. The utilization of single-mode core-pumped fiber preamplifier can not only improve the mode contrast without fiber coiling effect but also significantly suppress the fiber nonlinearity. The double-pass scheme was therefore studied both numerically and experimentally to improve energy extraction efficiency for the lack of attainable seed and core-pumped power. As a result, a record-high peak power of > 30 kW and energy of > 0.23 mJ was successfully achieved to the best of our knowledge from the output of clad-pumped power amplifier with a beam quality of M2 ˜1.1 in a diode-seeded 15-microm-core fiber MOPA system. After the power amplifier, the MOPA conversion efficiency can be dramatically improved to >56% for an energy gain of >63 dB at a moderate repetition rate of 20 kHz with a beam quality of M 2 <1.5. The output energy of >1.1 mJ with a pulse duration of ˜6.1 ns can result in a peak power up to >116 kW which is limited by fiber fuse in long-term operation. Such a condition able to generate the on-target laser intensity of > 60 GW/cm2 for applications is qualified to preliminarily create a laser-plasma light source. Moreover, the related simulation results also reveal the double-passed power amplifier can further simplify MOPA. Such an intense clad-pumped power amplifier can further become a nonlinear fiber amplifier in all-normal dispersion instead of a nonlinear passive fiber. The combination of laser amplification and nonlinear conversion together can therefore overcome the significant pump depletion during the propagation along the passive fiber for power scaling. As a result, an intense spectrum spanning from 980 to 1600 nm as a high-power nanosecond supercontinuum source can be successfully generated with a conversion efficiency of >65% and a record-high peak power of >116 kW to the best of our knowledge. Because of MOPA structure, the influence of input parameters of nonlinear fiber amplifier on supercontinuum parameters can also be studied. The onset and interplay of fiber nonlinearities can be revealed stage by stage. Such an unique and linearly-polarized light source composed of an intense pump and broad sideband seed is beneficial for efficiently driving the broadband tunable optical parametric amplification free from the bulkiness and timing jitter. Keywords: High power fiber laser and amplifier, ytterbium fiber, master oscillator power amplification, parasitic stimulated amplification, multi-pass fiber amplification, peak power/pulse energy scaling, fiber nonlinear optics, supercontinuum generation.

  9. Bistability in a hybrid optomechanical system: effect of a gain medium

    NASA Astrophysics Data System (ADS)

    Asghari Nejad, A.; Baghshahi, H. R.; Askari, H. R.

    2017-11-01

    In this paper, we investigate the optical bistability of a hybrid optomechanical system consisting of two coupled cavities: a bare optomechanical cavity (with an oscillating mirror at one end) and a traditional one. The traditional cavity is filled with an optical parametric amplifier (OPA), and an input pump laser is applied to it. The Hamiltonian of the system is written in a rotating frame. The dynamics of the system is driven by the quantum Langevin equations of motion. We demonstrate that the presence of an OPA can dramatically affect the type of stability of the optomechanical cavity. We show that it is possible to create a proper optical bistability for the optomechanical cavity by changing the gain coefficient of the OPA. Also, it is shown that changing the phase of the field driving the OPA has two different effects on the bistability region of the optomechanical cavity. Moreover, we show that by choosing a proper value for the detuning of the traditional cavity it is possible to observe a tristable behavior in the optomechanical cavity.

  10. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  11. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE PAGES

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...

    2017-03-16

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  12. Optical tristability in a hybrid optomechanical system

    NASA Astrophysics Data System (ADS)

    Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.

    2018-05-01

    In this paper, we investigate a hybrid optomechanical system consisting of two cavities, which one of them is an optomechanical cavity that includes an optical parametric amplifier (OPA) and the other is a traditional cavity which contains an atomic medium. Hamiltonian of the system is written in a rotating frame with a rotation frequency of the frequency of input field to the system. Using Heisenberg-Langevin equations of motion, the dynamics of the system is described. Applying the steady-state conditions leads to a system of equations of the mean values of the operators of the system. The stability condition of the system is satisfied numerically and behavior of optomechanical cavity is investigated in different situations to find the effect of changing of the parameters of the system on the type of its stability. We show proposed system has the capability of tristable behavior, where, the gain coefficient of OPA acts as a switch in changing the bistability of the system to a tristable manner. The building block of the tristability in this system can be figured out as the enhanced nonlinearity of the system due to the presence of OPA.

  13. Laguerre-polynomial-weighted squeezed vacuum: generation and its properties of entanglement

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhang, Kuizheng; Zhang, Haoliang; Xu, Xuexiang; Hu, Liyun

    2018-02-01

    We theoretically prepare a kind of two-mode entangled non-Gaussian state generated by combining quantum catalysis and parametric-down amplifier operated on the two-mode squeezing vacuum state. We then investigate the entanglement properties by examining Von Neumann entropy, EPR correlation, squeezing effect and the fidelity of teleportation. It is shown that only Von Neumann entropy can be enhanced by both single- and two-mode catalysis in a small squeezing region, while the other properties can be enhanced only by two-mode catalysis including symmetrical and asymmetrical cases. A comparison among these properties shows that the squeezing and the EPR correlation definitely lead to the improvement of both the entanglement and the fidelity, and the region of enhanced fidelity can be seen as a sub-region of the enhanced entanglement which indicates that the entanglement is not always beneficial for the fidelity. In addition, the effect of photon-loss after catalysis on the fidelity is considered and the symmetrical two-photon catalysis may present better behavior than the symmetrical single-photon case against the decoherence in a certain region.

  14. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging

    PubMed Central

    Hartmann, Sébastien; Elsäßer, Wolfgang

    2017-01-01

    Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737

  15. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Blair, David G.

    2005-10-01

    Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.

  16. A theoretical study for the propagation of rolling noise over a porous road pavement

    NASA Astrophysics Data System (ADS)

    Keung Lui, Wai; Ming Li, Kai

    2004-07-01

    A simplified model based on the study of sound diffracted by a sphere is proposed for investigating the propagation of noise in a hornlike geometry between porous road surfaces and rolling tires. The simplified model is verified by comparing its predictions with the published numerical and experimental results of studies on the horn amplification of sound over a road pavement. In a parametric study, a point monopole source is assumed to be localized on the surface of a tire. In the frequency range of interest, a porous road pavement can effectively reduce the level of amplified sound due to the horn effect. It has been shown that an increase in the thickness and porosity of a porous layer, or the use of a double layer of porous road pavement, attenuates the horn amplification of sound. However, a decrease in the flow resistivity of a porous road pavement does little to reduce the horn amplification of sound. It has also been demonstrated that the horn effect over a porous road pavement is less dependent on the angular position of the source on the surface of tires.

  17. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  18. Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line

    NASA Astrophysics Data System (ADS)

    Ranzani, Leonardo; Kotler, Shlomi; Sirois, Adam J.; DeFeo, Michael P.; Castellanos-Beltran, Manuel; Cicak, Katarina; Vale, Leila R.; Aumentado, José

    2017-11-01

    Nonreciprocal transmission and isolation at microwave frequencies are important in many practical applications. In particular, compact isolators are useful in protecting sensitive quantum circuits operating at cryogenic temperatures from amplifier backaction and other environmental noise such as black-body radiation from higher temperature stages. However, the size of commercial cryogenic isolators limits the ability to measure multiple quantum circuits because of space constraints in typical dilution refrigerator systems. Furthermore, isolators usually require the use of ferrite components that cannot be integrated at the chip level and, since they also need large biasing magnetic fields, are incompatible with superconducting quantum circuits. In this work we show one way to accomplish isolation in a superconducting chip-scale device, a traveling-wave unidirectional frequency converter based on a parametrically pumped superconducting Josephson-junction transmission line, demonstrating better than 4.8 dB of inferred signal isolation from 6.6 to 11.4 GHz, with a maximum of 12 dB at 9.5 GHz. By using frequency diplexing techniques a conventional isolator could be implemented over this bandwidth.

  19. Rephasing invariant parametrization of flavor mixing

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hun

    A new rephasing invariant parametrization for the 3 x 3 CKM matrix, called (x, y) parametrization, is introduced and the properties and applications of the parametrization are discussed. The overall phase condition leads this parametrization to have only six rephsing invariant parameters and two constraints. Its simplicity and regularity become apparent when it is applied to the one-loop RGE (renormalization group equations) for the Yukawa couplings. The implications of this parametrization for unification of the Yukawa couplings are also explored.

  20. Electronic amplifiers: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Several types of amplifiers and amplifier systems are considered. These include preamplifiers, high power amplifiers, buffer and isolation amplifiers, amplifier circuits, and general purpose amplifiers.

  1. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  2. Ping-pong auto-zero amplifier with glitch reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Mark R

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  3. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  4. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  5. Hyperbolic and semi-parametric models in finance

    NASA Astrophysics Data System (ADS)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  6. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  7. A Cartesian parametrization for the numerical analysis of material instability

    DOE PAGES

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; ...

    2016-02-25

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  8. A Cartesian parametrization for the numerical analysis of material instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  9. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  10. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  11. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  12. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  13. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  14. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  16. Malaria resurgence in the East African highlands: Temperature trends revisited

    PubMed Central

    Pascual, M.; Ahumada, J. A.; Chaves, L. F.; Rodó, X.; Bouma, M.

    2006-01-01

    The incidence of malaria in the East African highlands has increased since the end of the 1970s. The role of climate change in the exacerbation of the disease has been controversial, and the specific influence of rising temperature (warming) has been highly debated following a previous study reporting no evidence to support a trend in temperature. We revisit this result using the same temperature data, now updated to the present from 1950 to 2002 for four high-altitude sites in East Africa where malaria has become a serious public health problem. With both nonparametric and parametric statistical analyses, we find evidence for a significant warming trend at all sites. To assess the biological significance of this trend, we drive a dynamical model for the population dynamics of the mosquito vector with the temperature time series and the corresponding detrended versions. This approach suggests that the observed temperature changes would be significantly amplified by the mosquito population dynamics with a difference in the biological response at least 1 order of magnitude larger than that in the environmental variable. Our results emphasize the importance of considering not just the statistical significance of climate trends but also their biological implications with dynamical models. PMID:16571662

  17. Non-classical light generated by quantum-noise-driven cavity optomechanics.

    PubMed

    Brooks, Daniel W C; Botter, Thierry; Schreppler, Sydney; Purdy, Thomas P; Brahms, Nathan; Stamper-Kurn, Dan M

    2012-08-23

    Optomechanical systems, in which light drives and is affected by the motion of a massive object, will comprise a new framework for nonlinear quantum optics, with applications ranging from the storage and transduction of quantum information to enhanced detection sensitivity in gravitational wave detectors. However, quantum optical effects in optomechanical systems have remained obscure, because their detection requires the object’s motion to be dominated by vacuum fluctuations in the optical radiation pressure; so far, direct observations have been stymied by technical and thermal noise. Here we report an implementation of cavity optomechanics using ultracold atoms in which the collective atomic motion is dominantly driven by quantum fluctuations in radiation pressure. The back-action of this motion onto the cavity light field produces ponderomotive squeezing. We detect this quantum phenomenon by measuring sub-shot-noise optical squeezing. Furthermore, the system acts as a low-power, high-gain, nonlinear parametric amplifier for optical fluctuations, demonstrating a gain of 20 dB with a pump corresponding to an average of only seven intracavity photons. These findings may pave the way for low-power quantum optical devices, surpassing quantum limits on position and force sensing, and the control and measurement of motion in quantum gases.

  18. Cascaded second-order processes for the efficient generation of narrowband terahertz radiation

    NASA Astrophysics Data System (ADS)

    Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.

    2017-02-01

    The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.

  19. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  20. Mitigation of wind tunnel wall interactions in subsonic cavity flows

    DOE PAGES

    Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; ...

    2015-03-06

    In this study, the flow over an open aircraft bay is often represented in a wind tunnel with a cavity. In flight, this flow is unconfined, though in experiments, the cavity is surrounded by wind tunnel walls. If untreated, wind tunnel wall effects can lead to significant distortions of cavity acoustics in subsonic flows. To understand and mitigate these cavity–tunnel interactions, a parametric approach was taken for flow over an L/D = 7 cavity at Mach numbers 0.6–0.8. With solid tunnel walls, a dominant cavity tone was observed, likely due to an interaction with a tunnel duct mode. Furthermore, anmore » acoustic liner opposite the cavity decreased the amplitude of the dominant mode and its harmonics, a result observed by previous researchers. Acoustic dampeners were also placed in the tunnel sidewalls, which further decreased the dominant mode amplitudes and peak amplitudes associated with nonlinear interactions between cavity modes. This then indicates that cavity resonance can be altered by tunnel sidewalls and that spanwise coupling should be addressed when conducting subsonic cavity experiments. Though mechanisms for dominant modes and nonlinear interactions likely exist in unconfined cavity flows, these effects can be amplified by the wind tunnel walls.« less

  1. Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Six, P.; Bretheau, L.; Sarlette, A.; Mirrahimi, M.; Rouchon, P.; Huard, B.

    2016-01-01

    A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.

  2. Consistency relations for sharp inflationary non-Gaussian features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less

  3. Design validation of an eye-safe scanning aerosol lidar with the Center for Lidar and Atmospheric Sciences Students (CLASS) at Hampton University

    NASA Astrophysics Data System (ADS)

    Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.

    2002-01-01

    ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.

  4. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  5. Is there a role for amplifiers in sexual selection?

    PubMed

    Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio

    2008-05-21

    The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information transfer at the emitter level due to the increased stereotypy of male advertising strategy.

  6. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  7. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  8. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  9. Auto-Zero Differential Amplifier

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  10. Gain and noise figure enhancement of Er+3/Yb+3 co-doped fiber/Raman hybrid amplifier

    NASA Astrophysics Data System (ADS)

    Mahran, O.

    2016-02-01

    An Er/Yb co-doped fiber/Raman hybrid amplifier (HA) is proposed and studied theoretically and analytically to improve the gain and noise figure of optical amplifiers. The calculations are performed under a uniform dopant and steady-state conditions. The initial energy transfer efficiency for Er/Yb co-doped fiber amplifier (EYDFA) is introduced, while the amplified spontaneous emission (ASE) is neglected. The glass fiber used for both Er/Yb and Raman amplifiers is phosphate. Different pump powers are used for both EYDFA and RA with 1 μW input signal power, 1 m length of Er/Yb amplifier and 25 km length of Raman amplifier (RA). The proposed model is validated for Er/Yb co-doped amplifier and Raman amplifier separately by comparing the calculating results with the experimental data. A high gain and low noise figure at 200 mW Raman pump power and 500 mW Er/Yb pump power are obtained for the proposed HA as compared with the experimental results of EYDFA, Raman amplifier and the EDFA/Raman hybrid amplifier.

  11. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    NASA Astrophysics Data System (ADS)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  13. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  14. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  15. Application of Multi-Input Multi-Output Feedback Control for F-16 Ventral Fin Buffet Alleviation Using Piezoelectric Actuators

    DTIC Science & Technology

    2012-03-22

    Power Amplifier (7). A power amplifier was required to drive the actuators. For this research a Trek , Inc. Model PZD 700 Dual Channel Amplifier was used...while the flight test amplifier was being built. The Trek amplifier was capable of amplifying 32 Figure 3.19: dSpace MicroAutoBox II Digital...averaging of 25% was used to reduce the errors caused by noise but still maintain accuracy. For the laboratory Trek amplifier, a 100 millivolt input

  16. Towards a Narrowband Photonic Sigma-Delta Digital Antenna

    DTIC Science & Technology

    2012-02-01

    High Speed Photodiode/ Amplifier 26 G no amplifier 50 k transimpedance amplifier N/A 12 ps rise time 50 Ω output impedance HP 8447A Amplifier ......Response for the optical amplifier as a function of input drive current

  17. Low noise tuned amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1984-01-01

    A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.

  18. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  19. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  20. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  1. Industrial universal electrometer

    DOEpatents

    Cordaro, Joseph V [Martinez, GA; Wood, Michael B [Aiken, SC

    2012-07-03

    An electrometer for use in measuring current is provided. The electrometer includes an enclosure capable of containing various components of the electrometer. A pre-amplifier is present and is one of the components of the electrometer. The pre-amplifier is contained by the enclosure. The pre-amplifier has a pre-amplifier enclosure that contains the pre-amplifier and provides radio frequency shielding and magnetic shielding to the pre-amplifier.

  2. Limit circuit prevents overdriving of operational amplifier

    NASA Technical Reports Server (NTRS)

    Openshaw, F. L.

    1967-01-01

    Cutoff-type high gain amplifier coupled by a diode prevents overdriving of operational amplifier. An amplified feedback signal offsets the excess input signal that tends to cause the amplifier to exceed its preset limit. The output is, therfore, held to the set clamp level.

  3. Method to amplify variable sequences without imposing primer sequences

    DOEpatents

    Bradbury, Andrew M.; Zeytun, Ahmet

    2006-11-14

    The present invention provides methods of amplifying target sequences without including regions flanking the target sequence in the amplified product or imposing amplification primer sequences on the amplified product. Also provided are methods of preparing a library from such amplified target sequences.

  4. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal amplifier. 882.1835 Section... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device used to electrically amplify signals derived from various physiological sources (e.g., the...

  5. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal amplifier. 882.1835 Section... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device used to electrically amplify signals derived from various physiological sources (e.g., the...

  6. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2010-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  7. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2011-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  8. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  9. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Aoki, Ichiro (Inventor); Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  10. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  11. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2008-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  12. A 1-W, 30-ghz, CPW Amplifier for ACTS Small Terminal Uplink

    NASA Technical Reports Server (NTRS)

    Taub, Susan R.; Simons, Rainee N.

    1992-01-01

    The progress is described of the development of a 1 W, 30 GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS)Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three stage, low power amplifier, and a single stage, high power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three stage and one stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.

  13. Towards a THz backward wave amplifier in European OPTHER project

    NASA Astrophysics Data System (ADS)

    Dispenza, M.; Brunetti, F.; Cojocaru, C.-S.; de Rossi, A.; Di Carlo, A.; Dolfi, D.; Durand, A.; Fiorello, A. M.; Gohier, A.; Guiset, P.; Kotiranta, M.; Krozer, V.; Legagneux, P.; Marchesin, R.; Megtert, S.; Bouamrane, F.; Mineo, M.; Paoloni, C.; Pham, K.; Schnell, J. P.; Secchi, A.; Tamburri, E.; Terranova, M. L.; Ulisse, G.; Zhurbenko, V.

    2010-10-01

    Within the EC funded international project OPTHER (OPtically Driven TeraHertz AmplifiERs) a considerable technological effort is being undertaken, in terms of technological development, THz device design and integration. The ultimate goal is to develop a miniaturised THz amplifier based on vacuum-tube principles The main target specifications of the OPTHER amplifier are the following: - Operating frequency: in the band 0.3 to 2 THz - Output power: > 10 mW ( 10 dBm ) - Gain: 10 to 20 dB. The project is in the middle of its duration. Design and simulations have shown that these targets can be met with a proper device configuration and careful optimization of the different parts of the amplifier. Two parallel schemes will be employed for amplifier realisation: THz Drive Signal Amplifier and Optically Modulated Beam THz Amplifier.

  14. Improved Grid-Array Millimeter-Wave Amplifier

    NASA Technical Reports Server (NTRS)

    Rosenberg, James J.; Rutledge, David B.; Smith, R. Peter; Weikle, Robert

    1993-01-01

    Improved grid-array amplifiers operating at millimeter and submillimeter wavelengths developed for use in communications and radar. Feedback suppressed by making input polarizations orthogonal to output polarizations. Amplifier made to oscillate by introducing some feedback. Several grid-array amplifiers concatenated to form high-gain beam-amplifying unit.

  15. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    PubMed

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  16. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  17. High frequency inductive lamp and power oscillator

    DOEpatents

    Kirkpatrick, Douglas A.; Gitsevich, Aleksandr

    2005-09-27

    An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".

  18. Multibeam Formation with a Parametric Sonar

    DTIC Science & Technology

    1976-03-05

    AD-A022 815 MULTIBEAM FORMATION WITH A PARAMETRIC SONAR Robert L. White Texas University at Austin Prepared for: Office of Naval Research 5 March...PARAMETRIC SONAR Final Report under Contract N00014-70-A-0166, Task 0020 1 February - 31 July 1974 Robe&, L. White OFFICE OF NAVAL RESEARCH Contract N00014...78712 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. r-X: ~ ... ABSTRACT Parametric sonar has proven to be an effective concept in sonar

  19. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  20. Low-Noise Band-Pass Amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  1. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming

    DTIC Science & Technology

    2006-04-15

    was amplified by injection locking of a high power diode laser and further amplified to -300 mW with a semiconductor optical amplifier. This light...amplifiers at 793nm, cascaded injection locked amplifiers at 793nm, and frequency chirped lasers at 793nm. 15. SUBJECT TERMS Optical Coherent Transients...injection- locking for broadband optical signal amplification ................. 34 2.10. Tapered semiconductor optical amplifier

  2. Visual neurophysiology: a field-effect amplifier designed and built by R. L. De Valois.

    PubMed

    Albrecht, Duane G; Creeger, Carl P; Crane, Alison M

    2005-10-01

    In the middle of the last century, R. L. De Valois designed and built a unique and effective amplifier based on the newly developed field-effect transistor (FET). This amplifier has many beneficial qualities for amplifying the signals of neurons with minimal disturbance. We have used this amplifier successfully for more than three decades. We describe the circuitry of the De Valois amplifier and provide performance specifications. The FET amplifier is one of De Valois's contributions to visual neurophysiology; we share the design in his honor, with the hope that it might prove useful to others.

  3. Amplifier for measuring low-level signals in the presence of high common mode voltage

    NASA Technical Reports Server (NTRS)

    Lukens, F. E. (Inventor)

    1985-01-01

    A high common mode rejection differential amplifier wherein two serially arranged Darlington amplifier stages are employed and any common mode voltage is divided between them by a resistance network. The input to the first Darlington amplifier stage is coupled to a signal input resistor via an amplifier which isolates the input and presents a high impedance across this resistor. The output of the second Darlington stage is transposed in scale via an amplifier stage which has its input a biasing circuit which effects a finite biasing of the two Darlington amplifier stages.

  4. ULTRA-STABILIZED D. C. AMPLIFIER

    DOEpatents

    Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.

    1959-02-17

    An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.

  5. High-power piezo drive amplifier for large stack and PFC applications

    NASA Astrophysics Data System (ADS)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  6. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  7. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate of 6.67% and ranged from 41.34% to 0% false positives of the 2,394 gray matter pixels for any cross-validated normal subject. In conclusion, adequate approximation to Gaussian distribution and high cross-validation can be achieved by the Key Institute's LORETA programs by using a log10 transform and parametric statistics, and parametric normative comparisons had lower false positive rates than the non-parametric tests.

  8. An improvement of quantum parametric methods by using SGSA parameterization technique and new elementary parametric functionals

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Oldenhof, M.; Freitez, J. A.; Mundim, K. C.; Ruette, F.

    A systematic improvement of parametric quantum methods (PQM) is performed by considering: (a) a new application of parameterization procedure to PQMs and (b) novel parametric functionals based on properties of elementary parametric functionals (EPF) [Ruette et al., Int J Quantum Chem 2008, 108, 1831]. Parameterization was carried out by using the simplified generalized simulated annealing (SGSA) method in the CATIVIC program. This code has been parallelized and comparison with MOPAC/2007 (PM6) and MINDO/SR was performed for a set of molecules with C=C, C=H, and H=H bonds. Results showed better accuracy than MINDO/SR and MOPAC-2007 for a selected trial set of molecules.

  9. Orbit Transfer Rocket Engine Technology Program, Advanced Engine Study Task D.6

    DTIC Science & Technology

    1992-02-28

    l!J~iliiJl 1. Report No. 2. Government Accession No. 3 . Recipient’s Catalog No. NASA 187215 4. Title and Subtitle 5. Report Date ORBIT TRANSFER ROCKET...Engine Study, three primary subtasks were accomplished: 1) Design and Parametric Data, 2) Engine Requirement Variation Studies, and 3 ) Vehicle Study...Mixture Ratio Parametrics 18 3 . Thrust Parametrics Off-Design Mixture Ratio Scans 22 4. Expansion Area Ratio Parametrics 24 5. OTV 20 klbf Engine Off

  10. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  11. Characteristics of stereo reproduction with parametric loudspeakers

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa

    2012-05-01

    A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.

  12. Parametric Methods for Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A

    2017-03-01

    In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Study of beam aberrations in a germanium XXIII XUV laser amplifier

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Key, M. H.; Cairns, G.; Dwivedi, L.; Krishnan, J.; Lewis, C. L. S.; MacPhee, A. G.; Neely, D.; Ramsden, S. A.; Tallents, G.

    1996-02-01

    A beam of amplified spontaneous emission at {23.2}/{23.6}nm from a GeXXIII XUV laser has been injected into a separate amplifier plasma and the astigmatic aberrations introduced by plasma density gradients in the amplifier have been estimated from analysis of images of the amplified beam.

  14. A low-noise current-sensitive amplifier-discriminator system for beta particle counting.

    PubMed

    Sephton, J P; Johansson, L C; Williams, J M

    2008-01-01

    NPL has developed a low-noise current amplifier/discriminator system for radionuclides that emit low-energy electrons and X-rays. The new beta amplifier is based on the low-noise Amptek A-250 operational amplifier. The design has been configured for optimum signal to noise ratio. The new amplifier is described and results obtained using primarily electron-capture decaying radionuclides are presented. The new amplifier gives rise to higher particle detection efficiency than the previously used Atomic Energy of Canada Limited-designed amplifier. This is shown by measurements of (54)Mn and (65)Zn. The counting plateaux are significantly longer and have reduced gradients.

  15. Low phase noise oscillator using two parallel connected amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  16. The warm, rich sound of valve guitar amplifiers

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-03-01

    Practical solid state diodes and transistors have made glass valve technology nearly obsolete. Nevertheless, valves survive largely because electric guitar players much prefer the sound of valve amplifiers to the sound of transistor amplifiers. This paper discusses the introductory-level physics behind that preference. Overdriving an amplifier adds harmonics to an input sound. While a moderately overdriven valve amplifier produces strong even harmonics that enhance a sound, an overdriven transistor amplifier creates strong odd harmonics that can cause dissonance. The functioning of a triode valve explains its creation of even and odd harmonics. Music production software enables the examination of both the wave shape and the harmonic content of amplified sounds.

  17. Multifrequency Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-01

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.

  18. Bio-isolated dc operational amplifier. [for bioelectric measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1974-01-01

    A bio-isolated dc operational amplifier is described for use in making bioelectrical measurements of a patient while providing isolation of the patient from electrical shocks. The circuit contains a first operational amplifier coupled to the patient with its output coupled in a forward loop through a first optic coupler to a second operational amplifier. The output of the second operational amplifier is coupled to suitable monitoring circuitry via a feedback circuit including a second optic coupler to the input of the first operational amplifier.

  19. Direct Current Amplifier. Report No. 92; AMPLIFICADOR DE CORRIENTE CONTINUA. Informe No. 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marazzi, C.

    1963-01-01

    A direct-current amplifier with low zero current and solid-state chopper for input is described. This amplifier can be used in control circuits and for general applications such as temperature measurement in thermocouples, amplifier for a photo-sensitive element, or zero amplifier in control systems. The input impedance is relatively low, serving principally as current amplifier. It is possible to obtain a symmetry characteristic for positive and negative values of the output voltage with respect to the input. (tr-auth)

  20. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

Top