Sample records for parametric bootstrap procedure

  1. Topics in Statistical Calibration

    DTIC Science & Technology

    2014-03-27

    on a parametric bootstrap where, instead of sampling directly from the residuals , samples are drawn from a normal distribution. This procedure will...addition to centering them (Davison and Hinkley, 1997). When there are outliers in the residuals , the bootstrap distribution of x̂0 can become skewed or...based and inversion methods using the linear mixed-effects model. Then, a simple parametric bootstrap algorithm is proposed that can be used to either

  2. Evaluating sufficient similarity for drinking-water disinfection by-product (DBP) mixtures with bootstrap hypothesis test procedures.

    PubMed

    Feder, Paul I; Ma, Zhenxu J; Bull, Richard J; Teuschler, Linda K; Rice, Glenn

    2009-01-01

    In chemical mixtures risk assessment, the use of dose-response data developed for one mixture to estimate risk posed by a second mixture depends on whether the two mixtures are sufficiently similar. While evaluations of similarity may be made using qualitative judgments, this article uses nonparametric statistical methods based on the "bootstrap" resampling technique to address the question of similarity among mixtures of chemical disinfectant by-products (DBP) in drinking water. The bootstrap resampling technique is a general-purpose, computer-intensive approach to statistical inference that substitutes empirical sampling for theoretically based parametric mathematical modeling. Nonparametric, bootstrap-based inference involves fewer assumptions than parametric normal theory based inference. The bootstrap procedure is appropriate, at least in an asymptotic sense, whether or not the parametric, distributional assumptions hold, even approximately. The statistical analysis procedures in this article are initially illustrated with data from 5 water treatment plants (Schenck et al., 2009), and then extended using data developed from a study of 35 drinking-water utilities (U.S. EPA/AMWA, 1989), which permits inclusion of a greater number of water constituents and increased structure in the statistical models.

  3. Effect of non-normality on test statistics for one-way independent groups designs.

    PubMed

    Cribbie, Robert A; Fiksenbaum, Lisa; Keselman, H J; Wilcox, Rand R

    2012-02-01

    The data obtained from one-way independent groups designs is typically non-normal in form and rarely equally variable across treatment populations (i.e., population variances are heterogeneous). Consequently, the classical test statistic that is used to assess statistical significance (i.e., the analysis of variance F test) typically provides invalid results (e.g., too many Type I errors, reduced power). For this reason, there has been considerable interest in finding a test statistic that is appropriate under conditions of non-normality and variance heterogeneity. Previously recommended procedures for analysing such data include the James test, the Welch test applied either to the usual least squares estimators of central tendency and variability, or the Welch test with robust estimators (i.e., trimmed means and Winsorized variances). A new statistic proposed by Krishnamoorthy, Lu, and Mathew, intended to deal with heterogeneous variances, though not non-normality, uses a parametric bootstrap procedure. In their investigation of the parametric bootstrap test, the authors examined its operating characteristics under limited conditions and did not compare it to the Welch test based on robust estimators. Thus, we investigated how the parametric bootstrap procedure and a modified parametric bootstrap procedure based on trimmed means perform relative to previously recommended procedures when data are non-normal and heterogeneous. The results indicated that the tests based on trimmed means offer the best Type I error control and power when variances are unequal and at least some of the distribution shapes are non-normal. © 2011 The British Psychological Society.

  4. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  6. Nonparametric bootstrap analysis with applications to demographic effects in demand functions.

    PubMed

    Gozalo, P L

    1997-12-01

    "A new bootstrap proposal, labeled smooth conditional moment (SCM) bootstrap, is introduced for independent but not necessarily identically distributed data, where the classical bootstrap procedure fails.... A good example of the benefits of using nonparametric and bootstrap methods is the area of empirical demand analysis. In particular, we will be concerned with their application to the study of two important topics: what are the most relevant effects of household demographic variables on demand behavior, and to what extent present parametric specifications capture these effects." excerpt

  7. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  8. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  9. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications

    PubMed Central

    Chaibub Neto, Elias

    2015-01-01

    In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965

  10. Reference interval computation: which method (not) to choose?

    PubMed

    Pavlov, Igor Y; Wilson, Andrew R; Delgado, Julio C

    2012-07-11

    When different methods are applied to reference interval (RI) calculation the results can sometimes be substantially different, especially for small reference groups. If there are no reliable RI data available, there is no way to confirm which method generates results closest to the true RI. We randomly drawn samples obtained from a public database for 33 markers. For each sample, RIs were calculated by bootstrapping, parametric, and Box-Cox transformed parametric methods. Results were compared to the values of the population RI. For approximately half of the 33 markers, results of all 3 methods were within 3% of the true reference value. For other markers, parametric results were either unavailable or deviated considerably from the true values. The transformed parametric method was more accurate than bootstrapping for sample size of 60, very close to bootstrapping for sample size 120, but in some cases unavailable. We recommend against using parametric calculations to determine RIs. The transformed parametric method utilizing Box-Cox transformation would be preferable way of RI calculation, if it satisfies normality test. If not, the bootstrapping is always available, and is almost as accurate and precise as the transformed parametric method. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  12. Performance of DIMTEST-and NOHARM-Based Statistics for Testing Unidimensionality

    ERIC Educational Resources Information Center

    Finch, Holmes; Habing, Brian

    2007-01-01

    This Monte Carlo study compares the ability of the parametric bootstrap version of DIMTEST with three goodness-of-fit tests calculated from a fitted NOHARM model to detect violations of the assumption of unidimensionality in testing data. The effectiveness of the procedures was evaluated for different numbers of items, numbers of examinees,…

  13. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  14. Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment.

    ERIC Educational Resources Information Center

    Habing, Brian

    2001-01-01

    Discusses ideas underlying nonparametric regression and the parametric bootstrap with an overview of their application to item response theory and the assessment of local dependence. Illustrates the use of the method in assessing local dependence that varies with examinee trait levels. (SLD)

  15. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    ERIC Educational Resources Information Center

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  17. Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions.

    PubMed

    Chaudhuri, Shomesh E; Merfeld, Daniel M

    2013-03-01

    Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.

  18. A Bootstrap Generalization of Modified Parallel Analysis for IRT Dimensionality Assessment

    ERIC Educational Resources Information Center

    Finch, Holmes; Monahan, Patrick

    2008-01-01

    This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…

  19. Confidence Intervals for the Mean: To Bootstrap or Not to Bootstrap

    ERIC Educational Resources Information Center

    Calzada, Maria E.; Gardner, Holly

    2011-01-01

    The results of a simulation conducted by a research team involving undergraduate and high school students indicate that when data is symmetric the student's "t" confidence interval for a mean is superior to the studied non-parametric bootstrap confidence intervals. When data is skewed and for sample sizes n greater than or equal to 10,…

  20. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods

    PubMed Central

    2014-01-01

    Background Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. Methods We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. Results In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. Conclusions The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes. PMID:24888356

  1. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods.

    PubMed

    Sadatsafavi, Mohsen; Marra, Carlo; Aaron, Shawn; Bryan, Stirling

    2014-06-03

    Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes.

  2. Comparison of parametric and bootstrap method in bioequivalence test.

    PubMed

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  3. Comparison of Parametric and Bootstrap Method in Bioequivalence Test

    PubMed Central

    Ahn, Byung-Jin

    2009-01-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption. PMID:19915699

  4. Non-parametric methods for cost-effectiveness analysis: the central limit theorem and the bootstrap compared.

    PubMed

    Nixon, Richard M; Wonderling, David; Grieve, Richard D

    2010-03-01

    Cost-effectiveness analyses (CEA) alongside randomised controlled trials commonly estimate incremental net benefits (INB), with 95% confidence intervals, and compute cost-effectiveness acceptability curves and confidence ellipses. Two alternative non-parametric methods for estimating INB are to apply the central limit theorem (CLT) or to use the non-parametric bootstrap method, although it is unclear which method is preferable. This paper describes the statistical rationale underlying each of these methods and illustrates their application with a trial-based CEA. It compares the sampling uncertainty from using either technique in a Monte Carlo simulation. The experiments are repeated varying the sample size and the skewness of costs in the population. The results showed that, even when data were highly skewed, both methods accurately estimated the true standard errors (SEs) when sample sizes were moderate to large (n>50), and also gave good estimates for small data sets with low skewness. However, when sample sizes were relatively small and the data highly skewed, using the CLT rather than the bootstrap led to slightly more accurate SEs. We conclude that while in general using either method is appropriate, the CLT is easier to implement, and provides SEs that are at least as accurate as the bootstrap. (c) 2009 John Wiley & Sons, Ltd.

  5. Estimation and confidence intervals for empirical mixing distributions

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1995-01-01

    Questions regarding collections of parameter estimates can frequently be expressed in terms of an empirical mixing distribution (EMD). This report discusses empirical Bayes estimation of an EMD, with emphasis on the construction of interval estimates. Estimation of the EMD is accomplished by substitution of estimates of prior parameters in the posterior mean of the EMD. This procedure is examined in a parametric model (the normal-normal mixture) and in a semi-parametric model. In both cases, the empirical Bayes bootstrap of Laird and Louis (1987, Journal of the American Statistical Association 82, 739-757) is used to assess the variability of the estimated EMD arising from the estimation of prior parameters. The proposed methods are applied to a meta-analysis of population trend estimates for groups of birds.

  6. Quantification of variability and uncertainty for air toxic emission inventories with censored emission factor data.

    PubMed

    Frey, H Christopher; Zhao, Yuchao

    2004-11-15

    Probabilistic emission inventories were developed for urban air toxic emissions of benzene, formaldehyde, chromium, and arsenic for the example of Houston. Variability and uncertainty in emission factors were quantified for 71-97% of total emissions, depending upon the pollutant and data availability. Parametric distributions for interunit variability were fit using maximum likelihood estimation (MLE), and uncertainty in mean emission factors was estimated using parametric bootstrap simulation. For data sets containing one or more nondetected values, empirical bootstrap simulation was used to randomly sample detection limits for nondetected values and observations for sample values, and parametric distributions for variability were fit using MLE estimators for censored data. The goodness-of-fit for censored data was evaluated by comparison of cumulative distributions of bootstrap confidence intervals and empirical data. The emission inventory 95% uncertainty ranges are as small as -25% to +42% for chromium to as large as -75% to +224% for arsenic with correlated surrogates. Uncertainty was dominated by only a few source categories. Recommendations are made for future improvements to the analysis.

  7. Efficient bootstrap estimates for tail statistics

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan

    2017-03-01

    Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.

  8. A Bootstrap Algorithm for Mixture Models and Interval Data in Inter-Comparisons

    DTIC Science & Technology

    2001-07-01

    parametric bootstrap. The present algorithm will be applied to a thermometric inter-comparison, where data cannot be assumed to be normally distributed. 2 Data...experimental methods, used in each laboratory) often imply that the statistical assumptions are not satisfied, as for example in several thermometric ...triangular). Indeed, in thermometric experiments these three probabilistic models can represent several common stochastic variabilities for

  9. Does Bootstrap Procedure Provide Biased Estimates? An Empirical Examination for a Case of Multiple Regression.

    ERIC Educational Resources Information Center

    Fan, Xitao

    This paper empirically and systematically assessed the performance of bootstrap resampling procedure as it was applied to a regression model. Parameter estimates from Monte Carlo experiments (repeated sampling from population) and bootstrap experiments (repeated resampling from one original bootstrap sample) were generated and compared. Sample…

  10. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  11. Comparison of mode estimation methods and application in molecular clock analysis

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Shah, Prachi

    2003-01-01

    BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.

  12. A frequentist approach to computer model calibration

    DOE PAGES

    Wong, Raymond K. W.; Storlie, Curtis Byron; Lee, Thomas C. M.

    2016-05-05

    The paper considers the computer model calibration problem and provides a general frequentist solution. Under the framework proposed, the data model is semiparametric with a non-parametric discrepancy function which accounts for any discrepancy between physical reality and the computer model. In an attempt to solve a fundamentally important (but often ignored) identifiability issue between the computer model parameters and the discrepancy function, the paper proposes a new and identifiable parameterization of the calibration problem. It also develops a two-step procedure for estimating all the relevant quantities under the new parameterization. This estimation procedure is shown to enjoy excellent rates ofmore » convergence and can be straightforwardly implemented with existing software. For uncertainty quantification, bootstrapping is adopted to construct confidence regions for the quantities of interest. As a result, the practical performance of the methodology is illustrated through simulation examples and an application to a computational fluid dynamics model.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Raymond K. W.; Storlie, Curtis Byron; Lee, Thomas C. M.

    The paper considers the computer model calibration problem and provides a general frequentist solution. Under the framework proposed, the data model is semiparametric with a non-parametric discrepancy function which accounts for any discrepancy between physical reality and the computer model. In an attempt to solve a fundamentally important (but often ignored) identifiability issue between the computer model parameters and the discrepancy function, the paper proposes a new and identifiable parameterization of the calibration problem. It also develops a two-step procedure for estimating all the relevant quantities under the new parameterization. This estimation procedure is shown to enjoy excellent rates ofmore » convergence and can be straightforwardly implemented with existing software. For uncertainty quantification, bootstrapping is adopted to construct confidence regions for the quantities of interest. As a result, the practical performance of the methodology is illustrated through simulation examples and an application to a computational fluid dynamics model.« less

  14. Parametric modelling of cost data in medical studies.

    PubMed

    Nixon, R M; Thompson, S G

    2004-04-30

    The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice. Copyright 2004 John Wiley & Sons, Ltd.

  15. The Beginner's Guide to the Bootstrap Method of Resampling.

    ERIC Educational Resources Information Center

    Lane, Ginny G.

    The bootstrap method of resampling can be useful in estimating the replicability of study results. The bootstrap procedure creates a mock population from a given sample of data from which multiple samples are then drawn. The method extends the usefulness of the jackknife procedure as it allows for computation of a given statistic across a maximal…

  16. A brief introduction to computer-intensive methods, with a view towards applications in spatial statistics and stereology.

    PubMed

    Mattfeldt, Torsten

    2011-04-01

    Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.

  17. Mindfulness, Empathy, and Intercultural Sensitivity amongst Undergraduate Students

    ERIC Educational Resources Information Center

    Menardo, Dayne Arvin

    2017-01-01

    This study examined the relationships amongst mindfulness, empathy, and intercultural sensitivity. Non-parametric analysis were conducted through Spearman and Hayes's PROCESS bootstrapping to examine the relationship between mindfulness and intercultural sensitivity, and whether empathy mediates the relationship between mindfulness and…

  18. Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, Y. S.

    2017-12-01

    The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results show that probabilistic daily snowfall depth by frequency analysis is decreased at most stations, and most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics. Acknowledgment.This research was supported by a grant(MPSS-NH-2015-79) from Disaster Prediction and Mitigation Technology Development Program funded by Korean Ministry of Public Safety and Security(MPSS).

  19. Do simple screening statistical tools help to detect reporting bias?

    PubMed

    Pirracchio, Romain; Resche-Rigon, Matthieu; Chevret, Sylvie; Journois, Didier

    2013-09-02

    As a result of reporting bias, or frauds, false or misunderstood findings may represent the majority of published research claims. This article provides simple methods that might help to appraise the quality of the reporting of randomized, controlled trials (RCT). This evaluation roadmap proposed herein relies on four steps: evaluation of the distribution of the reported variables; evaluation of the distribution of the reported p values; data simulation using parametric bootstrap and explicit computation of the p values. Such an approach was illustrated using published data from a retracted RCT comparing a hydroxyethyl starch versus albumin-based priming for cardiopulmonary bypass. Despite obvious nonnormal distributions, several variables are presented as if they were normally distributed. The set of 16 p values testing for differences in baseline characteristics across randomized groups did not follow a Uniform distribution on [0,1] (p = 0.045). The p values obtained by explicit computations were different from the results reported by the authors for the two following variables: urine output at 5 hours (calculated p value < 10-6, reported p ≥ 0.05); packed red blood cells (PRBC) during surgery (calculated p value = 0.08; reported p < 0.05). Finally, parametric bootstrap found p value > 0.05 in only 5 of the 10,000 simulated datasets concerning urine output 5 hours after surgery. Concerning PRBC transfused during surgery, parametric bootstrap showed that only the corresponding p value had less than a 50% chance to be inferior to 0.05 (3,920/10,000, p value < 0.05). Such simple evaluation methods might offer some warning signals. However, it should be emphasized that such methods do not allow concluding to the presence of error or fraud but should rather be used to justify asking for an access to the raw data.

  20. A unified procedure for meta-analytic evaluation of surrogate end points in randomized clinical trials

    PubMed Central

    Dai, James Y.; Hughes, James P.

    2012-01-01

    The meta-analytic approach to evaluating surrogate end points assesses the predictiveness of treatment effect on the surrogate toward treatment effect on the clinical end point based on multiple clinical trials. Definition and estimation of the correlation of treatment effects were developed in linear mixed models and later extended to binary or failure time outcomes on a case-by-case basis. In a general regression setting that covers nonnormal outcomes, we discuss in this paper several metrics that are useful in the meta-analytic evaluation of surrogacy. We propose a unified 3-step procedure to assess these metrics in settings with binary end points, time-to-event outcomes, or repeated measures. First, the joint distribution of estimated treatment effects is ascertained by an estimating equation approach; second, the restricted maximum likelihood method is used to estimate the means and the variance components of the random treatment effects; finally, confidence intervals are constructed by a parametric bootstrap procedure. The proposed method is evaluated by simulations and applications to 2 clinical trials. PMID:22394448

  1. Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity.

    PubMed

    Chang, Jinyuan; Zheng, Chao; Zhou, Wen-Xin; Zhou, Wen

    2017-12-01

    In this article, we study the problem of testing the mean vectors of high dimensional data in both one-sample and two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the unknown covariance matrices, the proposed tests allow general covariance structures of the data and therefore enjoy wide scope of applicability in practice. To enhance powers of the tests against sparse alternatives, we further propose two-step procedures with a preliminary feature screening step. Theoretical properties of the proposed tests are investigated. Through extensive numerical experiments on synthetic data sets and an human acute lymphoblastic leukemia gene expression data set, we illustrate the performance of the new tests and how they may provide assistance on detecting disease-associated gene-sets. The proposed methods have been implemented in an R-package HDtest and are available on CRAN. © 2017, The International Biometric Society.

  2. Feature selection and classification of multiparametric medical images using bagging and SVM

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Resnick, Susan M.; Davatzikos, Christos

    2008-03-01

    This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.

  3. Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables.

    PubMed

    Fagerland, Morten W; Sandvik, Leiv; Mowinckel, Petter

    2011-04-13

    The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. The Welch U test (the T test with adjustment for unequal variances) and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group). The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

  4. A global goodness-of-fit test for receiver operating characteristic curve analysis via the bootstrap method.

    PubMed

    Zou, Kelly H; Resnic, Frederic S; Talos, Ion-Florin; Goldberg-Zimring, Daniel; Bhagwat, Jui G; Haker, Steven J; Kikinis, Ron; Jolesz, Ferenc A; Ohno-Machado, Lucila

    2005-10-01

    Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap. A simple log (or logit) and a more flexible Box-Cox normality transformations were applied to untransformed or transformed data from two clinical studies to predict complications following percutaneous coronary interventions (PCIs) and for image-guided neurosurgical resection results predicted by tumor volume, respectively. We compared a non-parametric with a parametric binormal estimate of the underlying ROC curve. To construct such a GOF test, we used the non-parametric and parametric areas under the curve (AUCs) as the metrics, with a resulting p value reported. In the interventional cardiology example, logit and Box-Cox transformations of the predictive probabilities led to satisfactory AUCs (AUC=0.888; p=0.78, and AUC=0.888; p=0.73, respectively), while in the brain tumor resection example, log and Box-Cox transformations of the tumor size also led to satisfactory AUCs (AUC=0.898; p=0.61, and AUC=0.899; p=0.42, respectively). In contrast, significant departures from GOF were observed without applying any transformation prior to assuming a binormal model (AUC=0.766; p=0.004, and AUC=0.831; p=0.03), respectively. In both studies the p values suggested that transformations were important to consider before applying any binormal model to estimate the AUC. Our analyses also demonstrated and confirmed the predictive values of different classifiers for determining the interventional complications following PCIs and resection outcomes in image-guided neurosurgery.

  5. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults.

    PubMed

    Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M

    2016-01-01

    Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

  6. Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…

  7. Learning predictive models that use pattern discovery--a bootstrap evaluative approach applied in organ functioning sequences.

    PubMed

    Toma, Tudor; Bosman, Robert-Jan; Siebes, Arno; Peek, Niels; Abu-Hanna, Ameen

    2010-08-01

    An important problem in the Intensive Care is how to predict on a given day of stay the eventual hospital mortality for a specific patient. A recent approach to solve this problem suggested the use of frequent temporal sequences (FTSs) as predictors. Methods following this approach were evaluated in the past by inducing a model from a training set and validating the prognostic performance on an independent test set. Although this evaluative approach addresses the validity of the specific models induced in an experiment, it falls short of evaluating the inductive method itself. To achieve this, one must account for the inherent sources of variation in the experimental design. The main aim of this work is to demonstrate a procedure based on bootstrapping, specifically the .632 bootstrap procedure, for evaluating inductive methods that discover patterns, such as FTSs. A second aim is to apply this approach to find out whether a recently suggested inductive method that discovers FTSs of organ functioning status is superior over a traditional method that does not use temporal sequences when compared on each successive day of stay at the Intensive Care Unit. The use of bootstrapping with logistic regression using pre-specified covariates is known in the statistical literature. Using inductive methods of prognostic models based on temporal sequence discovery within the bootstrap procedure is however novel at least in predictive models in the Intensive Care. Our results of applying the bootstrap-based evaluative procedure demonstrate the superiority of the FTS-based inductive method over the traditional method in terms of discrimination as well as accuracy. In addition we illustrate the insights gained by the analyst into the discovered FTSs from the bootstrap samples. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Inference for finite-sample trajectories in dynamic multi-state site-occupancy models using hidden Markov model smoothing

    USGS Publications Warehouse

    Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin

    2014-01-01

    Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.

  9. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    Synthetic streamflow data generation involves the synthesis of likely streamflow patterns that are statistically indistinguishable from the observed streamflow data. The various kinds of stochastic models adopted for multi-season streamflow generation in hydrology are: i) parametric models which hypothesize the form of the periodic dependence structure and the distributional form a priori (examples are PAR, PARMA); disaggregation models that aim to preserve the correlation structure at the periodic level and the aggregated annual level; ii) Nonparametric models (examples are bootstrap/kernel based methods), which characterize the laws of chance, describing the stream flow process, without recourse to prior assumptions as to the form or structure of these laws; (k-nearest neighbor (k-NN), matched block bootstrap (MABB)); non-parametric disaggregation model. iii) Hybrid models which blend both parametric and non-parametric models advantageously to model the streamflows effectively. Despite many of these developments that have taken place in the field of stochastic modeling of streamflows over the last four decades, accurate prediction of the storage and the critical drought characteristics has been posing a persistent challenge to the stochastic modeler. This is partly because, usually, the stochastic streamflow model parameters are estimated by minimizing a statistically based objective function (such as maximum likelihood (MLE) or least squares (LS) estimation) and subsequently the efficacy of the models is being validated based on the accuracy of prediction of the estimates of the water-use characteristics, which requires large number of trial simulations and inspection of many plots and tables. Still accurate prediction of the storage and the critical drought characteristics may not be ensured. In this study a multi-objective optimization framework is proposed to find the optimal hybrid model (blend of a simple parametric model, PAR(1) model and matched block bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  10. Bootstrapping Confidence Intervals for Robust Measures of Association.

    ERIC Educational Resources Information Center

    King, Jason E.

    A Monte Carlo simulation study was conducted to determine the bootstrap correction formula yielding the most accurate confidence intervals for robust measures of association. Confidence intervals were generated via the percentile, adjusted, BC, and BC(a) bootstrap procedures and applied to the Winsorized, percentage bend, and Pearson correlation…

  11. Benchmark dose analysis via nonparametric regression modeling

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057

  12. Introducing Statistical Inference to Biology Students through Bootstrapping and Randomization

    ERIC Educational Resources Information Center

    Lock, Robin H.; Lock, Patti Frazer

    2008-01-01

    Bootstrap methods and randomization tests are increasingly being used as alternatives to standard statistical procedures in biology. They also serve as an effective introduction to the key ideas of statistical inference in introductory courses for biology students. We discuss the use of such simulation based procedures in an integrated curriculum…

  13. Bootstrapping in Applied Linguistics: Assessing Its Potential Using Shared Data

    ERIC Educational Resources Information Center

    Plonsky, Luke; Egbert, Jesse; Laflair, Geoffrey T.

    2015-01-01

    Parametric analyses such as t tests and ANOVAs are the norm--if not the default--statistical tests found in quantitative applied linguistics research (Gass 2009). Applied statisticians and one applied linguist (Larson-Hall 2010, 2012; Larson-Hall and Herrington 2010), however, have argued that this approach may not be appropriate for small samples…

  14. A Primer on Bootstrap Factor Analysis as Applied to Health Studies Research

    ERIC Educational Resources Information Center

    Lu, Wenhua; Miao, Jingang; McKyer, E. Lisako J.

    2014-01-01

    Objectives: To demonstrate how the bootstrap method could be conducted in exploratory factor analysis (EFA) with a syntax written in SPSS. Methods: The data obtained from the Texas Childhood Obesity Prevention Policy Evaluation project (T-COPPE project) were used for illustration. A 5-step procedure to conduct bootstrap factor analysis (BFA) was…

  15. Increased Reliability for Single-Case Research Results: Is the Bootstrap the Answer?

    ERIC Educational Resources Information Center

    Parker, Richard I.

    2006-01-01

    There is need for objective and reliable single-case research (SCR) results in the movement toward evidence-based interventions (EBI), for inclusion in meta-analyses, and for funding accountability in clinical contexts. Yet SCR deals with data that often do not conform to parametric data assumptions and that yield results of low reliability. A…

  16. Bootstrap versus Statistical Effect Size Corrections: A Comparison with Data from the Finding Embedded Figures Test.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Melancon, Janet G.

    Effect sizes have been increasingly emphasized in research as more researchers have recognized that: (1) all parametric analyses (t-tests, analyses of variance, etc.) are correlational; (2) effect sizes have played an important role in meta-analytic work; and (3) statistical significance testing is limited in its capacity to inform scientific…

  17. Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.

    PubMed

    Wang, Zuozhen

    2018-01-01

    Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.

  18. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  19. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    NASA Astrophysics Data System (ADS)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  20. Assessing uncertainties in superficial water provision by different bootstrap-based techniques

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo Mario

    2014-05-01

    An assessment of water security can incorporate several water-related concepts, characterizing the interactions between societal needs, ecosystem functioning, and hydro-climatic conditions. The superficial freshwater provision level depends on the methods chosen for 'Environmental Flow Requirement' estimations, which integrate the sources of uncertainty in the understanding of how water-related threats to aquatic ecosystem security arise. Here, we develop an uncertainty assessment of superficial freshwater provision based on different bootstrap techniques (non-parametric resampling with replacement). To illustrate this approach, we use an agricultural basin (291 km2) within the Cantareira water supply system in Brazil monitored by one daily streamflow gage (24-year period). The original streamflow time series has been randomly resampled for different times or sample sizes (N = 500; ...; 1000), then applied to the conventional bootstrap approach and variations of this method, such as: 'nearest neighbor bootstrap'; and 'moving blocks bootstrap'. We have analyzed the impact of the sampling uncertainty on five Environmental Flow Requirement methods, based on: flow duration curves or probability of exceedance (Q90%, Q75% and Q50%); 7-day 10-year low-flow statistic (Q7,10); and presumptive standard (80% of the natural monthly mean ?ow). The bootstrap technique has been also used to compare those 'Environmental Flow Requirement' (EFR) methods among themselves, considering the difference between the bootstrap estimates and the "true" EFR characteristic, which has been computed averaging the EFR values of the five methods and using the entire streamflow record at monitoring station. This study evaluates the bootstrapping strategies, the representativeness of streamflow series for EFR estimates and their confidence intervals, in addition to overview of the performance differences between the EFR methods. The uncertainties arisen during EFR methods assessment will be propagated through water security indicators referring to water scarcity and vulnerability, seeking to provide meaningful support to end-users and water managers facing the incorporation of uncertainties in the decision making process.

  1. Development of probabilistic emission inventories of air toxics for Jacksonville, Florida, USA.

    PubMed

    Zhao, Yuchao; Frey, H Christopher

    2004-11-01

    Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.

  2. Confidence intervals and hypothesis testing for the Permutation Entropy with an application to epilepsy

    NASA Astrophysics Data System (ADS)

    Traversaro, Francisco; O. Redelico, Francisco

    2018-04-01

    In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of complexity is the Permutation Entropy. But there is still no known method to determine the accuracy of this measure. There has been little research on the statistical properties of this quantity that characterize time series. The literature describes some resampling methods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but these seems to fail. In this contribution, we propose a parametric bootstrap methodology using a symbolic representation of the time series to obtain the distribution of the Permutation Entropy estimator. We perform several time series simulations given by well-known stochastic processes: the 1/fα noise family, and show in each case that the proposed accuracy measure is as efficient as the one obtained by the frequentist approach of repeating the experiment. The complexity of brain electrical activity, measured by the Permutation Entropy, has been extensively used in epilepsy research for detection in dynamical changes in electroencephalogram (EEG) signal with no consideration of the variability of this complexity measure. An application of the parametric bootstrap methodology is used to compare normal and pre-ictal EEG signals.

  3. Using Cluster Bootstrapping to Analyze Nested Data With a Few Clusters.

    PubMed

    Huang, Francis L

    2018-04-01

    Cluster randomized trials involving participants nested within intact treatment and control groups are commonly performed in various educational, psychological, and biomedical studies. However, recruiting and retaining intact groups present various practical, financial, and logistical challenges to evaluators and often, cluster randomized trials are performed with a low number of clusters (~20 groups). Although multilevel models are often used to analyze nested data, researchers may be concerned of potentially biased results due to having only a few groups under study. Cluster bootstrapping has been suggested as an alternative procedure when analyzing clustered data though it has seen very little use in educational and psychological studies. Using a Monte Carlo simulation that varied the number of clusters, average cluster size, and intraclass correlations, we compared standard errors using cluster bootstrapping with those derived using ordinary least squares regression and multilevel models. Results indicate that cluster bootstrapping, though more computationally demanding, can be used as an alternative procedure for the analysis of clustered data when treatment effects at the group level are of primary interest. Supplementary material showing how to perform cluster bootstrapped regressions using R is also provided.

  4. Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference

    USGS Publications Warehouse

    Olea, R.A.; Pardo-Iguzquiza, E.

    2011-01-01

    The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.

  5. Using multiple decrement models to estimate risk and morbidity from specific AIDS illnesses. Multicenter AIDS Cohort Study (MACS).

    PubMed

    Hoover, D R; Peng, Y; Saah, A J; Detels, R R; Day, R S; Phair, J P

    A simple non-parametric approach is developed to simultaneously estimate net incidence and morbidity time from specific AIDS illnesses in populations at high risk for death from these illnesses and other causes. The disease-death process has four-stages that can be recast as two sandwiching three-state multiple decrement processes. Non-parametric estimation of net incidence and morbidity time with error bounds are achieved from these sandwiching models through modification of methods from Aalen and Greenwood, and bootstrapping. An application to immunosuppressed HIV-1 infected homosexual men reveals that cytomegalovirus disease, Kaposi's sarcoma and Pneumocystis pneumonia are likely to occur and cause significant morbidity time.

  6. Scene-based nonuniformity correction and enhancement: pixel statistics and subpixel motion.

    PubMed

    Zhao, Wenyi; Zhang, Chao

    2008-07-01

    We propose a framework for scene-based nonuniformity correction (NUC) and nonuniformity correction and enhancement (NUCE) that is required for focal-plane array-like sensors to obtain clean and enhanced-quality images. The core of the proposed framework is a novel registration-based nonuniformity correction super-resolution (NUCSR) method that is bootstrapped by statistical scene-based NUC methods. Based on a comprehensive imaging model and an accurate parametric motion estimation, we are able to remove severe/structured nonuniformity and in the presence of subpixel motion to simultaneously improve image resolution. One important feature of our NUCSR method is the adoption of a parametric motion model that allows us to (1) handle many practical scenarios where parametric motions are present and (2) carry out perfect super-resolution in principle by exploring available subpixel motions. Experiments with real data demonstrate the efficiency of the proposed NUCE framework and the effectiveness of the NUCSR method.

  7. Fast, Exact Bootstrap Principal Component Analysis for p > 1 million

    PubMed Central

    Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim

    2015-01-01

    Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801

  8. Assessing the fit of site-occupancy models

    USGS Publications Warehouse

    MacKenzie, D.I.; Bailey, L.L.

    2004-01-01

    Few species are likely to be so evident that they will always be detected at a site when present. Recently a model has been developed that enables estimation of the proportion of area occupied, when the target species is not detected with certainty. Here we apply this modeling approach to data collected on terrestrial salamanders in the Plethodon glutinosus complex in the Great Smoky Mountains National Park, USA, and wish to address the question 'how accurately does the fitted model represent the data?' The goodness-of-fit of the model needs to be assessed in order to make accurate inferences. This article presents a method where a simple Pearson chi-square statistic is calculated and a parametric bootstrap procedure is used to determine whether the observed statistic is unusually large. We found evidence that the most global model considered provides a poor fit to the data, hence estimated an overdispersion factor to adjust model selection procedures and inflate standard errors. Two hypothetical datasets with known assumption violations are also analyzed, illustrating that the method may be used to guide researchers to making appropriate inferences. The results of a simulation study are presented to provide a broader view of the methods properties.

  9. A Bootstrap Procedure of Propensity Score Estimation

    ERIC Educational Resources Information Center

    Bai, Haiyan

    2013-01-01

    Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…

  10. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data

    Treesearch

    Ronald E. McRoberts; Steen Magnussen; Erkki O. Tomppo; Gherardo Chirici

    2011-01-01

    Nearest neighbors techniques have been shown to be useful for estimating forest attributes, particularly when used with forest inventory and satellite image data. Published reports of positive results have been truly international in scope. However, for these techniques to be more useful, they must be able to contribute to scientific inference which, for sample-based...

  11. Resampling methods in Microsoft Excel® for estimating reference intervals

    PubMed Central

    Theodorsson, Elvar

    2015-01-01

    Computer- intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles.
The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular.
Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples. PMID:26527366

  12. Resampling methods in Microsoft Excel® for estimating reference intervals.

    PubMed

    Theodorsson, Elvar

    2015-01-01

    Computer-intensive resampling/bootstrap methods are feasible when calculating reference intervals from non-Gaussian or small reference samples. Microsoft Excel® in version 2010 or later includes natural functions, which lend themselves well to this purpose including recommended interpolation procedures for estimating 2.5 and 97.5 percentiles. 
The purpose of this paper is to introduce the reader to resampling estimation techniques in general and in using Microsoft Excel® 2010 for the purpose of estimating reference intervals in particular.
 Parametric methods are preferable to resampling methods when the distributions of observations in the reference samples is Gaussian or can transformed to that distribution even when the number of reference samples is less than 120. Resampling methods are appropriate when the distribution of data from the reference samples is non-Gaussian and in case the number of reference individuals and corresponding samples are in the order of 40. At least 500-1000 random samples with replacement should be taken from the results of measurement of the reference samples.

  13. Robustness of S1 statistic with Hodges-Lehmann for skewed distributions

    NASA Astrophysics Data System (ADS)

    Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping

    2016-10-01

    Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.

  14. [Relationship Between General Cognitive Abilities and School Achievement: The Mediation Role of Learning Behavior].

    PubMed

    Weber, H M; Rücker, S; Büttner, P; Petermann, F; Daseking, M

    2015-10-01

    General cognitive abilities are still considered as the most important predictor of school achievement and success. Whether the high correlation (r=0.50) can be explained by other variables has not yet been studied. Learning behavior can be discussed as one factor that influences the relationship between general cognitive abilities and school achievement. This study examined the relationship between intelligence, school achievement and learning behavior. Mediator analyses were conducted to check whether learning behavior would mediate the relationship between general cognitive abilities and school grades in mathematics and German. Statistical analyses confirmed that the relationship between general cognitive abilities and school achievement was fully mediated by learning behavior for German, whereas intelligence seemed to be the only predictor for achievement in mathematics. These results could be confirmed by non-parametric bootstrapping procedures. RESULTS indicate that special training of learning behavior may have a positive impact on school success, even for children and adolescents with low IQ. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Bootstrap Estimation and Testing for Variance Equality.

    ERIC Educational Resources Information Center

    Olejnik, Stephen; Algina, James

    The purpose of this study was to develop a single procedure for comparing population variances which could be used for distribution forms. Bootstrap methodology was used to estimate the variability of the sample variance statistic when the population distribution was normal, platykurtic and leptokurtic. The data for the study were generated and…

  16. Pearson-type goodness-of-fit test with bootstrap maximum likelihood estimation.

    PubMed

    Yin, Guosheng; Ma, Yanyuan

    2013-01-01

    The Pearson test statistic is constructed by partitioning the data into bins and computing the difference between the observed and expected counts in these bins. If the maximum likelihood estimator (MLE) of the original data is used, the statistic generally does not follow a chi-squared distribution or any explicit distribution. We propose a bootstrap-based modification of the Pearson test statistic to recover the chi-squared distribution. We compute the observed and expected counts in the partitioned bins by using the MLE obtained from a bootstrap sample. This bootstrap-sample MLE adjusts exactly the right amount of randomness to the test statistic, and recovers the chi-squared distribution. The bootstrap chi-squared test is easy to implement, as it only requires fitting exactly the same model to the bootstrap data to obtain the corresponding MLE, and then constructs the bin counts based on the original data. We examine the test size and power of the new model diagnostic procedure using simulation studies and illustrate it with a real data set.

  17. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  18. A neurocomputational theory of how explicit learning bootstraps early procedural learning.

    PubMed

    Paul, Erick J; Ashby, F Gregory

    2013-01-01

    It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.

  19. A Class of Population Covariance Matrices in the Bootstrap Approach to Covariance Structure Analysis

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro; Yanagihara, Hirokazu

    2007-01-01

    Model evaluation in covariance structure analysis is critical before the results can be trusted. Due to finite sample sizes and unknown distributions of real data, existing conclusions regarding a particular statistic may not be applicable in practice. The bootstrap procedure automatically takes care of the unknown distribution and, for a given…

  20. Calculating Confidence Intervals for Regional Economic Impacts of Recreastion by Bootstrapping Visitor Expenditures

    Treesearch

    Donald B.K. English

    2000-01-01

    In this paper I use bootstrap procedures to develop confidence intervals for estimates of total industrial output generated per thousand tourist visits. Mean expenditures from replicated visitor expenditure data included weights to correct for response bias. Impacts were estimated with IMPLAN. Ninety percent interval endpoints were 6 to 16 percent above or below the...

  1. Multiple Imputation in Two-Stage Cluster Samples Using The Weighted Finite Population Bayesian Bootstrap.

    PubMed

    Zhou, Hanzhi; Elliott, Michael R; Raghunathan, Trivellore E

    2016-06-01

    Multistage sampling is often employed in survey samples for cost and convenience. However, accounting for clustering features when generating datasets for multiple imputation is a nontrivial task, particularly when, as is often the case, cluster sampling is accompanied by unequal probabilities of selection, necessitating case weights. Thus, multiple imputation often ignores complex sample designs and assumes simple random sampling when generating imputations, even though failing to account for complex sample design features is known to yield biased estimates and confidence intervals that have incorrect nominal coverage. In this article, we extend a recently developed, weighted, finite-population Bayesian bootstrap procedure to generate synthetic populations conditional on complex sample design data that can be treated as simple random samples at the imputation stage, obviating the need to directly model design features for imputation. We develop two forms of this method: one where the probabilities of selection are known at the first and second stages of the design, and the other, more common in public use files, where only the final weight based on the product of the two probabilities is known. We show that this method has advantages in terms of bias, mean square error, and coverage properties over methods where sample designs are ignored, with little loss in efficiency, even when compared with correct fully parametric models. An application is made using the National Automotive Sampling System Crashworthiness Data System, a multistage, unequal probability sample of U.S. passenger vehicle crashes, which suffers from a substantial amount of missing data in "Delta-V," a key crash severity measure.

  2. Multiple Imputation in Two-Stage Cluster Samples Using The Weighted Finite Population Bayesian Bootstrap

    PubMed Central

    Zhou, Hanzhi; Elliott, Michael R.; Raghunathan, Trivellore E.

    2017-01-01

    Multistage sampling is often employed in survey samples for cost and convenience. However, accounting for clustering features when generating datasets for multiple imputation is a nontrivial task, particularly when, as is often the case, cluster sampling is accompanied by unequal probabilities of selection, necessitating case weights. Thus, multiple imputation often ignores complex sample designs and assumes simple random sampling when generating imputations, even though failing to account for complex sample design features is known to yield biased estimates and confidence intervals that have incorrect nominal coverage. In this article, we extend a recently developed, weighted, finite-population Bayesian bootstrap procedure to generate synthetic populations conditional on complex sample design data that can be treated as simple random samples at the imputation stage, obviating the need to directly model design features for imputation. We develop two forms of this method: one where the probabilities of selection are known at the first and second stages of the design, and the other, more common in public use files, where only the final weight based on the product of the two probabilities is known. We show that this method has advantages in terms of bias, mean square error, and coverage properties over methods where sample designs are ignored, with little loss in efficiency, even when compared with correct fully parametric models. An application is made using the National Automotive Sampling System Crashworthiness Data System, a multistage, unequal probability sample of U.S. passenger vehicle crashes, which suffers from a substantial amount of missing data in “Delta-V,” a key crash severity measure. PMID:29226161

  3. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    PubMed

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  4. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    NASA Astrophysics Data System (ADS)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  5. Combining test statistics and models in bootstrapped model rejection: it is a balancing act

    PubMed Central

    2014-01-01

    Background Model rejections lie at the heart of systems biology, since they provide conclusive statements: that the corresponding mechanistic assumptions do not serve as valid explanations for the experimental data. Rejections are usually done using e.g. the chi-square test (χ2) or the Durbin-Watson test (DW). Analytical formulas for the corresponding distributions rely on assumptions that typically are not fulfilled. This problem is partly alleviated by the usage of bootstrapping, a computationally heavy approach to calculate an empirical distribution. Bootstrapping also allows for a natural extension to estimation of joint distributions, but this feature has so far been little exploited. Results We herein show that simplistic combinations of bootstrapped tests, like the max or min of the individual p-values, give inconsistent, i.e. overly conservative or liberal, results. A new two-dimensional (2D) approach based on parametric bootstrapping, on the other hand, is found both consistent and with a higher power than the individual tests, when tested on static and dynamic examples where the truth is known. In the same examples, the most superior test is a 2D χ2vsχ2, where the second χ2-value comes from an additional help model, and its ability to describe bootstraps from the tested model. This superiority is lost if the help model is too simple, or too flexible. If a useful help model is found, the most powerful approach is the bootstrapped log-likelihood ratio (LHR). We show that this is because the LHR is one-dimensional, because the second dimension comes at a cost, and because LHR has retained most of the crucial information in the 2D distribution. These approaches statistically resolve a previously published rejection example for the first time. Conclusions We have shown how to, and how not to, combine tests in a bootstrap setting, when the combination is advantageous, and when it is advantageous to include a second model. These results also provide a deeper insight into the original motivation for formulating the LHR, for the more general setting of nonlinear and non-nested models. These insights are valuable in cases when accuracy and power, rather than computational speed, are prioritized. PMID:24742065

  6. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    PubMed

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  7. Estimation of rates-across-sites distributions in phylogenetic substitution models.

    PubMed

    Susko, Edward; Field, Chris; Blouin, Christian; Roger, Andrew J

    2003-10-01

    Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard gamma implementation and can provide more accurate estimates of site rates.

  8. Software Supportability Risk Assessment in OT&E (Operational Test and Evaluation): Literature Review, Current Research Review, and Data Base Assemblage.

    DTIC Science & Technology

    1984-09-28

    variables before simula- tion of model - Search for reality checks a, - Express uncertainty as a probability density distribution. a. H2 a, H-22 TWIF... probability that the software con- tains errors. This prior is updated as test failure data are accumulated. Only a p of 1 (software known to contain...discusssed; both parametric and nonparametric versions are presented. It is shown by the author that the bootstrap underlies the jackknife method and

  9. Detecting temporal trends in species assemblages with bootstrapping procedures and hierarchical models

    USGS Publications Warehouse

    Gotelli, Nicholas J.; Dorazio, Robert M.; Ellison, Aaron M.; Grossman, Gary D.

    2010-01-01

    Quantifying patterns of temporal trends in species assemblages is an important analytical challenge in community ecology. We describe methods of analysis that can be applied to a matrix of counts of individuals that is organized by species (rows) and time-ordered sampling periods (columns). We first developed a bootstrapping procedure to test the null hypothesis of random sampling from a stationary species abundance distribution with temporally varying sampling probabilities. This procedure can be modified to account for undetected species. We next developed a hierarchical model to estimate species-specific trends in abundance while accounting for species-specific probabilities of detection. We analysed two long-term datasets on stream fishes and grassland insects to demonstrate these methods. For both assemblages, the bootstrap test indicated that temporal trends in abundance were more heterogeneous than expected under the null model. We used the hierarchical model to estimate trends in abundance and identified sets of species in each assemblage that were steadily increasing, decreasing or remaining constant in abundance over more than a decade of standardized annual surveys. Our methods of analysis are broadly applicable to other ecological datasets, and they represent an advance over most existing procedures, which do not incorporate effects of incomplete sampling and imperfect detection.

  10. Bootstrap-based procedures for inference in nonparametric receiver-operating characteristic curve regression analysis.

    PubMed

    Rodríguez-Álvarez, María Xosé; Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Tahoces, Pablo G

    2018-03-01

    Prior to using a diagnostic test in a routine clinical setting, the rigorous evaluation of its diagnostic accuracy is essential. The receiver-operating characteristic curve is the measure of accuracy most widely used for continuous diagnostic tests. However, the possible impact of extra information about the patient (or even the environment) on diagnostic accuracy also needs to be assessed. In this paper, we focus on an estimator for the covariate-specific receiver-operating characteristic curve based on direct regression modelling and nonparametric smoothing techniques. This approach defines the class of generalised additive models for the receiver-operating characteristic curve. The main aim of the paper is to offer new inferential procedures for testing the effect of covariates on the conditional receiver-operating characteristic curve within the above-mentioned class. Specifically, two different bootstrap-based tests are suggested to check (a) the possible effect of continuous covariates on the receiver-operating characteristic curve and (b) the presence of factor-by-curve interaction terms. The validity of the proposed bootstrap-based procedures is supported by simulations. To facilitate the application of these new procedures in practice, an R-package, known as npROCRegression, is provided and briefly described. Finally, data derived from a computer-aided diagnostic system for the automatic detection of tumour masses in breast cancer is analysed.

  11. Positive Traits Linked to Less Pain through Lower Pain Catastrophizing

    PubMed Central

    Hood, Anna; Pulvers, Kim; Carrillo, Janet; Merchant, Gina; Thomas, Marie

    2011-01-01

    The present study examined the association between positive traits, pain catastrophizing, and pain perceptions. We hypothesized that pain catastrophizing would mediate the relationship between positive traits and pain. First, participants (n = 114) completed the Trait Hope Scale, the Life Orientation Test- Revised, and the Pain Catastrophizing Scale. Participants then completed the experimental pain stimulus, a cold pressor task, by submerging their hand in a circulating water bath (0º Celsius) for as long as tolerable. Immediately following the task, participants completed the Short-Form McGill Pain Questionnaire (MPQ-SF). Pearson correlation found associations between hope and pain catastrophizing (r = −.41, p < .01) and MPQ-SF scores (r = −.20, p < .05). Optimism was significantly associated with pain catastrophizing (r = −.44, p < .01) and MPQ-SF scores (r = −.19, p < .05). Bootstrapping, a non-parametric resampling procedure, tested for mediation and supported our hypothesis that pain catastrophizing mediated the relationship between positive traits and MPQ-SF pain report. To our knowledge, this investigation is the first to establish that the protective link between positive traits and experimental pain operates through lower pain catastrophizing. PMID:22199416

  12. "You better not leave me shaming!": Conditional indirect effect analyses of anti-fat attitudes, body shame, and fat talk as a function of self-compassion in college women.

    PubMed

    Webb, Jennifer B; Fiery, Mallory F; Jafari, Nadia

    2016-09-01

    The present investigation provided a theoretically-driven analysis testing whether body shame helped account for the predicted positive associations between explicit weight bias in the form of possessing anti-fat attitudes (i.e., dislike, fear of fat, and willpower beliefs) and engaging in fat talk among 309 weight-diverse college women. We also evaluated whether self-compassion served as a protective factor in these relationships. Robust non-parametric bootstrap resampling procedures adjusted for body mass index (BMI) revealed stronger indirect and conditional indirect effects for dislike and fear of fat attitudes and weaker, marginal effects for the models inclusive of willpower beliefs. In general, the indirect effect of anti-fat attitudes on fat talk via body shame declined with increasing levels of self-compassion. Our preliminary findings may point to useful process variables to target in mitigating the impact of endorsing anti-fat prejudice on fat talk in college women and may help clarify who is at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. How bootstrap can help in forecasting time series with more than one seasonal pattern

    NASA Astrophysics Data System (ADS)

    Cordeiro, Clara; Neves, M. Manuela

    2012-09-01

    The search for the future is an appealing challenge in time series analysis. The diversity of forecasting methodologies is inevitable and is still in expansion. Exponential smoothing methods are the launch platform for modelling and forecasting in time series analysis. Recently this methodology has been combined with bootstrapping revealing a good performance. The algorithm (Boot. EXPOS) using exponential smoothing and bootstrap methodologies, has showed promising results for forecasting time series with one seasonal pattern. In case of more than one seasonal pattern, the double seasonal Holt-Winters methods and the exponential smoothing methods were developed. A new challenge was now to combine these seasonal methods with bootstrap and carry over a similar resampling scheme used in Boot. EXPOS procedure. The performance of such partnership will be illustrated for some well-know data sets existing in software.

  14. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  15. Can the Direct Medical Cost of Chronic Disease Be Transferred across Different Countries? Using Cost-of-Illness Studies on Type 2 Diabetes, Epilepsy and Schizophrenia as Examples

    PubMed Central

    Gao, Lan; Hu, Hao; Zhao, Fei-Li; Li, Shu-Chuen

    2016-01-01

    Objectives To systematically review cost of illness studies for schizophrenia (SC), epilepsy (EP) and type 2 diabetes mellitus (T2DM) and explore the transferability of direct medical cost across countries. Methods A comprehensive literature search was performed to yield studies that estimated direct medical costs. A generalized linear model (GLM) with gamma distribution and log link was utilized to explore the variation in costs that accounted by the included factors. Both parametric (Random-effects model) and non-parametric (Boot-strapping) meta-analyses were performed to pool the converted raw cost data (expressed as percentage of GDP/capita of the country where the study was conducted). Results In total, 93 articles were included (40 studies were for T2DM, 34 studies for EP and 19 studies for SC). Significant variances were detected inter- and intra-disease classes for the direct medical costs. Multivariate analysis identified that GDP/capita (p<0.05) was a significant factor contributing to the large variance in the cost results. Bootstrapping meta-analysis generated more conservative estimations with slightly wider 95% confidence intervals (CI) than the parametric meta-analysis, yielding a mean (95%CI) of 16.43% (11.32, 21.54) for T2DM, 36.17% (22.34, 50.00) for SC and 10.49% (7.86, 13.41) for EP. Conclusions Converting the raw cost data into percentage of GDP/capita of individual country was demonstrated to be a feasible approach to transfer the direct medical cost across countries. The approach from our study to obtain an estimated direct cost value along with the size of specific disease population from each jurisdiction could be used for a quick check on the economic burden of particular disease for countries without such data. PMID:26814959

  16. A unified framework for weighted parametric multiple test procedures.

    PubMed

    Xi, Dong; Glimm, Ekkehard; Maurer, Willi; Bretz, Frank

    2017-09-01

    We describe a general framework for weighted parametric multiple test procedures based on the closure principle. We utilize general weighting strategies that can reflect complex study objectives and include many procedures in the literature as special cases. The proposed weighted parametric tests bridge the gap between rejection rules using either adjusted significance levels or adjusted p-values. This connection is made by allowing intersection hypotheses of the underlying closed test procedure to be tested at level smaller than α. This may be also necessary to take certain study situations into account. For such cases we introduce a subclass of exact α-level parametric tests that satisfy the consonance property. When the correlation is known only for certain subsets of the test statistics, a new procedure is proposed to fully utilize this knowledge within each subset. We illustrate the proposed weighted parametric tests using a clinical trial example and conduct a simulation study to investigate its operating characteristics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integrating diffusion maps with umbrella sampling: Application to alanine dipeptide

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2011-04-01

    Nonlinear dimensionality reduction techniques can be applied to molecular simulation trajectories to systematically extract a small number of variables with which to parametrize the important dynamical motions of the system. For molecular systems exhibiting free energy barriers exceeding a few kBT, inadequate sampling of the barrier regions between stable or metastable basins can lead to a poor global characterization of the free energy landscape. We present an adaptation of a nonlinear dimensionality reduction technique known as the diffusion map that extends its applicability to biased umbrella sampling simulation trajectories in which restraining potentials are employed to drive the system into high free energy regions and improve sampling of phase space. We then propose a bootstrapped approach to iteratively discover good low-dimensional parametrizations by interleaving successive rounds of umbrella sampling and diffusion mapping, and we illustrate the technique through a study of alanine dipeptide in explicit solvent.

  18. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support.

    PubMed

    Wilcox, Thomas P; Zwickl, Derrick J; Heath, Tracy A; Hillis, David M

    2002-11-01

    Four New World genera of dwarf boas (Exiliboa, Trachyboa, Tropidophis, and Ungaliophis) have been placed by many systematists in a single group (traditionally called Tropidophiidae). However, the monophyly of this group has been questioned in several studies. Moreover, the overall relationships among basal snake lineages, including the placement of the dwarf boas, are poorly understood. We obtained mtDNA sequence data for 12S, 16S, and intervening tRNA-val genes from 23 species of snakes representing most major snake lineages, including all four genera of New World dwarf boas. We then examined the phylogenetic position of these species by estimating the phylogeny of the basal snakes. Our phylogenetic analysis suggests that New World dwarf boas are not monophyletic. Instead, we find Exiliboa and Ungaliophis to be most closely related to sand boas (Erycinae), boas (Boinae), and advanced snakes (Caenophidea), whereas Tropidophis and Trachyboa form an independent clade that separated relatively early in snake radiation. Our estimate of snake phylogeny differs significantly in other ways from some previous estimates of snake phylogeny. For instance, pythons do not cluster with boas and sand boas, but instead show a strong relationship with Loxocemus and Xenopeltis. Additionally, uropeltids cluster strongly with Cylindrophis, and together are embedded in what has previously been considered the macrostomatan radiation. These relationships are supported by both bootstrapping (parametric and nonparametric approaches) and Bayesian analysis, although Bayesian support values are consistently higher than those obtained from nonparametric bootstrapping. Simulations show that Bayesian support values represent much better estimates of phylogenetic accuracy than do nonparametric bootstrap support values, at least under the conditions of our study. Copyright 2002 Elsevier Science (USA)

  19. A cluster bootstrap for two-loop MHV amplitudes

    DOE PAGES

    Golden, John; Spradlin, Marcus

    2015-02-02

    We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ 2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). Finally, we present a concise, closed-form expression which manifests these properties for all n.

  20. More N =4 superconformal bootstrap

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2017-08-01

    In this long overdue second installment, we continue to develop the conformal bootstrap program for N =4 superconformal field theories (SCFTs) in four dimensions via an analysis of the correlation function of four stress-tensor supermultiplets. We review analytic results for this correlator and make contact with the SCFT/chiral algebra correspondence of Beem et al. [Commun. Math. Phys. 336, 1359 (2015), 10.1007/s00220-014-2272-x]. We demonstrate that the constraints of unitarity and crossing symmetry require the central charge c to be greater than or equal to 3 /4 in any interacting N =4 SCFT. We apply numerical bootstrap methods to derive upper bounds on scaling dimensions and operator product expansion coefficients for several low-lying, unprotected operators as a function of the central charge. We interpret our bounds in the context of N =4 super Yang-Mills theories, formulating a series of conjectures regarding the embedding of the conformal manifold—parametrized by the complexified gauge coupling—into the space of scaling dimensions and operator product expansion coefficients. Our conjectures assign a distinguished role to points on the conformal manifold that are self-dual under a subgroup of the S -duality group. This paper contains a more detailed exposition of a number of results previously reported in Beem et al. [Phys. Rev. Lett. 111, 071601 (2013), 10.1103/PhysRevLett.111.071601] in addition to new results.

  1. Using the Bootstrap Method to Evaluate the Critical Range of Misfit for Polytomous Rasch Fit Statistics.

    PubMed

    Seol, Hyunsoo

    2016-06-01

    The purpose of this study was to apply the bootstrap procedure to evaluate how the bootstrapped confidence intervals (CIs) for polytomous Rasch fit statistics might differ according to sample sizes and test lengths in comparison with the rule-of-thumb critical value of misfit. A total of 25 simulated data sets were generated to fit the Rasch measurement and then a total of 1,000 replications were conducted to compute the bootstrapped CIs under each of 25 testing conditions. The results showed that rule-of-thumb critical values for assessing the magnitude of misfit were not applicable because the infit and outfit mean square error statistics showed different magnitudes of variability over testing conditions and the standardized fit statistics did not exactly follow the standard normal distribution. Further, they also do not share the same critical range for the item and person misfit. Based on the results of the study, the bootstrapped CIs can be used to identify misfitting items or persons as they offer a reasonable alternative solution, especially when the distributions of the infit and outfit statistics are not well known and depend on sample size. © The Author(s) 2016.

  2. Modelling road accident blackspots data with the discrete generalized Pareto distribution.

    PubMed

    Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María

    2014-10-01

    This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Trends and variability in the hydrological regime of the Mackenzie River Basin

    NASA Astrophysics Data System (ADS)

    Abdul Aziz, Omar I.; Burn, Donald H.

    2006-03-01

    Trends and variability in the hydrological regime were analyzed for the Mackenzie River Basin in northern Canada. The procedure utilized the Mann-Kendall non-parametric test to detect trends, the Trend Free Pre-Whitening (TFPW) approach for correcting time-series data for autocorrelation and a bootstrap resampling method to account for the cross-correlation structure of the data. A total of 19 hydrological and six meteorological variables were selected for the study. Analysis was conducted on hydrological data from a network of 54 hydrometric stations and meteorological data from a network of 10 stations. The results indicated that several hydrological variables exhibit a greater number of significant trends than are expected to occur by chance. Noteworthy were strong increasing trends over the winter month flows of December to April as well as in the annual minimum flow and weak decreasing trends in the early summer and late fall flows as well as in the annual mean flow. An earlier onset of the spring freshet is noted over the basin. The results are expected to assist water resources managers and policy makers in making better planning decisions in the Mackenzie River Basin.

  4. Distress Tolerance Links Sleep Problems with Stress and Health in Homeless.

    PubMed

    Reitzel, Lorraine R; Short, Nicole A; Schmidt, Norman B; Garey, Lorra; Zvolensky, Michael J; Moisiuc, Alexis; Reddick, Carrie; Kendzor, Darla E; Businelle, Michael S

    2017-11-01

    We examined associations between sleep problems, distress intolerance, and perceived stress and health in a convenience sample of homeless adults. Participants (N = 513, 36% women, Mage = 44.5 ±11.9) self-reported sleep adequacy, sleep duration, unintentional sleep during the daytime, distress tolerance, urban stress, and days of poor mental health and days of poor physical health over the last month. The indirect effects of sleep problems on stress and health through distress tolerance were examined using a non-parametric, bias-corrected bootstrapping procedure. Sleep problems were prevalent (eg, 13.0 ±11.4 days of inadequate sleep and 4.7 ±7.9 days of unintentionally falling asleep during the preceding month). Distress intolerance partially accounted for the associations of inadequate sleep and unintentionally falling asleep, but not sleep duration, with urban stress and more days of poor mental and physical health. Many homeless individuals endure sleep problems. Given the connections between sleep and morbidity and mortality, results further support the need for more attention directed toward facilitating improvements in sleep quality to improve the quality of life of homeless adults, potentially including attention to improving distress tolerance skills.

  5. Variable selection under multiple imputation using the bootstrap in a prognostic study

    PubMed Central

    Heymans, Martijn W; van Buuren, Stef; Knol, Dirk L; van Mechelen, Willem; de Vet, Henrica CW

    2007-01-01

    Background Missing data is a challenging problem in many prognostic studies. Multiple imputation (MI) accounts for imputation uncertainty that allows for adequate statistical testing. We developed and tested a methodology combining MI with bootstrapping techniques for studying prognostic variable selection. Method In our prospective cohort study we merged data from three different randomized controlled trials (RCTs) to assess prognostic variables for chronicity of low back pain. Among the outcome and prognostic variables data were missing in the range of 0 and 48.1%. We used four methods to investigate the influence of respectively sampling and imputation variation: MI only, bootstrap only, and two methods that combine MI and bootstrapping. Variables were selected based on the inclusion frequency of each prognostic variable, i.e. the proportion of times that the variable appeared in the model. The discriminative and calibrative abilities of prognostic models developed by the four methods were assessed at different inclusion levels. Results We found that the effect of imputation variation on the inclusion frequency was larger than the effect of sampling variation. When MI and bootstrapping were combined at the range of 0% (full model) to 90% of variable selection, bootstrap corrected c-index values of 0.70 to 0.71 and slope values of 0.64 to 0.86 were found. Conclusion We recommend to account for both imputation and sampling variation in sets of missing data. The new procedure of combining MI with bootstrapping for variable selection, results in multivariable prognostic models with good performance and is therefore attractive to apply on data sets with missing values. PMID:17629912

  6. Estimation for coefficient of variation of an extension of the exponential distribution under type-II censoring scheme

    NASA Astrophysics Data System (ADS)

    Bakoban, Rana A.

    2017-08-01

    The coefficient of variation [CV] has several applications in applied statistics. So in this paper, we adopt Bayesian and non-Bayesian approaches for the estimation of CV under type-II censored data from extension exponential distribution [EED]. The point and interval estimate of the CV are obtained for each of the maximum likelihood and parametric bootstrap techniques. Also the Bayesian approach with the help of MCMC method is presented. A real data set is presented and analyzed, hence the obtained results are used to assess the obtained theoretical results.

  7. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  8. A note on the kappa statistic for clustered dichotomous data.

    PubMed

    Zhou, Ming; Yang, Zhao

    2014-06-30

    The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things.

    PubMed

    Garcia-Carrillo, Dan; Marin-Lopez, Rafael

    2016-03-11

    The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length.

  10. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things

    PubMed Central

    Garcia-Carrillo, Dan; Marin-Lopez, Rafael

    2016-01-01

    The Internet of Things (IoT) is becoming increasingly important in several fields of industrial applications and personal applications, such as medical e-health, smart cities, etc. The research into protocols and security aspects related to this area is continuously advancing in making these networks more reliable and secure, taking into account these aspects by design. Bootstrapping is a procedure by which a user obtains key material and configuration information, among other parameters, to operate as an authenticated party in a security domain. Until now solutions have focused on re-using security protocols that were not developed for IoT constraints. For this reason, in this work we propose a design and implementation of a lightweight bootstrapping service for IoT networks that leverages one of the application protocols used in IoT : Constrained Application Protocol (CoAP). Additionally, in order to provide flexibility, scalability, support for large scale deployment, accountability and identity federation, our design uses technologies such as the Extensible Authentication Protocol (EAP) and Authentication Authorization and Accounting (AAA). We have named this service CoAP-EAP. First, we review the state of the art in the field of bootstrapping and specifically for IoT. Second, we detail the bootstrapping service: the architecture with entities and interfaces and the flow operation. Third, we obtain performance measurements of CoAP-EAP (bootstrapping time, memory footprint, message processing time, message length and energy consumption) and compare them with PANATIKI. The most significant and constrained representative of the bootstrapping solutions related with CoAP-EAP. As we will show, our solution provides significant improvements, mainly due to an important reduction of the message length. PMID:26978362

  11. Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation.

    PubMed

    Emura, Takeshi; Konno, Yoshihiko; Michimae, Hirofumi

    2015-07-01

    Doubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference. This paper proposes a closed-form estimator for the asymptotic covariance function of the NPMLE, which is computationally attractive alternative to bootstrapping. Furthermore, we develop various statistical inference procedures, such as confidence interval, goodness-of-fit tests, and confidence bands to demonstrate the usefulness of the proposed covariance estimator. Simulations are performed to compare the proposed method with both the bootstrap and jackknife methods. The methods are illustrated using the childhood cancer dataset.

  12. Neural-Net Processed Characteristic Patterns for Measurement of Structural Integrity of Pressure Cycled Components

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    2001-01-01

    A neural-net inspection process has been combined with a bootstrap training procedure and electronic holography to detect changes or damage in a pressure-cycled International Space Station cold plate to be used for cooling instrumentation. The cold plate was excited to vibrate in a normal mode at low amplitude, and the neural net was trained by example to flag small changes in the mode shape. The NDE (nondestructive-evaluation) technique is straightforward but in its infancy; its applications are ad-hoc and uncalibrated. Nevertheless previous research has shown that the neural net can detect displacement changes to better than 1/100 the maximum displacement amplitude. Development efforts that support the NDE technique are mentioned briefly, followed by descriptions of electronic holography and neural-net processing. The bootstrap training procedure and its application to detection of damage in a pressure-cycled cold plate are discussed. Suggestions for calibrating and quantifying the NDE procedure are presented.

  13. Least Squares Procedures.

    ERIC Educational Resources Information Center

    Hester, Yvette

    Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…

  14. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran

    NASA Astrophysics Data System (ADS)

    Etemadi, Halimeh; Samadi, S. Zahra; Sharifikia, Mohammad; Smoak, Joseph M.

    2016-10-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and have remarkable ecological and socio-economic value. This study uses climate change downscaling to address the question of non-stationarity influences on mangrove variations (expansion and contraction) within an arid coastal region. Our two-step approach includes downscaling models and uncertainty assessment, followed by a non-stationary and trend procedure using the Extreme Value Analysis (extRemes code). The Long Ashton Research Station Weather Generator (LARS-WG) model along with two different general circulation model (GCMs) (MIRH and HadCM3) were used to downscale climatic variables during current (1968-2011) and future (2011-2030, 2045-2065, and 2080-2099) periods. Parametric and non-parametric bootstrapping uncertainty tests demonstrated that the LARS-WGS model skillfully downscaled climatic variables at the 95 % significance level. Downscaling results using MIHR model show that minimum and maximum temperatures will increase in the future (2011-2030, 2045-2065, and 2080-2099) during winter and summer in a range of +4.21 and +4.7 °C, and +3.62 and +3.55 °C, respectively. HadCM3 analysis also revealed an increase in minimum (˜+3.03 °C) and maximum (˜+3.3 °C) temperatures during wet and dry seasons. In addition, we examined how much mangrove area has changed during the past decades and, thus, if climate change non-stationarity impacts mangrove ecosystems. Our results using remote sensing techniques and the non-parametric Mann-Whitney two-sample test indicated a sharp decline in mangrove area during 1972,1987, and 1997 periods ( p value = 0.002). Non-stationary assessment using the generalized extreme value (GEV) distributions by including mangrove area as a covariate further indicated that the null hypothesis of the stationary climate (no trend) should be rejected due to the very low p values for precipitation ( p value = 0.0027), minimum ( p value = 0.000000029) and maximum ( p value = 0.00016) temperatures. Based on non-stationary analysis and an upward trend in downscaled temperature extremes, climate change may control mangrove development in the future.

  15. Adjusting Expected Mortality Rates Using Information From a Control Population: An Example Using Socioeconomic Status.

    PubMed

    Bower, Hannah; Andersson, Therese M-L; Crowther, Michael J; Dickman, Paul W; Lambe, Mats; Lambert, Paul C

    2018-04-01

    Expected or reference mortality rates are commonly used in the calculation of measures such as relative survival in population-based cancer survival studies and standardized mortality ratios. These expected rates are usually presented according to age, sex, and calendar year. In certain situations, stratification of expected rates by other factors is required to avoid potential bias if interest lies in quantifying measures according to such factors as, for example, socioeconomic status. If data are not available on a population level, information from a control population could be used to adjust expected rates. We have presented two approaches for adjusting expected mortality rates using information from a control population: a Poisson generalized linear model and a flexible parametric survival model. We used a control group from BCBaSe-a register-based, matched breast cancer cohort in Sweden with diagnoses between 1992 and 2012-to illustrate the two methods using socioeconomic status as a risk factor of interest. Results showed that Poisson and flexible parametric survival approaches estimate similar adjusted mortality rates according to socioeconomic status. Additional uncertainty involved in the methods to estimate stratified, expected mortality rates described in this study can be accounted for using a parametric bootstrap, but this might make little difference if using a large control population.

  16. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Assessment of Dimensionality in Social Science Subtest

    ERIC Educational Resources Information Center

    Ozbek Bastug, Ozlem Yesim

    2012-01-01

    Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…

  18. Uncertainty estimation of Intensity-Duration-Frequency relationships: A regional analysis

    NASA Astrophysics Data System (ADS)

    Mélèse, Victor; Blanchet, Juliette; Molinié, Gilles

    2018-03-01

    We propose in this article a regional study of uncertainties in IDF curves derived from point-rainfall maxima. We develop two generalized extreme value models based on the simple scaling assumption, first in the frequentist framework and second in the Bayesian framework. Within the frequentist framework, uncertainties are obtained i) from the Gaussian density stemming from the asymptotic normality theorem of the maximum likelihood and ii) with a bootstrap procedure. Within the Bayesian framework, uncertainties are obtained from the posterior densities. We confront these two frameworks on the same database covering a large region of 100, 000 km2 in southern France with contrasted rainfall regime, in order to be able to draw conclusion that are not specific to the data. The two frameworks are applied to 405 hourly stations with data back to the 1980's, accumulated in the range 3 h-120 h. We show that i) the Bayesian framework is more robust than the frequentist one to the starting point of the estimation procedure, ii) the posterior and the bootstrap densities are able to better adjust uncertainty estimation to the data than the Gaussian density, and iii) the bootstrap density give unreasonable confidence intervals, in particular for return levels associated to large return period. Therefore our recommendation goes towards the use of the Bayesian framework to compute uncertainty.

  19. Spline-based procedures for dose-finding studies with active control

    PubMed Central

    Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim

    2015-01-01

    In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship and to find the smallest target dose concentration d*, which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25319931

  20. Personality disorder traits, risk factors, and suicide ideation among older adults.

    PubMed

    Jahn, Danielle R; Poindexter, Erin K; Cukrowicz, Kelly C

    2015-11-01

    Personality disorder traits are relatively prevalent among older adults, and can be associated with complex and chronic difficulties, including suicide risk. However, there is a lack of research regarding personality disorders and suicide ideation in older adults. Depressive symptoms and hopelessness may be important to the relation between personality disorders and suicide risk. Additionally, variables from the interpersonal theory of suicide, perceived burdensomeness and thwarted belongingness, may be critical risk factors for suicide in this population. We hypothesized that perceived burdensomeness and thwarted belongingness, theory-based variables, would act as parallel mediators of the relation between personality disorder traits and suicide ideation, whereas depressive symptoms and hopelessness would not. The hypothesis was tested in a sample of 143 older adults recruited from a primary care setting. Participants completed self-report questionnaires of personality traits, suicide ideation, depressive symptoms, hopelessness, perceived burdensomeness, and thwarted belongingness. Findings from a non-parametric bootstrapping procedure indicated that perceived burdensomeness, thwarted belongingness, and depressive symptoms mediated the relation between total personality disorder traits and suicide ideation. Hopelessness did not act as a mediator. These findings indicate that perceived burdensomeness, thwarted belongingness, and depressive symptoms are likely important risk factors for suicide ideation among older adults. Clinicians should be aware of these issues when assessing and treating suicide risk among older adults.

  1. Stress eating and sleep disturbance as mediators in the relationship between depression and obesity in low-income, minority women.

    PubMed

    Yu, Jessica; Fei, Kezhen; Fox, Ashley; Negron, Rennie; Horowitz, Carol

    2016-01-01

    The purpose of this study was to explore potential mediators of the relationship between depression and obesity in a sample of low-income, minority women. Data were extracted from a sample of 535 women enrolled in a weight loss intervention for the prevention of type 2 diabetes. Using a non-parametric bootstrapping procedure, the potential mediation effects of stress eating and sleep disturbance on the relationship between depression and obesity were tested. Results of a single mediation model indicated that depressive symptomatology was significantly associated with obesity (β=0.800, SE=0.290, p=0.006), and that stress eating (β=0.166, 95% CI [0.046, 0.328]) and sleep disturbance (β=1.032, 95% CI [0.612, 1.427]) were significant independent mediators of this relationship. Sleep disturbance remained a significant mediator in a combined mediation model (β=1.009, 95% CI [0.653, 1.399]). Findings add to the growing literature on the psychosocial factors implicated in the link between depression and obesity, particularly among disadvantaged populations. Future longitudinal research should aim to establish causal pathways between obesity, stress eating, sleep disturbance, and depression. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  2. Heart Rate Dynamics and their Relation with the Cyclic Alternating Pattern of Sleep in Normal Subjects and NFLE Patients

    NASA Astrophysics Data System (ADS)

    González, Jose S.; Dorantes, Guadalupe; Alba, Alfonso; Méndez, Martin O.; Camacho, Sergio; Luna-Rivera, Martin; Parrino, Liborio; Riccardi, Silvia; Terzano, Mario G.; Milioli, Giulia

    The aim of this work is to study the behavior of the autonomic system through variations in the heart rate (HR) during the Cyclic Alternating Pattern (CAP) which is formed by A-phases. The analysis was carried out in 10 healthy subjects and 10 patients with Nocturnal Front Lobe Epilepsy (NFLE) that underwent one whole night of polysomnographic recordings. In order to assess the relation of A-phases with the cardiovascular system, two time domain features were computed: the amplitude reduction and time delay of the minimum of the R-R intervals with respect to A-phases onset. In addition, the same process was performed over randomly chosen R-R interval segments during the NREM sleep for baseline comparisons. A non-parametric bootstrap procedure was used to test differences of the kurtosis values of two populations. The results suggest that the onset of the A-phases is correlated with a significant increase of the HR that peaks at around 4s after the A-phase onset, independently of the A-phase subtype and sleep time for both healthy subjects and NFLE patients. Furthermore, the behavior of the reduction in the R-R intervals during the A-phases was significantly different for NFLE patients with respect to control subjects.

  3. Accounting for Uncertainty in Decision Analytic Models Using Rank Preserving Structural Failure Time Modeling: Application to Parametric Survival Models.

    PubMed

    Bennett, Iain; Paracha, Noman; Abrams, Keith; Ray, Joshua

    2018-01-01

    Rank Preserving Structural Failure Time models are one of the most commonly used statistical methods to adjust for treatment switching in oncology clinical trials. The method is often applied in a decision analytic model without appropriately accounting for additional uncertainty when determining the allocation of health care resources. The aim of the study is to describe novel approaches to adequately account for uncertainty when using a Rank Preserving Structural Failure Time model in a decision analytic model. Using two examples, we tested and compared the performance of the novel Test-based method with the resampling bootstrap method and with the conventional approach of no adjustment. In the first example, we simulated life expectancy using a simple decision analytic model based on a hypothetical oncology trial with treatment switching. In the second example, we applied the adjustment method on published data when no individual patient data were available. Mean estimates of overall and incremental life expectancy were similar across methods. However, the bootstrapped and test-based estimates consistently produced greater estimates of uncertainty compared with the estimate without any adjustment applied. Similar results were observed when using the test based approach on a published data showing that failing to adjust for uncertainty led to smaller confidence intervals. Both the bootstrapping and test-based approaches provide a solution to appropriately incorporate uncertainty, with the benefit that the latter can implemented by researchers in the absence of individual patient data. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  4. Small area estimation for semicontinuous data.

    PubMed

    Chandra, Hukum; Chambers, Ray

    2016-03-01

    Survey data often contain measurements for variables that are semicontinuous in nature, i.e. they either take a single fixed value (we assume this is zero) or they have a continuous, often skewed, distribution on the positive real line. Standard methods for small area estimation (SAE) based on the use of linear mixed models can be inefficient for such variables. We discuss SAE techniques for semicontinuous variables under a two part random effects model that allows for the presence of excess zeros as well as the skewed nature of the nonzero values of the response variable. In particular, we first model the excess zeros via a generalized linear mixed model fitted to the probability of a nonzero, i.e. strictly positive, value being observed, and then model the response, given that it is strictly positive, using a linear mixed model fitted on the logarithmic scale. Empirical results suggest that the proposed method leads to efficient small area estimates for semicontinuous data of this type. We also propose a parametric bootstrap method to estimate the MSE of the proposed small area estimator. These bootstrap estimates of the MSE are compared to the true MSE in a simulation study. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Asymptotic confidence intervals for the Pearson correlation via skewness and kurtosis.

    PubMed

    Bishara, Anthony J; Li, Jiexiang; Nash, Thomas

    2018-02-01

    When bivariate normality is violated, the default confidence interval of the Pearson correlation can be inaccurate. Two new methods were developed based on the asymptotic sampling distribution of Fisher's z' under the general case where bivariate normality need not be assumed. In Monte Carlo simulations, the most successful of these methods relied on the (Vale & Maurelli, 1983, Psychometrika, 48, 465) family to approximate a distribution via the marginal skewness and kurtosis of the sample data. In Simulation 1, this method provided more accurate confidence intervals of the correlation in non-normal data, at least as compared to no adjustment of the Fisher z' interval, or to adjustment via the sample joint moments. In Simulation 2, this approximate distribution method performed favourably relative to common non-parametric bootstrap methods, but its performance was mixed relative to an observed imposed bootstrap and two other robust methods (PM1 and HC4). No method was completely satisfactory. An advantage of the approximate distribution method, though, is that it can be implemented even without access to raw data if sample skewness and kurtosis are reported, making the method particularly useful for meta-analysis. Supporting information includes R code. © 2017 The British Psychological Society.

  6. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  7. Comparing Eye Tracking with Electrooculography for Measuring Individual Sentence Comprehension Duration

    PubMed Central

    Müller, Jana Annina; Wendt, Dorothea; Kollmeier, Birger; Brand, Thomas

    2016-01-01

    The aim of this study was to validate a procedure for performing the audio-visual paradigm introduced by Wendt et al. (2015) with reduced practical challenges. The original paradigm records eye fixations using an eye tracker and calculates the duration of sentence comprehension based on a bootstrap procedure. In order to reduce practical challenges, we first reduced the measurement time by evaluating a smaller measurement set with fewer trials. The results of 16 listeners showed effects comparable to those obtained when testing the original full measurement set on a different collective of listeners. Secondly, we introduced electrooculography as an alternative technique for recording eye movements. The correlation between the results of the two recording techniques (eye tracker and electrooculography) was r = 0.97, indicating that both methods are suitable for estimating the processing duration of individual participants. Similar changes in processing duration arising from sentence complexity were found using the eye tracker and the electrooculography procedure. Thirdly, the time course of eye fixations was estimated with an alternative procedure, growth curve analysis, which is more commonly used in recent studies analyzing eye tracking data. The results of the growth curve analysis were compared with the results of the bootstrap procedure. Both analysis methods show similar processing durations. PMID:27764125

  8. Empirical best linear unbiased prediction method for small areas with restricted maximum likelihood and bootstrap procedure to estimate the average of household expenditure per capita in Banjar Regency

    NASA Astrophysics Data System (ADS)

    Aminah, Agustin Siti; Pawitan, Gandhi; Tantular, Bertho

    2017-03-01

    So far, most of the data published by Statistics Indonesia (BPS) as data providers for national statistics are still limited to the district level. Less sufficient sample size for smaller area levels to make the measurement of poverty indicators with direct estimation produced high standard error. Therefore, the analysis based on it is unreliable. To solve this problem, the estimation method which can provide a better accuracy by combining survey data and other auxiliary data is required. One method often used for the estimation is the Small Area Estimation (SAE). There are many methods used in SAE, one of them is Empirical Best Linear Unbiased Prediction (EBLUP). EBLUP method of maximum likelihood (ML) procedures does not consider the loss of degrees of freedom due to estimating β with β ^. This drawback motivates the use of the restricted maximum likelihood (REML) procedure. This paper proposed EBLUP with REML procedure for estimating poverty indicators by modeling the average of household expenditures per capita and implemented bootstrap procedure to calculate MSE (Mean Square Error) to compare the accuracy EBLUP method with the direct estimation method. Results show that EBLUP method reduced MSE in small area estimation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, John R.; Brooks, Dusty Marie

    In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions andmore » experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.« less

  10. The impact of private-sector provision on equitable utilisation of coronary revascularisation in London.

    PubMed

    Mindell, J; Klodawski, E; Fitzpatrick, J; Malhotra, N; McKee, M; Sanderson, C

    2008-08-01

    To investigate the impact of including private-sector data on assessments of equity of coronary revascularisation provision using NHS data only. Analyses of hospital episodes statistics and private-sector data by age, sex and primary care trust (PCT) of residence. For each PCT, the share of London's total population and revascularisations (all admissions, NHS-funded, and privately-funded admissions) were calculated. Gini coefficients were derived to provide an index of inequality across subpopulations, with parametric bootstrapping to estimate confidence intervals. London. London residents undergoing coronary revascularisation April 2001-December 2003. Coronary artery bypass graft or angioplasty. Directly standardised revascularisation rates, Gini coefficients. NHS-funded age-standardised revascularisation rates varied from 95.2 to 193.9 per 100,000 and privately funded procedures from 7.6 to 57.6. Although the age distribution did not vary by funding, the proportion of revascularisations among women that were privately funded (11.0%) was lower than among men (17.0%). Privately funded rates were highest in PCTs with the lowest death rates (p = 0.053). NHS-funded admission rates were not related to deprivation nor age-standardised deaths rates from coronary heart disease. Privately funded admission rates were lower in more deprived PCTs. NHS provision was significantly more egalitarian (Gini coefficient 0.12) than the private sector (0.35). Including all procedures was significantly less equal (0.13) than NHS-funded care alone. Private provision exacerbates geographical inequalities. Those responsible for commissioning care for defined populations must have access to consistent data on provision of treatment wherever it takes place.

  11. The use of analysis of variance procedures in biological studies

    USGS Publications Warehouse

    Williams, B.K.

    1987-01-01

    The analysis of variance (ANOVA) is widely used in biological studies, yet there remains considerable confusion among researchers about the interpretation of hypotheses being tested. Ambiguities arise when statistical designs are unbalanced, and in particular when not all combinations of design factors are represented in the data. This paper clarifies the relationship among hypothesis testing, statistical modelling and computing procedures in ANOVA for unbalanced data. A simple two-factor fixed effects design is used to illustrate three common parametrizations for ANOVA models, and some associations among these parametrizations are developed. Biologically meaningful hypotheses for main effects and interactions are given in terms of each parametrization, and procedures for testing the hypotheses are described. The standard statistical computing procedures in ANOVA are given along with their corresponding hypotheses. Throughout the development unbalanced designs are assumed and attention is given to problems that arise with missing cells.

  12. Bootstrap-after-bootstrap model averaging for reducing model uncertainty in model selection for air pollution mortality studies.

    PubMed

    Roberts, Steven; Martin, Michael A

    2010-01-01

    Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.

  13. Exploration of the factor structure of the Kirton Adaption-Innovation Inventory using bootstrapping estimation.

    PubMed

    Im, Subin; Min, Soonhong

    2013-04-01

    Exploratory factor analyses of the Kirton Adaption-Innovation Inventory (KAI), which serves to measure individual cognitive styles, generally indicate three factors: sufficiency of originality, efficiency, and rule/group conformity. In contrast, a 2005 study by Im and Hu using confirmatory factor analysis supported a four-factor structure, dividing the sufficiency of originality dimension into two subdimensions, idea generation and preference for change. This study extends Im and Hu's (2005) study of a derived version of the KAI by providing additional evidence of the four-factor structure. Specifically, the authors test the robustness of the parameter estimates to the violation of normality assumptions in the sample using bootstrap methods. A bias-corrected confidence interval bootstrapping procedure conducted among a sample of 356 participants--members of the Arkansas Household Research Panel, with middle SES and average age of 55.6 yr. (SD = 13.9)--showed that the four-factor model with two subdimensions of sufficiency of originality fits the data significantly better than the three-factor model in non-normality conditions.

  14. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An improved numerical procedure for the parametric optimization of three dimensional scramjet nozzles. [supersonic combustion ramjet engines - computer programs

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P. D.

    1975-01-01

    A parametric numerical procedure permitting the rapid determination of the performance of a class of scramjet nozzle configurations is presented. The geometric complexity of these configurations ruled out attempts to employ conventional nozzle design procedures. The numerical program developed permitted the parametric variation of cowl length, turning angles on the cowl and vehicle undersurface and lateral expansion, and was subject to fixed constraints such as the vehicle length and nozzle exit height. The program required uniform initial conditions at the burner exit station and yielded the location of all predominant wave zones, accounting for lateral expansion effects. In addition, the program yielded the detailed pressure distribution on the cowl, vehicle undersurface and fences, if any, and calculated the nozzle thrust, lift and pitching moments.

  16. Is the maturity of hospitals' quality improvement systems associated with measures of quality and patient safety?

    PubMed Central

    2011-01-01

    Background Previous research addressed the development of a classification scheme for quality improvement systems in European hospitals. In this study we explore associations between the 'maturity' of the hospitals' quality improvement system and clinical outcomes. Methods The maturity classification scheme was developed based on survey results from 389 hospitals in eight European countries. We matched the hospitals from the Spanish sample (113 hospitals) with those hospitals participating in a nation-wide, voluntary hospital performance initiative. We then compared sample distributions and explored associations between the 'maturity' of the hospitals' quality improvement system and a range of composite outcomes measures, such as adjusted hospital-wide mortality, -readmission, -complication and -length of stay indices. Statistical analysis includes bivariate correlations for parametrically and non-parametrically distributed data, multiple robust regression models and bootstrapping techniques to obtain confidence-intervals for the correlation and regression estimates. Results Overall, 43 hospitals were included. Compared to the original sample of 113, this sample was characterized by a higher representation of university hospitals. Maturity of the quality improvement system was similar, although the matched sample showed less variability. Analysis of associations between the quality improvement system and hospital-wide outcomes suggests significant correlations for the indicator adjusted hospital complications, borderline significance for adjusted hospital readmissions and non-significance for the adjusted hospital mortality and length of stay indicators. These results are confirmed by the bootstrap estimates of the robust regression model after adjusting for hospital characteristics. Conclusions We assessed associations between hospitals' quality improvement systems and clinical outcomes. From this data it seems that having a more developed quality improvement system is associated with lower rates of adjusted hospital complications. A number of methodological and logistic hurdles remain to link hospital quality improvement systems to outcomes. Further research should aim at identifying the latent dimensions of quality improvement systems that predict quality and safety outcomes. Such research would add pertinent knowledge regarding the implementation of organizational strategies related with quality of care outcomes. PMID:22185479

  17. Prediction of resource volumes at untested locations using simple local prediction models

    USGS Publications Warehouse

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2006-01-01

    This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.

  18. Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    PubMed Central

    Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco

    2008-01-01

    Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936

  19. Technical and scale efficiency in public and private Irish nursing homes - a bootstrap DEA approach.

    PubMed

    Ni Luasa, Shiovan; Dineen, Declan; Zieba, Marta

    2016-10-27

    This article provides methodological and empirical insights into the estimation of technical efficiency in the nursing home sector. Focusing on long-stay care and using primary data, we examine technical and scale efficiency in 39 public and 73 private Irish nursing homes by applying an input-oriented data envelopment analysis (DEA). We employ robust bootstrap methods to validate our nonparametric DEA scores and to integrate the effects of potential determinants in estimating the efficiencies. Both the homogenous and two-stage double bootstrap procedures are used to obtain confidence intervals for the bias-corrected DEA scores. Importantly, the application of the double bootstrap approach affords true DEA technical efficiency scores after adjusting for the effects of ownership, size, case-mix, and other determinants such as location, and quality. Based on our DEA results for variable returns to scale technology, the average technical efficiency score is 62 %, and the mean scale efficiency is 88 %, with nearly all units operating on the increasing returns to scale part of the production frontier. Moreover, based on the double bootstrap results, Irish nursing homes are less technically efficient, and more scale efficient than the conventional DEA estimates suggest. Regarding the efficiency determinants, in terms of ownership, we find that private facilities are less efficient than the public units. Furthermore, the size of the nursing home has a positive effect, and this reinforces our finding that Irish homes produce at increasing returns to scale. Also, notably, we find that a tendency towards quality improvements can lead to poorer technical efficiency performance.

  20. Transformational leadership in the consumer service workgroup: competing models of job satisfaction, change commitment, and cooperative conflict resolution.

    PubMed

    Yang, Yi-Feng

    2014-02-01

    This paper discusses the effects of transformational leadership on cooperative conflict resolution (management) by evaluating several alternative models related to the mediating role of job satisfaction and change commitment. Samples of data from customer service personnel in Taiwan were analyzed. Based on the bootstrap sample technique, an empirical study was carried out to yield the best fitting model. The procedure of hierarchical nested model analysis was used, incorporating the methods of bootstrapping mediation, PRODCLIN2, and structural equation modeling (SEM) comparison. The analysis suggests that leadership that promotes integration (change commitment) and provides inspiration and motivation (job satisfaction), in the proper order, creates the means for cooperative conflict resolution.

  1. Landslide susceptibility near highways is increased by one order of magnitude in the Andes of southern Ecuador, Loja province

    NASA Astrophysics Data System (ADS)

    Brenning, A.; Schwinn, M.; Ruiz-Páez, A. P.; Muenchow, J.

    2014-03-01

    Mountain roads in developing countries are known to increase landslide occurrence due to often inadequate drainage systems and mechanical destabilization of hillslopes by undercutting and overloading. This study empirically investigates landslide initiation frequency along two paved interurban highways in the tropical Andes of southern Ecuador across different climatic regimes. Generalized additive models (GAM) and generalized linear models (GLM) were used to analyze the relationship between mapped landslide initiation points and distance to highway while accounting for topographic, climatic and geological predictors as possible confounders. A spatial block bootstrap was used to obtain non-parametric confidence intervals for the odds ratio of landslide occurrence near the highways (25 m distance) compared to a 200 m distance. The estimated odds ratio was 18-21 with lower 95% confidence bounds > 13 in all analyses. Spatial bootstrap estimation using the GAM supports the higher odds ratio estimate of 21.2 (95% confidence interval: 15.5-25.3). The highway-related effects were observed to fade at about 150 m distance. Road effects appear to be enhanced in geological units characterized by Holocene gravels and Laramide andesite/basalt. Overall, landslide susceptibility was found to be more than one order of magnitude higher in close proximity to paved interurban highways in the Andes of southern Ecuador.

  2. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  3. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies.

    PubMed

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-11-01

    Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  4. Sci—Fri PM: Topics — 06: The influence of regional dose sensitivity on salivary loss and recovery in the parotid gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, H; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.

    Purpose: The Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC 2010) survey of radiation dose-volume effects on salivary gland function has called for improved understanding of intragland dose sensitivity and the effectiveness of partial sparing in salivary glands. Regional dose susceptibility of sagittally- and coronally-sub-segmented parotid gland has been studied. Specifically, we examine whether individual consideration of sub-segments leads to improved prediction of xerostomia compared with whole parotid mean dose. Methods: Data from 102 patients treated for head-and-neck cancers at the BC Cancer Agency were used in this study. Whole mouth stimulated saliva was collected before (baseline), threemore » months, and one year after cessation of radiotherapy. Organ volumes were contoured using treatment planning CT images and sub-segmented into regional portions. Both non-parametric (local regression) and parametric (mean dose exponential fitting) methods were employed. A bootstrap technique was used for reliability estimation and cross-comparison. Results: Salivary loss is described well using non-parametric and mean dose models. Parametric fits suggest a significant distinction in dose response between medial-lateral and anterior-posterior aspects of the parotid (p<0.01). Least-squares and least-median squares estimates differ significantly (p<0.00001), indicating fits may be skewed by noise or outliers. Salivary recovery exhibits a weakly arched dose response: the highest recovery is seen at intermediate doses. Conclusions: Salivary function loss is strongly dose dependent. In contrast no useful dose dependence was observed for function recovery. Regional dose dependence was observed, but may have resulted from a bias in dose distributions.« less

  5. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  6. Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages.

    PubMed

    Pouillot, Régis; Delignette-Muller, Marie Laure

    2010-09-01

    Quantitative risk assessment has emerged as a valuable tool to enhance the scientific basis of regulatory decisions in the food safety domain. This article introduces the use of two new computing resources (R packages) specifically developed to help risk assessors in their projects. The first package, "fitdistrplus", gathers tools for choosing and fitting a parametric univariate distribution to a given dataset. The data may be continuous or discrete. Continuous data may be right-, left- or interval-censored as is frequently obtained with analytical methods, with the possibility of various censoring thresholds within the dataset. Bootstrap procedures then allow the assessor to evaluate and model the uncertainty around the parameters and to transfer this information into a quantitative risk assessment model. The second package, "mc2d", helps to build and study two dimensional (or second-order) Monte-Carlo simulations in which the estimation of variability and uncertainty in the risk estimates is separated. This package easily allows the transfer of separated variability and uncertainty along a chain of conditional mathematical and probabilistic models. The usefulness of these packages is illustrated through a risk assessment of hemolytic and uremic syndrome in children linked to the presence of Escherichia coli O157:H7 in ground beef. These R packages are freely available at the Comprehensive R Archive Network (cran.r-project.org). Copyright 2010 Elsevier B.V. All rights reserved.

  7. Rapid Training of Information Extraction with Local and Global Data Views

    DTIC Science & Technology

    2012-05-01

    relation type extension system based on active learning a relation type extension system based on semi-supervised learning, and a crossdomain...bootstrapping system for domain adaptive named entity extraction. The active learning procedure adopts features extracted at the sentence level as the local

  8. Does partial Granger causality really eliminate the influence of exogenous inputs and latent variables?

    PubMed

    Roelstraete, Bjorn; Rosseel, Yves

    2012-04-30

    Partial Granger causality was introduced by Guo et al. (2008) who showed that it could better eliminate the influence of latent variables and exogenous inputs than conditional G-causality. In the recent literature we can find some reviews and applications of this type of Granger causality (e.g. Smith et al., 2011; Bressler and Seth, 2010; Barrett et al., 2010). These articles apparently do not take into account a serious flaw in the original work on partial G-causality, being the negative F values that were reported and even proven to be plausible. In our opinion, this undermines the credibility of the obtained results and thus the validity of the approach. Our study is aimed to further validate partial G-causality and to find an answer why negative partial Granger causality estimates were reported. Time series were simulated from the same toy model as used in the original paper and partial and conditional causal measures were compared in the presence of confounding variables. Inference was done parametrically and using non-parametric block bootstrapping. We counter the proof that partial Granger F values can be negative, but the main conclusion of the original article remains. In the presence of unknown latent and exogenous influences, it appears that partial G-causality will better eliminate their influence than conditional G-causality, at least when non-parametric inference is used. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. CME Velocity and Acceleration Error Estimates Using the Bootstrap Method

    NASA Technical Reports Server (NTRS)

    Michalek, Grzegorz; Gopalswamy, Nat; Yashiro, Seiji

    2017-01-01

    The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.

  10. Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2006-01-01

    A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.

  11. Applying the Bootstrap to Taxometric Analysis: Generating Empirical Sampling Distributions to Help Interpret Results

    ERIC Educational Resources Information Center

    Ruscio, John; Ruscio, Ayelet Meron; Meron, Mati

    2007-01-01

    Meehl's taxometric method was developed to distinguish categorical and continuous constructs. However, taxometric output can be difficult to interpret because expected results for realistic data conditions and differing procedural implementations have not been derived analytically or studied through rigorous simulations. By applying bootstrap…

  12. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  13. Analysis of Parasite and Other Skewed Counts

    PubMed Central

    Alexander, Neal

    2012-01-01

    Objective To review methods for the statistical analysis of parasite and other skewed count data. Methods Statistical methods for skewed count data are described and compared, with reference to those used over a ten year period of Tropical Medicine and International Health. Two parasitological datasets are used for illustration. Results Ninety papers were identified, 89 with descriptive and 60 with inferential analysis. A lack of clarity is noted in identifying measures of location, in particular the Williams and geometric mean. The different measures are compared, emphasizing the legitimacy of the arithmetic mean for skewed data. In the published papers, the t test and related methods were often used on untransformed data, which is likely to be invalid. Several approaches to inferential analysis are described, emphasizing 1) non-parametric methods, while noting that they are not simply comparisons of medians, and 2) generalized linear modelling, in particular with the negative binomial distribution. Additional methods, such as the bootstrap, with potential for greater use are described. Conclusions Clarity is recommended when describing transformations and measures of location. It is suggested that non-parametric methods and generalized linear models are likely to be sufficient for most analyses. PMID:22943299

  14. Forensic discrimination of copper wire using trace element concentrations.

    PubMed

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  15. Kappa statistic for the clustered dichotomous responses from physicians and patients

    PubMed Central

    Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L.; Cai, Jianwen

    2013-01-01

    The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared to the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. An example of an application to a coronary heart disease prevention study is presented. PMID:23533082

  16. A review of parametric approaches specific to aerodynamic design process

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li

    2018-04-01

    Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.

  17. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  18. Consonant Inventories in the Spontaneous Speech of Young Children: A Bootstrapping Procedure

    ERIC Educational Resources Information Center

    Van Severen, Lieve; Van Den Berg, Renate; Molemans, Inge; Gillis, Steven

    2012-01-01

    Consonant inventories are commonly drawn to assess the phonological acquisition of toddlers. However, the spontaneous speech data that are analysed often vary substantially in size and composition. Consequently, comparisons between children and across studies are fundamentally hampered. This study aims to examine the effect of sample size on the…

  19. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  20. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification of a parametric, empirical, or process simulation method or model for calculating substitute data... available process simulation methods and models. 1.2Petition Requirements Continuously monitor, determine... desulfurization, a corresponding empirical correlation or process simulation parametric method using appropriate...

  1. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE PAGES

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.; ...

    2016-11-30

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  2. The effects of time-varying observation errors on semi-empirical sea-level projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckert, Kelsey L.; Guan, Yawen; Bakker, Alexander M. R.

    Sea-level rise is a key driver of projected flooding risks. The design of strategies to manage these risks often hinges on projections that inform decision-makers about the surrounding uncertainties. Producing semi-empirical sea-level projections is difficult, for example, due to the complexity of the error structure of the observations, such as time-varying (heteroskedastic) observation errors and autocorrelation of the data-model residuals. This raises the question of how neglecting the error structure impacts hindcasts and projections. Here, we quantify this effect on sea-level projections and parameter distributions by using a simple semi-empirical sea-level model. Specifically, we compare three model-fitting methods: a frequentistmore » bootstrap as well as a Bayesian inversion with and without considering heteroskedastic residuals. All methods produce comparable hindcasts, but the parametric distributions and projections differ considerably based on methodological choices. In conclusion, our results show that the differences based on the methodological choices are enhanced in the upper tail projections. For example, the Bayesian inversion accounting for heteroskedasticity increases the sea-level anomaly with a 1% probability of being equaled or exceeded in the year 2050 by about 34% and about 40% in the year 2100 compared to a frequentist bootstrap. These results indicate that neglecting known properties of the observation errors and the data-model residuals can lead to low-biased sea-level projections.« less

  3. [Population pharmacokinetics applied to optimising cisplatin doses in cancer patients].

    PubMed

    Ramón-López, A; Escudero-Ortiz, V; Carbonell, V; Pérez-Ruixo, J J; Valenzuela, B

    2012-01-01

    To develop and internally validate a population pharmacokinetics model for cisplatin and assess its prediction capacity for personalising doses in cancer patients. Cisplatin plasma concentrations in forty-six cancer patients were used to determine the pharmacokinetic parameters of a two-compartment pharmacokinetic model implemented in NONMEN VI software. Pharmacokinetic parameter identification capacity was assessed using the parametric bootstrap method and the model was validated using the nonparametric bootstrap method and standardised visual and numerical predictive checks. The final model's prediction capacity was evaluated in terms of accuracy and precision during the first (a priori) and second (a posteriori) chemotherapy cycles. Mean population cisplatin clearance is 1.03 L/h with an interpatient variability of 78.0%. Estimated distribution volume at steady state was 48.3 L, with inter- and intrapatient variabilities of 31,3% and 11,7%, respectively. Internal validation confirmed that the population pharmacokinetics model is appropriate to describe changes over time in cisplatin plasma concentrations, as well as its variability in the study population. The accuracy and precision of a posteriori prediction of cisplatin concentrations improved by 21% and 54% compared to a priori prediction. The population pharmacokinetic model developed adequately described the changes in cisplatin plasma concentrations in cancer patients and can be used to optimise cisplatin dosing regimes accurately and precisely. Copyright © 2011 SEFH. Published by Elsevier Espana. All rights reserved.

  4. An improvement of quantum parametric methods by using SGSA parameterization technique and new elementary parametric functionals

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Oldenhof, M.; Freitez, J. A.; Mundim, K. C.; Ruette, F.

    A systematic improvement of parametric quantum methods (PQM) is performed by considering: (a) a new application of parameterization procedure to PQMs and (b) novel parametric functionals based on properties of elementary parametric functionals (EPF) [Ruette et al., Int J Quantum Chem 2008, 108, 1831]. Parameterization was carried out by using the simplified generalized simulated annealing (SGSA) method in the CATIVIC program. This code has been parallelized and comparison with MOPAC/2007 (PM6) and MINDO/SR was performed for a set of molecules with C=C, C=H, and H=H bonds. Results showed better accuracy than MINDO/SR and MOPAC-2007 for a selected trial set of molecules.

  5. A 'bootstrapped' Teaching/Learning Procedure

    NASA Astrophysics Data System (ADS)

    Odusina Odusote, Olusogo

    1998-04-01

    Erasing preconceived antiphysics ideas by nonscience/nonmajor physics students have elicited diverse teaching methods. Introductory general physics courses at college level have been taught by a 'bootstrap' approach. A concise treatment of the syllabus by the teacher in about 1/2 of the course duration, with brief exercises and examples. Students are then introduced to real life situations - toys, home appliances, sports, disasters, etc, and the embedded physics concepts discussed. Usually this generates a feeling of deja vu, which elicits desire for more. Each application usually encompasses topics in a broad range of the syllabus. The other half of the course is used by students to work individually/groups on assigned and graded home-works and essays, with guidance from the lecture notes and the teacher/supervisor. An end of course examination shows increase in the success rate.

  6. Determination of Time Dependent Virus Inactivation Rates

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Vogler, E. T.

    2003-12-01

    A methodology is developed for estimating temporally variable virus inactivation rate coefficients from experimental virus inactivation data. The methodology consists of a technique for slope estimation of normalized virus inactivation data in conjunction with a resampling parameter estimation procedure. The slope estimation technique is based on a relatively flexible geostatistical method known as universal kriging. Drift coefficients are obtained by nonlinear fitting of bootstrap samples and the corresponding confidence intervals are obtained by bootstrap percentiles. The proposed methodology yields more accurate time dependent virus inactivation rate coefficients than those estimated by fitting virus inactivation data to a first-order inactivation model. The methodology is successfully applied to a set of poliovirus batch inactivation data. Furthermore, the importance of accurate inactivation rate coefficient determination on virus transport in water saturated porous media is demonstrated with model simulations.

  7. Kappa statistic for clustered dichotomous responses from physicians and patients.

    PubMed

    Kang, Chaeryon; Qaqish, Bahjat; Monaco, Jane; Sheridan, Stacey L; Cai, Jianwen

    2013-09-20

    The bootstrap method for estimating the standard error of the kappa statistic in the presence of clustered data is evaluated. Such data arise, for example, in assessing agreement between physicians and their patients regarding their understanding of the physician-patient interaction and discussions. We propose a computationally efficient procedure for generating correlated dichotomous responses for physicians and assigned patients for simulation studies. The simulation result demonstrates that the proposed bootstrap method produces better estimate of the standard error and better coverage performance compared with the asymptotic standard error estimate that ignores dependence among patients within physicians with at least a moderately large number of clusters. We present an example of an application to a coronary heart disease prevention study. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Rumination and depression in Chinese university students: The mediating role of overgeneral autobiographical memory.

    PubMed

    Kong, Tianzhu; He, Yini; Auerbach, Randy P; McWhinnie, Chad M; Xiao, Jing

    2015-04-01

    In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ 2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. The results indicated that rumination and depression were partially mediated by OGM.

  9. Fitting N-mixture models to count data with unmodeled heterogeneity: Bias, diagnostics, and alternative approaches

    USGS Publications Warehouse

    Duarte, Adam; Adams, Michael J.; Peterson, James T.

    2018-01-01

    Monitoring animal populations is central to wildlife and fisheries management, and the use of N-mixture models toward these efforts has markedly increased in recent years. Nevertheless, relatively little work has evaluated estimator performance when basic assumptions are violated. Moreover, diagnostics to identify when bias in parameter estimates from N-mixture models is likely is largely unexplored. We simulated count data sets using 837 combinations of detection probability, number of sample units, number of survey occasions, and type and extent of heterogeneity in abundance or detectability. We fit Poisson N-mixture models to these data, quantified the bias associated with each combination, and evaluated if the parametric bootstrap goodness-of-fit (GOF) test can be used to indicate bias in parameter estimates. We also explored if assumption violations can be diagnosed prior to fitting N-mixture models. In doing so, we propose a new model diagnostic, which we term the quasi-coefficient of variation (QCV). N-mixture models performed well when assumptions were met and detection probabilities were moderate (i.e., ≥0.3), and the performance of the estimator improved with increasing survey occasions and sample units. However, the magnitude of bias in estimated mean abundance with even slight amounts of unmodeled heterogeneity was substantial. The parametric bootstrap GOF test did not perform well as a diagnostic for bias in parameter estimates when detectability and sample sizes were low. The results indicate the QCV is useful to diagnose potential bias and that potential bias associated with unidirectional trends in abundance or detectability can be diagnosed using Poisson regression. This study represents the most thorough assessment to date of assumption violations and diagnostics when fitting N-mixture models using the most commonly implemented error distribution. Unbiased estimates of population state variables are needed to properly inform management decision making. Therefore, we also discuss alternative approaches to yield unbiased estimates of population state variables using similar data types, and we stress that there is no substitute for an effective sample design that is grounded upon well-defined management objectives.

  10. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxonmore » sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction can mislead genome-scale phylogenetic analyses.« less

  11. The Use of Invariance and Bootstrap Procedures as a Method to Establish the Reliability of Research Results.

    ERIC Educational Resources Information Center

    Sandler, Andrew B.

    Statistical significance is misused in educational and psychological research when it is applied as a method to establish the reliability of research results. Other techniques have been developed which can be correctly utilized to establish the generalizability of findings. Methods that do provide such estimates are known as invariance or…

  12. Correlation Attenuation Due to Measurement Error: A New Approach Using the Bootstrap Procedure

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2012-01-01

    Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…

  13. Care Appropriateness and Health Productivity Evolution: A Non-Parametric Analysis of the Italian Regional Health Systems.

    PubMed

    Mancuso, Paolo; Valdmanis, Vivian Grace

    2016-10-01

    There has been increasing interest in measuring the productive performance of healthcare services since the mid-1980s. By applying bootstrapped data envelopment analysis across the 20 Italian Regional Health Systems (RHSs) for the period 2008-2012, we employed a two-stage procedure to investigate the relationship between care appropriateness and productivity evolution in public hospital services. In the first stage, we estimated the Malmquist index and decomposed this overall measure of productivity into efficiency and technological change. In the second stage, the two components of the Malmquist index were regressed on a set of variables measuring per capita health expenditure, care appropriateness, and clinical appropriateness. Malmquist analysis shows that no gains in productivity in the health industry have been achieved in Italy despite the sequence of reforms that took place during the 1990s, which were devoted to increasing efficiency and reducing costs. Analysis of the efficiency change index clearly indicates that the source of productivity gain relies on a rationalization of the employed inputs in the Italian RHSs. At the same time, the trend of the technological change index reveals that the health systems in the three macro-areas (North, Central, and South) are characterized by technological regress. Overall, our results suggest that productivity increases could be achieved in the Italian health system by reducing the level of inputs, improving care and clinical appropriateness, and by counteracting the 'DRG (diagnosis-related group) creep' phenomenon.

  14. Critical Values for Yen’s Q3: Identification of Local Dependence in the Rasch Model Using Residual Correlations

    PubMed Central

    Christensen, Karl Bang; Makransky, Guido; Horton, Mike

    2016-01-01

    The assumption of local independence is central to all item response theory (IRT) models. Violations can lead to inflated estimates of reliability and problems with construct validity. For the most widely used fit statistic Q3, there are currently no well-documented suggestions of the critical values which should be used to indicate local dependence (LD), and for this reason, a variety of arbitrary rules of thumb are used. In this study, an empirical data example and Monte Carlo simulation were used to investigate the different factors that can influence the null distribution of residual correlations, with the objective of proposing guidelines that researchers and practitioners can follow when making decisions about LD during scale development and validation. A parametric bootstrapping procedure should be implemented in each separate situation to obtain the critical value of LD applicable to the data set, and provide example critical values for a number of data structure situations. The results show that for the Q3 fit statistic, no single critical value is appropriate for all situations, as the percentiles in the empirical null distribution are influenced by the number of items, the sample size, and the number of response categories. Furthermore, the results show that LD should be considered relative to the average observed residual correlation, rather than to a uniform value, as this results in more stable percentiles for the null distribution of an adjusted fit statistic. PMID:29881087

  15. Behavior change through automated e-mails: mediation analysis of self-help strategy use for depressive symptoms.

    PubMed

    Morgan, Amy J; Mackinnon, Andrew J; Jorm, Anthony F

    2013-02-01

    To evaluate whether automated e-mails promoting effective self-help strategies for depressive symptoms were effective in changing self-help behavior, and whether this improved depression outcomes. 568 adults with sub-threshold depression participated in a randomized controlled trial and provided complete data. A series of 12 e-mails promoting the use of evidence-based self-help strategies was compared with e-mails providing non-directive depression information. Depression symptoms were assessed with the Patient Health Questionnaire depression scale (PHQ-9) and use of self-help strategies was assessed at baseline and post-intervention. We hypothesized that those receiving the self-help e-mails would increase their use of evidence-based self-help and this would be associated with improvements in depression. Mediation analyses were conducted using a non-parametric bootstrapping procedure. Total use of the self-help strategies promoted in the e-mails significantly mediated the effect of the intervention on depressive symptoms (B = -0.75, SE = 0.16, 95% CI: -1.06 to -0.48). The direct effect of the intervention on depressive symptoms was much smaller and not significant when the mediation path was included. The majority of the individual strategies also had a significant indirect effect on depressive symptoms. In adults with sub-threshold depression, automated e-mails based on behavior change principles can successfully increase use of self-help strategies, leading to a reduction in depressive symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A design study for the addition of higher order parametric discrete elements to NASTRAN

    NASA Technical Reports Server (NTRS)

    Stanton, E. L.

    1972-01-01

    The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.

  17. A Nonparametric Geostatistical Method For Estimating Species Importance

    Treesearch

    Andrew J. Lister; Rachel Riemann; Michael Hoppus

    2001-01-01

    Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test statistics are...

  18. Acoustic attenuation design requirements established through EPNL parametric trades

    NASA Technical Reports Server (NTRS)

    Veldman, H. F.

    1972-01-01

    An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).

  19. Cure modeling in real-time prediction: How much does it help?

    PubMed

    Ying, Gui-Shuang; Zhang, Qiang; Lan, Yu; Li, Yimei; Heitjan, Daniel F

    2017-08-01

    Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap. The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a cured component, or the appearance of a cured component, but at a substantial cost in the average width of the intervals. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Examination of the reliability of the crash modification factors using empirical Bayes method with resampling technique.

    PubMed

    Wang, Jung-Han; Abdel-Aty, Mohamed; Wang, Ling

    2017-07-01

    There have been plenty of studies intended to use different methods, for example, empirical Bayes before-after methods, to get accurate estimation of CMFs. All of them have different assumptions toward crash count if there was no treatment. Additionally, another major assumption is that multiple sites share the same true CMF. Under this assumption, the CMF at an individual intersection is randomly drawn from a normally distributed population of CMFs at all intersections. Since CMFs are non-zero values, the population of all CMFs might not follow normal distributions, and even if it does, the true mean of CMFs at some intersections may be different from that at others. Therefore, a bootstrap method based on before-after empirical Bayes theory was proposed to estimate CMFs, but it did not make distributional assumptions. This bootstrap procedure has the added benefit of producing a measure of CMF stability. Furthermore, based on the bootstrapped CMF, a new CMF precision rating method was proposed to evaluate the reliability of CMFs. This study chose 29 urban four-legged intersections as treated sites, and their controls were changed from stop-controlled to signal-controlled. Meanwhile, 124 urban four-legged stop-controlled intersections were selected as reference sites. At first, different safety performance functions (SPFs) were applied to five crash categories, and it was found that each crash category had different optimal SPF form. Then, the CMFs of these five crash categories were estimated using the bootstrap empirical Bayes method. The results of the bootstrapped method showed that signalization significantly decreased Angle+Left-Turn crashes, and its CMF had the highest precision. While, the CMF for Rear-End crashes was unreliable. For KABCO, KABC, and KAB crashes, their CMFs were proved to be reliable for the majority of intersections, but the estimated effect of signalization may be not accurate at some sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rumination and depression in Chinese university students: The mediating role of overgeneral autobiographical memory

    PubMed Central

    Kong, Tianzhu; He, Yini; Auerbach, Randy P.; McWhinnie, Chad M.; Xiao, Jing

    2015-01-01

    Objective In this study, we examined the mediator effects of overgeneral autobiographical memory (OGM) on the relationship between rumination and depression in 323 Chinese university students. Method 323 undergraduates completed the questionnaires measuring OGM (Autobiographical Memory Test), rumination (Ruminative Response Scale) and depression (Center for Epidemiologic Studies Depression Scale). Results Results using structural equation modeling showed that OGM partially-mediated the relationship between rumination and depression (χ2 = 88.61, p < .01; RMSEA = .051; SRMR = .040; and CFI = .91). Bootstrap methods were used to assess the magnitude of the indirect effects. The results of the bootstrap estimation procedure and subsequent analyses indicated that the indirect effects of OGM on the relationship between rumination and depressive symptoms were significant. Conclusion The results indicated that rumination and depression were partially mediated by OGM. PMID:25977594

  2. Confidence Intervals for Laboratory Sonic Boom Annoyance Tests

    NASA Technical Reports Server (NTRS)

    Rathsam, Jonathan; Christian, Andrew

    2016-01-01

    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One deliverable NASA will provide is a predictive model for indoor annoyance to aid in setting an acceptable quiet sonic boom threshold. A laboratory study was conducted to determine how indoor vibrations caused by sonic booms affect annoyance judgments. The test method required finding the point of subjective equality (PSE) between sonic boom signals that cause vibrations and signals not causing vibrations played at various amplitudes. This presentation focuses on a few statistical techniques for estimating the interval around the PSE. The techniques examined are the Delta Method, Parametric and Nonparametric Bootstrapping, and Bayesian Posterior Estimation.

  3. Testing non-inferiority of a new treatment in three-arm clinical trials with binary endpoints.

    PubMed

    Tang, Nian-Sheng; Yu, Bin; Tang, Man-Lai

    2014-12-18

    A two-arm non-inferiority trial without a placebo is usually adopted to demonstrate that an experimental treatment is not worse than a reference treatment by a small pre-specified non-inferiority margin due to ethical concerns. Selection of the non-inferiority margin and establishment of assay sensitivity are two major issues in the design, analysis and interpretation for two-arm non-inferiority trials. Alternatively, a three-arm non-inferiority clinical trial including a placebo is usually conducted to assess the assay sensitivity and internal validity of a trial. Recently, some large-sample approaches have been developed to assess the non-inferiority of a new treatment based on the three-arm trial design. However, these methods behave badly with small sample sizes in the three arms. This manuscript aims to develop some reliable small-sample methods to test three-arm non-inferiority. Saddlepoint approximation, exact and approximate unconditional, and bootstrap-resampling methods are developed to calculate p-values of the Wald-type, score and likelihood ratio tests. Simulation studies are conducted to evaluate their performance in terms of type I error rate and power. Our empirical results show that the saddlepoint approximation method generally behaves better than the asymptotic method based on the Wald-type test statistic. For small sample sizes, approximate unconditional and bootstrap-resampling methods based on the score test statistic perform better in the sense that their corresponding type I error rates are generally closer to the prespecified nominal level than those of other test procedures. Both approximate unconditional and bootstrap-resampling test procedures based on the score test statistic are generally recommended for three-arm non-inferiority trials with binary outcomes.

  4. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    NASA Astrophysics Data System (ADS)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  5. Standard Errors and Confidence Intervals from Bootstrapping for Ramsay-Curve Item Response Theory Model Item Parameters

    ERIC Educational Resources Information Center

    Gu, Fei; Skorupski, William P.; Hoyle, Larry; Kingston, Neal M.

    2011-01-01

    Ramsay-curve item response theory (RC-IRT) is a nonparametric procedure that estimates the latent trait using splines, and no distributional assumption about the latent trait is required. For item parameters of the two-parameter logistic (2-PL), three-parameter logistic (3-PL), and polytomous IRT models, RC-IRT can provide more accurate estimates…

  6. Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival.

    PubMed

    Ishwaran, Hemant; Lu, Min

    2018-06-04

    Random forests are a popular nonparametric tree ensemble procedure with broad applications to data analysis. While its widespread popularity stems from its prediction performance, an equally important feature is that it provides a fully nonparametric measure of variable importance (VIMP). A current limitation of VIMP, however, is that no systematic method exists for estimating its variance. As a solution, we propose a subsampling approach that can be used to estimate the variance of VIMP and for constructing confidence intervals. The method is general enough that it can be applied to many useful settings, including regression, classification, and survival problems. Using extensive simulations, we demonstrate the effectiveness of the subsampling estimator and in particular find that the delete-d jackknife variance estimator, a close cousin, is especially effective under low subsampling rates due to its bias correction properties. These 2 estimators are highly competitive when compared with the .164 bootstrap estimator, a modified bootstrap procedure designed to deal with ties in out-of-sample data. Most importantly, subsampling is computationally fast, thus making it especially attractive for big data settings. Copyright © 2018 John Wiley & Sons, Ltd.

  7. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  8. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  9. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  10. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  11. Economic evaluation of a dietary intervention for adults with major depression (the "SMILES" trial).

    PubMed

    Chatterton, Mary Lou; Mihalopoulos, Cathrine; O'Neil, Adrienne; Itsiopoulos, Catherine; Opie, Rachelle; Castle, David; Dash, Sarah; Brazionis, Laima; Berk, Michael; Jacka, Felice

    2018-05-22

    Recently, the efficacy of dietary improvement as a therapeutic intervention for moderate to severe depression was evaluated in a randomised controlled trial. The SMILES trial demonstrated a significant improvement in Montgomery-Åsberg Depression Rating Scale scores favouring the dietary support group compared with a control group over 12 weeks. We used data collected within the trial to evaluate the cost-effectiveness of this novel intervention. In this prospective economic evaluation, sixty-seven adults meeting DSM-IV criteria for a major depressive episode and reporting poor dietary quality were randomised to either seven sessions with a dietitian for dietary support or to an intensity matched social support (befriending) control condition. The primary outcome was Quality Adjusted Life Years (QALYs) as measured by the AQoL-8D, completed at baseline and 12 week follow-up (endpoint) assessment. Costs were evaluated from health sector and societal perspectives. The time required for intervention delivery was costed using hourly wage rates applied to the time in counselling sessions. Food and travel costs were also included in the societal perspective. Data on medications, medical services, workplace absenteeism and presenteesim (paid and unpaid) were collected from study participants using a resource-use questionnaire. Standard Australian unit costs for 2013/2014 were applied. Incremental cost-effectiveness ratios (ICERs) were calculated as the difference in average costs between groups divided by the difference in average QALYs. Confidence intervals were calculated using a non-parametric bootstrap procedure. Compared with the social support condition, average total health sector costs were $856 lower (95% CI -1247 to - 160) and average societal costs were $2591 lower (95% CI -3591 to - 198) for those receiving dietary support. These differences were driven by lower costs arising from fewer allied and other health professional visits and lower costs of unpaid productivity. Significant differences in mean QALYs were not found between groups. However, 68 and 69% of bootstrap iterations showed the dietary support intervention was dominant (additional QALYs at less cost) from the health sector and societal perspectives. This novel dietary support intervention was found to be likely cost-effective as an adjunctive treatment for depression from both health sector and societal perspectives. Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12612000251820 . Registered on 29 February 2012.

  12. Fluoxetine and imipramine: are there differences in cost-utility for depression in primary care?

    PubMed

    Serrano-Blanco, Antoni; Suárez, David; Pinto-Meza, Alejandra; Peñarrubia, Maria T; Haro, Josep Maria

    2009-02-01

    Depressive disorders generate severe personal burden and high economic costs. Cost-utility analyses of the different therapeutical options are crucial to policy-makers and clinicians. Previous cost-utility studies, comparing selective serotonin reuptake inhibitors and tricyclic antidepressants, have used modelling techniques or have not included indirect costs in the economic analyses. To determine the cost-utility of fluoxetine compared with imipramine for treating depressive disorders in primary care. A 6-month randomized prospective naturalistic study comparing fluoxetine with imipramine was conducted in three primary care centres in Spain. One hundred and three patients requiring antidepressant treatment for a DSM-IV depressive disorder were included in the study. Patients were randomized either to fluoxetine (53 patients) or to imipramine (50 patients) treatment. Patients were treated with antidepressants according to their general practitioner's usual clinical practice. Outcome measures were the quality of life tariff of the European Quality of Life Questionnaire: EuroQoL-5D (five domains), direct costs, indirect costs and total costs. Subjects were evaluated at the beginning of treatment and after 1, 3 and 6 months. Incremental cost-utility ratios (ICUR) were obtained. To address uncertainty in the ICUR's sampling distribution, non-parametric bootstrapping was carried out. Taking into account adjusted total costs and incremental quality of life gained, imipramine dominated fluoxetine with 81.5% of the bootstrap replications in the dominance quadrant. Imipramine seems to be a better cost-utility antidepressant option for treating depressive disorders in primary care.

  13. An appraisal of statistical procedures used in derivation of reference intervals.

    PubMed

    Ichihara, Kiyoshi; Boyd, James C

    2010-11-01

    When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.

  14. Revisiting the southern pine growth decline: Where are we 10 years later?

    Treesearch

    Gary L. Gadbury; Michael S. Williams; Hans T. Schreuder

    2004-01-01

    This paper evaluates changes in growth of pine stands in the state of Georgia, U.S.A., using USDA Forest Service Forest Inventory and Analysis (FIA) data. In particular, data representing an additional 10-year growth cy-cle has been added to previously published results from two earlier growth cycles. A robust regression procedure is combined with a bootstrap technique...

  15. The Relationships among Students' Future-Oriented Goals and Subgoals, Perceived Task Instrumentality, and Task-Oriented Self-Regulation Strategies in an Academic Environment

    ERIC Educational Resources Information Center

    Tabachnick, Sharon E.; Miller, Raymond B.; Relyea, George E.

    2008-01-01

    The authors performed path analysis, followed by a bootstrap procedure, to test the predictions of a model explaining the relationships among students' distal future goals (both extrinsic and intrinsic), their adoption of a middle-range subgoal, their perceptions of task instrumentality, and their proximal task-oriented self-regulation strategies.…

  16. Graphing within-subjects confidence intervals using SPSS and S-Plus.

    PubMed

    Wright, Daniel B

    2007-02-01

    Within-subjects confidence intervals are often appropriate to report and to display. Loftus and Masson (1994) have reported methods to calculate these, and their use is becoming common. In the present article, procedures for calculating within-subjects confidence intervals in SPSS and S-Plus are presented (an R version is on the accompanying Web site). The procedure in S-Plus allows the user to report the bias corrected and adjusted bootstrap confidence intervals as well as the standard confidence intervals based on traditional methods. The presented code can be easily altered to fit the individual user's needs.

  17. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  18. Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D

    PubMed Central

    Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik

    2010-01-01

    The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588

  19. Brief Report: Investigating Uncertainty in the Minimum Mortality Temperature: Methods and Application to 52 Spanish Cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio

    2017-01-01

    The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.

  20. A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification.

    PubMed

    Jiang, Wenyu; Simon, Richard

    2007-12-20

    This paper first provides a critical review on some existing methods for estimating the prediction error in classifying microarray data where the number of genes greatly exceeds the number of specimens. Special attention is given to the bootstrap-related methods. When the sample size n is small, we find that all the reviewed methods suffer from either substantial bias or variability. We introduce a repeated leave-one-out bootstrap (RLOOB) method that predicts for each specimen in the sample using bootstrap learning sets of size ln. We then propose an adjusted bootstrap (ABS) method that fits a learning curve to the RLOOB estimates calculated with different bootstrap learning set sizes. The ABS method is robust across the situations we investigate and provides a slightly conservative estimate for the prediction error. Even with small samples, it does not suffer from large upward bias as the leave-one-out bootstrap and the 0.632+ bootstrap, and it does not suffer from large variability as the leave-one-out cross-validation in microarray applications. Copyright (c) 2007 John Wiley & Sons, Ltd.

  1. Novel loci interacting epistatically with bone morphogenetic protein receptor 2 cause familial pulmonary arterial hypertension.

    PubMed

    Rodriguez-Murillo, Laura; Subaran, Ryan; Stewart, William C L; Pramanik, Sreemanta; Marathe, Sudhir; Barst, Robyn J; Chung, Wendy K; Greenberg, David A

    2010-02-01

    Familial pulmonary arterial hypertension (FPAH) is a rare, autosomal-dominant, inherited disease with low penetrance. Mutations in the bone morphogenetic protein receptor 2 (BMPR2) have been identified in at least 70% of FPAH patients. However, the lifetime penetrance of these BMPR2 mutations is 10% to 20%, suggesting that genetic and/or environmental modifiers are required for disease expression. Our goal in this study was to identify genetic loci that may influence FPAH expression in BMPR2 mutation carriers. We performed a genome-wide linkage scan in 15 FPAH families segregating for BMPR2 mutations. We used a dense single-nucleotide polymorphism (SNP) array and a novel multi-scan linkage procedure that provides increased power and precision for the localization of linked loci. We observed linkage evidence in four regions: 3q22 ([median log of the odds (LOD) = 3.43]), 3p12 (median LOD) = 2.35), 2p22 (median LOD = 2.21), and 13q21 (median LOD = 2.09). When used in conjunction with the non-parametric bootstrap, our approach yields high-resolution to identify candidate gene regions containing putative BMPR2-interacting genes. Imputation of the disease model by LOD-score maximization indicates that the 3q22 locus alone predicts most FPAH cases in BMPR2 mutation carriers, providing strong evidence that BMPR2 and the 3q22 locus interact epistatically. Our findings suggest that genotypes at loci in the newly identified regions, especially at 3q22, could improve FPAH risk prediction in FPAH families. We also suggest other targets for therapeutic intervention.

  2. Practice and Learning: Spatiotemporal Differences in Thalamo-Cortical-Cerebellar Networks Engagement across Learning Phases in Schizophrenia.

    PubMed

    Korostil, Michele; Remington, Gary; McIntosh, Anthony Randal

    2016-01-01

    Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.

  3. A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity

    PubMed Central

    Bailey, Matthew; Kauwe, John S. K.; Maxwell, Taylor J.

    2014-01-01

    Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (GxG), or gene-by-environment (GxE) interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others we found that all parametric tests were sensitive to non-normality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant we demonstrate how linkage disequilibrium (LD) can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D’ and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect gene-by-gene interactions and also how vQTL are related to relationship loci (rQTL) and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait. PMID:24482837

  4. A Statistician's View of Upcoming Grand Challenges

    NASA Astrophysics Data System (ADS)

    Meng, Xiao Li

    2010-01-01

    In this session we have seen some snapshots of the broad spectrum of challenges, in this age of huge, complex, computer-intensive models, data, instruments,and questions. These challenges bridge astronomy at many wavelengths; basic physics; machine learning; -- and statistics. At one end of our spectrum, we think of 'compressing' the data with non-parametric methods. This raises the question of creating 'pseudo-replicas' of the data for uncertainty estimates. What would be involved in, e.g. boot-strap and related methods? Somewhere in the middle are these non-parametric methods for encapsulating the uncertainty information. At the far end, we find more model-based approaches, with the physics model embedded in the likelihood and analysis. The other distinctive problem is really the 'black-box' problem, where one has a complicated e.g. fundamental physics-based computer code, or 'black box', and one needs to know how changing the parameters at input -- due to uncertainties of any kind -- will map to changing the output. All of these connect to challenges in complexity of data and computation speed. Dr. Meng will highlight ways to 'cut corners' with advanced computational techniques, such as Parallel Tempering and Equal Energy methods. As well, there are cautionary tales of running automated analysis with real data -- where "30 sigma" outliers due to data artifacts can be more common than the astrophysical event of interest.

  5. Sample size and power estimation for studies with health related quality of life outcomes: a comparison of four methods using the SF-36.

    PubMed

    Walters, Stephen J

    2004-05-25

    We describe and compare four different methods for estimating sample size and power, when the primary outcome of the study is a Health Related Quality of Life (HRQoL) measure. These methods are: 1. assuming a Normal distribution and comparing two means; 2. using a non-parametric method; 3. Whitehead's method based on the proportional odds model; 4. the bootstrap. We illustrate the various methods, using data from the SF-36. For simplicity this paper deals with studies designed to compare the effectiveness (or superiority) of a new treatment compared to a standard treatment at a single point in time. The results show that if the HRQoL outcome has a limited number of discrete values (< 7) and/or the expected proportion of cases at the boundaries is high (scoring 0 or 100), then we would recommend using Whitehead's method (Method 3). Alternatively, if the HRQoL outcome has a large number of distinct values and the proportion at the boundaries is low, then we would recommend using Method 1. If a pilot or historical dataset is readily available (to estimate the shape of the distribution) then bootstrap simulation (Method 4) based on this data will provide a more accurate and reliable sample size estimate than conventional methods (Methods 1, 2, or 3). In the absence of a reliable pilot set, bootstrapping is not appropriate and conventional methods of sample size estimation or simulation will need to be used. Fortunately, with the increasing use of HRQoL outcomes in research, historical datasets are becoming more readily available. Strictly speaking, our results and conclusions only apply to the SF-36 outcome measure. Further empirical work is required to see whether these results hold true for other HRQoL outcomes. However, the SF-36 has many features in common with other HRQoL outcomes: multi-dimensional, ordinal or discrete response categories with upper and lower bounds, and skewed distributions, so therefore, we believe these results and conclusions using the SF-36 will be appropriate for other HRQoL measures.

  6. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  7. Tests of Independence for Ordinal Data Using Bootstrap.

    ERIC Educational Resources Information Center

    Chan, Wai; Yung, Yiu-Fai; Bentler, Peter M.; Tang, Man-Lai

    1998-01-01

    Two bootstrap tests are proposed to test the independence hypothesis in a two-way cross table. Monte Carlo studies are used to compare the traditional asymptotic test with these bootstrap methods, and the bootstrap methods are found superior in two ways: control of Type I error and statistical power. (SLD)

  8. A Framework for Dimensionality Assessment for Multidimensional Item Response Models

    ERIC Educational Resources Information Center

    Svetina, Dubravka; Levy, Roy

    2014-01-01

    A framework is introduced for considering dimensionality assessment procedures for multidimensional item response models. The framework characterizes procedures in terms of their confirmatory or exploratory approach, parametric or nonparametric assumptions, and applicability to dichotomous, polytomous, and missing data. Popular and emerging…

  9. Tests for informative cluster size using a novel balanced bootstrap scheme.

    PubMed

    Nevalainen, Jaakko; Oja, Hannu; Datta, Somnath

    2017-07-20

    Clustered data are often encountered in biomedical studies, and to date, a number of approaches have been proposed to analyze such data. However, the phenomenon of informative cluster size (ICS) is a challenging problem, and its presence has an impact on the choice of a correct analysis methodology. For example, Dutta and Datta (2015, Biometrics) presented a number of marginal distributions that could be tested. Depending on the nature and degree of informativeness of the cluster size, these marginal distributions may differ, as do the choices of the appropriate test. In particular, they applied their new test to a periodontal data set where the plausibility of the informativeness was mentioned, but no formal test for the same was conducted. We propose bootstrap tests for testing the presence of ICS. A balanced bootstrap method is developed to successfully estimate the null distribution by merging the re-sampled observations with closely matching counterparts. Relying on the assumption of exchangeability within clusters, the proposed procedure performs well in simulations even with a small number of clusters, at different distributions and against different alternative hypotheses, thus making it an omnibus test. We also explain how to extend the ICS test to a regression setting and thereby enhancing its practical utility. The methodologies are illustrated using the periodontal data set mentioned earlier. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

    PubMed

    Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C

    2002-03-01

    Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant negative influences of employment status and partnership on costs. All three models provided a R2 of about.31. The Residuals of the linear OLS model revealed significant deviances from normality and homoscedasticity. The residuals of the log-transformed model are normally distributed but still heteroscedastic. The linear OLS model provided the lowest prediction error and the best forecast of the dependent cost variable. The log-transformed model provided the lowest RMSE if the heteroscedastic bias correction was used. The RMSE of the GLM with a log link and a gamma distribution was higher than those of the linear OLS model and the log-transformed OLS model. The difference between the RMSE of the linear OLS model and that of the log-transformed OLS model without bias correction was significant at the 95% level. As result of the cross-validation procedure, the linear OLS model provided the lowest RMSE followed by the log-transformed OLS model with a heteroscedastic bias correction. The GLM showed the weakest model fit again. None of the differences between the RMSE resulting form the cross- validation procedure were found to be significant. The comparison of the fit indices of the different regression models revealed that the linear OLS model provided a better fit than the log-transformed model and the GLM, but the differences between the models RMSE were not significant. Due to the small number of cases in the study the lack of significance does not sufficiently proof that the differences between the RSME for the different models are zero and the superiority of the linear OLS model can not be generalized. The lack of significant differences among the alternative estimators may reflect a lack of sample size adequate to detect important differences among the estimators employed. Further studies with larger case number are necessary to confirm the results. Specification of an adequate regression models requires a careful examination of the characteristics of the data. Estimation of standard errors and confidence intervals by nonparametric methods which are robust against deviations from the normal distribution and the homoscedasticity of residuals are suitable alternatives to the transformation of the skew distributed dependent variable. Further studies with more adequate case numbers are needed to confirm the results.

  11. [Technical background of data collection for parametric observation of total mesorectal excision (TME) in rectal cancer].

    PubMed

    Bláha, M; Hoch, J; Ferko, A; Ryška, A; Hovorková, E

    Improvement in any human activity is preconditioned by inspection of results and providing feedback used for modification of the processes applied. Comparison of experts experience in the given field is another indispensable part leading to optimisation and improvement of processes, and optimally to implementation of standards. For the purpose of objective comparison and assessment of the processes, it is always necessary to describe the processes in a parametric way, to obtain representative data, to assess the achieved results, and to provide unquestionable and data-driven feedback based on such analysis. This may lead to a consensus on the definition of standards in the given area of health care. Total mesorectal excision (TME) is a standard procedure of rectal cancer (C20) surgical treatment. However, the quality of performed procedures varies in different health care facilities, which is given, among others, by internal processes and surgeons experience. Assessment of surgical treatment results is therefore of key importance. A pathologist who assesses the resected tissue can provide valuable feedback in this respect. An information system for the parametric assessment of TME performance is described in our article, including technical background in the form of a multicentre clinical registry and the structure of observed parameters. We consider the proposed system of TME parametric assessment as significant for improvement of TME performance, aimed at reducing local recurrences and at improving the overall prognosis of patients. rectal cancer total mesorectal excision parametric data clinical registries TME registry.

  12. Using the Descriptive Bootstrap to Evaluate Result Replicability (Because Statistical Significance Doesn't)

    ERIC Educational Resources Information Center

    Spinella, Sarah

    2011-01-01

    As result replicability is essential to science and difficult to achieve through external replicability, the present paper notes the insufficiency of null hypothesis statistical significance testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to illustrate the bootstrap method. The bootstrap relies on…

  13. Design of three-dimensional nonimaging concentrators with inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Minano, J. C.

    1986-09-01

    A three-dimensional nonimaging concentrator is an optical system that transforms a given four-parametric manifold of rays reaching a surface (entry aperture) into another four-parametric manifold of rays reaching the receiver. A procedure of design of such concentrators is developed. In general, the concentrators use mirrors and inhomogeneous media (i.e., gradient-index media). The concentrator has the maximum concentration allowed by the theorem of conservation of phase-space volume. This is the first known concentrator with such properties. The Welford-Winston edge-ray principle in three-dimensional geometry is proven under several assumptions. The linear compound parabolic concentrator is derived as a particular case of the procedure of design.

  14. Non-parametric diffeomorphic image registration with the demons algorithm.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2007-01-01

    We propose a non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. The demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. The main idea of our algorithm is to adapt this procedure to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of free form deformations by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the true ones in terms of Jacobians.

  15. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  16. Effectiveness and cost-effectiveness of facilitated percutaneous coronary intervention compared with primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction transferred from community hospitals.

    PubMed

    Coleman, Craig I; McKay, Raymond G; Boden, William E; Mather, Jeffrey F; White, C Michael

    2006-07-01

    Primary percutaneous coronary intervention ([PCI], percutaneous transluminal coronary angioplasty+stenting) for ST-segment elevation myocardial infarction (STEMI) is regarded as superior to fibrinolysis even if it means that patients need to be transferred from one center to another to undergo the procedure. However, this inevitable delay between symptom onset and PCI, caused by the time required to travel, might increase the occurrence of cardiac events. A hybrid method called facilitated PCI uses fibrinolysis and/or glycoprotein (GP) IIb/IIIa inhibitors before transfer to a tertiary medical center where urgent PCI might be performed. This approach, however, has not been systematically evaluated. The purpose of this study was to compare the effectiveness (combined end point of in-hospital mortality, reinfarction, stroke, or emergency revascularization) and cost-effectiveness of utilizing a bolus thrombolytic agent with GP IIb/IIIa inhibitor followed by transfer to a tertiary institution for facilitated PCI or standard of care transfer without primary PCI drugs among patients presenting to a community hospital with STEMI. This was a prospective, single-center, cohort study comprising data from STEMI patients transferred from community hospitals to Hartford Hospital, Hartford, Connecticut, from the years 2000 to 2003. At the time of analysis, patients receiving primary PCI were matched (1:1) with those receiving facilitated PCI, utilizing propensity scores to assure similar demographics. The combined incidence of major adverse cardiac end points (MACE) and total hospital costs was compared between groups. Non-parametric bootstrapping was conducted to calculate CIs for the incremental cost-effectiveness ratio and generate a quadrant analysis. Based on 254 propensity score-matched patients (127 facilitated PCI and 127 primary PCI), in-hospital MACE and total hospital costs were reduced by 61.3% and US 4563 dollars (2005), respectively, in patients receiving facilitated compared with primary PCI (P=0.021 and P=NS, respectively). Patients receiving facilitated PCI were more likely to have target lesion Thrombolysis in Myocardial Infarction (TIMI) III (normal) blood flow on cardiac catheterization than those receiving primary PCI (49.6% vs 30.7%; P=0.002). However, the rate of TIMI bleeding was similar in both groups (21.3% in the facilitated PCI group vs 18.9% in the primary PCI group). Nonsignificant reductions were observed in both intensive care unit (ICU) and total length of stay (LOS) (0.8 day and 1.0 day, respectively) compared with the primary PCI group. Bootstrap analysis revealed that of 25,000 samplings, facilitated PCI would likely be both more effective and less costly 94.6% of the time. The use of facilitated PCI in STEMI patients who initially presented to community hospitals and were transferred for PCI appeared to significantly reduce the incidence of MACE, and increase the likelihood of having baseline TIMI III blood flow at time of catheterization. Nonsignificant reductions were observed in total ICU and hospital LOS. However, there did not appear to be a significant effect on the incidence of bleeding in patients receiving facilitated PCI. Bootstrap analysis confirmed that facilitated PCI would be both a more effective and less costly strategy.

  17. Performance of Bootstrapping Approaches To Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Jonathan; Hancock, Gregory R.

    2001-01-01

    Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…

  18. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, G.; Lin, Z.

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  19. Effects of magnetic islands on bootstrap current in toroidal plasmas

    DOE PAGES

    Dong, G.; Lin, Z.

    2016-12-19

    The effects of magnetic islands on electron bootstrap current in toroidal plasmas are studied using gyrokinetic simulations. The magnetic islands cause little changes of the bootstrap current level in the banana regime because of trapped electron effects. In the plateau regime, the bootstrap current is completely suppressed at the island centers due to the destruction of trapped electron orbits by collisions and the flattening of pressure profiles by the islands. In the collisional regime, small but finite bootstrap current can exist inside the islands because of the pressure gradients created by large collisional transport across the islands. Lastly, simulation resultsmore » show that the bootstrap current level increases near the island separatrix due to steeper local density gradients.« less

  20. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  1. Percolation in education and application in the 21st century

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Elfenbaum, Shaked; Sharir, Liran

    2017-03-01

    Percolation, "so simple you could teach it to your wife" (Chuck Newman, last century) is an ideal system to introduce young students to phase transitions. Two recent projects in the Computational Physics group at the Technion make this easy. One is a set of analog models to be mounted on our walls and enable visitors to switch between samples to see which mixtures of glass and metal objects have a percolating current. The second is a website enabling the creation of stereo samples of two and three dimensional clusters (suited for viewing with Oculus rift) on desktops, tablets and smartphones. Although there have been many physical applications for regular percolation in the past, for Bootstrap Percolation, where only sites with sufficient occupied neighbours remain active, there have not been a surfeit of condensed matter applications. We have found that the creation of diamond membranes for quantum computers can be modeled with a bootstrap process of graphitization in diamond, enabling prediction of optimal processing procedures.

  2. Maturity associated variance in physical activity and health-related quality of life in adolescent females: a mediated effects model.

    PubMed

    Smart, Joan E Hunter; Cumming, Sean P; Sherar, Lauren B; Standage, Martyn; Neville, Helen; Malina, Robert M

    2012-01-01

    This study tested a mediated effects model of psychological and behavioral adaptation to puberty within the context of physical activity (PA). Biological maturity status, physical self-concept, PA, and health-related quality of life (HRQoL) were assessed in 222 female British year 7 to 9 pupils (mean age = 12.7 years, SD = .8). Structural equation modeling using maximum likelihood estimation and bootstrapping procedures supported the hypothesized model. Maturation status was inversely related to perceptions of sport competence, body attractiveness, and physical condition; and indirectly and inversely related to physical self-worth, PA, and HRQoL. Examination of the bootstrap-generated bias-corrected confidence intervals representing the direct and indirect paths between suggested that physical self-concept partially mediated the relations between maturity status and PA, and maturity status and HRQoL. Evidence supports the contention that perceptions of the physical self partially mediate relations maturity, PA, and HRQoL in adolescent females.

  3. Evaluation of Second-Level Inference in fMRI Analysis

    PubMed Central

    Roels, Sanne P.; Loeys, Tom; Moerkerke, Beatrijs

    2016-01-01

    We investigate the impact of decisions in the second-level (i.e., over subjects) inferential process in functional magnetic resonance imaging on (1) the balance between false positives and false negatives and on (2) the data-analytical stability, both proxies for the reproducibility of results. Second-level analysis based on a mass univariate approach typically consists of 3 phases. First, one proceeds via a general linear model for a test image that consists of pooled information from different subjects. We evaluate models that take into account first-level (within-subjects) variability and models that do not take into account this variability. Second, one proceeds via inference based on parametrical assumptions or via permutation-based inference. Third, we evaluate 3 commonly used procedures to address the multiple testing problem: familywise error rate correction, False Discovery Rate (FDR) correction, and a two-step procedure with minimal cluster size. Based on a simulation study and real data we find that the two-step procedure with minimal cluster size results in most stable results, followed by the familywise error rate correction. The FDR results in most variable results, for both permutation-based inference and parametrical inference. Modeling the subject-specific variability yields a better balance between false positives and false negatives when using parametric inference. PMID:26819578

  4. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.

  5. On the efficacy of procedures to normalize Ex-Gaussian distributions.

    PubMed

    Marmolejo-Ramos, Fernando; Cousineau, Denis; Benites, Luis; Maehara, Rocío

    2014-01-01

    Reaction time (RT) is one of the most common types of measure used in experimental psychology. Its distribution is not normal (Gaussian) but resembles a convolution of normal and exponential distributions (Ex-Gaussian). One of the major assumptions in parametric tests (such as ANOVAs) is that variables are normally distributed. Hence, it is acknowledged by many that the normality assumption is not met. This paper presents different procedures to normalize data sampled from an Ex-Gaussian distribution in such a way that they are suitable for parametric tests based on the normality assumption. Using simulation studies, various outlier elimination and transformation procedures were tested against the level of normality they provide. The results suggest that the transformation methods are better than elimination methods in normalizing positively skewed data and the more skewed the distribution then the transformation methods are more effective in normalizing such data. Specifically, transformation with parameter lambda -1 leads to the best results.

  6. The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis

    PubMed Central

    Kaufmann, Esther; Wittmann, Werner W.

    2016-01-01

    The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085

  7. What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics Curriculum

    PubMed Central

    Hesterberg, Tim C.

    2015-01-01

    Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using t-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods—how they work, when they work or not, and which methods work better—and to highlight pedagogical issues. Supplementary materials for this article are available online. [Received December 2014. Revised August 2015] PMID:27019512

  8. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix D: Procedures used to determine the mass distribution for idealized low aspect ratio two spar fighter wings

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Hamler, F. R.; Reynolds, D.

    1972-01-01

    The procedures used to establish the mass matrices characteristics for the fighter type wings studied are given. A description of the procedure used to find the mass associated with a specific aerodynamic panel is presented and some examples of the application of the procedure are included.

  9. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  10. A Simulation Comparison of Parametric and Nonparametric Dimensionality Detection Procedures

    ERIC Educational Resources Information Center

    Mroch, Andrew A.; Bolt, Daniel M.

    2006-01-01

    Recently, nonparametric methods have been proposed that provide a dimensionally based description of test structure for tests with dichotomous items. Because such methods are based on different notions of dimensionality than are assumed when using a psychometric model, it remains unclear whether these procedures might lead to a different…

  11. Statistical methods for detecting periodic fragments in DNA sequence data

    PubMed Central

    2011-01-01

    Background Period 10 dinucleotides are structurally and functionally validated factors that influence the ability of DNA to form nucleosomes, histone core octamers. Robust identification of periodic signals in DNA sequences is therefore required to understand nucleosome organisation in genomes. While various techniques for identifying periodic components in genomic sequences have been proposed or adopted, the requirements for such techniques have not been considered in detail and confirmatory testing for a priori specified periods has not been developed. Results We compared the estimation accuracy and suitability for confirmatory testing of autocorrelation, discrete Fourier transform (DFT), integer period discrete Fourier transform (IPDFT) and a previously proposed Hybrid measure. A number of different statistical significance procedures were evaluated but a blockwise bootstrap proved superior. When applied to synthetic data whose period-10 signal had been eroded, or for which the signal was approximately period-10, the Hybrid technique exhibited superior properties during exploratory period estimation. In contrast, confirmatory testing using the blockwise bootstrap procedure identified IPDFT as having the greatest statistical power. These properties were validated on yeast sequences defined from a ChIP-chip study where the Hybrid metric confirmed the expected dominance of period-10 in nucleosome associated DNA but IPDFT identified more significant occurrences of period-10. Application to the whole genomes of yeast and mouse identified ~ 21% and ~ 19% respectively of these genomes as spanned by period-10 nucleosome positioning sequences (NPS). Conclusions For estimating the dominant period, we find the Hybrid period estimation method empirically to be the most effective for both eroded and approximate periodicity. The blockwise bootstrap was found to be effective as a significance measure, performing particularly well in the problem of period detection in the presence of eroded periodicity. The autocorrelation method was identified as poorly suited for use with the blockwise bootstrap. Application of our methods to the genomes of two model organisms revealed a striking proportion of the yeast and mouse genomes are spanned by NPS. Despite their markedly different sizes, roughly equivalent proportions (19-21%) of the genomes lie within period-10 spans of the NPS dinucleotides {AA, TT, TA}. The biological significance of these regions remains to be demonstrated. To facilitate this, the genomic coordinates are available as Additional files 1, 2, and 3 in a format suitable for visualisation as tracks on popular genome browsers. Reviewers This article was reviewed by Prof Tomas Radivoyevitch, Dr Vsevolod Makeev (nominated by Dr Mikhail Gelfand), and Dr Rob D Knight. PMID:21527008

  12. A Pragmatic Cognitive System Engineering Approach to Model Dynamic Human Decision-Making Activities in Intelligent and Automated Systems

    DTIC Science & Technology

    2003-10-01

    Among the procedures developed to identify cognitive processes, there are the Cognitive Task Analysis (CTA) and the Cognitive Work Analysis (CWA...of Cognitive Task Design. [11] Potter, S.S., Roth, E.M., Woods, D.D., and Elm, W.C. (2000). Cognitive Task Analysis as Bootstrapping Multiple...Converging Techniques, In Schraagen, Chipman, and Shalin (Eds.). Cognitive Task Analysis . Mahwah, NJ: Lawrence Erlbaum Associates. [12] Roth, E.M

  13. Reliability and Maintainability model (RAM) user and maintenance manual. Part 2

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    This report documents the procedures for utilizing and maintaining the Reliability and Maintainability Model (RAM) developed by the University of Dayton for the NASA Langley Research Center (LaRC). The RAM model predicts reliability and maintainability (R&M) parameters for conceptual space vehicles using parametric relationships between vehicle design and performance characteristics and subsystem mean time between maintenance actions (MTBM) and manhours per maintenance action (MH/MA). These parametric relationships were developed using aircraft R&M data from over thirty different military aircraft of all types. This report describes the general methodology used within the model, the execution and computational sequence, the input screens and data, the output displays and reports, and study analyses and procedures. A source listing is provided.

  14. Reduced ion bootstrap current drive on NTM instability

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng; Wang, Feng; Wang, Aike; Peng, Xiaodong; Li, Jiquan

    2018-05-01

    The loss of bootstrap current inside magnetic island plays a dominant role in driving the neoclassical tearing mode (NTM) instability in tokamak plasmas. In this work, we investigate the finite-banana-width (FBW) effect on the profile of ion bootstrap current in the island vicinity via an analytical approach. The results show that even if the pressure gradient vanishes inside the island, the ion bootstrap current can partly survive due to the FBW effect. The efficiency of the FBW effect is higher when the island width becomes smaller. Nevertheless, even when the island width is comparable to the ion FBW, the unperturbed ion bootstrap current inside the island cannot be largely recovered by the FBW effect, and thus the current loss still exists. This suggests that FBW effect alone cannot dramatically reduce the ion bootstrap current drive on NTMs.

  15. Bootstrap Percolation on Homogeneous Trees Has 2 Phase Transitions

    NASA Astrophysics Data System (ADS)

    Fontes, L. R. G.; Schonmann, R. H.

    2008-09-01

    We study the threshold θ bootstrap percolation model on the homogeneous tree with degree b+1, 2≤ θ≤ b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p f , such that a) for p> p f , the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p< p f , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p c , such that 0< p c < p f , with the following properties: 1) if p≤ p c , then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p> p c , then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p< p c , the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p= p c , the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p f ] and analytic on ( p c , p f ), admitting an analytic continuation from the right at p c and, only in the case θ= b, also from the left at p f .

  16. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    PubMed

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.

  17. Temporal variations of potential fecundity of southern blue whiting (Micromesistius australis australis) in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Flores, Andrés; Wiff, Rodrigo; Díaz, Eduardo; Carvajal, Bernardita

    2017-08-01

    Fecundity is a key aspect of fish species reproductive biology because it relates directly to total egg production. Yet, despite such importance, fecundity estimates are lacking or scarce for several fish species. The gravimetric method is the most-used one to estimate fecundity by essentially scaling up the oocyte density to the ovary weight. It is a relatively simple and precise technique, but also time consuming because it requires counting all oocytes in an ovary subsample. The auto-diametric method, on the other hand, is relatively new for estimating fecundity, representing a rapid alternative, because it requires only an estimation of mean oocyte density from mean oocyte diameter. Using the extensive database available from commercial fishery and design surveys for southern blue whiting Micromesistius australis australis in the Southeast Pacific, we compared estimates of fecundity using both gravimetric and auto-diametric methods. Temporal variations in potential fecundity from the auto-diametric method were evaluated using generalised linear models considering predictors from maternal characteristics such as female size, condition factor, oocyte size, and gonadosomatic index. A global and time-invariant auto-diametric equation was evaluated using a simulation procedure based on non-parametric bootstrap. Results indicated there were not significant differences regarding fecundity estimates between the gravimetric and auto-diametric method (p > 0.05). Simulation showed the application of a global equation is unbiased and sufficiently precise to estimate time-invariant fecundity of this species. Temporal variations on fecundity were explained by maternal characteristic, revealing signals of fecundity down-regulation. We discuss how oocyte size and nutritional condition (measured as condition factor) are one of the important factors determining fecundity. We highlighted also the relevance of choosing the appropriate sampling period to conduct maturity studies and ensure precise estimates of fecundity of this species.

  18. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  19. Evaluation of grid generation technologies from an applied perspective

    NASA Technical Reports Server (NTRS)

    Hufford, Gary S.; Harrand, Vincent J.; Patel, Bhavin C.; Mitchell, Curtis R.

    1995-01-01

    An analysis of the grid generation process from the point of view of an applied CFD engineer is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis projects. The analysis is geared towards comparing the effective turn around time for specific grid generation and CFD projects. The conclusion was made that a single grid generation methodology is not universally suited for all CFD applications due to both limitations in grid generation and flow solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced to effectively integrate the geometric modeling process to the various grid generation methodologies including structured, unstructured, and hybrid procedures. The full integration of the geometric modeling and grid generation allows implementation of extremely efficient updating procedures, a necessary requirement for large parametric analysis projects. The concept of using virtual parts libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to improve the efficiency of the applied CFD engineer.

  20. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees.

    PubMed

    Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard

    2010-03-31

    Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

  1. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  2. Visuospatial bootstrapping: implicit binding of verbal working memory to visuospatial representations in children and adults.

    PubMed

    Darling, Stephen; Parker, Mary-Jane; Goodall, Karen E; Havelka, Jelena; Allen, Richard J

    2014-03-01

    When participants carry out visually presented digit serial recall, their performance is better if they are given the opportunity to encode extra visuospatial information at encoding-a phenomenon that has been termed visuospatial bootstrapping. This bootstrapping is the result of integration of information from different modality-specific short-term memory systems and visuospatial knowledge in long term memory, and it can be understood in the context of recent models of working memory that address multimodal binding (e.g., models incorporating an episodic buffer). Here we report a cross-sectional developmental study that demonstrated visuospatial bootstrapping in adults (n=18) and 9-year-old children (n=15) but not in 6-year-old children (n=18). This is the first developmental study addressing visuospatial bootstrapping, and results demonstrate that the developmental trajectory of bootstrapping is different from that of basic verbal and visuospatial working memory. This pattern suggests that bootstrapping (and hence integrative functions such as those associated with the episodic buffer) emerge independent of the development of basic working memory slave systems during childhood. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A bootstrap based space-time surveillance model with an application to crime occurrences

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  4. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  5. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  6. Probabilistic Evaluation of Competing Climate Models

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Chatterjee, S.; Heyman, M.; Cressie, N.

    2017-12-01

    A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. Here, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data, over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. We compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set, as an illustration.

  7. How to perform a cost-effectiveness analysis with surrogate endpoint: renal denervation in patients with resistant hypertension (DENERHTN) trial as an example.

    PubMed

    Bulsei, Julie; Darlington, Meryl; Durand-Zaleski, Isabelle; Azizi, Michel

    2018-04-01

    Whilst much uncertainty exists as to the efficacy of renal denervation (RDN), the positive results of the DENERHTN study in France confirmed the interest of an economic evaluation in order to assess efficiency of RDN and inform local decision makers about the costs and benefits of this intervention. The uncertainty surrounding both the outcomes and the costs can be described using health economic methods such as the non-parametric bootstrap. Internationally, numerous health economic studies using a cost-effectiveness model to assess the impact of RDN in terms of cost and effectiveness compared to antihypertensive medical treatment have been conducted. The DENERHTN cost-effectiveness study was the first health economic evaluation specifically designed to assess the cost-effectiveness of RDN using individual data. Using the DENERHTN results as an example, we provide here a summary of the principle methods used to perform a cost-effectiveness analysis.

  8. Inference from single occasion capture experiments using genetic markers.

    PubMed

    Hettiarachchige, Chathurika K H; Huggins, Richard M

    2018-05-01

    Accurate estimation of the size of animal populations is an important task in ecological science. Recent advances in the field of molecular genetics researches allow the use of genetic data to estimate the size of a population from a single capture occasion rather than repeated occasions as in the usual capture-recapture experiments. Estimating the population size using genetic data also has sometimes led to estimates that differ markedly from each other and also from classical capture-recapture estimates. Here, we develop a closed form estimator that uses genetic information to estimate the size of a population consisting of mothers and daughters, focusing on estimating the number of mothers, using data from a single sample. We demonstrate the estimator is consistent and propose a parametric bootstrap to estimate the standard errors. The estimator is evaluated in a simulation study and applied to real data. We also consider maximum likelihood in this setting and discover problems that preclude its general use. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anger and health in dementia caregivers: exploring the mediation effect of optimism.

    PubMed

    López, J; Romero-Moreno, R; Márquez-González, M; Losada, A

    2015-04-01

    Although previous studies indicate a negative association between caregivers' anger and health, the potential mechanisms linking this relationship are not yet fully understood. The aim of this study was to explore the potential mediating role of optimism in the relationship between anger and caregivers' physical health. Dementia caregivers (n = 108) were interviewed and filled out instruments assessing their anger (reaction), optimism and health (vitality). A mediational model was tested to determine whether optimism partially mediated the relationship between anger and vitality. Angry reaction was negatively associated with optimism and vitality; optimism was positively associated with vitality. Finally, the relationship between angry reaction and vitality decreased when optimism was entered simultaneously. A non-parametric bootstrap approach confirmed that optimism significantly mediated some of the relationship between angry reaction and vitality. These findings suggest that low optimism may help explain the association between caregivers' anger and reduced sense of vitality. The results provide a specific target for intervention with caregivers. Copyright © 2013 John Wiley & Sons, Ltd.

  10. An SAS Macro for Implementing the Modified Bollen-Stine Bootstrap for Missing Data: Implementing the Bootstrap Using Existing Structural Equation Modeling Software

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2005-01-01

    The Bollen-Stine bootstrap can be used to correct for standard error and fit statistic bias that occurs in structural equation modeling (SEM) applications due to nonnormal data. The purpose of this article is to demonstrate the use of a custom SAS macro program that can be used to implement the Bollen-Stine bootstrap with existing SEM software.…

  11. Coupling of PIES 3-D Equilibrium Code and NIFS Bootstrap Code with Applications to the Computation of Stellarator Equilibria

    NASA Astrophysics Data System (ADS)

    Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.

    1997-11-01

    The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.

  12. How Prevalent Is Object-Based Attention?

    PubMed Central

    Pilz, Karin S.; Roggeveen, Alexa B.; Creighton, Sarah E.; Bennett, Patrick J.; Sekuler, Allison B.

    2012-01-01

    Previous research suggests that visual attention can be allocated to locations in space (space-based attention) and to objects (object-based attention). The cueing effects associated with space-based attention tend to be large and are found consistently across experiments. Object-based attention effects, however, are small and found less consistently across experiments. In three experiments we address the possibility that variability in object-based attention effects across studies reflects low incidence of such effects at the level of individual subjects. Experiment 1 measured space-based and object-based cueing effects for horizontal and vertical rectangles in 60 subjects comparing commonly used target detection and discrimination tasks. In Experiment 2 we ran another 120 subjects in a target discrimination task in which rectangle orientation varied between subjects. Using parametric statistical methods, we found object-based effects only for horizontal rectangles. Bootstrapping methods were used to measure effects in individual subjects. Significant space-based cueing effects were found in nearly all subjects in both experiments, across tasks and rectangle orientations. However, only a small number of subjects exhibited significant object-based cueing effects. Experiment 3 measured only object-based attention effects using another common paradigm and again, using bootstrapping, we found only a small number of subjects that exhibited significant object-based cueing effects. Our results show that object-based effects are more prevalent for horizontal rectangles, which is in accordance with the theory that attention may be allocated more easily along the horizontal meridian. The fact that so few individuals exhibit a significant object-based cueing effect presumably is why previous studies of this effect might have yielded inconsistent results. The results from the current study highlight the importance of considering individual subject data in addition to commonly used statistical methods. PMID:22348018

  13. TU-H-CAMPUS-IeP3-02: Neurovascular 4D Parametric Imaging Using Co-Registration of Biplane DSA Sequences with 3D Vascular Geometry Obtained From Cone Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramoniam, A; Bednarek, D; Rudin, S

    Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  14. Application of the Bootstrap Methods in Factor Analysis.

    ERIC Educational Resources Information Center

    Ichikawa, Masanori; Konishi, Sadanori

    1995-01-01

    A Monte Carlo experiment was conducted to investigate the performance of bootstrap methods in normal theory maximum likelihood factor analysis when the distributional assumption was satisfied or unsatisfied. Problems arising with the use of bootstrap methods are highlighted. (SLD)

  15. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  16. New approaches to the analysis of population trends in land birds: Comment

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1997-01-01

    James et al. (1996, Ecology 77:13-27) used data from the North American Breeding Bird Survey (BBS) to examine geographic variability in patterns of population change for 26 species of wood warblers. They emphasized the importance of evaluating nonlinear patterns of change in bird populations, proposed LOESS-based non-parametric and semi-parametric analyses of BBS data, and contrasted their results with other analyses, including those of Robbins et al. (1989, Proceedings of the National Academy of Sciences 86: 7658-7662) and Peterjohn et al. (1995, Pages 3-39 in T. E. Martin and D. M. Finch, eds. Ecology and management of Neotropical migratory birds: a synthesis and review of critical issues. Oxford University Press, New York.). In this note, we briefly comment on some of the issues that arose from their analysis of BBS data, suggest a few aspects of the survey that should inspire caution in analysts, and review the differences between the LOESS-based procedures and other procedures (e.g., Link and Sauer 1994). We strongly discourage the use of James et al.'s completely non-parametric procedure, which fails to account for observer effects. Our comparisons of estimators adds to the evidence already present in the literature of the bias associated with omitting observer information in analyses of BBS data. Bias resulting from change in observer abilities should be a consideration in any analysis of BBS data.

  17. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  18. Small sample mediation testing: misplaced confidence in bootstrapped confidence intervals.

    PubMed

    Koopman, Joel; Howe, Michael; Hollenbeck, John R; Sin, Hock-Peng

    2015-01-01

    Bootstrapping is an analytical tool commonly used in psychology to test the statistical significance of the indirect effect in mediation models. Bootstrapping proponents have particularly advocated for its use for samples of 20-80 cases. This advocacy has been heeded, especially in the Journal of Applied Psychology, as researchers are increasingly utilizing bootstrapping to test mediation with samples in this range. We discuss reasons to be concerned with this escalation, and in a simulation study focused specifically on this range of sample sizes, we demonstrate not only that bootstrapping has insufficient statistical power to provide a rigorous hypothesis test in most conditions but also that bootstrapping has a tendency to exhibit an inflated Type I error rate. We then extend our simulations to investigate an alternative empirical resampling method as well as a Bayesian approach and demonstrate that they exhibit comparable statistical power to bootstrapping in small samples without the associated inflated Type I error. Implications for researchers testing mediation hypotheses in small samples are presented. For researchers wishing to use these methods in their own research, we have provided R syntax in the online supplemental materials. (c) 2015 APA, all rights reserved.

  19. XCOM intrinsic dimensionality for low-Z elements at diagnostic energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornefalk, Hans

    2012-02-15

    Purpose: To determine the intrinsic dimensionality of linear attenuation coefficients (LACs) from XCOM for elements with low atomic number (Z = 1-20) at diagnostic x-ray energies (25-120 keV). H{sub 0}{sup q}, the hypothesis that the space of LACs is spanned by q bases, is tested for various q-values. Methods: Principal component analysis is first applied and the LACs are projected onto the first q principal component bases. The residuals of the model values vs XCOM data are determined for all energies and atomic numbers. Heteroscedasticity invalidates the prerequisite of i.i.d. errors necessary for bootstrapping residuals. Instead wild bootstrap is applied,more » which, by not mixing residuals, allows the effect of the non-i.i.d residuals to be reflected in the result. Credible regions for the eigenvalues of the correlation matrix for the bootstrapped LAC data are determined. If subsequent credible regions for the eigenvalues overlap, the corresponding principal component is not considered to represent true data structure but noise. If this happens for eigenvalues l and l + 1, for any l{<=}q, H{sub 0}{sup q} is rejected. Results: The largest value of q for which H{sub 0}{sup q} is nonrejectable at the 5%-level is q = 4. This indicates that the statistically significant intrinsic dimensionality of low-Z XCOM data at diagnostic energies is four. Conclusions: The method presented allows determination of the statistically significant dimensionality of any noisy linear subspace. Knowledge of such significant dimensionality is of interest for any method making assumptions on intrinsic dimensionality and evaluating results on noisy reference data. For LACs, knowledge of the low-Z dimensionality might be relevant when parametrization schemes are tuned to XCOM data. For x-ray imaging techniques based on the basis decomposition method (Alvarez and Macovski, Phys. Med. Biol. 21, 733-744, 1976), an underlying dimensionality of two is commonly assigned to the LAC of human tissue at diagnostic energies. The finding of a higher statistically significant dimensionality thus raises the question whether a higher assumed model dimensionality (now feasible with the advent of multibin x-ray systems) might also be practically relevant, i.e., if better tissue characterization results can be obtained.« less

  20. On the efficacy of procedures to normalize Ex-Gaussian distributions

    PubMed Central

    Marmolejo-Ramos, Fernando; Cousineau, Denis; Benites, Luis; Maehara, Rocío

    2015-01-01

    Reaction time (RT) is one of the most common types of measure used in experimental psychology. Its distribution is not normal (Gaussian) but resembles a convolution of normal and exponential distributions (Ex-Gaussian). One of the major assumptions in parametric tests (such as ANOVAs) is that variables are normally distributed. Hence, it is acknowledged by many that the normality assumption is not met. This paper presents different procedures to normalize data sampled from an Ex-Gaussian distribution in such a way that they are suitable for parametric tests based on the normality assumption. Using simulation studies, various outlier elimination and transformation procedures were tested against the level of normality they provide. The results suggest that the transformation methods are better than elimination methods in normalizing positively skewed data and the more skewed the distribution then the transformation methods are more effective in normalizing such data. Specifically, transformation with parameter lambda -1 leads to the best results. PMID:25709588

  1. Bootstrap confidence levels for phylogenetic trees.

    PubMed

    Efron, B; Halloran, E; Holmes, S

    1996-07-09

    Evolutionary trees are often estimated from DNA or RNA sequence data. How much confidence should we have in the estimated trees? In 1985, Felsenstein [Felsenstein, J. (1985) Evolution 39, 783-791] suggested the use of the bootstrap to answer this question. Felsenstein's method, which in concept is a straightforward application of the bootstrap, is widely used, but has been criticized as biased in the genetics literature. This paper concerns the use of the bootstrap in the tree problem. We show that Felsenstein's method is not biased, but that it can be corrected to better agree with standard ideas of confidence levels and hypothesis testing. These corrections can be made by using the more elaborate bootstrap method presented here, at the expense of considerably more computation.

  2. Coefficient Alpha Bootstrap Confidence Interval under Nonnormality

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew

    2012-01-01

    Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…

  3. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data

    PubMed Central

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2012-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976

  4. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    PubMed

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  5. Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.

    2001-06-01

    We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.

  6. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  7. A simple test of association for contingency tables with multiple column responses.

    PubMed

    Decady, Y J; Thomas, D R

    2000-09-01

    Loughin and Scherer (1998, Biometrics 54, 630-637) investigated tests of association in two-way tables when one of the categorical variables allows for multiple-category responses from individual respondents. Standard chi-squared tests are invalid in this case, and they developed a bootstrap test procedure that provides good control of test levels under the null hypothesis. This procedure and some others that have been proposed are computationally involved and are based on techniques that are relatively unfamiliar to many practitioners. In this paper, the methods introduced by Rao and Scott (1981, Journal of the American Statistical Association 76, 221-230) for analyzing complex survey data are used to develop a simple test based on a corrected chi-squared statistic.

  8. Filipino Americans and racism: A multiple mediation model of coping.

    PubMed

    Alvarez, Alvin N; Juang, Linda P

    2010-04-01

    Although the literature on Asian Americans and racism has been emerging, few studies have examined how coping influences one's encounters with racism. To advance the literature, the present study focused on the psychological impact of Filipino Americans' experiences with racism and the role of coping as a mediator using a community-based sample of adults (N = 199). Two multiple mediation models were used to examine the mediating effects of active, avoidance, support-seeking, and forbearance coping on the relationship between perceived racism and psychological distress and self-esteem, respectively. Separate analyses were also conducted for men and women given differences in coping utilization. For men, a bootstrap procedure indicated that active, support-seeking, and avoidance coping were mediators of the relationship between perceived racism and psychological distress. Active coping was negatively associated with psychological distress, whereas both support seeking and avoidance were positively associated with psychological distress. A second bootstrap procedure for men indicated that active and avoidance coping mediated the relationship between perceived racism and self-esteem such that active coping was positively associated with self-esteem, and avoidance was negatively associated with self-esteem. For women, only avoidance coping had a significant mediating effect that was associated with elevations in psychological distress and decreases in self-esteem. The results highlight the importance of examining the efficacy of specific coping responses to racism and the need to differentiate between the experiences of men and women. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  9. Explorations in Statistics: the Bootstrap

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2009-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…

  10. Parametric estimates for the receiver operating characteristic curve generalization for non-monotone relationships.

    PubMed

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan C

    2017-01-01

    Diagnostic procedures are based on establishing certain conditions and then checking if those conditions are satisfied by a given individual. When the diagnostic procedure is based on a continuous marker, this is equivalent to fix a region or classification subset and then check if the observed value of the marker belongs to that region. Receiver operating characteristic curve is a valuable and popular tool to study and compare the diagnostic ability of a given marker. Besides, the area under the receiver operating characteristic curve is frequently used as an index of the global discrimination ability. This paper revises and widens the scope of the receiver operating characteristic curve definition by setting the classification subsets in which the final decision is based in the spotlight of the analysis. We revise the definition of the receiver operating characteristic curve in terms of particular classes of classification subsets and then focus on a receiver operating characteristic curve generalization for situations in which both low and high values of the marker are associated with more probability of having the studied characteristic. Parametric and non-parametric estimators of the receiver operating characteristic curve generalization are investigated. Monte Carlo studies and real data examples illustrate their practical performance.

  11. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  12. Linkage mapping of beta 2 EEG waves via non-parametric regression.

    PubMed

    Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore

    2003-04-01

    Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.

  13. HEXT, a software supporting tree-based screens for hybrid taxa in multilocus data sets, and an evaluation of the homoplasy excess test.

    PubMed

    Schneider, Kevin; Koblmüller, Stephan; Sefc, Kristina M

    2015-11-11

    The homoplasy excess test (HET) is a tree-based screen for hybrid taxa in multilocus nuclear phylogenies. Homoplasy between a hybrid taxon and the clades containing the parental taxa reduces bootstrap support in the tree. The HET is based on the expectation that excluding the hybrid taxon from the data set increases the bootstrap support for the parental clades, whereas excluding non-hybrid taxa has little effect on statistical node support. To carry out a HET, bootstrap trees are calculated with taxon-jackknife data sets, that is excluding one taxon (species, population) at a time. Excess increase in bootstrap support for certain nodes upon exclusion of a particular taxon indicates the hybrid (the excluded taxon) and its parents (the clades with increased support).We introduce a new software program, hext, which generates the taxon-jackknife data sets, runs the bootstrap tree calculations, and identifies excess bootstrap increases as outlier values in boxplot graphs. hext is written in r language and accepts binary data (0/1; e.g. AFLP) as well as co-dominant SNP and genotype data.We demonstrate the usefulness of hext in large SNP data sets containing putative hybrids and their parents. For instance, using published data of the genus Vitis (~6,000 SNP loci), hext output supports V. × champinii as a hybrid between V. rupestris and V. mustangensis .With simulated SNP and AFLP data sets, excess increases in bootstrap support were not always connected with the hybrid taxon (false positives), whereas the expected bootstrap signal failed to appear on several occasions (false negatives). Potential causes for both types of spurious results are discussed.With both empirical and simulated data sets, the taxon-jackknife output generated by hext provided additional signatures of hybrid taxa, including changes in tree topology across trees, consistent effects of exclusions of the hybrid and the parent taxa, and moderate (rather than excessive) increases in bootstrap support. hext significantly facilitates the taxon-jackknife approach to hybrid taxon detection, even though the simple test for excess bootstrap increase may not reliably identify hybrid taxa in all applications.

  14. Aerodynamic shape optimization of a HSCT type configuration with improved surface definition

    NASA Technical Reports Server (NTRS)

    Thomas, Almuttil M.; Tiwari, Surendra N.

    1994-01-01

    Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.

  15. Inverse Thermal Analysis of Titanium GTA Welds Using Multiple Constraints

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Shabaev, A.; Huang, L.

    2015-06-01

    Inverse thermal analysis of titanium gas-tungsten-arc welds using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

  16. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-01

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  17. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization.

    PubMed

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-28

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  18. Bootstrap Estimation of Sample Statistic Bias in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Thompson, Bruce; Fan, Xitao

    This study empirically investigated bootstrap bias estimation in the area of structural equation modeling (SEM). Three correctly specified SEM models were used under four different sample size conditions. Monte Carlo experiments were carried out to generate the criteria against which bootstrap bias estimation should be judged. For SEM fit indices,…

  19. Long multiplet bootstrap

    NASA Astrophysics Data System (ADS)

    Cornagliotto, Martina; Lemos, Madalena; Schomerus, Volker

    2017-10-01

    Applications of the bootstrap program to superconformal field theories promise unique new insights into their landscape and could even lead to the discovery of new models. Most existing results of the superconformal bootstrap were obtained form correlation functions of very special fields in short (BPS) representations of the superconformal algebra. Our main goal is to initiate a superconformal bootstrap for long multiplets, one that exploits all constraints from superprimaries and their descendants. To this end, we work out the Casimir equations for four-point correlators of long multiplets of the two-dimensional global N=2 superconformal algebra. After constructing the full set of conformal blocks we discuss two different applications. The first one concerns two-dimensional (2,0) theories. The numerical bootstrap analysis we perform serves a twofold purpose, as a feasibility study of our long multiplet bootstrap and also as an exploration of (2,0) theories. A second line of applications is directed towards four-dimensional N=3 SCFTs. In this context, our results imply a new bound c≥ 13/24 for the central charge of such models, which we argue cannot be saturated by an interacting SCFT.

  20. The Hubble flow of plateau inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coone, Dries; Roest, Diederik; Vennin, Vincent, E-mail: a.a.coone@rug.nl, E-mail: d.roest@rug.nl, E-mail: vincent.vennin@port.ac.uk

    2015-11-01

    In the absence of CMB precision measurements, a Taylor expansion has often been invoked to parametrize the Hubble flow function during inflation. The standard ''horizon flow'' procedure implicitly relies on this assumption. However, the recent Planck results indicate a strong preference for plateau inflation, which suggests the use of Padé approximants instead. We propose a novel method that provides analytic solutions of the flow equations for a given parametrization of the Hubble function. This method is illustrated in the Taylor and Padé cases, for low order expansions. We then present the results of a full numerical treatment scanning larger ordermore » expansions, and compare these parametrizations in terms of convergence, prior dependence, predictivity and compatibility with the data. Finally, we highlight the implications for potential reconstruction methods.« less

  1. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.

  2. Testing homogeneity of proportion ratios for stratified correlated bilateral data in two-arm randomized clinical trials.

    PubMed

    Pei, Yanbo; Tian, Guo-Liang; Tang, Man-Lai

    2014-11-10

    Stratified data analysis is an important research topic in many biomedical studies and clinical trials. In this article, we develop five test statistics for testing the homogeneity of proportion ratios for stratified correlated bilateral binary data based on an equal correlation model assumption. Bootstrap procedures based on these test statistics are also considered. To evaluate the performance of these statistics and procedures, we conduct Monte Carlo simulations to study their empirical sizes and powers under various scenarios. Our results suggest that the procedure based on score statistic performs well generally and is highly recommended. When the sample size is large, procedures based on the commonly used weighted least square estimate and logarithmic transformation with Mantel-Haenszel estimate are recommended as they do not involve any computation of maximum likelihood estimates requiring iterative algorithms. We also derive approximate sample size formulas based on the recommended test procedures. Finally, we apply the proposed methods to analyze a multi-center randomized clinical trial for scleroderma patients. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  4. Application of a New Resampling Method to SEM: A Comparison of S-SMART with the Bootstrap

    ERIC Educational Resources Information Center

    Bai, Haiyan; Sivo, Stephen A.; Pan, Wei; Fan, Xitao

    2016-01-01

    Among the commonly used resampling methods of dealing with small-sample problems, the bootstrap enjoys the widest applications because it often outperforms its counterparts. However, the bootstrap still has limitations when its operations are contemplated. Therefore, the purpose of this study is to examine an alternative, new resampling method…

  5. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  6. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.

    PubMed

    Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A

    2017-12-01

    In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Random Forest as an Imputation Method for Education and Psychology Research: Its Impact on Item Fit and Difficulty of the Rasch Model

    ERIC Educational Resources Information Center

    Golino, Hudson F.; Gomes, Cristiano M. A.

    2016-01-01

    This paper presents a non-parametric imputation technique, named random forest, from the machine learning field. The random forest procedure has two main tuning parameters: the number of trees grown in the prediction and the number of predictors used. Fifty experimental conditions were created in the imputation procedure, with different…

  8. On the Use of Nonparametric Item Characteristic Curve Estimation Techniques for Checking Parametric Model Fit

    ERIC Educational Resources Information Center

    Lee, Young-Sun; Wollack, James A.; Douglas, Jeffrey

    2009-01-01

    The purpose of this study was to assess the model fit of a 2PL through comparison with the nonparametric item characteristic curve (ICC) estimation procedures. Results indicate that three nonparametric procedures implemented produced ICCs that are similar to that of the 2PL for items simulated to fit the 2PL. However for misfitting items,…

  9. Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D

    DOE PAGES

    Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...

    2015-01-12

    Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less

  10. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  11. Meta-Analysis of Rare Binary Adverse Event Data

    PubMed Central

    Bhaumik, Dulal K.; Amatya, Anup; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D.

    2013-01-01

    We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease. PMID:23734068

  12. Estimating population genetic parameters and comparing model goodness-of-fit using DNA sequences with error

    PubMed Central

    Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric

    2010-01-01

    It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140

  13. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  14. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions

    PubMed Central

    Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne

    2018-01-01

    ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679

  15. Multipollutant measurement error in air pollution epidemiology studies arising from predicting exposures with penalized regression splines

    PubMed Central

    Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.

    2016-01-01

    Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915

  16. Modelisation de l'historique d'operation de groupes turbine-alternateur

    NASA Astrophysics Data System (ADS)

    Szczota, Mickael

    Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap

  17. Electron transport fluxes in potato plateau regime

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Hazeltine, R. D.

    1997-12-01

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100% bootstrap current.

  18. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  19. Assessing neural activity related to decision-making through flexible odds ratio curves and their derivatives.

    PubMed

    Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Pardo-Vazquez, Jose L; Leboran, Victor; Molenberghs, Geert; Faes, Christel; Acuña, Carlos

    2011-06-30

    It is well established that neural activity is stochastically modulated over time. Therefore, direct comparisons across experimental conditions and determination of change points or maximum firing rates are not straightforward. This study sought to compare temporal firing probability curves that may vary across groups defined by different experimental conditions. Odds-ratio (OR) curves were used as a measure of comparison, and the main goal was to provide a global test to detect significant differences of such curves through the study of their derivatives. An algorithm is proposed that enables ORs based on generalized additive models, including factor-by-curve-type interactions to be flexibly estimated. Bootstrap methods were used to draw inferences from the derivatives curves, and binning techniques were applied to speed up computation in the estimation and testing processes. A simulation study was conducted to assess the validity of these bootstrap-based tests. This methodology was applied to study premotor ventral cortex neural activity associated with decision-making. The proposed statistical procedures proved very useful in revealing the neural activity correlates of decision-making in a visual discrimination task. Copyright © 2011 John Wiley & Sons, Ltd.

  20. One- and two-stage Arrhenius models for pharmaceutical shelf life prediction.

    PubMed

    Fan, Zhewen; Zhang, Lanju

    2015-01-01

    One of the most challenging aspects of the pharmaceutical development is the demonstration and estimation of chemical stability. It is imperative that pharmaceutical products be stable for two or more years. Long-term stability studies are required to support such shelf life claim at registration. However, during drug development to facilitate formulation and dosage form selection, an accelerated stability study with stressed storage condition is preferred to quickly obtain a good prediction of shelf life under ambient storage conditions. Such a prediction typically uses Arrhenius equation that describes relationship between degradation rate and temperature (and humidity). Existing methods usually rely on the assumption of normality of the errors. In addition, shelf life projection is usually based on confidence band of a regression line. However, the coverage probability of a method is often overlooked or under-reported. In this paper, we introduce two nonparametric bootstrap procedures for shelf life estimation based on accelerated stability testing, and compare them with a one-stage nonlinear Arrhenius prediction model. Our simulation results demonstrate that one-stage nonlinear Arrhenius method has significant lower coverage than nominal levels. Our bootstrap method gave better coverage and led to a shelf life prediction closer to that based on long-term stability data.

  1. Multi-baseline bootstrapping at the Navy precision optical interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.

  2. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  3. Semantic Drift in Espresso-style Bootstrapping: Graph-theoretic Analysis and Evaluation in Word Sense Disambiguation

    NASA Astrophysics Data System (ADS)

    Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji

    Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.

  4. Confidence limit calculation for antidotal potency ratio derived from lethal dose 50

    PubMed Central

    Manage, Ananda; Petrikovics, Ilona

    2013-01-01

    AIM: To describe confidence interval calculation for antidotal potency ratios using bootstrap method. METHODS: We can easily adapt the nonparametric bootstrap method which was invented by Efron to construct confidence intervals in such situations like this. The bootstrap method is a resampling method in which the bootstrap samples are obtained by resampling from the original sample. RESULTS: The described confidence interval calculation using bootstrap method does not require the sampling distribution antidotal potency ratio. This can serve as a substantial help for toxicologists, who are directed to employ the Dixon up-and-down method with the application of lower number of animals to determine lethal dose 50 values for characterizing the investigated toxic molecules and eventually for characterizing the antidotal protections by the test antidotal systems. CONCLUSION: The described method can serve as a useful tool in various other applications. Simplicity of the method makes it easier to do the calculation using most of the programming software packages. PMID:25237618

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.; Hazeltine, R.D.

    Electron transport fluxes in the potato plateau regime are calculated from the solutions of the drift kinetic equation and fluid equations. It is found that the bootstrap current density remains finite in the region close to the magnetic axis, although it decreases with increasing collision frequency. This finite amount of the bootstrap current in the relatively collisional regime is important in modeling tokamak startup with 100{percent} bootstrap current. {copyright} {ital 1997 American Institute of Physics.}

  6. Reference intervals for selected serum biochemistry analytes in cheetahs Acinonyx jubatus.

    PubMed

    Hudson-Lamb, Gavin C; Schoeman, Johan P; Hooijberg, Emma H; Heinrich, Sonja K; Tordiffe, Adrian S W

    2016-02-26

    Published haematologic and serum biochemistry reference intervals are very scarce for captive cheetahs and even more for free-ranging cheetahs. The current study was performed to establish reference intervals for selected serum biochemistry analytes in cheetahs. Baseline serum biochemistry analytes were analysed from 66 healthy Namibian cheetahs. Samples were collected from 30 captive cheetahs at the AfriCat Foundation and 36 free-ranging cheetahs from central Namibia. The effects of captivity-status, age, sex and haemolysis score on the tested serum analytes were investigated. The biochemistry analytes that were measured were sodium, potassium, magnesium, chloride, urea and creatinine. The 90% confidence interval of the reference limits was obtained using the non-parametric bootstrap method. Reference intervals were preferentially determined by the non-parametric method and were as follows: sodium (128 mmol/L - 166 mmol/L), potassium (3.9 mmol/L - 5.2 mmol/L), magnesium (0.8 mmol/L - 1.2 mmol/L), chloride (97 mmol/L - 130 mmol/L), urea (8.2 mmol/L - 25.1 mmol/L) and creatinine (88 µmol/L - 288 µmol/L). Reference intervals from the current study were compared with International Species Information System values for cheetahs and found to be narrower. Moreover, age, sex and haemolysis score had no significant effect on the serum analytes in this study. Separate reference intervals for captive and free-ranging cheetahs were also determined. Captive cheetahs had higher urea values, most likely due to dietary factors. This study is the first to establish reference intervals for serum biochemistry analytes in cheetahs according to international guidelines. These results can be used for future health and disease assessments in both captive and free-ranging cheetahs.

  7. Hippocampal activations in mesial temporal lobe epilepsy due to hippocampal sclerosis- an observational study on intramural encoding-delayed recall paradigms using task-based memory fMRI.

    PubMed

    Rajesh, P G; Thomas, Bejoy; Pammi, V S Chandrasekhar; Kesavadas, C; Alexander, Aley; Radhakrishnan, Ashalatha; Thomas, S V; Menon, R N

    2018-05-26

    To validate concurrent utility of within-scanner encoding and delayed recognition-memory paradigms to ascertain hippocampal activations during task-based memory fMRI. Memory paradigms were designed for faces, word-pairs and abstract designs. A deep-encoding task was designed comprising of a total of 9 cycles run within a 1.5T MRI scanner. A recall session was performed after 1 h within the scanner using an event-related design. Group analysis was done with 'correct-incorrect' responses applied as parametric modulators in Statistical Parametric Mapping version 8 using boot-strap method to enable estimation of laterality indices (LI) using custom anatomical masks involving the medio-basal temporal structures. Twenty seven subjects with drug-resistant mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE-HS) [17 patients of left-MTLE and 10 patients of right-MTLE] and 21 right handed age-matched healthy controls (HC) were recruited. For the encoding paradigm blood oxygen level dependent (BOLD) responses in HC demonstrated right laterality for faces, left laterality for word pairs, and bilaterality for design encoding over the regions of interest. Both right and left MTLE-HS groups revealed left lateralisation for word-pair encoding, bilateral activation for face encoding, with design encoding in right MTLE-HS demonstrating a left shift. As opposed to lateralization shown in controls, group analysis of cued-recall BOLD signals acquired within scanner in left MTLE-HS demonstrated right lateralization for word-pairs with bilaterality for faces and designs. The right MTLE-HS group demonstrated bilateral activations for faces, word-pairs and designs. Recall-based fMRI paradigms indicate hippocampal plasticity in MTLE-HS, maximal for word-pair associate recall tasks. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Early-childhood housing mobility and subsequent PTSD in adolescence: a Moving to Opportunity reanalysis.

    PubMed

    Norris, David C; Wilson, Andrew

    2016-01-01

    In a 2014 report on adolescent mental health outcomes in the Moving to Opportunity for Fair Housing Demonstration (MTO), Kessler et al. reported that, at 10- to 15-year follow-up, boys from households randomized to an experimental housing voucher intervention experienced 12-month prevalence of post-traumatic stress disorder (PTSD) at several times the rate of boys from control households. We reanalyze this finding here, bringing to light a PTSD outcome imputation procedure used in the original analysis, but not described in the study report. By bootstrapping with repeated draws from the frequentist sampling distribution of the imputation model used by Kessler et al., and by varying two pseudorandom number generator seeds that fed their analysis, we account for several purely statistical components of the uncertainty inherent in their imputation procedure. We also discuss other sources of uncertainty in this procedure that were not accessible to a formal reanalysis.

  9. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    PubMed Central

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  10. Untangling the Relatedness among Correlations, Part II: Inter-Subject Correlation Group Analysis through Linear Mixed-Effects Modeling

    PubMed Central

    Chen, Gang; Taylor, Paul A.; Shin, Yong-Wook; Reynolds, Richard C.; Cox, Robert W.

    2016-01-01

    It has been argued that naturalistic conditions in FMRI studies provide a useful paradigm for investigating perception and cognition through a synchronization measure, inter-subject correlation (ISC). However, one analytical stumbling block has been the fact that the ISC values associated with each single subject are not independent, and our previous paper (Chen et al., 2016) used simulations and analyses of real data to show that the methodologies adopted in the literature do not have the proper control for false positives. In the same paper, we proposed nonparametric subject-wise bootstrapping and permutation testing techniques for one and two groups, respectively, which account for the correlation structure, and these greatly outperformed the prior methods in controlling the false positive rate (FPR); that is, subject-wise bootstrapping (SWB) worked relatively well for both cases with one and two groups, and subject-wise permutation (SWP) testing was virtually ideal for group comparisons. Here we seek to explicate and adopt a parametric approach through linear mixed-effects (LME) modeling for studying the ISC values, building on the previous correlation framework, with the benefit that the LME platform offers wider adaptability, more powerful interpretations, and quality control checking capability than nonparametric methods. We describe both theoretical and practical issues involved in the modeling and the manner in which LME with crossed random effects (CRE) modeling is applied. A data-doubling step further allows us to conveniently track the subject index, and achieve easy implementations. We pit the LME approach against the best nonparametric methods, and find that the LME framework achieves proper control for false positives. The new LME methodologies are shown to be both efficient and robust, and they will be added as an additional option and settings in an existing open source program, 3dLME, in AFNI (http://afni.nimh.nih.gov). PMID:27751943

  11. Multiple-object tracking as a tool for parametrically modulating memory reactivation

    PubMed Central

    Poppenk, J.; Norman, K.A.

    2017-01-01

    Converging evidence supports the “non-monotonic plasticity” hypothesis that although complete retrieval may strengthen memories, partial retrieval weakens them. Yet, the classic experimental paradigms used to study effects of partial retrieval are not ideally suited to doing so, because they lack the parametric control needed to ensure that the memory is activated to the appropriate degree (i.e., that there is some retrieval, but not enough to cause memory strengthening). Here we present a novel procedure designed to accommodate this need. After participants learned a list of word-scene associates, they completed a cued mental visualization task that was combined with a multiple-object tracking (MOT) procedure, which we selected for its ability to interfere with mental visualization in a parametrically adjustable way (by varying the number of MOT targets). We also used fMRI data to successfully train an “associative recall” classifier for use in this task: this classifier revealed greater memory reactivation during trials in which associative memories were cued while participants tracked one, rather than five MOT targets. However, the classifier was insensitive to task difficulty when recall was not taking place, suggesting it had indeed tracked memory reactivation rather than task difficulty per se. Consistent with the classifier findings, participants’ introspective ratings of visualization vividness were modulated by MOT task difficulty. In addition, we observed reduced classifier output and slowing of responses in a post-reactivation memory test, consistent with the hypothesis that partial reactivation, induced by MOT, weakened memory. These results serve as a “proof of concept” that MOT can be used to parametrically modulate memory retrieval – a property that may prove useful in future investigation of partial retrieval effects, e.g., in closed-loop experiments. PMID:28387587

  12. POLYMAT-C: a comprehensive SPSS program for computing the polychoric correlation matrix.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2015-09-01

    We provide a free noncommercial SPSS program that implements procedures for (a) obtaining the polychoric correlation matrix between a set of ordered categorical measures, so that it can be used as input for the SPSS factor analysis (FA) program; (b) testing the null hypothesis of zero population correlation for each element of the matrix by using appropriate simulation procedures; (c) obtaining valid and accurate confidence intervals via bootstrap resampling for those correlations found to be significant; and (d) performing, if necessary, a smoothing procedure that makes the matrix amenable to any FA estimation procedure. For the main purpose (a), the program uses a robust unified procedure that allows four different types of estimates to be obtained at the user's choice. Overall, we hope the program will be a very useful tool for the applied researcher, not only because it provides an appropriate input matrix for FA, but also because it allows the researcher to carefully check the appropriateness of the matrix for this purpose. The SPSS syntax, a short manual, and data files related to this article are available as Supplemental materials that are available for download with this article.

  13. More accurate, calibrated bootstrap confidence intervals for correlating two autocorrelated climate time series

    NASA Astrophysics Data System (ADS)

    Olafsdottir, Kristin B.; Mudelsee, Manfred

    2013-04-01

    Estimation of the Pearson's correlation coefficient between two time series to evaluate the influences of one time depended variable on another is one of the most often used statistical method in climate sciences. Various methods are used to estimate confidence interval to support the correlation point estimate. Many of them make strong mathematical assumptions regarding distributional shape and serial correlation, which are rarely met. More robust statistical methods are needed to increase the accuracy of the confidence intervals. Bootstrap confidence intervals are estimated in the Fortran 90 program PearsonT (Mudelsee, 2003), where the main intention was to get an accurate confidence interval for correlation coefficient between two time series by taking the serial dependence of the process that generated the data into account. However, Monte Carlo experiments show that the coverage accuracy for smaller data sizes can be improved. Here we adapt the PearsonT program into a new version called PearsonT3, by calibrating the confidence interval to increase the coverage accuracy. Calibration is a bootstrap resampling technique, which basically performs a second bootstrap loop or resamples from the bootstrap resamples. It offers, like the non-calibrated bootstrap confidence intervals, robustness against the data distribution. Pairwise moving block bootstrap is used to preserve the serial correlation of both time series. The calibration is applied to standard error based bootstrap Student's t confidence intervals. The performances of the calibrated confidence intervals are examined with Monte Carlo simulations, and compared with the performances of confidence intervals without calibration, that is, PearsonT. The coverage accuracy is evidently better for the calibrated confidence intervals where the coverage error is acceptably small (i.e., within a few percentage points) already for data sizes as small as 20. One form of climate time series is output from numerical models which simulate the climate system. The method is applied to model data from the high resolution ocean model, INALT01 where the relationship between the Agulhas Leakage and the North Brazil Current is evaluated. Preliminary results show significant correlation between the two variables when there is 10 year lag between them, which is more or less the time that takes the Agulhas Leakage water to reach the North Brazil Current. Mudelsee, M., 2003. Estimating Pearson's correlation coefficient with bootstrap confidence interval from serially dependent time series. Mathematical Geology 35, 651-665.

  14. Source apportionment of PM10 and PM2.5 in major urban Greek agglomerations using a hybrid source-receptor modeling process.

    PubMed

    Argyropoulos, G; Samara, C; Diapouli, E; Eleftheriadis, K; Papaoikonomou, K; Kungolos, A

    2017-12-01

    A hybrid source-receptor modeling process was assembled, to apportion and infer source locations of PM 10 and PM 2.5 in three heavily-impacted urban areas of Greece, during the warm period of 2011, and the cold period of 2012. The assembled process involved application of an advanced computational procedure, the so-called Robotic Chemical Mass Balance (RCMB) model. Source locations were inferred using two well-established probability functions: (a) the Conditional Probability Function (CPF), to correlate the output of RCMB with local wind directional data, and (b) the Potential Source Contribution Function (PSCF), to correlate the output of RCMB with 72h air-mass back-trajectories, arriving at the receptor sites, during sampling. Regarding CPF, a higher-level conditional probability function was defined as well, from the common locus of CPF sectors derived for neighboring receptor sites. With respect to PSCF, a non-parametric bootstrapping method was applied to discriminate the statistically significant values. RCMB modeling showed that resuspended dust is actually one of the main barriers for attaining the European Union (EU) limit values in Mediterranean urban agglomerations, where the drier climate favors build-up. The shift in the energy mix of Greece (caused by the economic recession) was also evidenced, since biomass burning was found to contribute more significantly to the sampling sites belonging to the coldest climatic zone, particularly during the cold period. The CPF analysis showed that short-range transport of anthropogenic emissions from urban traffic to urban background sites was very likely to have occurred, within all the examined urban agglomerations. The PSCF analysis confirmed that long-range transport of primary and/or secondary aerosols may indeed be possible, even from distances over 1000km away from study areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Impact of noncardiac congenital and genetic abnormalities on outcomes in hypoplastic left heart syndrome.

    PubMed

    Patel, Angira; Hickey, Edward; Mavroudis, Constantine; Jacobs, Jeffrey P; Jacobs, Marshall L; Backer, Carl L; Gevitz, Melanie; Mavroudis, Constantine D

    2010-06-01

    Hypoplastic left heart syndrome may coexist with noncardiac congenital defects or genetic syndromes. We explored the impact of such lesions on outcomes after staged univentricular palliation. Society of Thoracic Surgeons database 2002 to 2006: Children diagnosed with hypoplastic left heart syndrome who underwent stage 1 Norwood (n = 1,236), stage 2 superior cavopulmonary anastamosis (n = 702) or stage 3 Fontan (n = 553) procedures were studied. In-hospital mortality, postoperative complications, and length of stay were compared at each stage between those with and without noncardiac-genetic defects. Congenital Heart Surgeons' Society database 1994 to 2001: All 703 infants enrolled in the Congenital Heart Surgeons' Society critical left ventricular outflow tract obstruction study who underwent primary stage 1 palliation were reviewed. The impact of noncardiac defects-syndromes on survival was explored using multivariable parametric models with bootstrap bagging. Society of Thoracic Surgeons database: Stage 1 in-hospital mortality (26% vs 20%, p = 0.04) and mean postoperative length of stay (42 versus 31 days, p < 0.0001) were greater, and postoperative complications significantly more prevalent in infants with noncardiac-genetic defects. Congenital Heart Surgeons' Society database: Noncardiac-genetic defects were present in 55 (8%). Early hazard for death after Norwood was significantly worse in infants with noncardiac defects-syndromes (p = 0.008). Chromosomal defects (n = 14) were highly unfavorable: the early risk of death was doubled (10-year survival 25 +/- 9% vs 54 +/- 2%, p = 0.005). Turner syndrome accounted for the majority of chromosomal defects in this population (11 of 14, 79%). Mode of death was rarely attributable to the noncardiac-genetic defect. Survival in hypoplastic left heart syndrome is strongly influenced by the presence of noncardiac abnormalities. Strategies to improve mortality in infants with noncardiac abnormalities should be explored. Presence of chromosomal defects, especially Turner syndrome, should enter decision-management options for parents and physicians. 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Development of welding emission factors for Cr and Cr(VI) with a confidence level.

    PubMed

    Serageldin, Mohamed; Reeves, David W

    2009-05-01

    Knowledge of the emission rate and release characteristics is necessary for estimating pollutant fate and transport. Because emission measurements at a facility's fence line are generally not readily available, environmental agencies in many countries are using emission factors (EFs) to indicate the quantity of certain pollutants released into the atmosphere from operations such as welding. The amount of fumes and metals generated from a welding process is dependent on many parameters, such as electrode composition, voltage, and current. Because test reports on fume generation provide different levels of detail, a common approach was used to give a test report a quality rating on the basis of several highly subjective criteria; however, weighted average EFs generated in this way are not meant to reflect data precision or to be used for a refined risk analysis. The 95% upper confidence limit (UCL) of the unknown population mean was used in this study to account for the uncertainty in the EF test data. Several parametric UCLs were computed and compared for multiple welding EFs associated with several mild, stainless, and alloy steels. Also, several nonparametric statistical methods, including several bootstrap procedures, were used to compute 95% UCLs. For the nonparametric methods, a distribution for calculating the mean, standard deviation, and other statistical parameters for a dataset does not need to be assumed. There were instances when the sample size was small and instances when EFs for an electrode/process combination were not found. Those two points are addressed in this paper. Finally, this paper is an attempt to deal with the uncertainty in the value of a mean EF for an electrode/process combination that is based on test data from several laboratories. Welding EFs developed with a defined level of confidence may be used as input parameters for risk assessment.

  17. Authentication of Organically and Conventionally Grown Basils by Gas Chromatography/Mass Spectrometry Chemical Profiles

    PubMed Central

    Wang, Zhengfang; Chen, Pei; Yu, Liangli; Harrington, Peter de B.

    2013-01-01

    Basil plants cultivated by organic and conventional farming practices were accurately classified by pattern recognition of gas chromatography/mass spectrometry (GC/MS) data. A novel extraction procedure was devised to extract characteristic compounds from ground basil powders. Two in-house fuzzy classifiers, i.e., the fuzzy rule-building expert system (FuRES) and the fuzzy optimal associative memory (FOAM) for the first time, were used to build classification models. Two crisp classifiers, i.e., soft independent modeling by class analogy (SIMCA) and the partial least-squares discriminant analysis (PLS-DA), were used as control methods. Prior to data processing, baseline correction and retention time alignment were performed. Classifiers were built with the two-way data sets, the total ion chromatogram representation of data sets, and the total mass spectrum representation of data sets, separately. Bootstrapped Latin partition (BLP) was used as an unbiased evaluation of the classifiers. By using two-way data sets, average classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100 ± 0%, 94.4 ± 0.4%, 93.3 ± 0.4%, and 100 ± 0%, respectively, for 100 independent evaluations. The established classifiers were used to classify a new validation set collected 2.5 months later with no parametric changes except that the training set and validation set were individually mean-centered. For the new two-way validation set, classification rates with FuRES, FOAM, SIMCA, and PLS-DA were 100%, 83%, 97%, and 100%, respectively. Thereby, the GC/MS analysis was demonstrated as a viable approach for organic basil authentication. It is the first time that a FOAM has been applied to classification. A novel baseline correction method was used also for the first time. The FuRES and the FOAM are demonstrated as powerful tools for modeling and classifying GC/MS data of complex samples and the data pretreatments are demonstrated to be useful to improve the performance of classifiers. PMID:23398171

  18. Characterization of the efficiency and uncertainty of skimmed milk flocculation for the simultaneous concentration and quantification of water-borne viruses, bacteria and protozoa.

    PubMed

    Gonzales-Gustavson, Eloy; Cárdenas-Youngs, Yexenia; Calvo, Miquel; da Silva, Marcelle Figueira Marques; Hundesa, Ayalkibet; Amorós, Inmaculada; Moreno, Yolanda; Moreno-Mesonero, Laura; Rosell, Rosa; Ganges, Llilianne; Araujo, Rosa; Girones, Rosina

    2017-03-01

    In this study, the use of skimmed milk flocculation (SMF) to simultaneously concentrate viruses, bacteria and protozoa was evaluated. We selected strains of faecal indicator bacteria and pathogens, such as Escherichia coli and Helicobacter pylori. The viruses selected were adenovirus (HAdV 35), rotavirus (RoV SA-11), the bacteriophage MS2 and bovine viral diarrhoea virus (BVDV). The protozoa tested were Acanthamoeba, Giardia and Cryptosporidium. The mean recoveries with q(RT)PCR were 66% (HAdV 35), 24% (MS2), 28% (RoV SA-11), 15% (BVDV), 60% (E. coli), 30% (H. pylori) and 21% (Acanthamoeba castellanii). When testing the infectivity, the mean recoveries were 59% (HAdV 35), 12% (MS2), 26% (RoV SA-11) and 0.7% (BVDV). The protozoa Giardia lamblia and Cryptosporidium parvum were studied by immunofluorescence with recoveries of 18% and 13%, respectively. Although q(RT)PCR consistently showed higher quantification values (as expected), q(RT)PCR and the infectivity assays showed similar recoveries for HAdV 35 and RoV SA-11. Additionally, we investigated modelling the variability and uncertainty of the recovery with this method to extrapolate the quantification obtained by q(RT)PCR and estimate the real concentration. The 95% prediction intervals of the real concentration of the microorganisms inoculated were calculated using a general non-parametric bootstrap procedure adapted in our context to estimate the technical error of the measurements. SMF shows recoveries with a low variability that permits the use of a mathematical approximation to predict the concentration of the pathogen and indicator with acceptable low intervals. The values of uncertainty may be used for a quantitative microbial risk analysis or diagnostic purposes. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  20. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling.

    PubMed

    Elkomy, Mohammed H; Elmenshawe, Shahira F; Eid, Hussein M; Ali, Ahmed M A

    2016-11-01

    This work aimed at investigating the potential of solid lipid nanoparticles (SLN) as carriers for topical delivery of Ketoprofen (KP); evaluating a novel technique incorporating Artificial Neural Network (ANN) and clustered bootstrap for optimization of KP-loaded SLN (KP-SLN); and demonstrating a longitudinal dose response (LDR) modeling-based approach to compare the activity of topical non-steroidal anti-inflammatory drug formulations. KP-SLN was fabricated by a modified emulsion/solvent evaporation method. Box-Behnken design was implemented to study the influence of glycerylpalmitostearate-to-KP ratio, Tween 80, and lecithin concentrations on particle size, entrapment efficiency, and amount of drug permeated through rat skin in 24 hours. Following clustered bootstrap ANN optimization, the optimized KP-SLN was incorporated into an aqueous gel and evaluated for rheology, in vitro release, permeability, skin irritation and in vivo activity using carrageenan-induced rat paw edema model and LDR mathematical model to analyze the time course of anti-inflammatory effect at various application durations. Lipid-to-drug ratio of 7.85 [bootstrap 95%CI: 7.63-8.51], Tween 80 of 1.27% [bootstrap 95%CI: 0.601-2.40%], and Lecithin of 0.263% [bootstrap 95%CI: 0.263-0.328%] were predicted to produce optimal characteristics. Compared with profenid® gel, the optimized KP-SLN gel exhibited slower release, faster permeability, better texture properties, greater efficacy, and similar potency. SLNs are safe and effective permeation enhancers. ANN coupled with clustered bootstrap is a useful method for finding optimal solutions and estimating uncertainty associated with them. LDR models allow mechanistic understanding of comparative in vivo performances of different topical formulations, and help design efficient dermatological bioequivalence assessment methods.

  1. A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data

    PubMed Central

    Jiang, Fei; Haneuse, Sebastien

    2016-01-01

    In the analysis of semi-competing risks data interest lies in estimation and inference with respect to a so-called non-terminal event, the observation of which is subject to a terminal event. Multi-state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non-terminal and terminal events specified, in part, by a unit-specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi-competing risks analysis that permit the non-parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi-parametric efficient score under the complete data setting and propose a non-parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small-sample operating characteristics evaluated via simulation. Although the proposed semi-parametric transformation model and non-parametric score imputation method are motivated by the analysis of semi-competing risks data, they are broadly applicable to any analysis of multivariate time-to-event outcomes in which a unit-specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer. PMID:28439147

  2. A neural network based reputation bootstrapping approach for service selection

    NASA Astrophysics Data System (ADS)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  3. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test.

    PubMed

    Kerschbamer, Rudolf

    2015-05-01

    This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.

  5. Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data

    PubMed Central

    George, Brandon; Aban, Inmaculada

    2014-01-01

    Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361

  6. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    PubMed

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  7. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  8. 40 CFR 63.5990 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...) Performance and equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer, and the data collection and reduction system; and (3) Performance evaluation procedures...

  9. Sample size and the detection of a hump-shaped relationship between biomass and species richness in Mediterranean wetlands

    USGS Publications Warehouse

    Espinar, J.L.

    2006-01-01

    Questions: What is the observed relationship between biomass and species richness across both spatial and temporal scales in communities of submerged annual macrophytes? Does the number of plots sampled affect detection of hump-shaped pattern? Location: Don??ana National Park, southwestern Spain. Methods: A total of 102 plots were sampled during four hydrological cycles. In each hydrological cycle, the plots were distributed randomly along an environmental flooding gradient in three contrasted microhabitats located in the transition zone just below the upper marsh. In each plot (0.5 m x 0.5 m), plant density and above- and below-ground biomass of submerged vegetation were measured. The hump-shaped model was tested by using a generalized linear model (GLM). A bootstrap procedure was used to test the effect of the number of plots on the ability to detect hump-shaped patterns. Result: The area exhibited low species density with a range of 1 - 9 species and low values of biomass with a range of 0.2 - 87.6 g-DW / 0.25 m2. When data from all years and all microhabitats were combined, the relationships between biomass and species richness showed a hump-shaped pattern. The number of plots was large enough to allow detection of the hump-shaped pattern across microhabitats but it was too small to confirm the hump-shaped pattern within each individual microhabitat. Conclusion: This study provides evidence of hump-shaped patterns across microhabitats when GLM analysis is used. In communities of submerged annual macrophytes in Mediterranean wetlands, the highest species density occurs in intermediate values of biomass. The bootstrap procedure indicates that the number of plots affects the detection of hump-shaped patterns. ?? IAVS; Opulus Press.

  10. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  11. Preprocessing: Geocoding of AVIRIS data using navigation, engineering, DEM, and radar tracking system data

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.

    1993-01-01

    Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.

  12. Bootstrap investigation of the stability of a Cox regression model.

    PubMed

    Altman, D G; Andersen, P K

    1989-07-01

    We describe a bootstrap investigation of the stability of a Cox proportional hazards regression model resulting from the analysis of a clinical trial of azathioprine versus placebo in patients with primary biliary cirrhosis. We have considered stability to refer both to the choice of variables included in the model and, more importantly, to the predictive ability of the model. In stepwise Cox regression analyses of 100 bootstrap samples using 17 candidate variables, the most frequently selected variables were those selected in the original analysis, and no other important variable was identified. Thus there was no reason to doubt the model obtained in the original analysis. For each patient in the trial, bootstrap confidence intervals were constructed for the estimated probability of surviving two years. It is shown graphically that these intervals are markedly wider than those obtained from the original model.

  13. Bootstrap and Counter-Bootstrap approaches for formation of the cortege of Informative indicators by Results of Measurements

    NASA Astrophysics Data System (ADS)

    Artemenko, M. V.; Chernetskaia, I. E.; Kalugina, N. M.; Shchekina, E. N.

    2018-04-01

    This article describes the solution of the actual problem of the productive formation of a cortege of informative measured features of the object of observation and / or control using author's algorithms for the use of bootstraps and counter-bootstraps technologies for processing the results of measurements of various states of the object on the basis of different volumes of the training sample. The work that is presented in this paper considers aggregation by specific indicators of informative capacity by linear, majority, logical and “greedy” methods, applied both individually and integrally. The results of the computational experiment are discussed, and in conclusion is drawn that the application of the proposed methods contributes to an increase in the efficiency of classification of the states of the object from the results of measurements.

  14. How Many Subjects are Needed for a Visual Field Normative Database? A Comparison of Ground Truth and Bootstrapped Statistics.

    PubMed

    Phu, Jack; Bui, Bang V; Kalloniatis, Michael; Khuu, Sieu K

    2018-03-01

    The number of subjects needed to establish the normative limits for visual field (VF) testing is not known. Using bootstrap resampling, we determined whether the ground truth mean, distribution limits, and standard deviation (SD) could be approximated using different set size ( x ) levels, in order to provide guidance for the number of healthy subjects required to obtain robust VF normative data. We analyzed the 500 Humphrey Field Analyzer (HFA) SITA-Standard results of 116 healthy subjects and 100 HFA full threshold results of 100 psychophysically experienced healthy subjects. These VFs were resampled (bootstrapped) to determine mean sensitivity, distribution limits (5th and 95th percentiles), and SD for different ' x ' and numbers of resamples. We also used the VF results of 122 glaucoma patients to determine the performance of ground truth and bootstrapped results in identifying and quantifying VF defects. An x of 150 (for SITA-Standard) and 60 (for full threshold) produced bootstrapped descriptive statistics that were no longer different to the original distribution limits and SD. Removing outliers produced similar results. Differences between original and bootstrapped limits in detecting glaucomatous defects were minimized at x = 250. Ground truth statistics of VF sensitivities could be approximated using set sizes that are significantly smaller than the original cohort. Outlier removal facilitates the use of Gaussian statistics and does not significantly affect the distribution limits. We provide guidance for choosing the cohort size for different levels of error when performing normative comparisons with glaucoma patients.

  15. A bootstrap estimation scheme for chemical compositional data with nondetects

    USGS Publications Warehouse

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  16. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials

    PubMed Central

    Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo

    2018-01-01

    This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555

  17. Linear regression in astronomy. II

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  18. The Novaya Zemlya Event of 31 December 1992 and Seismic Identification Issues: Annual Seismic Research Symposium (15th) Held in Vail, Colorado on 8-10 September 1993

    DTIC Science & Technology

    1993-09-10

    1993). A bootstrap generalizedlikelihood ratio test in discriminant analysis, Proc. 15th Annual Seismic Research Symposium, in press. I Hedlin, M., J... ratio indicate that the event does not belong to the first class. The bootstrap technique is used here as well to set the critical value of the test ...Methodist University. Baek, J., H. L. Gray, W. A. Woodward and M.D. Fisk (1993). A Bootstrap Generalized Likelihood Ratio Test in Discriminant

  19. Robust Inference of Risks of Large Portfolios

    PubMed Central

    Fan, Jianqing; Han, Fang; Liu, Han; Vickers, Byron

    2016-01-01

    We propose a bootstrap-based robust high-confidence level upper bound (Robust H-CLUB) for assessing the risks of large portfolios. The proposed approach exploits rank-based and quantile-based estimators, and can be viewed as a robust extension of the H-CLUB procedure (Fan et al., 2015). Such an extension allows us to handle possibly misspecified models and heavy-tailed data, which are stylized features in financial returns. Under mixing conditions, we analyze the proposed approach and demonstrate its advantage over H-CLUB. We further provide thorough numerical results to back up the developed theory, and also apply the proposed method to analyze a stock market dataset. PMID:27818569

  20. Combining Nordtest method and bootstrap resampling for measurement uncertainty estimation of hematology analytes in a medical laboratory.

    PubMed

    Cui, Ming; Xu, Lili; Wang, Huimin; Ju, Shaoqing; Xu, Shuizhu; Jing, Rongrong

    2017-12-01

    Measurement uncertainty (MU) is a metrological concept, which can be used for objectively estimating the quality of test results in medical laboratories. The Nordtest guide recommends an approach that uses both internal quality control (IQC) and external quality assessment (EQA) data to evaluate the MU. Bootstrap resampling is employed to simulate the unknown distribution based on the mathematical statistics method using an existing small sample of data, where the aim is to transform the small sample into a large sample. However, there have been no reports of the utilization of this method in medical laboratories. Thus, this study applied the Nordtest guide approach based on bootstrap resampling for estimating the MU. We estimated the MU for the white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (Hb), and platelets (Plt). First, we used 6months of IQC data and 12months of EQA data to calculate the MU according to the Nordtest method. Second, we combined the Nordtest method and bootstrap resampling with the quality control data and calculated the MU using MATLAB software. We then compared the MU results obtained using the two approaches. The expanded uncertainty results determined for WBC, RBC, Hb, and Plt using the bootstrap resampling method were 4.39%, 2.43%, 3.04%, and 5.92%, respectively, and 4.38%, 2.42%, 3.02%, and 6.00% with the existing quality control data (U [k=2]). For WBC, RBC, Hb, and Plt, the differences between the results obtained using the two methods were lower than 1.33%. The expanded uncertainty values were all less than the target uncertainties. The bootstrap resampling method allows the statistical analysis of the MU. Combining the Nordtest method and bootstrap resampling is considered a suitable alternative method for estimating the MU. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Robust extraction of baseline signal of atmospheric trace species using local regression

    NASA Astrophysics Data System (ADS)

    Ruckstuhl, A. F.; Henne, S.; Reimann, S.; Steinbacher, M.; Vollmer, M. K.; O'Doherty, S.; Buchmann, B.; Hueglin, C.

    2012-11-01

    The identification of atmospheric trace species measurements that are representative of well-mixed background air masses is required for monitoring atmospheric composition change at background sites. We present a statistical method based on robust local regression that is well suited for the selection of background measurements and the estimation of associated baseline curves. The bootstrap technique is applied to calculate the uncertainty in the resulting baseline curve. The non-parametric nature of the proposed approach makes it a very flexible data filtering method. Application to carbon monoxide (CO) measured from 1996 to 2009 at the high-alpine site Jungfraujoch (Switzerland, 3580 m a.s.l.), and to measurements of 1,1-difluoroethane (HFC-152a) from Jungfraujoch (2000 to 2009) and Mace Head (Ireland, 1995 to 2009) demonstrates the feasibility and usefulness of the proposed approach. The determined average annual change of CO at Jungfraujoch for the 1996 to 2009 period as estimated from filtered annual mean CO concentrations is -2.2 ± 1.1 ppb yr-1. For comparison, the linear trend of unfiltered CO measurements at Jungfraujoch for this time period is -2.9 ± 1.3 ppb yr-1.

  2. The scramble for Africa: pan-temperate elements on the African high mountains.

    PubMed

    Gehrke, Berit; Linder, H Peter

    2009-07-22

    The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains.

  3. Environmental efficiency of energy, materials, and emissions.

    PubMed

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hypothesis testing of a change point during cognitive decline among Alzheimer's disease patients.

    PubMed

    Ji, Ming; Xiong, Chengjie; Grundman, Michael

    2003-10-01

    In this paper, we present a statistical hypothesis test for detecting a change point over the course of cognitive decline among Alzheimer's disease patients. The model under the null hypothesis assumes a constant rate of cognitive decline over time and the model under the alternative hypothesis is a general bilinear model with an unknown change point. When the change point is unknown, however, the null distribution of the test statistics is not analytically tractable and has to be simulated by parametric bootstrap. When the alternative hypothesis that a change point exists is accepted, we propose an estimate of its location based on the Akaike's Information Criterion. We applied our method to a data set from the Neuropsychological Database Initiative by implementing our hypothesis testing method to analyze Mini Mental Status Exam scores based on a random-slope and random-intercept model with a bilinear fixed effect. Our result shows that despite large amount of missing data, accelerated decline did occur for MMSE among AD patients. Our finding supports the clinical belief of the existence of a change point during cognitive decline among AD patients and suggests the use of change point models for the longitudinal modeling of cognitive decline in AD research.

  5. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  6. Compatibility of household budget and individual nutrition surveys: results of the preliminary analysis.

    PubMed

    Naska, A; Trichopoulou, A

    2001-08-01

    The EU-supported project entitled: "Compatibility of household budget and individual nutrition surveys and disparities in food habits" aimed at comparing individualised household budget survey (HBS) data with food consumption values derived from individual nutrition surveys (INS). The present paper provides a brief description of the methodology applied for rendering the datasets at a comparable level. Results of the preliminary evaluation of their compatibility are also presented. A non parametric modelling approach was used for the individualisation (age and gender-specific) of the food data collected at household level, in the context of the national HBSs and the bootstrap technique was used for the derivation of 95% confidence intervals. For each food group, INS and HBS-derived mean values were calculated for twenty-four research units, jointly defined by country (four countries involved), gender (male, female) and age (younger, middle-aged and older). Pearson correlation coefficients were calculated. The results of this preliminary analysis show that there is considerable scope in the nutritional information derived from HBSs. Additional and more sophisticated work is however required, putting particular emphasis on addressing limitations present in both surveys and on deriving reliable individual consumption point and interval estimates, on the basis of HBS data.

  7. Did the corporatization of Portuguese hospitals significantly change their productivity?

    PubMed

    Ferreira, Diogo; Marques, Rui Cunha

    2015-04-01

    This paper aims to investigate if the market structure reforms in the Portuguese health system have improved hospital performance and productivity. A robust non-parametric Malmquist index is applied to measure group performance. The significance of the results achieved is examined using a conditional and non-conditional subsampling bootstrapped-based methodology, enhanced by the likelihood cross validation criterion based on the k-nearest neighbors method. The sample contains information about 216 non-corporatized and 176 corporatized Portuguese hospitals for the period 2002–2009. Five models were applied, based on three study dimensions (internment, emergencies and doctor visits). The results show that although corporatized hospitals presented the highest efficiency consistency, they had also the lowest levels of productivity, while the hospitals under the traditional administrative public management system were the ones with the best average performance. However, several best practices were also found in all groups, being the limited companies were often dominated by both noncorporatized and public enterprise entities. Consistent output ranges where all groups present dominance over the others were also identified. It was possible to conclude that the more autonomy the hospital had from the Ministry of Health, the lower was its productivity.

  8. Evaluating significance in linear mixed-effects models in R.

    PubMed

    Luke, Steven G

    2017-08-01

    Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.

  9. Current/Pressure Profile Effects on Tearing Mode Stability in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su

    2015-11-01

    It is important to understand the onset threshold and the evolution of tearing modes (TMs) for developing a high-performance steady state fusion reactor. As initial and basic comparisons to determine TM onset, the measured plasma profiles (such as temperature, density, rotation) were compared with the calculated current profiles between a pair of discharges with/without n=1 mode based on the database for DIII-D hybrid plasmas. The profiles were not much different, but the details were analyzed to determine their characteristics, especially near the rational surface. The tearing stability index calculated from PEST3, Δ' tends to increase rapidly just before the n=1 mode onset for these cases. The modeled equilibrium with varying pressure or current profiles parametrically based on the reference discharge is reconstructed for checking the onset dependency on Δ' or neoclassical effects such as bootstrap current. Simulations of TMs with the modeled equilibrium using resistive MHD codes will also be presented and compared with experiments to determine the sensibility for predicting TM onset. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  10. Systematic Review of Video-Based Instruction Component and Parametric Analyses

    ERIC Educational Resources Information Center

    Bennett, Kyle D.; Aljehany, Mashal Salman; Altaf, Enas Mohammednour

    2017-01-01

    Video-based instruction (VBI) has a substantial amount of research supporting its use with individuals with autism spectrum disorder and other developmental disabilities. However, it has typically been implemented as a treatment package containing multiple interventions. Additionally, there are procedural variations of VBI. Thus, it is difficult…

  11. Total main rotor isolation system analysis

    NASA Technical Reports Server (NTRS)

    Sankewitsch, V.

    1981-01-01

    Requirements, preliminary design, and verification procedures for a total main rotor isolation system at n/rev are presented. The fuselage is isolated from the vibration inducing main rotor at one frequency in all degrees of freedom by four antiresonant isolation units. Effects of parametric variations on isolation system performance are evaluated.

  12. Application of Transformations in Parametric Inference

    ERIC Educational Resources Information Center

    Brownstein, Naomi; Pensky, Marianna

    2008-01-01

    The objective of the present paper is to provide a simple approach to statistical inference using the method of transformations of variables. We demonstrate performance of this powerful tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and statistical inference for the stress-strength systems.…

  13. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.

    PubMed

    Wolf, Elizabeth Skubak; Anderson, David F

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  14. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  15. On non-parametric maximum likelihood estimation of the bivariate survivor function.

    PubMed

    Prentice, R L

    The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.

  16. Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    1995-01-01

    Use of the bootstrap method in a canonical correlation analysis to evaluate the replicability of a study's results is illustrated. More confidence may be vested in research results that replicate. (SLD)

  17. The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; hide

    2013-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.

  18. The economics of bootstrapping space industries - Development of an analytic computer model

    NASA Technical Reports Server (NTRS)

    Goldberg, A. H.; Criswell, D. R.

    1982-01-01

    A simple economic model of 'bootstrapping' industrial growth in space and on the Moon is presented. An initial space manufacturing facility (SMF) is assumed to consume lunar materials to enlarge the productive capacity in space. After reaching a predetermined throughput, the enlarged SMF is devoted to products which generate revenue continuously in proportion to the accumulated output mass (such as space solar power stations). Present discounted value and physical estimates for the general factors of production (transport, capital efficiency, labor, etc.) are combined to explore optimum growth in terms of maximized discounted revenues. It is found that 'bootstrapping' reduces the fractional cost to a space industry of transport off-Earth, permits more efficient use of a given transport fleet. It is concluded that more attention should be given to structuring 'bootstrapping' scenarios in which 'learning while doing' can be more fully incorporated in program analysis.

  19. Towards a bootstrap approach to higher orders of epsilon expansion

    NASA Astrophysics Data System (ADS)

    Dey, Parijat; Kaviraj, Apratim

    2018-02-01

    We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.

  20. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    PubMed

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  1. Organizational justice, psychological distress, and work engagement in Japanese workers.

    PubMed

    Inoue, Akiomi; Kawakami, Norito; Ishizaki, Masao; Shimazu, Akihito; Tsuchiya, Masao; Tabata, Masaji; Akiyama, Miki; Kitazume, Akiko; Kuroda, Mitsuyo

    2010-01-01

    To investigate the cross-sectional association between organizational justice (i.e., procedural justice and interactional justice) and psychological distress or work engagement, as well as the mediating roles of other job stressors (i.e., job demands and job control, or their combination, effort-reward imbalance [ERI], and worksite support). A total of 243 workers (185 males and 58 females) from a manufacturing factory in Japan were surveyed using a self-administered questionnaire including the Organizational Justice Questionnaire, Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, K6 scale, Utrecht Work Engagement Scale, and other covariates. Multiple mediation analyses with the bootstrap technique were conducted. In the bivariate analysis, procedural justice and interactional justice were significantly and negatively associated with psychological distress; they were significantly and positively associated with work engagement. In the mediation analysis, reward at work (or ERI) significantly mediated between procedural justice or interactional justice and psychological distress; worksite support significantly mediated between procedural justice or interactional justice and work engagement. The effects of organizational justice on psychological distress seem to be mediated by reward at work (or ERI) while those regarding work engagement may be mediated by worksite support to a large extent, at least in Japanese workers.

  2. Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes.

    PubMed

    Kargarian-Marvasti, Sadegh; Rimaz, Shahnaz; Abolghasemi, Jamileh; Heydari, Iraj

    2017-01-01

    Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes. This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model ( P < 0.20) were entered into the multivariate Cox and parametric models ( P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS). Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy ( P < 0.05). According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.

  3. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    PubMed

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Smokers’ sensory beliefs mediate the relation between smoking a ‘light/low tar’ cigarette and perceptions of harm

    PubMed Central

    Elton-Marshall, Tara; Fong, Geoffrey T; Yong, Hua-Hie; Borland, Ron; Xu, Steve Shaowei; Quah, Anne C K; Feng, Guoze; Jiang, Yuan

    2016-01-01

    Background The sensory belief that ‘light/low tar’ cigarettes are smoother can also influence the belief that ‘light/low tar’ cigarettes are less harmful. However, the ‘light’ concept is one of several factors influencing beliefs. No studies have examined the impact of the sensory belief about one’s own brand of cigarettes on perceptions of harm. Objective The current study examines whether a smoker’s sensory belief that their brand is smoother is associated with the belief that their brand is less harmful and whether sensory beliefs mediate the relation between smoking a ‘light/low tar’ cigarette and relative perceptions of harm among smokers in China. Methods Data are from 5209 smokers who were recruited using a stratified multistage sampling design and participated in wave 3 of the International Tobacco Control (ITC) China Survey, a face-to-face survey of adult smokers and non-smokers in seven cities. Results Smokers who agreed that their brand of cigarettes was smoother were significantly more likely to say that their brand of cigarettes was less harmful (p<0.001, OR=6.86, 95% CI 5.64 to 8.33). Mediational analyses using the bootstrapping procedure indicated that both the direct effect of ‘light/low tar’ cigarette smokers on the belief that their cigarettes are less harmful (b=0.24, bootstrapped bias corrected 95% CI 0.13 to 0.34, p<0.001) and the indirect effect via their belief that their cigarettes are smoother were significant (b=0.32, bootstrapped bias-corrected 95% CI 0.28 to 0.37, p<0.001), suggesting that the mediation was partial. Conclusions These results demonstrate the importance of implementing tobacco control policies that address the impact that cigarette design and marketing can have in capitalising on the smoker’s natural associations between smoother sensations and lowered perceptions of harm. PMID:25370698

  5. Smokers' sensory beliefs mediate the relation between smoking a light/low tar cigarette and perceptions of harm.

    PubMed

    Elton-Marshall, Tara; Fong, Geoffrey T; Yong, Hua-Hie; Borland, Ron; Xu, Steve Shaowei; Quah, Anne C K; Feng, Guoze; Jiang, Yuan

    2015-11-01

    The sensory belief that 'light/low tar' cigarettes are smoother can also influence the belief that 'light/low tar' cigarettes are less harmful. However, the 'light' concept is one of several factors influencing beliefs. No studies have examined the impact of the sensory belief about one's own brand of cigarettes on perceptions of harm. The current study examines whether a smoker's sensory belief that their brand is smoother is associated with the belief that their brand is less harmful and whether sensory beliefs mediate the relation between smoking a 'light/low tar' cigarette and relative perceptions of harm among smokers in China. Data are from 5209 smokers who were recruited using a stratified multistage sampling design and participated in Wave 3 of the International Tobacco Control (ITC) China Survey, a face-to-face survey of adult smokers and non-smokers in seven cities. Smokers who agreed that their brand of cigarettes was smoother were significantly more likely to say that their brand of cigarettes was less harmful (p<0.001, OR=6.86, 95% CI 5.64 to 8.33). Mediational analyses using the bootstrapping procedure indicated that both the direct effect of 'light/low tar' cigarette smokers on the belief that their cigarettes are less harmful (b=0.24, bootstrapped bias corrected 95% CI 0.13 to 0.34, p<0.001) and the indirect effect via their belief that their cigarettes are smoother were significant (b=0.32, bootstrapped bias-corrected 95% CI 0.28 to 0.37, p<0.001), suggesting that the mediation was partial. These results demonstrate the importance of implementing tobacco control policies that address the impact that cigarette design and marketing can have in capitalising on the smoker's natural associations between smoother sensations and lowered perceptions of harm. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.

    PubMed

    Falk, Carl F; Biesanz, Jeremy C

    2011-11-30

    Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.

  7. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software. PMID:17892584

  8. Simulating realistic predator signatures in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2015-01-01

    Diet estimation is an important field within quantitative ecology, providing critical insights into many aspects of ecology and community dynamics. Quantitative fatty acid signature analysis (QFASA) is a prominent method of diet estimation, particularly for marine mammal and bird species. Investigators using QFASA commonly use computer simulation to evaluate statistical characteristics of diet estimators for the populations they study. Similar computer simulations have been used to explore and compare the performance of different variations of the original QFASA diet estimator. In both cases, computer simulations involve bootstrap sampling prey signature data to construct pseudo-predator signatures with known properties. However, bootstrap sample sizes have been selected arbitrarily and pseudo-predator signatures therefore may not have realistic properties. I develop an algorithm to objectively establish bootstrap sample sizes that generates pseudo-predator signatures with realistic properties, thereby enhancing the utility of computer simulation for assessing QFASA estimator performance. The algorithm also appears to be computationally efficient, resulting in bootstrap sample sizes that are smaller than those commonly used. I illustrate the algorithm with an example using data from Chukchi Sea polar bears (Ursus maritimus) and their marine mammal prey. The concepts underlying the approach may have value in other areas of quantitative ecology in which bootstrap samples are post-processed prior to their use.

  9. Analytic calculation of radio emission from parametrized extensive air showers: A tool to extract shower parameters

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.

  10. Bootstrap Methods: A Very Leisurely Look.

    ERIC Educational Resources Information Center

    Hinkle, Dennis E.; Winstead, Wayland H.

    The Bootstrap method, a computer-intensive statistical method of estimation, is illustrated using a simple and efficient Statistical Analysis System (SAS) routine. The utility of the method for generating unknown parameters, including standard errors for simple statistics, regression coefficients, discriminant function coefficients, and factor…

  11. Bootstrapping Student Understanding of What Is Going on in Econometrics.

    ERIC Educational Resources Information Center

    Kennedy, Peter E.

    2001-01-01

    Explains that econometrics is an intellectual game played by rules based on the sampling distribution concept. Contains explanations for why many students are uncomfortable with econometrics. Encourages instructors to use explain-how-to-bootstrap exercises to promote student understanding. (RLH)

  12. The Role of Parametric Assumptions in Adaptive Bayesian Estimation

    ERIC Educational Resources Information Center

    Alcala-Quintana, Rocio; Garcia-Perez, Miguel A.

    2004-01-01

    Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter…

  13. A Nonparametric K-Sample Test for Equality of Slopes.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; Koffler, Stephen L.

    1986-01-01

    The development of a nonparametric K-sample test for equality of slopes using Puri's generalized L statistic is presented. The test is recommended when the assumptions underlying the parametric model are violated. This procedure replaces original data with either ranks (for data with heavy tails) or normal scores (for data with light tails).…

  14. Five-Point Likert Items: t Test versus Mann-Whitney-Wilcoxon

    ERIC Educational Resources Information Center

    de Winter, Joost C. F.; Dodou, Dimitra

    2010-01-01

    Likert questionnaires are widely used in survey research, but it is unclear whether the item data should be investigated by means of parametric or nonparametric procedures. This study compared the Type I and II error rates of the "t" test versus the Mann-Whitney-Wilcoxon (MWW) for five-point Likert items. Fourteen population…

  15. Temporal Dynamics of Awareness for Facial Identity Revealed with ERP

    ERIC Educational Resources Information Center

    Genetti, Melanie; Khateb, Asaid; Heinzer, Severine; Michel, Christoph M.; Pegna, Alan J.

    2009-01-01

    In this study, we investigated the scalp recorded event-related potential (ERP) responses related to visual awareness. A backward masking procedure was performed while high-density EEG recordings were carried out. Subjects were asked to detect a familiar face, presented at durations that varied parametrically between 16 and 266 ms. ERPs were…

  16. Diffeomorphic demons: efficient non-parametric image registration.

    PubMed

    Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas

    2009-03-01

    We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.

  17. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  18. Using the bootstrap to establish statistical significance for relative validity comparisons among patient-reported outcome measures

    PubMed Central

    2013-01-01

    Background Relative validity (RV), a ratio of ANOVA F-statistics, is often used to compare the validity of patient-reported outcome (PRO) measures. We used the bootstrap to establish the statistical significance of the RV and to identify key factors affecting its significance. Methods Based on responses from 453 chronic kidney disease (CKD) patients to 16 CKD-specific and generic PRO measures, RVs were computed to determine how well each measure discriminated across clinically-defined groups of patients compared to the most discriminating (reference) measure. Statistical significance of RV was quantified by the 95% bootstrap confidence interval. Simulations examined the effects of sample size, denominator F-statistic, correlation between comparator and reference measures, and number of bootstrap replicates. Results The statistical significance of the RV increased as the magnitude of denominator F-statistic increased or as the correlation between comparator and reference measures increased. A denominator F-statistic of 57 conveyed sufficient power (80%) to detect an RV of 0.6 for two measures correlated at r = 0.7. Larger denominator F-statistics or higher correlations provided greater power. Larger sample size with a fixed denominator F-statistic or more bootstrap replicates (beyond 500) had minimal impact. Conclusions The bootstrap is valuable for establishing the statistical significance of RV estimates. A reasonably large denominator F-statistic (F > 57) is required for adequate power when using the RV to compare the validity of measures with small or moderate correlations (r < 0.7). Substantially greater power can be achieved when comparing measures of a very high correlation (r > 0.9). PMID:23721463

  19. Four Bootstrap Confidence Intervals for the Binomial-Error Model.

    ERIC Educational Resources Information Center

    Lin, Miao-Hsiang; Hsiung, Chao A.

    1992-01-01

    Four bootstrap methods are identified for constructing confidence intervals for the binomial-error model. The extent to which similar results are obtained and the theoretical foundation of each method and its relevance and ranges of modeling the true score uncertainty are discussed. (SLD)

  20. Application of the Bootstrap Statistical Method in Deriving Vibroacoustic Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Paez, Thomas L.

    2006-01-01

    This paper discusses the Bootstrap Method for specification of vibroacoustic test specifications. Vibroacoustic test specifications are necessary to properly accept or qualify a spacecraft and its components for the expected acoustic, random vibration and shock environments seen on an expendable launch vehicle. Traditionally, NASA and the U.S. Air Force have employed methods of Normal Tolerance Limits to derive these test levels based upon the amount of data available, and the probability and confidence levels desired. The Normal Tolerance Limit method contains inherent assumptions about the distribution of the data. The Bootstrap is a distribution-free statistical subsampling method which uses the measured data themselves to establish estimates of statistical measures of random sources. This is achieved through the computation of large numbers of Bootstrap replicates of a data measure of interest and the use of these replicates to derive test levels consistent with the probability and confidence desired. The comparison of the results of these two methods is illustrated via an example utilizing actual spacecraft vibroacoustic data.

  1. The Reliability and Stability of an Inferred Phylogenetic Tree from Empirical Data.

    PubMed

    Katsura, Yukako; Stanley, Craig E; Kumar, Sudhir; Nei, Masatoshi

    2017-03-01

    The reliability of a phylogenetic tree obtained from empirical data is usually measured by the bootstrap probability (Pb) of interior branches of the tree. If the bootstrap probability is high for most branches, the tree is considered to be reliable. If some interior branches show relatively low bootstrap probabilities, we are not sure that the inferred tree is really reliable. Here, we propose another quantity measuring the reliability of the tree called the stability of a subtree. This quantity refers to the probability of obtaining a subtree (Ps) of an inferred tree obtained. We then show that if the tree is to be reliable, both Pb and Ps must be high. We also show that Ps is given by a bootstrap probability of the subtree with the closest outgroup sequence, and computer program RESTA for computing the Pb and Ps values will be presented. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Closure of the operator product expansion in the non-unitary bootstrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.

    We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less

  3. A revisit to contingency table and tests of independence: bootstrap is preferred to Chi-square approximations as well as Fisher's exact test.

    PubMed

    Lin, Jyh-Jiuan; Chang, Ching-Hui; Pal, Nabendu

    2015-01-01

    To test the mutual independence of two qualitative variables (or attributes), it is a common practice to follow the Chi-square tests (Pearson's as well as likelihood ratio test) based on data in the form of a contingency table. However, it should be noted that these popular Chi-square tests are asymptotic in nature and are useful when the cell frequencies are "not too small." In this article, we explore the accuracy of the Chi-square tests through an extensive simulation study and then propose their bootstrap versions that appear to work better than the asymptotic Chi-square tests. The bootstrap tests are useful even for small-cell frequencies as they maintain the nominal level quite accurately. Also, the proposed bootstrap tests are more convenient than the Fisher's exact test which is often criticized for being too conservative. Finally, all test methods are applied to a few real-life datasets for demonstration purposes.

  4. Closure of the operator product expansion in the non-unitary bootstrap

    DOE PAGES

    Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.

    2016-11-07

    We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less

  5. Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, O A; Iskhakov, T Sh; Penin, A N

    2006-10-31

    We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less

  6. Multi-response permutation procedure as an alternative to the analysis of variance: an SPSS implementation.

    PubMed

    Cai, Li

    2006-02-01

    A permutation test typically requires fewer assumptions than does a comparable parametric counterpart. The multi-response permutation procedure (MRPP) is a class of multivariate permutation tests of group difference useful for the analysis of experimental data. However, psychologists seldom make use of the MRPP in data analysis, in part because the MRPP is not implemented in popular statistical packages that psychologists use. A set of SPSS macros implementing the MRPP test is provided in this article. The use of the macros is illustrated by analyzing example data sets.

  7. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    USGS Publications Warehouse

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  8. Testing a multiple mediation model of Asian American college students' willingness to see a counselor.

    PubMed

    Kim, Paul Youngbin; Park, Irene J K

    2009-07-01

    Adapting the theory of reasoned action, the present study examined help-seeking beliefs, attitudes, and intent among Asian American college students (N = 110). A multiple mediation model was tested to see if the relation between Asian values and willingness to see a counselor was mediated by attitudes toward seeking professional psychological help and subjective norm. A bootstrapping procedure was used to test the multiple mediation model. Results indicated that subjective norm was the sole significant mediator of the effect of Asian values on willingness to see a counselor. The findings highlight the importance of social influences on help-seeking intent among Asian American college students.

  9. The Role of Mediators in the Indirect Effects of Religiosity on Therapeutic Compliance in African Migrant HIV-Positive Patients.

    PubMed

    Mambet Doue, Constance; Roussiau, Nicolas

    2016-12-01

    This research investigates the indirect effects of religiosity (practice and belief) on therapeutic compliance in 81 HIV-positive patients who are migrants from sub-Saharan Africa (23 men and 58 women). Using analyses of mediation and standard multiple regression, including a resampling procedure by bootstrapping, the role of these mediators (magical-religious beliefs and nonuse of toxic substances) was tested. The results show that, through magical-religious beliefs, religiosity has a negative indirect effect, while with the nonuse of toxic substances, religious practice has a positive indirect effect. Beyond religiosity, the role of mediators is highlighted in the interaction with therapeutic compliance.

  10. Confidence Interval Coverage for Cohen's Effect Size Statistic

    ERIC Educational Resources Information Center

    Algina, James; Keselman, H. J.; Penfield, Randall D.

    2006-01-01

    Kelley compared three methods for setting a confidence interval (CI) around Cohen's standardized mean difference statistic: the noncentral-"t"-based, percentile (PERC) bootstrap, and biased-corrected and accelerated (BCA) bootstrap methods under three conditions of nonnormality, eight cases of sample size, and six cases of population…

  11. Bootstrapping Methods Applied for Simulating Laboratory Works

    ERIC Educational Resources Information Center

    Prodan, Augustin; Campean, Remus

    2005-01-01

    Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…

  12. Bootstrap Confidence Intervals for Ordinary Least Squares Factor Loadings and Correlations in Exploratory Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong

    2010-01-01

    This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…

  13. Bootstrapping the Syntactic Bootstrapper: Probabilistic Labeling of Prosodic Phrases

    ERIC Educational Resources Information Center

    Gutman, Ariel; Dautriche, Isabelle; Crabbé, Benoît; Christophe, Anne

    2015-01-01

    The "syntactic bootstrapping" hypothesis proposes that syntactic structure provides children with cues for learning the meaning of novel words. In this article, we address the question of how children might start acquiring some aspects of syntax before they possess a sizeable lexicon. The study presents two models of early syntax…

  14. Evaluating the Use of Random Distribution Theory to Introduce Statistical Inference Concepts to Business Students

    ERIC Educational Resources Information Center

    Larwin, Karen H.; Larwin, David A.

    2011-01-01

    Bootstrapping methods and random distribution methods are increasingly recommended as better approaches for teaching students about statistical inference in introductory-level statistics courses. The authors examined the effect of teaching undergraduate business statistics students using random distribution and bootstrapping simulations. It is the…

  15. Evaluation of species richness estimators based on quantitative performance measures and sensitivity to patchiness and sample grain size

    NASA Astrophysics Data System (ADS)

    Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc

    2012-11-01

    Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling curves before explaining differences in diversity.

  16. Does integration of HIV and sexual and reproductive health services improve technical efficiency in Kenya and Swaziland? An application of a two-stage semi parametric approach incorporating quality measures

    PubMed Central

    Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna

    2016-01-01

    Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. PMID:26803655

  17. Does integration of HIV and sexual and reproductive health services improve technical efficiency in Kenya and Swaziland? An application of a two-stage semi parametric approach incorporating quality measures.

    PubMed

    Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna

    2016-02-01

    Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Investigating light curve modulation via kernel smoothing. I. Application to 53 fundamental mode and first-overtone Cepheids in the LMC

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Anderson, Richard I.

    2018-03-01

    Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.

  19. Model-free estimation of the psychometric function

    PubMed Central

    Żychaluk, Kamila; Foster, David H.

    2009-01-01

    A subject's response to the strength of a stimulus is described by the psychometric function, from which summary measures, such as a threshold or slope, may be derived. Traditionally, this function is estimated by fitting a parametric model to the experimental data, usually the proportion of successful trials at each stimulus level. Common models include the Gaussian and Weibull cumulative distribution functions. This approach works well if the model is correct, but it can mislead if not. In practice, the correct model is rarely known. Here, a nonparametric approach based on local linear fitting is advocated. No assumption is made about the true model underlying the data, except that the function is smooth. The critical role of the bandwidth is identified, and its optimum value estimated by a cross-validation procedure. As a demonstration, seven vision and hearing data sets were fitted by the local linear method and by several parametric models. The local linear method frequently performed better and never worse than the parametric ones. Supplemental materials for this article can be downloaded from app.psychonomic-journals.org/content/supplemental. PMID:19633355

  20. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  1. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Elizabeth Skubak, E-mail: ewolf@saintmarys.edu; Anderson, David F., E-mail: anderson@math.wisc.edu

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased formore » a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.« less

  2. Accelerating atomistic simulations through self-learning bond-boost hyperdynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, Danny; Voter, Arthur F

    2008-01-01

    By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn canmore » be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.« less

  3. Parametric Model Based On Imputations Techniques for Partly Interval Censored Data

    NASA Astrophysics Data System (ADS)

    Zyoud, Abdallah; Elfaki, F. A. M.; Hrairi, Meftah

    2017-12-01

    The term ‘survival analysis’ has been used in a broad sense to describe collection of statistical procedures for data analysis. In this case, outcome variable of interest is time until an event occurs where the time to failure of a specific experimental unit might be censored which can be right, left, interval, and Partly Interval Censored data (PIC). In this paper, analysis of this model was conducted based on parametric Cox model via PIC data. Moreover, several imputation techniques were used, which are: midpoint, left & right point, random, mean, and median. Maximum likelihood estimate was considered to obtain the estimated survival function. These estimations were then compared with the existing model, such as: Turnbull and Cox model based on clinical trial data (breast cancer data), for which it showed the validity of the proposed model. Result of data set indicated that the parametric of Cox model proved to be more superior in terms of estimation of survival functions, likelihood ratio tests, and their P-values. Moreover, based on imputation techniques; the midpoint, random, mean, and median showed better results with respect to the estimation of survival function.

  4. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Altabella, L.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.

  5. Development of a turbomachinery design optimization procedure using a multiple-parameter nonlinear perturbation method

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.

    1984-01-01

    An investigation was carried out to complete the preliminary development of a combined perturbation/optimization procedure and associated computational code for designing optimized blade-to-blade profiles of turbomachinery blades. The overall purpose of the procedures developed is to provide demonstration of a rapid nonlinear perturbation method for minimizing the computational requirements associated with parametric design studies of turbomachinery flows. The method combines the multiple parameter nonlinear perturbation method, successfully developed in previous phases of this study, with the NASA TSONIC blade-to-blade turbomachinery flow solver, and the COPES-CONMIN optimization procedure into a user's code for designing optimized blade-to-blade surface profiles of turbomachinery blades. Results of several design applications and a documented version of the code together with a user's manual are provided.

  6. Carving out the end of the world or (superconformal bootstrap in six dimensions)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chi-Ming; Lin, Ying-Hsuan

    We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .

  7. Carving out the end of the world or (superconformal bootstrap in six dimensions)

    DOE PAGES

    Chang, Chi-Ming; Lin, Ying-Hsuan

    2017-08-29

    We bootstrap N=(1,0) superconformal field theories in six dimensions, by analyzing the four-point function of flavor current multiplets. By assuming E 8 flavor group, we present universal bounds on the central charge C T and the flavor central charge C J. Based on the numerical data, we conjecture that the rank-one E-string theory saturates the universal lower bound on C J , and numerically determine the spectrum of long multiplets in the rank-one E-string theory. We comment on the possibility of solving the higher-rank E-string theories by bootstrap and thereby probing M-theory on AdS 7×S 4/Z 2 .

  8. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  9. Health systems: changes in hospital efficiency and profitability.

    PubMed

    Büchner, Vera Antonia; Hinz, Vera; Schreyögg, Jonas

    2016-06-01

    This study investigates potential changes in hospital performance after health system entry, while differentiating between hospital technical and cost efficiency and hospital profitability. In the first stage we obtained (bootstrapped) data envelopment analysis (DEA) efficiency scores. Then, genetic matching is used as a novel matching procedure in this context along with a difference-in-difference approach within a panel regression framework. With the genetic matching procedure, independent and health system hospitals are matched along a number of environmental and organizational characteristics. The results show that health system entry increases hospital technical and cost efficiency by between 0.6 and 3.4 % in four alternative post-entry periods, indicating that health system entry has not a transitory but rather a permanent effect on hospital efficiency. Regarding hospital profitability, the results reveal an increase in hospital profitability only 1 year after health system entry, and the estimations suggest that this effect is a transitional phenomenon. Overall, health system entry may serve as an appropriate management instrument for decision makers to increase hospital performance.

  10. Continuation of advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1976-01-01

    An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.

  11. Improving power to detect changes in blood miRNA expression by accounting for sources of variability in experimental designs.

    PubMed

    Daniels, Sarah I; Sillé, Fenna C M; Goldbaum, Audrey; Yee, Brenda; Key, Ellen F; Zhang, Luoping; Smith, Martyn T; Thomas, Reuben

    2014-12-01

    Blood miRNAs are a new promising area of disease research, but variability in miRNA measurements may limit detection of true-positive findings. Here, we measured sources of miRNA variability and determine whether repeated measures can improve power to detect fold-change differences between comparison groups. Blood from healthy volunteers (N = 12) was collected at three time points. The miRNAs were extracted by a method predetermined to give the highest miRNA yield. Nine different miRNAs were quantified using different qPCR assays and analyzed using mixed models to identify sources of variability. A larger number of miRNAs from a publicly available blood miRNA microarray dataset with repeated measures were used for a bootstrapping procedure to investigate effects of repeated measures on power to detect fold changes in miRNA expression for a theoretical case-control study. Technical variability in qPCR replicates was identified as a significant source of variability (P < 0.05) for all nine miRNAs tested. Variability was larger in the TaqMan qPCR assays (SD = 0.15-0.61) versus the qScript qPCR assays (SD = 0.08-0.14). Inter- and intraindividual and extraction variability also contributed significantly for two miRNAs. The bootstrapping procedure demonstrated that repeated measures (20%-50% of N) increased detection of a 2-fold change for approximately 10% to 45% more miRNAs. Statistical power to detect small fold changes in blood miRNAs can be improved by accounting for sources of variability using repeated measures and choosing appropriate methods to minimize variability in miRNA quantification. This study demonstrates the importance of including repeated measures in experimental designs for blood miRNA research. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology." ©2014 American Association for Cancer Research.

  12. Reference Levels for Patient Radiation Doses in Interventional Radiology: Proposed Initial Values for U.S. Practice1

    PubMed Central

    Miller, Donald L.; Kwon, Deukwoo; Bonavia, Grant H.

    2009-01-01

    Purpose: To propose initial values for patient reference levels for fluoroscopically guided procedures in the United States. Materials and Methods: This secondary analysis of data from the Radiation Doses in Interventional Radiology Procedures (RAD-IR) study was conducted under a protocol approved by the institutional review board and was HIPAA compliant. Dose distributions (percentiles) were calculated for each type of procedure in the RAD-IR study where there were data from at least 30 cases. Confidence intervals for the dose distributions were determined by using bootstrap resampling. Weight banding and size correction methods for normalizing dose to patient body habitus were tested. Results: The different methods for normalizing patient radiation dose according to patient weight gave results that were not significantly different (P > .05). The 75th percentile patient radiation doses normalized with weight banding were not significantly different from those that were uncorrected for body habitus. Proposed initial reference levels for various interventional procedures are provided for reference air kerma, kerma-area product, fluoroscopy time, and number of images. Conclusion: Sufficient data exist to permit an initial proposal of values for reference levels for interventional radiologic procedures in the United States. For ease of use, reference levels without correction for body habitus are recommended. A national registry of radiation-dose data for interventional radiologic procedures is a necessary next step to refine these reference levels. © RSNA, 2009 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.2533090354/-/DC1 PMID:19789226

  13. Exploring the Replicability of a Study's Results: Bootstrap Statistics for the Multivariate Case.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Conventional statistical significance tests do not inform the researcher regarding the likelihood that results will replicate. One strategy for evaluating result replication is to use a "bootstrap" resampling of a study's data so that the stability of results across numerous configurations of the subjects can be explored. This paper…

  14. Computing Robust, Bootstrap-Adjusted Fit Indices for Use with Nonnormal Data

    ERIC Educational Resources Information Center

    Walker, David A.; Smith, Thomas J.

    2017-01-01

    Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…

  15. Forgetski Vygotsky: Or, a Plea for Bootstrapping Accounts of Learning

    ERIC Educational Resources Information Center

    Luntley, Michael

    2017-01-01

    This paper argues that sociocultural accounts of learning fail to answer the key question about learning--how is it possible? Accordingly, we should adopt an individualist bootstrapping methodology in providing a theory of learning. Such a methodology takes seriously the idea that learning is staged and distinguishes between a non-comprehending…

  16. Higher curvature gravities, unlike GR, cannot be bootstrapped from their (usual) linearizations

    NASA Astrophysics Data System (ADS)

    Deser, S.

    2017-12-01

    We show that higher curvature order gravities, in particular the propagating quadratic curvature models, cannot be derived by self-coupling from their linear, flat space, forms, except through an unphysical version of linearization; only GR can. Separately, we comment on an early version of the self-coupling bootstrap.

  17. Methods for Estimating Uncertainty in PMF Solutions: Examples with Ambient Air and Water Quality Data and Guidance on Reporting PMF Results

    EPA Science Inventory

    The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...

  18. Bootsie: estimation of coefficient of variation of AFLP data by bootstrap analysis

    USDA-ARS?s Scientific Manuscript database

    Bootsie is an English-native replacement for ASG Coelho’s “DBOOT” utility for estimating coefficient of variation of a population of AFLP marker data using bootstrapping. Bootsie improves on DBOOT by supporting batch processing, time-to-completion estimation, built-in graphs, and a suite of export t...

  19. How to Bootstrap a Human Communication System

    ERIC Educational Resources Information Center

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified…

  20. Measuring and Benchmarking Technical Efficiency of Public Hospitals in Tianjin, China: A Bootstrap-Data Envelopment Analysis Approach.

    PubMed

    Li, Hao; Dong, Siping

    2015-01-01

    China has long been stuck in applying traditional data envelopment analysis (DEA) models to measure technical efficiency of public hospitals without bias correction of efficiency scores. In this article, we have introduced the Bootstrap-DEA approach from the international literature to analyze the technical efficiency of public hospitals in Tianjin (China) and tried to improve the application of this method for benchmarking and inter-organizational learning. It is found that the bias corrected efficiency scores of Bootstrap-DEA differ significantly from those of the traditional Banker, Charnes, and Cooper (BCC) model, which means that Chinese researchers need to update their DEA models for more scientific calculation of hospital efficiency scores. Our research has helped shorten the gap between China and the international world in relative efficiency measurement and improvement of hospitals. It is suggested that Bootstrap-DEA be widely applied into afterward research to measure relative efficiency and productivity of Chinese hospitals so as to better serve for efficiency improvement and related decision making. © The Author(s) 2015.

  1. Weak percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Dorogovtsev, Sergey N.; Mendes, José F. F.; Cellai, Davide

    2014-04-01

    Bootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.

  2. Visuospatial bootstrapping: Binding useful visuospatial information during verbal working memory encoding does not require set-shifting executive resources.

    PubMed

    Calia, Clara; Darling, Stephen; Havelka, Jelena; Allen, Richard J

    2018-05-01

    Immediate serial recall of digits is better when the digits are shown by highlighting them in a familiar array, such as a phone keypad, compared with presenting them serially in a single location, a pattern referred to as "visuospatial bootstrapping." This pattern implies the establishment of temporary links between verbal and spatial working memory, alongside access to information in long-term memory. However, the role of working memory control processes like those implied by the "Central Executive" in bootstrapping has not been directly investigated. Here, we report a study addressing this issue, focusing on executive processes of attentional shifting. Tasks in which information has to be sequenced are thought to be heavily dependent on shifting. Memory for digits presented in keypads versus single locations was assessed under two secondary task load conditions, one with and one without a sequencing requirement, and hence differing in the degree to which they invoke shifting. Results provided clear evidence that multimodal binding (visuospatial bootstrapping) can operate independently of this form of executive control process.

  3. Cost-effectiveness analysis of endovascular versus neurosurgical treatment for ruptured intracranial aneurysms in the United States

    PubMed Central

    Maud, Alberto; Lakshminarayan, Kamakshi; Suri, M. Fareed K.; Vazquez, Gabriela; Lanzino, Giuseppe; Qureshi, Adnan I.

    2009-01-01

    Object The results of the International Subarachnoid Aneurysm Trial (ISAT) demonstrated lower rates of death and disability with endovascular treatment (coiling) than with open surgery (clipping) to secure the ruptured intracranial aneurysm. However, cost-effectiveness may not be favorable because of the greater need for follow-up cerebral angiograms and additional follow-up treatment with endovascular methods. In this study, the authors’ goal was to compare the cost-effectiveness of endovascular and neurosurgical treatments in patients with ruptured intracranial aneurysms who were eligible to undergo either type of treatment. Methods Clinical data (age, sex, frequency of retreatment, and rebleeding) and quality of life values were obtained from the ISAT. Total cost included those associated with disability, hospitalization, retreatment, and rebleeding. Cost estimates were derived from the Premier Perspective Comparative Database, data from long-term care in stroke patients, and relevant literature. Incremental cost-effectiveness ratios (ICERs) were estimated during a 1-year period. Parametric bootstrapping was used to determine the uncertainty of the estimates. Results The median estimated costs of endovascular and neurosurgical treatments (in US dollars) were $45,493 (95th percentile range $44,693–$46,365) and $41,769 (95th percentile range $41,094–$42,518), respectively. The overall quality-adjusted life years (QALY) in the endovascular group was 0.69, and for the neurosurgical group it was 0.64. The cost per QALY in the endovascular group was $65,424 (95th percentile range $64,178–$66,772), and in the neurosurgical group it was $64,824 (95th percentile range $63,679–$66,086). The median estimated ICER at 1 year for endovascular treatment versus neurosurgical treatment was $72,872 (95th percentile range $50,344–$98,335) per QALY gained. Given that most postprocedure angiograms and additional treatments occurred in the 1st year and the 1-year disability status is unlikely to change in the future, ICER for endovascular treatment will progressively decrease over time. Conclusions Using outcome and economic data obtained in the US at 1 year after the procedure, endovascular treatment is more costly but is associated with better outcomes than the neurosurgical alternative among patients with ruptured intracranial aneurysms who are eligible to undergo either procedure. With accrual of additional years with a better outcome status, the ICER for endovascular coiling would be expected to progressively decrease and eventually reverse. PMID:19199452

  4. Evaluation of sedation for standing clinical procedures in horses using detomidine combined with buprenorphine.

    PubMed

    Taylor, Polly; Coumbe, Karen; Henson, Frances; Scott, David; Taylor, Alan

    2014-01-01

    To examine the effect of including buprenorphine with detomidine for sedation of horses undergoing clinical procedures. Partially blinded, randomised, prospective clinical field trial. Eighty four client-owned horses scheduled for minor surgery or diagnostic investigation under standing sedation. The effects of buprenorphine (5 μg kg(-1) ) (Group B, n = 46) or placebo (5% glucose solution) (Group C, n = 38) in combination with detomidine (10 μg kg(-1) ) were compared in standing horses undergoing minor clinical procedures. The primary outcome measure was successful completion of the procedure. The degree of sedation and ataxia were scored using simple descriptive scales. Heart and respiratory rates were recorded at 15-30 minute intervals. Parametric data from each group were compared using anova or t-test and non parametric data using the Mann-Whitney U test. The procedure was carried out successfully in 91% of Group B and 63% of Group C (p < 0.01). Repeat dosing was required in 24% of Group B and 32% of Group C (p < 0.05). Sedation was more profound and lasted longer (60 versus 45 minutes) in Group B (p < 0.01). Ataxia occurred after detomidine, increased after buprenorphine but not glucose administration, was more profound in group B and lasted longer (60 versus 30 minutes) p < 0.001). Heart and respiratory rates remained within normal limits in both groups and there were no serious adverse events. Buprenorphine 5 and 10 μg kg(-1) enhanced the sedation produced by detomidine 10 and 20 μg kg(-1) with minor side effects similar to other alpha2 agonist/opioid combinations. Detomidine-buprenorphine sedation is suitable for standing procedures in horses. © 2013 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  5. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  6. Bootstrap current control studies in the Wendelstein 7-X stellarator using the free-plasma-boundary version of the SIESTA MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Sanchez, R.; Tribaldos, V.; Geiger, J.

    2018-02-01

    The recently developed free-plasma-boundary version of the SIESTA MHD equilibrium code (Hirshman et al 2011 Phys. Plasmas 18 062504; Peraza-Rodriguez et al 2017 Phys. Plasmas 24 082516) is used for the first time to study scenarios with considerable bootstrap currents for the Wendelstein 7-X (W7-X) stellarator. Bootstrap currents in the range of tens of kAs can lead to the formation of unwanted magnetic island chains or stochastic regions within the plasma and alter the boundary rotational transform due to the small shear in W7-X. The latter issue is of relevance since the island divertor operation of W7-X relies on a proper positioning of magnetic island chains at the plasma edge to control the particle and energy exhaust towards the divertor plates. Two scenarios are examined with the new free-plasma-boundary capabilities of SIESTA: a freely evolving bootstrap current one that illustrates the difficulties arising from the dislocation of the boundary islands, and a second one in which off-axis electron cyclotron current drive (ECCD) is applied to compensate the effects of the bootstrap current and keep the island divertor configuration intact. SIESTA finds that off-axis ECCD is indeed able to keep the location and phase of the edge magnetic island chain unchanged, but it may also lead to an undesired stochastization of parts of the confined plasma if the EC deposition radial profile becomes too narrow.

  7. The reduced basis method for the electric field integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less

  8. Shape-driven 3D segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2006-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details.

  9. Dyslipidemia links obesity to early cerebral neurochemical alterations

    PubMed Central

    Haley, Andreana P.; Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi

    2013-01-01

    Objective To examine the role of hypertension, hyperglycemia and dyslipidemia in potentially accounting for obesity-related brain vulnerability in the form of altered cerebral neurochemistry. Design and Methods Sixty-four adults, ages 40 to 60 years, underwent a health screen and proton magnetic resonance spectroscopy (1H MRS) of occipitoparietal grey matter to measure N-acetyl aspartate (NAA), choline (Cho), myo-inositol (mI) and glutamate (Glu) relative to creatine (Cr). The causal steps approach and non-parametric bootstrapping were utilized to assess if fasting glucose, mean arterial pressure or peripheral lipid/lipoprotein levels mediate the relationship between body mass index (BMI) and cerebral neurochemistry. Results Higher BMI was significantly related to higher mI/Cr, independent of age and sex. BMI was also significantly related to two of the proposed mediators, triglyceride and HDL-cholesterol, which were also independently related to increased mI/Cr. Finally, the relationship between BMI and mI/Cr, was significantly attenuated after inclusion of triglyceride and HDL-cholesterol into the model, one at a time, indicating statistical mediation. Conclusions Higher triglyceride and lower HDL levels statistically account for the association between BMI and myo-inositol, pointing towards a potentially critical role for dyslipidemia in the development of cerebral neurochemical alterations in obesity. PMID:23512296

  10. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting

    PubMed Central

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-01-01

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes. PMID:29453930

  11. The scramble for Africa: pan-temperate elements on the African high mountains

    PubMed Central

    Gehrke, Berit; Linder, H. Peter

    2009-01-01

    The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains. PMID:19403534

  12. Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs.

    PubMed

    Roelants, Kim; Bossuyt, Franky

    2005-02-01

    Current models for the early diversification of living frogs inferred from morphological, ontogenetic, or DNA sequence data invoke very different scenarios of character evolution and biogeography. To explore central controversies on the phylogeny of Anura, we analyzed nearly 4000 base pairs of mitochondrial and nuclear DNA for the major frog lineages. Likelihood-based analyses of this data set are congruent with morphological evidence in supporting a paraphyletic arrangement of archaeobatrachian frogs, with an (Ascaphus + Leiopelma) clade as the sister-group of all other living anurans. The stability of this outcome is reinforced by screening for phylogenetic bias resulting from site-specific rate variation, homoplasy, or the obligatory use of distantly related outgroups. Twenty-one alternative branching and rooting hypotheses were evaluated using a nonparametric multicomparison test and parametric bootstrapping. Relaxed molecular clock estimates situate the emergence of crown-group anurans in the Triassic, approximately 55 million years prior to their first appearance in the fossil record. The existence of at least four extant frog lineages on the supercontinent Pangaea before its breakup gains support from the estimation that three early splits between Laurasia- and Gondwana-associated families coincide with the initial rifting of these landmasses. This observation outlines the potential significance of this breakup event in the formation of separate Mesozoic faunal assemblages in both hemispheres.

  13. SEMIPARAMETRIC EFFICIENT ESTIMATION FOR SHARED-FRAILTY MODELS WITH DOUBLY-CENSORED CLUSTERED DATA

    PubMed Central

    Wang, Jane-Ling

    2018-01-01

    In this paper, we investigate frailty models for clustered survival data that are subject to both left- and right-censoring, termed “doubly-censored data”. This model extends current survival literature by broadening the application of frailty models from right-censoring to a more complicated situation with additional left censoring. Our approach is motivated by a recent Hepatitis B study where the sample consists of families. We adopt a likelihood approach that aims at the nonparametric maximum likelihood estimators (NPMLE). A new algorithm is proposed, which not only works well for clustered data but also improve over existing algorithm for independent and doubly-censored data, a special case when the frailty variable is a constant equal to one. This special case is well known to be a computational challenge due to the left censoring feature of the data. The new algorithm not only resolves this challenge but also accommodate the additional frailty variable effectively. Asymptotic properties of the NPMLE are established along with semi-parametric efficiency of the NPMLE for the finite-dimensional parameters. The consistency of Bootstrap estimators for the standard errors of the NPMLE is also discussed. We conducted some simulations to illustrate the numerical performance and robustness of the proposed algorithm, which is also applied to the Hepatitis B data. PMID:29527068

  14. Ensemble survival tree models to reveal pairwise interactions of variables with time-to-events outcomes in low-dimensional setting.

    PubMed

    Dazard, Jean-Eudes; Ishwaran, Hemant; Mehlotra, Rajeev; Weinberg, Aaron; Zimmerman, Peter

    2018-02-17

    Unraveling interactions among variables such as genetic, clinical, demographic and environmental factors is essential to understand the development of common and complex diseases. To increase the power to detect such variables interactions associated with clinical time-to-events outcomes, we borrowed established concepts from random survival forest (RSF) models. We introduce a novel RSF-based pairwise interaction estimator and derive a randomization method with bootstrap confidence intervals for inferring interaction significance. Using various linear and nonlinear time-to-events survival models in simulation studies, we first show the efficiency of our approach: true pairwise interaction-effects between variables are uncovered, while they may not be accompanied with their corresponding main-effects, and may not be detected by standard semi-parametric regression modeling and test statistics used in survival analysis. Moreover, using a RSF-based cross-validation scheme for generating prediction estimators, we show that informative predictors may be inferred. We applied our approach to an HIV cohort study recording key host gene polymorphisms and their association with HIV change of tropism or AIDS progression. Altogether, this shows how linear or nonlinear pairwise statistical interactions of variables may be efficiently detected with a predictive value in observational studies with time-to-event outcomes.

  15. The protective role of compassion satisfaction for therapists who work with sexual violence survivors: an application of the broaden-and-build theory of positive emotions.

    PubMed

    Samios, Christina; Abel, Lisa M; Rodzik, Amber K

    2013-01-01

    Therapists who work with trauma survivors, such as survivors of sexual violence, can experience compassion satisfaction while experiencing negative effects of trauma work, such as secondary traumatic stress. We examined whether the negative effects of secondary traumatic stress on therapist adjustment would be buffered by compassion satisfaction and whether the broaden-and-build theory of positive emotions could be applied to examine the factors (positive emotions and positive reframing) that relate to compassion satisfaction. Sixty-one therapists who work with sexual violence survivors completed measures of secondary traumatic stress, compassion satisfaction, adjustment, positive emotions and positive reframing. Hierarchical multiple regression analyses found that compassion satisfaction buffered the negative impact of secondary traumatic stress on therapist adjustment when adjustment was conceptualised as anxiety. Using non-parametric bootstrapping, we found that the relationship between greater positive emotions and greater compassion satisfaction was partially mediated by positive reframing. The findings indicate that compassion satisfaction is likely to be helpful in ameliorating the negative effects of secondary traumatic stress on anxiety in therapists who work with sexual violence survivors and that the broaden-and-build theory of positive emotions may provide a strong theoretical basis for the further examination of compassion satisfaction in trauma therapists.

  16. Estimation of infection prevalence and sensitivity in a stratified two-stage sampling design employing highly specific diagnostic tests when there is no gold standard.

    PubMed

    Miller, Ezer; Huppert, Amit; Novikov, Ilya; Warburg, Alon; Hailu, Asrat; Abbasi, Ibrahim; Freedman, Laurence S

    2015-11-10

    In this work, we describe a two-stage sampling design to estimate the infection prevalence in a population. In the first stage, an imperfect diagnostic test was performed on a random sample of the population. In the second stage, a different imperfect test was performed in a stratified random sample of the first sample. To estimate infection prevalence, we assumed conditional independence between the diagnostic tests and develop method of moments estimators based on expectations of the proportions of people with positive and negative results on both tests that are functions of the tests' sensitivity, specificity, and the infection prevalence. A closed-form solution of the estimating equations was obtained assuming a specificity of 100% for both tests. We applied our method to estimate the infection prevalence of visceral leishmaniasis according to two quantitative polymerase chain reaction tests performed on blood samples taken from 4756 patients in northern Ethiopia. The sensitivities of the tests were also estimated, as well as the standard errors of all estimates, using a parametric bootstrap. We also examined the impact of departures from our assumptions of 100% specificity and conditional independence on the estimated prevalence. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    PubMed

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  18. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    NASA Astrophysics Data System (ADS)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  19. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  20. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI.

    PubMed

    Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A

    2011-03-29

    During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.

  1. Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models.

    PubMed

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Barbraud, Christophe; Weimerskirch, Henri; Serreze, Mark; Caswell, Hal

    2012-09-01

    Sea ice conditions in the Antarctic affect the life cycle of the emperor penguin (Aptenodytes forsteri). We present a population projection for the emperor penguin population of Terre Adélie, Antarctica, by linking demographic models (stage-structured, seasonal, nonlinear, two-sex matrix population models) to sea ice forecasts from an ensemble of IPCC climate models. Based on maximum likelihood capture-mark-recapture analysis, we find that seasonal sea ice concentration anomalies (SICa ) affect adult survival and breeding success. Demographic models show that both deterministic and stochastic population growth rates are maximized at intermediate values of annual SICa , because neither the complete absence of sea ice, nor heavy and persistent sea ice, would provide satisfactory conditions for the emperor penguin. We show that under some conditions the stochastic growth rate is positively affected by the variance in SICa . We identify an ensemble of five general circulation climate models whose output closely matches the historical record of sea ice concentration in Terre Adélie. The output of this ensemble is used to produce stochastic forecasts of SICa , which in turn drive the population model. Uncertainty is included by incorporating multiple climate models and by a parametric bootstrap procedure that includes parameter uncertainty due to both model selection and estimation error. The median of these simulations predicts a decline of the Terre Adélie emperor penguin population of 81% by the year 2100. We find a 43% chance of an even greater decline, of 90% or more. The uncertainty in population projections reflects large differences among climate models in their forecasts of future sea ice conditions. One such model predicts population increases over much of the century, but overall, the ensemble of models predicts that population declines are far more likely than population increases. We conclude that climate change is a significant risk for the emperor penguin. Our analytical approach, in which demographic models are linked to IPCC climate models, is powerful and generally applicable to other species and systems. © 2012 Blackwell Publishing Ltd.

  2. Climate change threatens polar bear populations: a stochastic demographic analysis.

    PubMed

    Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian

    2010-10-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.

  3. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice.

    PubMed

    Regehr, Eric V; Hunter, Christine M; Caswell, Hal; Amstrup, Steven C; Stirling, Ian

    2010-01-01

    1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0.96-0.99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0.73-0.79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings therefore are relevant to the extinction risk facing approximately one-third of the world's polar bears.

  4. Survival and breeding of polar bears in the southern Beaufort Sea in relation to sea ice

    USGS Publications Warehouse

    Regehr, E.V.; Hunter, C.M.; Caswell, H.; Amstrup, Steven C.; Stirling, I.

    2010-01-01

    1. Observed and predicted declines in Arctic sea ice have raised concerns about marine mammals. In May 2008, the US Fish and Wildlife Service listed polar bears (Ursus maritimus) - one of the most ice-dependent marine mammals - as threatened under the US Endangered Species Act. 2. We evaluated the effects of sea ice conditions on vital rates (survival and breeding probabilities) for polar bears in the southern Beaufort Sea. Although sea ice declines in this and other regions of the polar basin have been among the greatest in the Arctic, to date population-level effects of sea ice loss on polar bears have only been identified in western Hudson Bay, near the southern limit of the species' range. 3. We estimated vital rates using multistate capture-recapture models that classified individuals by sex, age and reproductive category. We used multimodel inference to evaluate a range of statistical models, all of which were structurally based on the polar bear life cycle. We estimated parameters by model averaging, and developed a parametric bootstrap procedure to quantify parameter uncertainty. 4. In the most supported models, polar bear survival declined with an increasing number of days per year that waters over the continental shelf were ice free. In 2001-2003, the ice-free period was relatively short (mean 101 days) and adult female survival was high (0 ∙ 96-0 ∙ 99, depending on reproductive state). In 2004 and 2005, the ice-free period was longer (mean 135 days) and adult female survival was low (0 ∙ 73-0 ∙ 79, depending on reproductive state). Breeding rates and cub litter survival also declined with increasing duration of the ice-free period. Confidence intervals on vital rate estimates were wide. 5. The effects of sea ice loss on polar bears in the southern Beaufort Sea may apply to polar bear populations in other portions of the polar basin that have similar sea ice dynamics and have experienced similar, or more severe, sea ice declines. Our findings therefore are relevant to the extinction risk facing approximately one-third of the world's polar bears. 

  5. Cost analysis of one of the first outpatient wound clinics in the Netherlands.

    PubMed

    Rondas, A A L M; Schols, J M G; Halfens, R J G; Hull, H R; Stobberingh, E E; Evers, S M A A

    2015-09-01

    To perform, from an insurance perspective, a cost analysis of one of the outpatient community wound care clinics in the Netherlands, the Knowledge Centre in Wound Care (KCWC) at Venray. This study involved a cost analysis based on an observational cohort study with a one-year pre-admission and a one-year post-admission comparison of costs. Patients were included when they first consulted the outpatient wound care clinic. Participants were all insured by the same health insurance company, Coöperatie Volksgezondheidszorg (VGZ). A standard six-step procedure for performing cost studies was used to calculate the costs. Given the skewed cost data, non-parametric bootstrapping was used to test for statistical differences. There were 172 patients included in this study. The difference in costs related to wound care between the year before and the year after initial admission to the wound clinic amounted to an average reduction of €2621 (£1873) per patient in the base case analysis. The categories 'general practitioner', 'hospital care', 'mental health care' and 'transport' scored lower, indicating lower costs, in the year after admission to the wound clinic. In this study, only the reimbursement data of patients of one health insurance company, and specifically only those made under the 2006 Dutch Health Insurance Act, were available. Because of the observational design, definitive conclusions cannot be made regarding a demonstrated reduction of costs in the year post admission. Nevertheless, this study is a first attempt of a cost analysis of an equipped outpatient wound clinic as an innovative way of responding to the increasing number of chronic wounds in the Netherlands. The calculations show that savings in wound care are possible. A possible conflict of interest should be mentioned. First author AALM Rondas, PhD student at Maastricht University, is working at the KCWC wound clinic at Venray in the Netherlands as a physician. However, the research data were provided externally by Coöperatie Volksgezondheidszorg (VGZ) and checked by the academic co-authors, none of whom have a conflict of interest. The authors have no financial or commercial interest to declare.

  6. Climate change threatens polar bear populations: A stochastic demographic analysis

    USGS Publications Warehouse

    Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.

    2010-01-01

    The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act. ?? 2010 by the Ecological Society of America.

  7. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians

    PubMed Central

    Ghasemi, Asghar; Zahediasl, Saleh

    2012-01-01

    Statistical errors are common in scientific literature and about 50% of the published articles have at least one error. The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. The aim of this commentary is to overview checking for normality in statistical analysis using SPSS. PMID:23843808

  8. Procedural Sensitivities of Effect Sizes for Single-Case Designs with Directly Observed Behavioral Outcome Measures

    ERIC Educational Resources Information Center

    Pustejovsky, James E.

    2018-01-01

    A wide variety of effect size indices have been proposed for quantifying the magnitude of treatment effects in single-case designs. Commonly used measures include parametric indices such as the standardized mean difference, as well as non-overlap measures such as the percentage of non-overlapping data, improvement rate difference, and non-overlap…

  9. Parametric study of minimum reactor mass in energy-storage dc-to-dc converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.

  10. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Prince, J. L.; Lathrop, J. W.

    1979-01-01

    A program to investigate the reliability characteristics of unencapsulated low-cost terrestrial solar cells using accelerated stress testing is described. Reliability (or parametric degradation) factors appropriate to the cell technologies and use conditions were studied and a series of accelerated stress tests was synthesized. An electrical measurement procedure and a data analysis and management system was derived, and stress test fixturing and material flow procedures were set up after consideration was given to the number of cells to be stress tested and measured and the nature of the information to be obtained from the process. Selected results and conclusions are presented.

  11. Pulling Econometrics Students up by Their Bootstraps

    ERIC Educational Resources Information Center

    O'Hara, Michael E.

    2014-01-01

    Although the concept of the sampling distribution is at the core of much of what we do in econometrics, it is a concept that is often difficult for students to grasp. The thought process behind bootstrapping provides a way for students to conceptualize the sampling distribution in a way that is intuitive and visual. However, teaching students to…

  12. Accuracy assessment of percent canopy cover, cover type, and size class

    Treesearch

    H. T. Schreuder; S. Bain; R. C. Czaplewski

    2003-01-01

    Truth for vegetation cover percent and type is obtained from very large-scale photography (VLSP), stand structure as measured by size classes, and vegetation types from a combination of VLSP and ground sampling. We recommend using the Kappa statistic with bootstrap confidence intervals for overall accuracy, and similarly bootstrap confidence intervals for percent...

  13. Finding One's Meaning: A Test of the Relation between Quantifiers and Integers in Language Development

    ERIC Educational Resources Information Center

    Barner, David; Chow, Katherine; Yang, Shu-Ju

    2009-01-01

    We explored children's early interpretation of numerals and linguistic number marking, in order to test the hypothesis (e.g., Carey (2004). Bootstrapping and the origin of concepts. "Daedalus", 59-68) that children's initial distinction between "one" and other numerals (i.e., "two," "three," etc.) is bootstrapped from a prior distinction between…

  14. A Resampling Analysis of Federal Family Assistance Program Quality Control Data: An Application of the Bootstrap.

    ERIC Educational Resources Information Center

    Hand, Michael L.

    1990-01-01

    Use of the bootstrap resampling technique (BRT) is assessed in its application to resampling analysis associated with measurement of payment allocation errors by federally funded Family Assistance Programs. The BRT is applied to a food stamp quality control database in Oregon. This analysis highlights the outlier-sensitivity of the…

  15. Comparison of Methods for Estimating Low Flow Characteristics of Streams

    USGS Publications Warehouse

    Tasker, Gary D.

    1987-01-01

    Four methods for estimating the 7-day, 10-year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distribution (Log-Pearson III and Weibull) had lower mean square errors than did the G. E. P. Box-D. R. Cox transformation method or the Log-W. C. Boughton method which is based on a fit of plotting positions.

  16. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  17. A SAS(®) macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis.

    PubMed

    Elliott, Alan C; Hynan, Linda S

    2011-04-01

    The Kruskal-Wallis (KW) nonparametric analysis of variance is often used instead of a standard one-way ANOVA when data are from a suspected non-normal population. The KW omnibus procedure tests for some differences between groups, but provides no specific post hoc pair wise comparisons. This paper provides a SAS(®) macro implementation of a multiple comparison test based on significant Kruskal-Wallis results from the SAS NPAR1WAY procedure. The implementation is designed for up to 20 groups at a user-specified alpha significance level. A Monte-Carlo simulation compared this nonparametric procedure to commonly used parametric multiple comparison tests. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Mesomorphy correlates with experiential cognitive style.

    PubMed

    Genovese, Jeremy E C; Little, Kathleen D

    2011-01-01

    The purpose of this study was to test for a relationship between mesomorphy and experiential cognitive style (S. Epstein, 1994) in a sample of university students (30 women and 24 men). Anthropometric somatotypes were obtained using the Heath-Carter procedure (J. E. L. Carter, 2002). Experiential cognitive style was operationalized as scores on the experiential scale of the Rational Experiential Inventory for Adolescents (A. D. Marks, D. W. Hine, R. L. Blore, & W. J. Phillips, 2008). Nonparametric bootstrap correlations were calculated using 80% confidence intervals. There were significant correlations between mesomorphy and experiential cognitive style for men (r(s) = .33) and women (r(s) = .25). For men, experiential cognitive style was also correlated with endomorphy (r(s) = .39) and ectomorphy (rs = -.48).

  19. Studies of transformational leadership in the consumer service workgroup: cooperative conflict resolution and the mediating roles of job satisfaction and change commitment.

    PubMed

    Yang, Yi-Feng

    2012-10-01

    The present paper evaluates the effect of transformational leadership on job satisfaction and change commitment along with their interconnected effects (mediation) on cooperative conflict resolution (management) in customer service activities in Taiwan. The multi-source samples consist of data from personnel serving at customer centers (workgroups), such as phone service personnel, customer representatives, financial specialists, and front-line salespeople. An empirical study was carried out using a multiple mediation procedure incorporating boot-strapping techniques and PRODCLIN2 with structural equation modeling (SEM) analysis. The results indicate that the main effect of the leadership style on cooperative conflict resolution is mediated by change commitment and job satisfaction.

  20. Empirical single sample quantification of bias and variance in Q-ball imaging.

    PubMed

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes

    NASA Astrophysics Data System (ADS)

    Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.

    2017-12-01

    Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.

  2. A Web-based nomogram predicting para-aortic nodal metastasis in incompletely staged patients with endometrial cancer: a Korean Multicenter Study.

    PubMed

    Kang, Sokbom; Lee, Jong-Min; Lee, Jae-Kwan; Kim, Jae-Weon; Cho, Chi-Heum; Kim, Seok-Mo; Park, Sang-Yoon; Park, Chan-Yong; Kim, Ki-Tae

    2014-03-01

    The purpose of this study is to develop a Web-based nomogram for predicting the individualized risk of para-aortic nodal metastasis in incompletely staged patients with endometrial cancer. From 8 institutions, the medical records of 397 patients who underwent pelvic and para-aortic lymphadenectomy as a surgical staging procedure were retrospectively reviewed. A multivariate logistic regression model was created and internally validated by rigorous bootstrap resampling methods. Finally, the model was transformed into a user-friendly Web-based nomogram (http://http://www.kgog.org/nomogram/empa001.html). The rate of para-aortic nodal metastasis was 14.4% (57/397 patients). Using a stepwise variable selection, 4 variables including deep myometrial invasion, non-endometrioid subtype, lymphovascular space invasion, and log-transformed CA-125 levels were finally adopted. After 1000 repetitions of bootstrapping, all of these 4 variables retained a significant association with para-aortic nodal metastasis in the multivariate analysis-deep myometrial invasion (P = 0.001), non-endometrioid histologic subtype (P = 0.034), lymphovascular space invasion (P = 0.003), and log-transformed serum CA-125 levels (P = 0.004). The model showed good discrimination (C statistics = 0.87; 95% confidence interval, 0.82-0.92) and accurate calibration (Hosmer-Lemeshow P = 0.74). This nomogram showed good performance in predicting para-aortic metastasis in patients with endometrial cancer. The tool may be useful in determining the extent of lymphadenectomy after incomplete surgery.

  3. Dealing with uncertainty in landscape genetic resistance models: a case of three co-occurring marsupials.

    PubMed

    Dudaniec, Rachael Y; Worthington Wilmer, Jessica; Hanson, Jeffrey O; Warren, Matthew; Bell, Sarah; Rhodes, Jonathan R

    2016-01-01

    Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical. © 2015 John Wiley & Sons Ltd.

  4. Traffic fatality indicators in Brazil: State diagnosis based on data envelopment analysis research.

    PubMed

    Bastos, Jorge Tiago; Shen, Yongjun; Hermans, Elke; Brijs, Tom; Wets, Geert; Ferraz, Antonio Clóvis Pinto

    2015-08-01

    The intense economic growth experienced by Brazil in recent decades and its consequent explosive motorization process have evidenced an undesirable impact: the increasing and unbroken trend in traffic fatality numbers. In order to contribute to road safety diagnosis on a national level, this study presents a research into two main indicators available in Brazil: mortality rate (represented by fatalities per capita) and fatality rate (represented by two sub-indicators, i.e., fatalities per vehicle and fatalities per vehicle kilometer traveled). These indicators were aggregated into a composite indicator or index through a multiple layer data envelopment analysis (DEA) composite indicator model, which looks for the optimum combination of indicators' weights for each decision-making unit, in this case 27 Brazilian states. The index score represents the road safety performance, based on which a ranking of states can be made. Since such a model has never been applied for road safety evaluation in Brazil, its parameters were calibrated based on the experience of more consolidated European Union research in ranking its member countries using DEA techniques. Secondly, cluster analysis was conducted aiming to provide more realistic performance comparisons and, finally, the sensitivity of the results was measured through a bootstrapping method application. It can be concluded that by combining fatality indicators, defining clusters and applying bootstrapping procedures a trustworthy ranking can be created, which is valuable for nationwide road safety planning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A new extranodal scoring system based on the prognostically relevant extranodal sites in diffuse large B-cell lymphoma, not otherwise specified treated with chemoimmunotherapy.

    PubMed

    Hwang, Hee Sang; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2016-08-01

    Extranodal involvement is a well-known prognostic factor in patients with diffuse large B-cell lymphomas (DLBCL). Nevertheless, the prognostic impact of the extranodal scoring system included in the conventional international prognostic index (IPI) has been questioned in an era where rituximab treatment has become widespread. We investigated the prognostic impacts of individual sites of extranodal involvement in 761 patients with DLBCL who received rituximab-based chemoimmunotherapy. Subsequently, we established a new extranodal scoring system based on extranodal sites, showing significant prognostic correlation, and compared this system with conventional scoring systems, such as the IPI and the National Comprehensive Cancer Network-IPI (NCCN-IPI). An internal validation procedure, using bootstrapped samples, was also performed for both univariate and multivariate models. Using multivariate analysis with a backward variable selection, we found nine extranodal sites (the liver, lung, spleen, central nervous system, bone marrow, kidney, skin, adrenal glands, and peritoneum) that remained significant for use in the final model. Our newly established extranodal scoring system, based on these sites, was better correlated with patient survival than standard scoring systems, such as the IPI and the NCCN-IPI. Internal validation by bootstrapping demonstrated an improvement in model performance of our modified extranodal scoring system. Our new extranodal scoring system, based on the prognostically relevant sites, may improve the performance of conventional prognostic models of DLBCL in the rituximab era and warrants further external validation using large study populations.

  6. Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models.

    PubMed

    Gelfand, Lois A; MacKinnon, David P; DeRubeis, Robert J; Baraldi, Amanda N

    2016-01-01

    Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration. We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings. AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome-underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG. When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

  7. Bootstrapping rapidity anomalous dimensions for transverse-momentum resummation

    DOE PAGES

    Li, Ye; Zhu, Hua Xing

    2017-01-11

    Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. Furthermore, an intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

  8. Reliability of confidence intervals calculated by bootstrap and classical methods using the FIA 1-ha plot design

    Treesearch

    H. T. Schreuder; M. S. Williams

    2000-01-01

    In simulation sampling from forest populations using sample sizes of 20, 40, and 60 plots respectively, confidence intervals based on the bootstrap (accelerated, percentile, and t-distribution based) were calculated and compared with those based on the classical t confidence intervals for mapped populations and subdomains within those populations. A 68.1 ha mapped...

  9. Morphological Cues vs. Number of Nominals in Learning Verb Types in Turkish: The Syntactic Bootstrapping Mechanism Revisited

    ERIC Educational Resources Information Center

    Ural, A. Engin; Yuret, Deniz; Ketrez, F. Nihan; Kocbas, Dilara; Kuntay, Aylin C.

    2009-01-01

    The syntactic bootstrapping mechanism of verb learning was evaluated against child-directed speech in Turkish, a language with rich morphology, nominal ellipsis and free word order. Machine-learning algorithms were run on transcribed caregiver speech directed to two Turkish learners (one hour every two weeks between 0;9 to 1;10) of different…

  10. A Comparison of the Bootstrap-F, Improved General Approximation, and Brown-Forsythe Multivariate Approaches in a Mixed Repeated Measures Design

    ERIC Educational Resources Information Center

    Seco, Guillermo Vallejo; Izquierdo, Marcelino Cuesta; Garcia, M. Paula Fernandez; Diez, F. Javier Herrero

    2006-01-01

    The authors compare the operating characteristics of the bootstrap-F approach, a direct extension of the work of Berkovits, Hancock, and Nevitt, with Huynh's improved general approximation (IGA) and the Brown-Forsythe (BF) multivariate approach in a mixed repeated measures design when normality and multisample sphericity assumptions do not hold.…

  11. Sample-based estimation of tree species richness in a wet tropical forest compartment

    Treesearch

    Steen Magnussen; Raphael Pelissier

    2007-01-01

    Petersen's capture-recapture ratio estimator and the well-known bootstrap estimator are compared across a range of simulated low-intensity simple random sampling with fixed-area plots of 100 m? in a rich wet tropical forest compartment with 93 tree species in the Western Ghats of India. Petersen's ratio estimator was uniformly superior to the bootstrap...

  12. Common Ground between Form and Content: The Pragmatic Solution to the Bootstrapping Problem

    ERIC Educational Resources Information Center

    Oller, John W.

    2005-01-01

    The frame of reference for this article is second or foreign language (L2 or FL) acquisition, but the pragmatic bootstrapping hypothesis applies to language processing and acquisition in any context or modality. It is relevant to teaching children to read. It shows how connections between target language surface forms and their content can be made…

  13. The Bacterial Gene IfpA Influences the Potent Induction of Calcitonin Receptor and Osteoclast-Related Genes in Burkholderia Pseudomallei-Induced TRAP-Positive Multinucleated Giant Cells

    DTIC Science & Technology

    2006-06-13

    with arithmetic mean ( UPGMA ) using random tie breaking and uncorrected pairwise distances in MacVector 7.0 (Oxford Molecular). Numbers on branches...denote the UPGMA bootstrap percentage using a highly stringent number (1000) of replications (Felsenstein, 1985). All bootstrap values are 50%, as shown

  14. A Comparison of Single Sample and Bootstrap Methods to Assess Mediation in Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Pituch, Keenan A.; Stapleton, Laura M.; Kang, Joo Youn

    2006-01-01

    A Monte Carlo study examined the statistical performance of single sample and bootstrap methods that can be used to test and form confidence interval estimates of indirect effects in two cluster randomized experimental designs. The designs were similar in that they featured random assignment of clusters to one of two treatment conditions and…

  15. Multilingual Phoneme Models for Rapid Speech Processing System Development

    DTIC Science & Technology

    2006-09-01

    processes are used to develop an Arabic speech recognition system starting from monolingual English models, In- ternational Phonetic Association (IPA...clusters. It was found that multilingual bootstrapping methods out- perform monolingual English bootstrapping methods on the Arabic evaluation data initially...International Phonetic Alphabet . . . . . . . . . 7 2.3.2 Multilingual vs. Monolingual Speech Recognition 7 2.3.3 Data-Driven Approaches

  16. An inferential study of the phenotype for the chromosome 15q24 microdeletion syndrome: a bootstrap analysis

    PubMed Central

    Ramírez-Prado, Dolores; Cortés, Ernesto; Aguilar-Segura, María Soledad; Gil-Guillén, Vicente Francisco

    2016-01-01

    In January 2012, a review of the cases of chromosome 15q24 microdeletion syndrome was published. However, this study did not include inferential statistics. The aims of the present study were to update the literature search and calculate confidence intervals for the prevalence of each phenotype using bootstrap methodology. Published case reports of patients with the syndrome that included detailed information about breakpoints and phenotype were sought and 36 were included. Deletions in megabase (Mb) pairs were determined to calculate the size of the interstitial deletion of the phenotypes studied in 2012. To determine confidence intervals for the prevalence of the phenotype and the interstitial loss, we used bootstrap methodology. Using the bootstrap percentiles method, we found wide variability in the prevalence of the different phenotypes (3–100%). The mean interstitial deletion size was 2.72 Mb (95% CI [2.35–3.10 Mb]). In comparison with our work, which expanded the literature search by 45 months, there were differences in the prevalence of 17% of the phenotypes, indicating that more studies are needed to analyze this rare disease. PMID:26925314

  17. Bootstrap imputation with a disease probability model minimized bias from misclassification due to administrative database codes.

    PubMed

    van Walraven, Carl

    2017-04-01

    Diagnostic codes used in administrative databases cause bias due to misclassification of patient disease status. It is unclear which methods minimize this bias. Serum creatinine measures were used to determine severe renal failure status in 50,074 hospitalized patients. The true prevalence of severe renal failure and its association with covariates were measured. These were compared to results for which renal failure status was determined using surrogate measures including the following: (1) diagnostic codes; (2) categorization of probability estimates of renal failure determined from a previously validated model; or (3) bootstrap methods imputation of disease status using model-derived probability estimates. Bias in estimates of severe renal failure prevalence and its association with covariates were minimal when bootstrap methods were used to impute renal failure status from model-based probability estimates. In contrast, biases were extensive when renal failure status was determined using codes or methods in which model-based condition probability was categorized. Bias due to misclassification from inaccurate diagnostic codes can be minimized using bootstrap methods to impute condition status using multivariable model-derived probability estimates. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution

    PubMed Central

    Imai, Mutsumi; Kita, Sotaro

    2014-01-01

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. PMID:25092666

  19. Estimating uncertainty in respondent-driven sampling using a tree bootstrap method.

    PubMed

    Baraff, Aaron J; McCormick, Tyler H; Raftery, Adrian E

    2016-12-20

    Respondent-driven sampling (RDS) is a network-based form of chain-referral sampling used to estimate attributes of populations that are difficult to access using standard survey tools. Although it has grown quickly in popularity since its introduction, the statistical properties of RDS estimates remain elusive. In particular, the sampling variability of these estimates has been shown to be much higher than previously acknowledged, and even methods designed to account for RDS result in misleadingly narrow confidence intervals. In this paper, we introduce a tree bootstrap method for estimating uncertainty in RDS estimates based on resampling recruitment trees. We use simulations from known social networks to show that the tree bootstrap method not only outperforms existing methods but also captures the high variability of RDS, even in extreme cases with high design effects. We also apply the method to data from injecting drug users in Ukraine. Unlike other methods, the tree bootstrap depends only on the structure of the sampled recruitment trees, not on the attributes being measured on the respondents, so correlations between attributes can be estimated as well as variability. Our results suggest that it is possible to accurately assess the high level of uncertainty inherent in RDS.

  20. Testing in semiparametric models with interaction, with applications to gene-environment interactions.

    PubMed

    Maity, Arnab; Carroll, Raymond J; Mammen, Enno; Chatterjee, Nilanjan

    2009-01-01

    Motivated from the problem of testing for genetic effects on complex traits in the presence of gene-environment interaction, we develop score tests in general semiparametric regression problems that involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-parametrically modelled covariates. We find that the score test in this type of model, as recently developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of functions which are defined as solutions of integral equations, making implementation difficult and computationally taxing. We develop profiled score statistics which are unbiased and asymptotically efficient and can be performed by using standard bandwidth selection methods. In addition, to overcome the difficulty of solving functional equations, we give easy interpretations of the target functions, which in turn allow us to develop estimation procedures that can be easily implemented by using standard computational methods. We present simulation studies to evaluate type I error and power of the method proposed compared with a naive test that does not consider interaction. Finally, we illustrate our methodology by analysing data from a case-control study of colorectal adenoma that was designed to investigate the association between colorectal adenoma and the candidate gene NAT2 in relation to smoking history.

  1. Strong stabilization servo controller with optimization of performance criteria.

    PubMed

    Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor

    2011-07-01

    Synthesis of a simple robust controller with a pole placement technique and a H(∞) metrics is the method used for control of a servo mechanism with BLDC and BDC electric motors. The method includes solving a polynomial equation on the basis of the chosen characteristic polynomial using the Manabe standard polynomial form and parametric solutions. Parametric solutions are introduced directly into the structure of the servo controller. On the basis of the chosen parametric solutions the robustness of a closed-loop system is assessed through uncertainty models and assessment of the norm ‖•‖(∞). The design procedure and the optimization are performed with a genetic algorithm differential evolution - DE. The DE optimization method determines a suboptimal solution throughout the optimization on the basis of a spectrally square polynomial and Šiljak's absolute stability test. The stability of the designed controller during the optimization is being checked with Lipatov's stability condition. Both utilized approaches: Šiljak's test and Lipatov's condition, check the robustness and stability characteristics on the basis of the polynomial's coefficients, and are very convenient for automated design of closed-loop control and for application in optimization algorithms such as DE. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Automated a complex computer aided design concept generated using macros programming

    NASA Astrophysics Data System (ADS)

    Rizal Ramly, Mohammad; Asrokin, Azharrudin; Abd Rahman, Safura; Zulkifly, Nurul Ain Md

    2013-12-01

    Changing a complex Computer Aided design profile such as car and aircraft surfaces has always been difficult and challenging. The capability of CAD software such as AutoCAD and CATIA show that a simple configuration of a CAD design can be easily modified without hassle, but it is not the case with complex design configuration. Design changes help users to test and explore various configurations of the design concept before the production of a model. The purpose of this study is to look into macros programming as parametric method of the commercial aircraft design. Macros programming is a method where the configurations of the design are done by recording a script of commands, editing the data value and adding a certain new command line to create an element of parametric design. The steps and the procedure to create a macro programming are discussed, besides looking into some difficulties during the process of creation and advantage of its usage. Generally, the advantages of macros programming as a method of parametric design are; allowing flexibility for design exploration, increasing the usability of the design solution, allowing proper contained by the model while restricting others and real time feedback changes.

  3. The minimal number of parameters in triclinic crystal-field potentials

    NASA Astrophysics Data System (ADS)

    Mulak, J.

    2003-09-01

    The optimal parametrization schemes of the crystal-field (CF) potential in fitting procedures are those based on the smallest numbers of parameters. The surplus parametrizations usually lead to artificial and non-physical solutions. Therefore, the symmetry adapted reference systems are commonly used. Instead of them, however, the coordinate systems with the z-axis directed along the principal axes of the CF multipoles (2 k-poles) can be applied successfully, particularly for triclinic CF potentials. Due to the irreducibility of the D(k) representations such a choice can reduce the number of the k-order parameters by 2 k: from 2 k+1 (in the most general case) to only 1 (the axial one). Unfortunately, in general, the numbers of other order CF parameters stay then unrestricted. In this way, the number of parameters for the k-even triclinic CF potentials can be reduced by 4, 8 or 12, for k=2,4 or 6, respectively. Hence, the parametrization schemes based on maximum 14 parameters can be in use solely. For higher point symmetries this number is usually greater than that for the symmetry adapted systems. Nonetheless, many instructive correlations between the multipole contributions to the CF interaction are attainable in this way.

  4. Identification and robust control of an experimental servo motor.

    PubMed

    Adam, E J; Guestrin, E D

    2002-04-01

    In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.

  5. Study of noise transmission through double wall aircraft windows

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1983-01-01

    Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.

  6. Shape-Driven 3D Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2013-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  7. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  8. Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan

    2018-03-01

    We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.

  9. The nonlinear instability in flap-lag of rotor blades in forward flight

    NASA Technical Reports Server (NTRS)

    Tong, P.

    1971-01-01

    The nonlinear flap-lag coupled oscillation of torsionally rigid rotor blades in forward flight is examined using a set of consistently derived equations by the asymptotic expansion procedure of multiple time scales. The regions of stability and limit cycle oscillation are presented. The roles of parametric excitation, nonlinear oscillation, and forced excitation played in the response of the blade are determined.

  10. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  11. The Development of Statistical Models for Predicting Surgical Site Infections in Japan: Toward a Statistical Model-Based Standardized Infection Ratio.

    PubMed

    Fukuda, Haruhisa; Kuroki, Manabu

    2016-03-01

    To develop and internally validate a surgical site infection (SSI) prediction model for Japan. Retrospective observational cohort study. We analyzed surveillance data submitted to the Japan Nosocomial Infections Surveillance system for patients who had undergone target surgical procedures from January 1, 2010, through December 31, 2012. Logistic regression analyses were used to develop statistical models for predicting SSIs. An SSI prediction model was constructed for each of the procedure categories by statistically selecting the appropriate risk factors from among the collected surveillance data and determining their optimal categorization. Standard bootstrapping techniques were applied to assess potential overfitting. The C-index was used to compare the predictive performances of the new statistical models with those of models based on conventional risk index variables. The study sample comprised 349,987 cases from 428 participant hospitals throughout Japan, and the overall SSI incidence was 7.0%. The C-indices of the new statistical models were significantly higher than those of the conventional risk index models in 21 (67.7%) of the 31 procedure categories (P<.05). No significant overfitting was detected. Japan-specific SSI prediction models were shown to generally have higher accuracy than conventional risk index models. These new models may have applications in assessing hospital performance and identifying high-risk patients in specific procedure categories.

  12. The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data.

    PubMed

    Vrbik, Irene; Stephens, David A; Roger, Michel; Brenner, Bluma G

    2015-11-04

    In the context of infectious disease, sequence clustering can be used to provide important insights into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback, especially when a large number of sequences are being considered. In addition, this method requires a skilled user to specify the appropriate threshold values which may vary widely depending on the application. This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on both real and simulated data, closely agree with those found using the threshold approach, while only requiring a fraction of the time to complete the analysis. Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1 transmission and thereby aid in the prevention, treatment and containment of the disease.

  13. Using a Nonparametric Bootstrap to Obtain a Confidence Interval for Pearson's "r" with Cluster Randomized Data: A Case Study

    ERIC Educational Resources Information Center

    Wagstaff, David A.; Elek, Elvira; Kulis, Stephen; Marsiglia, Flavio

    2009-01-01

    A nonparametric bootstrap was used to obtain an interval estimate of Pearson's "r," and test the null hypothesis that there was no association between 5th grade students' positive substance use expectancies and their intentions to not use substances. The students were participating in a substance use prevention program in which the unit of…

  14. Bootstrapping a five-loop amplitude using Steinmann relations

    DOE PAGES

    Caron-Huot, Simon; Dixon, Lance J.; McLeod, Andrew; ...

    2016-12-05

    Here, the analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  15. On the Model-Based Bootstrap with Missing Data: Obtaining a "P"-Value for a Test of Exact Fit

    ERIC Educational Resources Information Center

    Savalei, Victoria; Yuan, Ke-Hai

    2009-01-01

    Evaluating the fit of a structural equation model via bootstrap requires a transformation of the data so that the null hypothesis holds exactly in the sample. For complete data, such a transformation was proposed by Beran and Srivastava (1985) for general covariance structure models and applied to structural equation modeling by Bollen and Stine…

  16. Measuring Efficiency of Tunisian Schools in the Presence of Quasi-Fixed Inputs: A Bootstrap Data Envelopment Analysis Approach

    ERIC Educational Resources Information Center

    Essid, Hedi; Ouellette, Pierre; Vigeant, Stephane

    2010-01-01

    The objective of this paper is to measure the efficiency of high schools in Tunisia. We use a statistical data envelopment analysis (DEA)-bootstrap approach with quasi-fixed inputs to estimate the precision of our measure. To do so, we developed a statistical model serving as the foundation of the data generation process (DGP). The DGP is…

  17. Applications of non-parametric statistics and analysis of variance on sample variances

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1981-01-01

    Nonparametric methods that are available for NASA-type applications are discussed. An attempt will be made here to survey what can be used, to attempt recommendations as to when each would be applicable, and to compare the methods, when possible, with the usual normal-theory procedures that are avavilable for the Gaussion analog. It is important here to point out the hypotheses that are being tested, the assumptions that are being made, and limitations of the nonparametric procedures. The appropriateness of doing analysis of variance on sample variances are also discussed and studied. This procedure is followed in several NASA simulation projects. On the surface this would appear to be reasonably sound procedure. However, difficulties involved center around the normality problem and the basic homogeneous variance assumption that is mase in usual analysis of variance problems. These difficulties discussed and guidelines given for using the methods.

  18. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    PubMed

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of streamline tractography algorithms or the assumption of a noise distribution. Moreover, the BootGraph can be applied to common DTI data sets without further modifications and shows a high repeatability. Thus, it is very well suited for longitudinal studies and meta-studies based on DTI. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Comparison of Bootstrapping and Markov Chain Monte Carlo for Copula Analysis of Hydrological Droughts

    NASA Astrophysics Data System (ADS)

    Yang, P.; Ng, T. L.; Yang, W.

    2015-12-01

    Effective water resources management depends on the reliable estimation of the uncertainty of drought events. Confidence intervals (CIs) are commonly applied to quantify this uncertainty. A CI seeks to be at the minimal length necessary to cover the true value of the estimated variable with the desired probability. In drought analysis where two or more variables (e.g., duration and severity) are often used to describe a drought, copulas have been found suitable for representing the joint probability behavior of these variables. However, the comprehensive assessment of the parameter uncertainties of copulas of droughts has been largely ignored, and the few studies that have recognized this issue have not explicitly compared the various methods to produce the best CIs. Thus, the objective of this study to compare the CIs generated using two widely applied uncertainty estimation methods, bootstrapping and Markov Chain Monte Carlo (MCMC). To achieve this objective, (1) the marginal distributions lognormal, Gamma, and Generalized Extreme Value, and the copula functions Clayton, Frank, and Plackett are selected to construct joint probability functions of two drought related variables. (2) The resulting joint functions are then fitted to 200 sets of simulated realizations of drought events with known distribution and extreme parameters and (3) from there, using bootstrapping and MCMC, CIs of the parameters are generated and compared. The effect of an informative prior on the CIs generated by MCMC is also evaluated. CIs are produced for different sample sizes (50, 100, and 200) of the simulated drought events for fitting the joint probability functions. Preliminary results assuming lognormal marginal distributions and the Clayton copula function suggest that for cases with small or medium sample sizes (~50-100), MCMC to be superior method if an informative prior exists. Where an informative prior is unavailable, for small sample sizes (~50), both bootstrapping and MCMC yield the same level of performance, and for medium sample sizes (~100), bootstrapping is better. For cases with a large sample size (~200), there is little difference between the CIs generated using bootstrapping and MCMC regardless of whether or not an informative prior exists.

  20. A basis for the analysis of surface geometry of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Coy, J. J.

    1983-01-01

    Geometrical procedures helpful in the fundamental studies of the surface geometry of spiral bevel gears are summarized. These procedures are based upon: (1) fundamental gear geometry and kinematics as exposited by Buckingham, et al; (2) formulas developed from differential geometry; and (3) geometrical concepts developed in recent papers and reports on spiral bevel gear surface geometry. Procedures which characterize the geometry so that the surface parametric equations, the principal radii of curvature, and the meshing kinematics are systematically determined are emphasized. Initially, the focus in on theoretical, logarithmic spiral bevel gears as defined by Buckingham. The gears, however, are difficult to fabricate and are sometimes considered to be too straight. Circular-cut spiral bevel gears are an alternative to this. Surface characteristics of crown circular cut gears are analyzed.

Top