Sample records for parametric cost estimation

  1. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  2. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Technical Reports Server (NTRS)

    Peffley, Al F.

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, L.T.; Hickey, M.

    This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must bemore » sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)« less

  4. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  5. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  6. Parametric cost estimation for space science missions

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  7. Constellation Program Life-cycle Cost Analysis Model (LCAM)

    NASA Technical Reports Server (NTRS)

    Prince, Andy; Rose, Heidi; Wood, James

    2008-01-01

    The Constellation Program (CxP) is NASA's effort to replace the Space Shuttle, return humans to the moon, and prepare for a human mission to Mars. The major elements of the Constellation Lunar sortie design reference mission architecture are shown. Unlike the Apollo Program of the 1960's, affordability is a major concern of United States policy makers and NASA management. To measure Constellation affordability, a total ownership cost life-cycle parametric cost estimating capability is required. This capability is being developed by the Constellation Systems Engineering and Integration (SE&I) Directorate, and is called the Lifecycle Cost Analysis Model (LCAM). The requirements for LCAM are based on the need to have a parametric estimating capability in order to do top-level program analysis, evaluate design alternatives, and explore options for future systems. By estimating the total cost of ownership within the context of the planned Constellation budget, LCAM can provide Program and NASA management with the cost data necessary to identify the most affordable alternatives. LCAM is also a key component of the Integrated Program Model (IPM), an SE&I developed capability that combines parametric sizing tools with cost, schedule, and risk models to perform program analysis. LCAM is used in the generation of cost estimates for system level trades and analyses. It draws upon the legacy of previous architecture level cost models, such as the Exploration Systems Mission Directorate (ESMD) Architecture Cost Model (ARCOM) developed for Simulation Based Acquisition (SBA), and ATLAS. LCAM is used to support requirements and design trade studies by calculating changes in cost relative to a baseline option cost. Estimated costs are generally low fidelity to accommodate available input data and available cost estimating relationships (CERs). LCAM is capable of interfacing with the Integrated Program Model to provide the cost estimating capability for that suite of tools.

  8. Parametric modelling of cost data in medical studies.

    PubMed

    Nixon, R M; Thompson, S G

    2004-04-30

    The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice. Copyright 2004 John Wiley & Sons, Ltd.

  9. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  10. Cost Estimation of Naval Ship Acquisition.

    DTIC Science & Technology

    1983-12-01

    one a 9-sub- system model , the other a single total cost model . The models were developed using the linear least squares regression tech- nique with...to Linear Statistical Models , McGraw-Hill, 1961. 11. Helmer, F. T., Bibliography on Pricing Methodology and Cost Estimating, Dept. of Economics and...SUPPI.EMSaTARY NOTES IS. KWRo" (Cowaft. en tever aide of ..aesep M’ Idab~t 6 Week ONNa.) Cost estimation; Acquisition; Parametric cost estimate; linear

  11. Cost Modeling for low-cost planetary missions

    NASA Technical Reports Server (NTRS)

    Kwan, Eric; Habib-Agahi, Hamid; Rosenberg, Leigh

    2005-01-01

    This presentation will provide an overview of the JPL parametric cost models used to estimate flight science spacecrafts and instruments. This material will emphasize the cost model approaches to estimate low-cost flight hardware, sensors, and instrumentation, and to perform cost-risk assessments. This presentation will also discuss JPL approaches to perform cost modeling and the methodologies and analyses used to capture low-cost vs. key cost drivers.

  12. Parametric CERs (Cost Estimate Relationships) for Replenishment Repair Parts (Selected U.S. Army Helicopters and Combat Vehicles)

    DTIC Science & Technology

    1989-07-31

    Information System (OSMIS). The long-range objective is to develop methods to determine total operating and support (O&S) costs within life-cycle cost...objective was to assess the feasibility of developing cost estimating relationships (CERs) based on data from the Army Operating and Support Management

  13. X-1 to X-Wings: Developing a Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Sterk, Steve; McAtee, Aaron

    2015-01-01

    In todays cost-constrained environment, NASA needs an X-Plane database and parametric cost model that can quickly provide rough order of magnitude predictions of cost from initial concept to first fight of potential X-Plane aircraft. This paper takes a look at the steps taken in developing such a model and reports the results. The challenges encountered in the collection of historical data and recommendations for future database management are discussed. A step-by-step discussion of the development of Cost Estimating Relationships (CERs) is then covered.

  14. Non-parametric methods for cost-effectiveness analysis: the central limit theorem and the bootstrap compared.

    PubMed

    Nixon, Richard M; Wonderling, David; Grieve, Richard D

    2010-03-01

    Cost-effectiveness analyses (CEA) alongside randomised controlled trials commonly estimate incremental net benefits (INB), with 95% confidence intervals, and compute cost-effectiveness acceptability curves and confidence ellipses. Two alternative non-parametric methods for estimating INB are to apply the central limit theorem (CLT) or to use the non-parametric bootstrap method, although it is unclear which method is preferable. This paper describes the statistical rationale underlying each of these methods and illustrates their application with a trial-based CEA. It compares the sampling uncertainty from using either technique in a Monte Carlo simulation. The experiments are repeated varying the sample size and the skewness of costs in the population. The results showed that, even when data were highly skewed, both methods accurately estimated the true standard errors (SEs) when sample sizes were moderate to large (n>50), and also gave good estimates for small data sets with low skewness. However, when sample sizes were relatively small and the data highly skewed, using the CLT rather than the bootstrap led to slightly more accurate SEs. We conclude that while in general using either method is appropriate, the CLT is easier to implement, and provides SEs that are at least as accurate as the bootstrap. (c) 2009 John Wiley & Sons, Ltd.

  15. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  16. Cost Risk Analysis Based on Perception of the Engineering Process

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.; Wood, Darrell A.; Moore, Arlene A.; Bogart, Edward H.

    1986-01-01

    In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable to present predicted cost as a range of possible costs rather than a single predicted cost. A cost risk analysis generates a range of cost for a project and assigns a probability level to each cost value in the range. Constructing a cost risk curve requires a good estimate of the expected cost of a project. It must also include a good estimate of expected variance of the cost. Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in the past. In a common scenario, a manager or engineer, asked to estimate the cost of a project in his area of expertise, will gather historical cost data from a similar completed project. The cost of the completed project is adjusted using the perceived technical and economic differences between the two projects. This allows errors from at least three sources. The historical cost data may be in error by some unknown amount. The managers' evaluation of the new project and its similarity to the old project may be in error. The factors used to adjust the cost of the old project may not correctly reflect the differences. Some risk analyses are based on untested hypotheses about the form of the statistical distribution that underlies the distribution of possible cost. The usual problem is not just to come up with an estimate of the cost of a project, but to predict the range of values into which the cost may fall and with what level of confidence the prediction is made. Risk analysis techniques that assume the shape of the underlying cost distribution and derive the risk curve from a single estimate plus and minus some amount usually fail to take into account the actual magnitude of the uncertainty in cost due to technical factors in the project itself. This paper addresses a cost risk method that is based on parametric estimates of the technical factors involved in the project being costed. The engineering process parameters are elicited from the engineer/expert on the project and are based on that expert's technical knowledge. These are converted by a parametric cost model into a cost estimate. The method discussed makes no assumptions about the distribution underlying the distribution of possible costs, and is not tied to the analysis of previous projects, except through the expert calibrations performed by the parametric cost analyst.

  17. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  18. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  19. Cost model validation: a technical and cultural approach

    NASA Technical Reports Server (NTRS)

    Hihn, J.; Rosenberg, L.; Roust, K.; Warfield, K.

    2001-01-01

    This paper summarizes how JPL's parametric mission cost model (PMCM) has been validated using both formal statistical methods and a variety of peer and management reviews in order to establish organizational acceptance of the cost model estimates.

  20. Cost Estimation and Control for Flight Systems

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  1. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  2. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS Designs

    NASA Technical Reports Server (NTRS)

    Gerberich, Matthew W.; Oleson, Steven R.

    2013-01-01

    The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.

  3. Parametric study of helicopter aircraft systems costs and weights

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.

    1980-01-01

    Weight estimating relationships (WERs) and recurring production cost estimating relationships (CERs) were developed for helicopters at the system level. The WERs estimate system level weight based on performance or design characteristics which are available during concept formulation or the preliminary design phase. The CER (or CERs in some cases) for each system utilize weight (either actual or estimated using the appropriate WER) and production quantity as the key parameters.

  4. Parametric Cost Analysis: A Design Function

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1989-01-01

    Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.

  5. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  6. Manned Mars mission cost estimate

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph; Smith, Keith

    1986-01-01

    The potential costs of several options of a manned Mars mission are examined. A cost estimating methodology based primarily on existing Marshall Space Flight Center (MSFC) parametric cost models is summarized. These models include the MSFC Space Station Cost Model and the MSFC Launch Vehicle Cost Model as well as other modes and techniques. The ground rules and assumptions of the cost estimating methodology are discussed and cost estimates presented for six potential mission options which were studied. The estimated manned Mars mission costs are compared to the cost of the somewhat analogous Apollo Program cost after normalizing the Apollo cost to the environment and ground rules of the manned Mars missions. It is concluded that a manned Mars mission, as currently defined, could be accomplished for under $30 billion in 1985 dollars excluding launch vehicle development and mission operations.

  7. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  8. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  9. Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1981-01-01

    A parametric software cost estimation model prepared for Jet PRopulsion Laboratory (JPL) Deep Space Network (DSN) Data System implementation tasks is described. The resource estimation mdel modifies and combines a number of existing models. The model calibrates the task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software life-cycle statistics.

  10. Can the Direct Medical Cost of Chronic Disease Be Transferred across Different Countries? Using Cost-of-Illness Studies on Type 2 Diabetes, Epilepsy and Schizophrenia as Examples

    PubMed Central

    Gao, Lan; Hu, Hao; Zhao, Fei-Li; Li, Shu-Chuen

    2016-01-01

    Objectives To systematically review cost of illness studies for schizophrenia (SC), epilepsy (EP) and type 2 diabetes mellitus (T2DM) and explore the transferability of direct medical cost across countries. Methods A comprehensive literature search was performed to yield studies that estimated direct medical costs. A generalized linear model (GLM) with gamma distribution and log link was utilized to explore the variation in costs that accounted by the included factors. Both parametric (Random-effects model) and non-parametric (Boot-strapping) meta-analyses were performed to pool the converted raw cost data (expressed as percentage of GDP/capita of the country where the study was conducted). Results In total, 93 articles were included (40 studies were for T2DM, 34 studies for EP and 19 studies for SC). Significant variances were detected inter- and intra-disease classes for the direct medical costs. Multivariate analysis identified that GDP/capita (p<0.05) was a significant factor contributing to the large variance in the cost results. Bootstrapping meta-analysis generated more conservative estimations with slightly wider 95% confidence intervals (CI) than the parametric meta-analysis, yielding a mean (95%CI) of 16.43% (11.32, 21.54) for T2DM, 36.17% (22.34, 50.00) for SC and 10.49% (7.86, 13.41) for EP. Conclusions Converting the raw cost data into percentage of GDP/capita of individual country was demonstrated to be a feasible approach to transfer the direct medical cost across countries. The approach from our study to obtain an estimated direct cost value along with the size of specific disease population from each jurisdiction could be used for a quick check on the economic burden of particular disease for countries without such data. PMID:26814959

  11. Summary and evaluation of the parametric study of potential early commercial MHD power plants (PSPEC)

    NASA Technical Reports Server (NTRS)

    Staigner, P. J.; Abbott, J. M.

    1980-01-01

    Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variations about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.

  12. Study of solid rocket motor for space shuttle booster. Volume 4: Cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The cost data for solid propellant rocket engines for use with the space shuttle are presented. The data are based on the selected 156 inch parallel and series burn configurations. Summary cost data are provided for the production of the 120 inch and 260 inch configurations. Graphs depicting parametric cost estimating relationships are included.

  13. Solid rocket motor cost model

    NASA Technical Reports Server (NTRS)

    Harney, A. G.; Raphael, L.; Warren, S.; Yakura, J. K.

    1972-01-01

    A systematic and standardized procedure for estimating life cycle costs of solid rocket motor booster configurations. The model consists of clearly defined cost categories and appropriate cost equations in which cost is related to program and hardware parameters. Cost estimating relationships are generally based on analogous experience. In this model the experience drawn on is from estimates prepared by the study contractors. Contractors' estimates are derived by means of engineering estimates for some predetermined level of detail of the SRM hardware and program functions of the system life cycle. This method is frequently referred to as bottom-up. A parametric cost analysis is a useful technique when rapid estimates are required. This is particularly true during the planning stages of a system when hardware designs and program definition are conceptual and constantly changing as the selection process, which includes cost comparisons or trade-offs, is performed. The use of cost estimating relationships also facilitates the performance of cost sensitivity studies in which relative and comparable cost comparisons are significant.

  14. Update on Multi-Variable Parametric Cost Models for Ground and Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2012-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper reports on recent revisions and improvements to our ground telescope cost model and refinements of our understanding of space telescope cost models. One interesting observation is that while space telescopes are 50X to 100X more expensive than ground telescopes, their respective scaling relationships are similar. Another interesting speculation is that the role of technology development may be different between ground and space telescopes. For ground telescopes, the data indicates that technology development tends to reduce cost by approximately 50% every 20 years. But for space telescopes, there appears to be no such cost reduction because we do not tend to re-fly similar systems. Thus, instead of reducing cost, 20 years of technology development may be required to enable a doubling of space telescope capability. Other findings include: mass should not be used to estimate cost; spacecraft and science instrument costs account for approximately 50% of total mission cost; and, integration and testing accounts for only about 10% of total mission cost.

  15. Latest NASA Instrument Cost Model (NICM): Version VI

    NASA Technical Reports Server (NTRS)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  16. Preliminary Multivariable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. Previously, the authors published two single variable cost models based on 19 flight missions. The current paper presents the development of a multi-variable space telescopes cost model. The validity of previously published models are tested. Cost estimating relationships which are and are not significant cost drivers are identified. And, interrelationships between variables are explored

  17. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  18. Parametric versus Cox's model: an illustrative analysis of divorce in Canada.

    PubMed

    Balakrishnan, T R; Rao, K V; Krotki, K J; Lapierre-adamcyk, E

    1988-06-01

    Recent demographic literature clearly recognizes the importance of survival modes in the analysis of cross-sectional event histories. Of the various survival models, Cox's (1972) partial parametric model has been very popular due to its simplicity, and readily available computer software for estimation, sometimes at the cost of precision and parsimony of the model. This paper focuses on parametric failure time models for event history analysis such as Weibell, lognormal, loglogistic, and exponential models. The authors also test the goodness of fit of these parametric models versus the Cox's proportional hazards model taking Kaplan-Meier estimate as base. As an illustration, the authors reanalyze the Canadian Fertility Survey data on 1st marriage dissolution with parametric models. Though these parametric model estimates were not very different from each other, there seemed to be a slightly better fit with loglogistic. When 8 covariates were used in the analysis, it was found that the coefficients were similar in the models, and the overall conclusions about the relative risks would not have been different. The findings reveal that in marriage dissolution, the differences according to demographic and socioeconomic characteristics may be far more important than is generally found in many studies. Therefore, one should not treat the population as homogeneous in analyzing survival probabilities of marriages, other than for cursory analysis of overall trends.

  19. Using Parametric Cost Models to Estimate Engineering and Installation Costs of Selected Electronic Communications Systems

    DTIC Science & Technology

    1994-09-01

    Institute of Technology, Wright- Patterson AFB OH, January 1994. 4. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 5...Technology, Wright-Patterson AFB OH 5 April 1994. 29. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 30. Office of

  20. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  1. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  2. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  3. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  4. Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1981-01-01

    A parametric software cost estimation model prepared for Deep Space Network (DSN) Data Systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit DSN software life cycle statistics. The estimation model output scales a standard DSN Work Breakdown Structure skeleton, which is then input into a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.

  5. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  6. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  7. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  8. Parametric Cost Modeling of Space Missions Using the Develop New Projects (DMP) Implementation Process

    NASA Technical Reports Server (NTRS)

    Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith

    2000-01-01

    This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.

  9. Weight and the Future of Space Flight Hardware Cost Modeling

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    2003-01-01

    Weight has been used as the primary input variable for cost estimating almost as long as there have been parametric cost models. While there are good reasons for using weight, serious limitations exist. These limitations have been addressed by multi-variable equations and trend analysis in models such as NAFCOM, PRICE, and SEER; however, these models have not be able to address the significant time lags that can occur between the development of similar space flight hardware systems. These time lags make the cost analyst's job difficult because insufficient data exists to perform trend analysis, and the current set of parametric models are not well suited to accommodating process improvements in space flight hardware design, development, build and test. As a result, people of good faith can have serious disagreement over the cost for new systems. To address these shortcomings, new cost modeling approaches are needed. The most promising approach is process based (sometimes called activity) costing. Developing process based models will require a detailed understanding of the functions required to produce space flight hardware combined with innovative approaches to estimating the necessary resources. Particularly challenging will be the lack of data at the process level. One method for developing a model is to combine notional algorithms with a discrete event simulation and model changes to the total cost as perturbations to the program are introduced. Despite these challenges, the potential benefits are such that efforts should be focused on developing process based cost models.

  10. Software cost/resource modeling: Deep space network software cost estimation model

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. J.

    1980-01-01

    A parametric software cost estimation model prepared for JPL deep space network (DSN) data systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models, such as those of the General Research Corporation, Doty Associates, IBM (Walston-Felix), Rome Air Force Development Center, University of Maryland, and Rayleigh-Norden-Putnam. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software lifecycle statistics. The estimation model output scales a standard DSN work breakdown structure skeleton, which is then input to a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.

  11. Cost and efficiency of disaster waste disposal: A case study of the Great East Japan Earthquake.

    PubMed

    Sasao, Toshiaki

    2016-12-01

    This paper analyzes the cost and efficiency of waste disposal associated with the Great East Japan Earthquake. The following two analyses were performed: (1) a popular parametric approach, which is an ordinary least squares (OLS) method to estimate the factors that affect the disposal costs; (2) a non-parametric approach, which is a two-stage data envelopment analysis (DEA) to analyze the efficiency of each municipality and clarify the best performance of the disaster waste management. Our results indicate that a higher recycling rate of disaster waste and a larger amount of tsunami sediments decrease the average disposal costs. Our results also indicate that area-wide management increases the average cost. In addition, the efficiency scores were observed to vary widely by municipality, and more temporary incinerators and secondary waste stocks improve the efficiency scores. However, it is likely that the radioactive contamination from the Fukushima Daiichi nuclear power station influenced the results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Online Detection of Broken Rotor Bar Fault in Induction Motors by Combining Estimation of Signal Parameters via Min-norm Algorithm and Least Square Method

    NASA Astrophysics Data System (ADS)

    Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin

    2017-11-01

    Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.

  13. Estimating the Life Cycle Cost of Space Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.

  14. Uncertainty importance analysis using parametric moment ratio functions.

    PubMed

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  15. A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs.

    PubMed

    Jones, Andrew M; Lomas, James; Moore, Peter T; Rice, Nigel

    2016-10-01

    We conduct a quasi-Monte-Carlo comparison of the recent developments in parametric and semiparametric regression methods for healthcare costs, both against each other and against standard practice. The population of English National Health Service hospital in-patient episodes for the financial year 2007-2008 (summed for each patient) is randomly divided into two equally sized subpopulations to form an estimation set and a validation set. Evaluating out-of-sample using the validation set, a conditional density approximation estimator shows considerable promise in forecasting conditional means, performing best for accuracy of forecasting and among the best four for bias and goodness of fit. The best performing model for bias is linear regression with square-root-transformed dependent variables, whereas a generalized linear model with square-root link function and Poisson distribution performs best in terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly relative to other models considered in our comparison.

  16. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  17. Multivariable parametric cost model for space and ground telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Henrichs, Todd

    2016-09-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  18. Improving the Parametric Method of Cost Estimating Relationships of Naval Ships

    DTIC Science & Technology

    2014-06-01

    tool since the total cost of the ship is broken down into smaller parts as defined by the WBS. The Navy currently uses the Expanded Ship Work Breakdown...Includes boilers , reactors, turbines, gears, shafting, propellers, steam piping, lube oil piping, and radiation 300 Electric Plant Includes ship...spaces, ladders, storerooms, laundry, and workshops 700 Armament Includes guns, missile launchers, ammunition handling and stowage, torpedo tubes , depth

  19. Team X Report #1401: Exoplanet Coronagraph STDT Study 2013-06

    NASA Technical Reports Server (NTRS)

    Warfield, Keith

    2013-01-01

    This document is intended to stimulate discussion of the topic described. All technical and cost analyses are preliminary. This document is not a commitment to work, but is a precursor to a formal proposal if it generates sufficient mutual interest. The data contained in this document may not be modified in any way. Cost estimates described or summarized in this document were generated as part of a preliminary, first-order cost class identification as part of an early trade space study, are based on JPL-internal parametric cost modeling, assume a JPL in-house build, and do not constitute a commitment on the part of JPL or Caltech. JPL and Team X add cost reserves for development and operations. Unadjusted estimate totals and cost reserve allocations would be revised as needed in future more-detailed studies as appropriate for the specific cost-risks for a given mission concept.

  20. Process-based Cost Estimation for Ramjet/Scramjet Engines

    NASA Technical Reports Server (NTRS)

    Singh, Brijendra; Torres, Felix; Nesman, Miles; Reynolds, John

    2003-01-01

    Process-based cost estimation plays a key role in effecting cultural change that integrates distributed science, technology and engineering teams to rapidly create innovative and affordable products. Working together, NASA Glenn Research Center and Boeing Canoga Park have developed a methodology of process-based cost estimation bridging the methodologies of high-level parametric models and detailed bottoms-up estimation. The NASA GRC/Boeing CP process-based cost model provides a probabilistic structure of layered cost drivers. High-level inputs characterize mission requirements, system performance, and relevant economic factors. Design alternatives are extracted from a standard, product-specific work breakdown structure to pre-load lower-level cost driver inputs and generate the cost-risk analysis. As product design progresses and matures the lower level more detailed cost drivers can be re-accessed and the projected variation of input values narrowed, thereby generating a progressively more accurate estimate of cost-risk. Incorporated into the process-based cost model are techniques for decision analysis, specifically, the analytic hierarchy process (AHP) and functional utility analysis. Design alternatives may then be evaluated not just on cost-risk, but also user defined performance and schedule criteria. This implementation of full-trade study support contributes significantly to the realization of the integrated development environment. The process-based cost estimation model generates development and manufacturing cost estimates. The development team plans to expand the manufacturing process base from approximately 80 manufacturing processes to over 250 processes. Operation and support cost modeling is also envisioned. Process-based estimation considers the materials, resources, and processes in establishing cost-risk and rather depending on weight as an input, actually estimates weight along with cost and schedule.

  1. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Foreman, Veronica; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the shortcomings of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-the-art in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority weaknesses within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities must exist; this paper offers insights critical to the future development and implementation of DSM cost estimating tools.

  2. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities must exist; this paper offers insights critical to the future development and implementation of DSM cost estimating tools.

  3. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolutions. Volume 3: Cost estimates

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.

  4. Parametric study of transport aircraft systems cost and weight

    NASA Technical Reports Server (NTRS)

    Beltramo, M. N.; Trapp, D. L.; Kimoto, B. W.; Marsh, D. P.

    1977-01-01

    The results of a NASA study to develop production cost estimating relationships (CERs) and weight estimating relationships (WERs) for commercial and military transport aircraft at the system level are presented. The systems considered correspond to the standard weight groups defined in Military Standard 1374 and are listed. These systems make up a complete aircraft exclusive of engines. The CER for each system (or CERs in several cases) utilize weight as the key parameter. Weights may be determined from detailed weight statements, if available, or by using the WERs developed, which are based on technical and performance characteristics generally available during preliminary design. The CERs that were developed provide a very useful tool for making preliminary estimates of the production cost of an aircraft. Likewise, the WERs provide a very useful tool for making preliminary estimates of the weight of aircraft based on conceptual design information.

  5. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver L.

    2016-01-01

    Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.

  6. Examining the Feasibility and Utility of Estimating Partial Expected Value of Perfect Information (via a Nonparametric Approach) as Part of the Reimbursement Decision-Making Process in Ireland: Application to Drugs for Cancer.

    PubMed

    McCullagh, Laura; Schmitz, Susanne; Barry, Michael; Walsh, Cathal

    2017-11-01

    In Ireland, all new drugs for which reimbursement by the healthcare payer is sought undergo a health technology assessment by the National Centre for Pharmacoeconomics. The National Centre for Pharmacoeconomics estimate expected value of perfect information but not partial expected value of perfect information (owing to computational expense associated with typical methodologies). The objective of this study was to examine the feasibility and utility of estimating partial expected value of perfect information via a computationally efficient, non-parametric regression approach. This was a retrospective analysis of evaluations on drugs for cancer that had been submitted to the National Centre for Pharmacoeconomics (January 2010 to December 2014 inclusive). Drugs were excluded if cost effective at the submitted price. Drugs were excluded if concerns existed regarding the validity of the applicants' submission or if cost-effectiveness model functionality did not allow required modifications to be made. For each included drug (n = 14), value of information was estimated at the final reimbursement price, at a threshold equivalent to the incremental cost-effectiveness ratio at that price. The expected value of perfect information was estimated from probabilistic analysis. Partial expected value of perfect information was estimated via a non-parametric approach. Input parameters with a population value at least €1 million were identified as potential targets for research. All partial estimates were determined within minutes. Thirty parameters (across nine models) each had a value of at least €1 million. These were categorised. Collectively, survival analysis parameters were valued at €19.32 million, health state utility parameters at €15.81 million and parameters associated with the cost of treating adverse effects at €6.64 million. Those associated with drug acquisition costs and with the cost of care were valued at €6.51 million and €5.71 million, respectively. This research demonstrates that the estimation of partial expected value of perfect information via this computationally inexpensive approach could be considered feasible as part of the health technology assessment process for reimbursement purposes within the Irish healthcare system. It might be a useful tool in prioritising future research to decrease decision uncertainty.

  7. Advanced transportation system studies technical area 2 (TA-2): Heavy lift launch vehicle development. volume 3; Program Cost estimates

    NASA Technical Reports Server (NTRS)

    McCurry, J. B.

    1995-01-01

    The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.

  8. Streamlining the Design Tradespace for Earth Imaging Constellations

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Hughes, Steven P.; Le Moigne, Jacqueline J.

    2016-01-01

    Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth scientists seeking to leverage the capabilities of multiple spacecraft working in support of a common goal.

  9. Mixture models for undiagnosed prevalent disease and interval-censored incident disease: applications to a cohort assembled from electronic health records.

    PubMed

    Cheung, Li C; Pan, Qing; Hyun, Noorie; Schiffman, Mark; Fetterman, Barbara; Castle, Philip E; Lorey, Thomas; Katki, Hormuzd A

    2017-09-30

    For cost-effectiveness and efficiency, many large-scale general-purpose cohort studies are being assembled within large health-care providers who use electronic health records. Two key features of such data are that incident disease is interval-censored between irregular visits and there can be pre-existing (prevalent) disease. Because prevalent disease is not always immediately diagnosed, some disease diagnosed at later visits are actually undiagnosed prevalent disease. We consider prevalent disease as a point mass at time zero for clinical applications where there is no interest in time of prevalent disease onset. We demonstrate that the naive Kaplan-Meier cumulative risk estimator underestimates risks at early time points and overestimates later risks. We propose a general family of mixture models for undiagnosed prevalent disease and interval-censored incident disease that we call prevalence-incidence models. Parameters for parametric prevalence-incidence models, such as the logistic regression and Weibull survival (logistic-Weibull) model, are estimated by direct likelihood maximization or by EM algorithm. Non-parametric methods are proposed to calculate cumulative risks for cases without covariates. We compare naive Kaplan-Meier, logistic-Weibull, and non-parametric estimates of cumulative risk in the cervical cancer screening program at Kaiser Permanente Northern California. Kaplan-Meier provided poor estimates while the logistic-Weibull model was a close fit to the non-parametric. Our findings support our use of logistic-Weibull models to develop the risk estimates that underlie current US risk-based cervical cancer screening guidelines. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  10. When Unified Teacher Pay Scales Meet Differential Alternative Returns

    ERIC Educational Resources Information Center

    Walsh, Patrick

    2014-01-01

    This paper quantifies the extent to which unified teacher pay scales and differential alternatives produce opportunity costs that are asymmetric in math and verbal skills. Data from the Baccalaureate and Beyond 1997 and 2003 follow-ups are used to estimate a fully parametric, selection-corrected wage equation for nonteachers, which is then used to…

  11. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  12. The Dangers of Parametrics

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    2017-01-01

    Building a parametric cost model is hard work. The data is noisy and often does not behave like we want it to. We need statistics to give us an indication of the goodness of our models, but; statistics can be manipulated and mislead. On top of all of that, our own very human biases can lead us astray; causing us to see patterns in the noise and draw false conclusions from the data. Yet, it is the data itself that is the foundation for making better cost estimates and cost models. I believe the mistake we often make is we believe that our models are representative of the data; that our models summarize the experiences, the knowledge, and the stories contained in the data. However, it is the opposite that is true. Our models are but imitations of reality. They give us trends, but not truth. The experiences, the knowledge, and the stories that we need in order to make good cost estimates is bound up in the data. You cannot separate good cost estimating from a knowledge of the historical data. One final thought. It is our attempts to make sense out of the randomness that leads us astray. In order to make progress as cost modelers and cost estimators, we must accept that there are real limitations on our ability to model the past and predict the future. I do not believe we should throw up our hands and say this is the best we can do. Rather, to see real improvement we must first recognize these limitations, avoid the easy but misleading solutions, and seek to find ways to better model the world we live in. I don't have any simple solutions. Perhaps the answers lie in better data or in a totally different approach to simulating how the world works. All I know is that we must do our best to speak truth to ourselves and our customers. Misleading ourselves and our customers will, in the end, result in an inability to have a positive impact on those we serve.

  13. Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation

    NASA Astrophysics Data System (ADS)

    Rebillat, Marc; Schoukens, Maarten

    2018-05-01

    Linearity is a common assumption for many real-life systems, but in many cases the nonlinear behavior of systems cannot be ignored and must be modeled and estimated. Among the various existing classes of nonlinear models, Parallel Hammerstein Models (PHM) are interesting as they are at the same time easy to interpret as well as to estimate. One way to estimate PHM relies on the fact that the estimation problem is linear in the parameters and thus that classical least squares (LS) estimation algorithms can be used. In that area, this article introduces a regularized LS estimation algorithm inspired on some of the recently developed regularized impulse response estimation techniques. Another mean to estimate PHM consists in using parametric or non-parametric exponential sine sweeps (ESS) based methods. These methods (LS and ESS) are founded on radically different mathematical backgrounds but are expected to tackle the same issue. A methodology is proposed here to compare them with respect to (i) their accuracy, (ii) their computational cost, and (iii) their robustness to noise. Tests are performed on simulated systems for several values of methods respective parameters and of signal to noise ratio. Results show that, for a given set of data points, the ESS method is less demanding in computational resources than the LS method but that it is also less accurate. Furthermore, the LS method needs parameters to be set in advance whereas the ESS method is not subject to conditioning issues and can be fully non-parametric. In summary, for a given set of data points, ESS method can provide a first, automatic, and quick overview of a nonlinear system than can guide more computationally demanding and precise methods, such as the regularized LS one proposed here.

  14. Fast Conceptual Cost Estimating of Aerospace Projects Using Historical Information

    NASA Technical Reports Server (NTRS)

    Butts, Glenn

    2007-01-01

    Accurate estimates can be created in less than a minute by applying powerful techniques and algorithms to create an Excel-based parametric cost model. In five easy steps you will learn how to normalize your company 's historical cost data to the new project parameters. This paper provides a complete, easy-to-understand, step by step how-to guide. Such a guide does not seem to currently exist. Over 2,000 hours of research, data collection, and trial and error, and thousands of lines of Excel Visual Basic Application (VBA) code were invested in developing these methods. While VBA is not required to use this information, it increases the power and aesthetics of the model. Implementing all of the steps described, while not required, will increase the accuracy of the results.

  15. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Work breakdown structure and work breakdown structure dictionary

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1992-01-01

    The report describes the work breakdown structure (WBS) and its associated WBS dictionary for task area 1 of contract NAS8-39207, advanced transportation system studies (ATSS). This WBS format is consistent with the preliminary design level of detail employed by both task area 1 and task area 4 in the ATSS study and is intended to provide an estimating structure for parametric cost estimates.

  16. Space Transportatioin System (STS) propellant scavenging system study. Volume 3: Cost and work breakdown structure-dictionary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Fundamentally, the volumes of the oxidizer and fuel propellant scavenged from the orbiter and external tank determine the size and weight of the scavenging system. The optimization of system dimensions and weights is stimulated by the requirement to minimize the use of partial length of the orbiter payload bay. Thus, the cost estimates begin with weights established for the optimum design. Both the design, development, test, and evaluation and theoretical first unit hardware production costs are estimated from parametric cost weight scaling relations for four subsystems. For cryogenic propellants, the widely differing characteristics of the oxidizer and the fuel lead to two separate tank subsystems, in addition to the electrical and instrumentation subsystems. Hardwares costs also involve quantity, as an independent variable, since the number of production scavenging systems is not firm. For storable propellants, since the tankage volume of the oxidizer and fuel are equal, the hardware production costs for developing these systems are lower than for cryogenic propellants.

  17. Estimation of a partially linear additive model for data from an outcome-dependent sampling design with a continuous outcome

    PubMed Central

    Tan, Ziwen; Qin, Guoyou; Zhou, Haibo

    2016-01-01

    Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear additive model (PLAM) is widely applied in real problems because it allows for a flexible specification of the dependence of the response on some covariates in a linear fashion and other covariates in a nonlinear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal polychlorinated biphenyls exposure on children's intelligence quotient (IQ) at age 7 years, we propose a PLAM in this article to investigate a more flexible non-parametric inference on the relationships among the response and covariates under the ODS scheme. We propose the estimation method and establish the asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate the proposed method. PMID:27006375

  18. Statistical Analysis of Complexity Generators for Cost Estimation

    NASA Technical Reports Server (NTRS)

    Rowell, Ginger Holmes

    1999-01-01

    Predicting the cost of cutting edge new technologies involved with spacecraft hardware can be quite complicated. A new feature of the NASA Air Force Cost Model (NAFCOM), called the Complexity Generator, is being developed to model the complexity factors that drive the cost of space hardware. This parametric approach is also designed to account for the differences in cost, based on factors that are unique to each system and subsystem. The cost driver categories included in this model are weight, inheritance from previous missions, technical complexity, and management factors. This paper explains the Complexity Generator framework, the statistical methods used to select the best model within this framework, and the procedures used to find the region of predictability and the prediction intervals for the cost of a mission.

  19. Development and validation of chemistry agnostic flow battery cost performance model and application to nonaqueous electrolyte systems: Chemistry agnostic flow battery cost performance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Alasdair; Thomsen, Edwin; Reed, David

    2016-04-20

    A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system ismore » estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh -1 for the storage system is identified.« less

  20. Process Cost Modeling for Multi-Disciplinary Design Optimization

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Freeman, William (Technical Monitor)

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This report outlines the development of a process-based cost model in which the physical elements of the vehicle are costed according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this report is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool. In successive sections, the report addresses the issues of cost modeling as follows. First, an introduction is presented to provide the background for the research work. Next, a quick review of cost estimation techniques is made with the intention to highlight their inappropriateness for what is really needed at the conceptual phase of the design process. The First-Order Process Velocity Cost Model (FOPV) is discussed at length in the next section. This is followed by an application of the FOPV cost model to a generic wing. For designs that have no precedence as far as acquisition costs are concerned, cost data derived from the FOPV cost model may not be accurate enough because of new requirements for shape complexity, material, equipment and precision/tolerance. The concept of Cost Modulus is introduced at this point to compensate for these new burdens on the basic processes. This is treated in section 5. The cost of a design must be conveniently linked to its CAD representation. The interfacing of CAD models and spreadsheets containing the cost equations is the subject of the next section, section 6. The last section of the report is a summary of the progress made so far, and the anticipated research work to be achieved in the future.

  1. Launcher Systems Development Cost: Behavior, Uncertainty, Influences, Barriers and Strategies for Reduction

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    2001-01-01

    This paper will report on the activities of the IAA Launcher Systems Economics Working Group in preparations for its Launcher Systems Development Cost Behavior Study. The Study goals include: improve launcher system and other space system parametric cost analysis accuracy; improve launcher system and other space system cost analysis credibility; and provide launcher system and technology development program managers and other decisionmakers with useful information on development cost impacts of their decisions. The Working Group plans to explore at least the following five areas in the Study: define and explain development cost behavior terms and concepts for use in the Study; identify and quantify sources of development cost and cost estimating uncertainty; identify and quantify significant influences on development cost behavior; identify common barriers to development cost understanding and reduction; and recommend practical, realistic strategies to accomplish reductions in launcher system development cost.

  2. SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies

    PubMed Central

    Bouaziz, Matthieu; Paccard, Caroline; Guedj, Mickael; Ambroise, Christophe

    2012-01-01

    Inferring the structure of populations has many applications for genetic research. In addition to providing information for evolutionary studies, it can be used to account for the bias induced by population stratification in association studies. To this end, many algorithms have been proposed to cluster individuals into genetically homogeneous sub-populations. The parametric algorithms, such as Structure, are very popular but their underlying complexity and their high computational cost led to the development of faster parametric alternatives such as Admixture. Alternatives to these methods are the non-parametric approaches. Among this category, AWclust has proven efficient but fails to properly identify population structure for complex datasets. We present in this article a new clustering algorithm called Spectral Hierarchical clustering for the Inference of Population Structure (SHIPS), based on a divisive hierarchical clustering strategy, allowing a progressive investigation of population structure. This method takes genetic data as input to cluster individuals into homogeneous sub-populations and with the use of the gap statistic estimates the optimal number of such sub-populations. SHIPS was applied to a set of simulated discrete and admixed datasets and to real SNP datasets, that are data from the HapMap and Pan-Asian SNP consortium. The programs Structure, Admixture, AWclust and PCAclust were also investigated in a comparison study. SHIPS and the parametric approach Structure were the most accurate when applied to simulated datasets both in terms of individual assignments and estimation of the correct number of clusters. The analysis of the results on the real datasets highlighted that the clusterings of SHIPS were the more consistent with the population labels or those produced by the Admixture program. The performances of SHIPS when applied to SNP data, along with its relatively low computational cost and its ease of use make this method a promising solution to infer fine-scale genetic patterns. PMID:23077494

  3. Update on Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl. H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Since the June 2010 Astronomy Conference, an independent review of our cost data base discovered some inaccuracies and inconsistencies which can modify our previously reported results. This paper will review changes to the data base, our confidence in those changes and their effect on various parametric cost models

  4. Review of hardware cost estimation methods, models and tools applied to early phases of space mission planning

    NASA Astrophysics Data System (ADS)

    Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.

    2012-08-01

    The primary purpose of this paper is to review currently existing cost estimation methods, models, tools and resources applicable to the space sector. While key space sector methods are outlined, a specific focus is placed on hardware cost estimation on a system level, particularly for early mission phases during which specifications and requirements are not yet crystallised, and information is limited. For the space industry, cost engineering within the systems engineering framework is an integral discipline. The cost of any space program now constitutes a stringent design criterion, which must be considered and carefully controlled during the entire program life cycle. A first step to any program budget is a representative cost estimate which usually hinges on a particular estimation approach, or methodology. Therefore appropriate selection of specific cost models, methods and tools is paramount, a difficult task given the highly variable nature, scope as well as scientific and technical requirements applicable to each program. Numerous methods, models and tools exist. However new ways are needed to address very early, pre-Phase 0 cost estimation during the initial program research and establishment phase when system specifications are limited, but the available research budget needs to be established and defined. Due to their specificity, for vehicles such as reusable launchers with a manned capability, a lack of historical data implies that using either the classic heuristic approach such as parametric cost estimation based on underlying CERs, or the analogy approach, is therefore, by definition, limited. This review identifies prominent cost estimation models applied to the space sector, and their underlying cost driving parameters and factors. Strengths, weaknesses, and suitability to specific mission types and classes are also highlighted. Current approaches which strategically amalgamate various cost estimation strategies both for formulation and validation of an estimate, and techniques and/or methods to attain representative and justifiable cost estimates are consequently discussed. Ultimately, the aim of the paper is to establish a baseline for development of a non-commercial, low cost, transparent cost estimation methodology to be applied during very early program research phases at a complete vehicle system level, for largely unprecedented manned launch vehicles in the future. This paper takes the first step to achieving this through the identification, analysis and understanding of established, existing techniques, models, tools and resources relevant within the space sector.

  5. The 20 kW battery study program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Six battery configurations were selected for detailed study and these are described. A computer program was modified for use in estimation of the weights, costs, and reliabilities of each of the configurations, as a function of several important independent variables, such as system voltage, battery voltage ratio (battery voltage/bus voltage), and the number of parallel units into which each of the components of the power subsystem was divided. The computer program was used to develop the relationship between the independent variables alone and in combination, and the dependent variables: weight, cost, and availability. Parametric data, including power loss curves, are given.

  6. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  7. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.

    PubMed

    Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik

    2017-12-15

    Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.

  8. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  9. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  10. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  11. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  12. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  13. Civil Service Workforce Market Supply and the Effect on the Cost Estimating Relationships (CERs) that may effect the Productivity Factors for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Sterk, Steve; Chesley, Stephen

    2008-01-01

    The upcoming retirement of the Baby Boomers on the horizon will leave a performance gap between younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This papers will dig into Productivity and Realization Factors and how they get applied to bimonthly (payroll data) for true FTE calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs solutions, from simple - full time equivalent (FTE) cost estimating relationships CERs, to complex - CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of different alternatives performance based cost estimating relationships (CERs) and how they get applied into the Center s forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and internal home-grown cost models which may impact the productivity factors for future NASA missions.

  14. A Parametric k-Means Algorithm

    PubMed Central

    Tarpey, Thaddeus

    2007-01-01

    Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692

  15. [Detection of quadratic phase coupling between EEG signal components by nonparamatric and parametric methods of bispectral analysis].

    PubMed

    Schmidt, K; Witte, H

    1999-11-01

    Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.

  16. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data

    PubMed Central

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2012-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976

  17. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    PubMed

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  18. Application of Stein and related parametric empirical Bayes estimators to the nuclear plant reliability data system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J.R.; Heger, A.S.; Koen, B.V.

    1984-04-01

    This report is the result of a preliminary feasibility study of the applicability of Stein and related parametric empirical Bayes (PEB) estimators to the Nuclear Plant Reliability Data System (NPRDS). A new estimator is derived for the means of several independent Poisson distributions with different sampling times. This estimator is applied to data from NPRDS in an attempt to improve failure rate estimation. Theoretical and Monte Carlo results indicate that the new PEB estimator can perform significantly better than the standard maximum likelihood estimator if the estimation of the individual means can be combined through the loss function or throughmore » a parametric class of prior distributions.« less

  19. A robust semi-parametric warping estimator of the survivor function with an application to two-group comparisons

    PubMed Central

    Hutson, Alan D

    2018-01-01

    In this note, we develop a new and novel semi-parametric estimator of the survival curve that is comparable to the product-limit estimator under very relaxed assumptions. The estimator is based on a beta parametrization that warps the empirical distribution of the observed censored and uncensored data. The parameters are obtained using a pseudo-maximum likelihood approach adjusting the survival curve accounting for the censored observations. In the univariate setting, the new estimator tends to better extend the range of the survival estimation given a high degree of censoring. However, the key feature of this paper is that we develop a new two-group semi-parametric exact permutation test for comparing survival curves that is generally superior to the classic log-rank and Wilcoxon tests and provides the best global power across a variety of alternatives. The new test is readily extended to the k group setting. PMID:26988931

  20. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  1. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  2. A study on technical efficiency of a DMU (review of literature)

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, B.; Mahaboob, B.; Subbarami Reddy, C.; Sankar, J. Ravi

    2017-11-01

    In this research paper the concept of technical efficiency (due to Farell) [1] of a decision making unit (DMU) has been introduced and the measure of technical and cost efficiencies are derived. Timmer’s [2] deterministic approach to estimate the Cobb-Douglas production frontier has been proposed. The idea of extension of Timmer’s [2] method to any production frontier which is linear in parameters has been presented here. The estimation of parameters of Cobb-Douglas production frontier by linear programming approach has been discussed in this paper. Mark et al. [3] proposed a non-parametric method to assess efficiency. Nuti et al. [4] investigated the relationships among technical efficiency scores, weighted per capita cost and overall performance Gahe Zing Samuel Yank et al. [5] used Data envelopment analysis to assess technical assessment in banking sectors.

  3. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the SSTO mission This volume overviews each of the tasks giving its objectives, main results. and conclusions. More detailed Final Task Reports are available on each individual task.

  4. Parametric estimation for reinforced concrete relief shelter for Aceh cases

    NASA Astrophysics Data System (ADS)

    Atthaillah; Saputra, Eri; Iqbal, Muhammad

    2018-05-01

    This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.

  5. Developing integrated parametric planning models for budgeting and managing complex projects

    NASA Technical Reports Server (NTRS)

    Etnyre, Vance A.; Black, Ken U.

    1988-01-01

    The applicability of integrated parametric models for the budgeting and management of complex projects is investigated. Methods for building a very flexible, interactive prototype for a project planning system, and software resources available for this purpose, are discussed and evaluated. The prototype is required to be sensitive to changing objectives, changing target dates, changing costs relationships, and changing budget constraints. To achieve the integration of costs and project and task durations, parametric cost functions are defined by a process of trapezoidal segmentation, where the total cost for the project is the sum of the various project cost segments, and each project cost segment is the integral of a linearly segmented cost loading function over a specific interval. The cost can thus be expressed algebraically. The prototype was designed using Lotus-123 as the primary software tool. This prototype implements a methodology for interactive project scheduling that provides a model of a system that meets most of the goals for the first phase of the study and some of the goals for the second phase.

  6. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.

    PubMed

    Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob

    2016-08-01

    The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis.

    PubMed

    Falk, Carl F; Cai, Li

    2016-06-01

    We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.

  8. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  9. Commercial launch systems: A risky investment?

    NASA Astrophysics Data System (ADS)

    Dupnick, Edwin; Skratt, John

    1996-03-01

    A myriad of evolutionary paths connect the current state of government-dominated space launch operations to true commercial access to space. Every potential path requires the investment of private capital sufficient to fund the commercial venture with a perceived risk/return ratio acceptable to the investors. What is the private sector willing to invest? Does government participation reduce financial risk? How viable is a commercial launch system without government participation and support? We examine the interplay between various forms of government participation in commercial launch system development, alternative launch system designs, life cycle cost estimates, and typical industry risk aversion levels. The boundaries of this n-dimensional envelope are examined with an ECON-developed business financial model which provides for the parametric assessment and interaction of SSTO design variables (including various operational scenarios with financial variables including debt/equity assumptions, and commercial enterprise burden rates on various functions. We overlay this structure with observations from previous ECON research which characterize financial risk aversion levels for selected industrial sectors in terms of acceptable initial lump-sum investments, cumulative investments, probability of failure, payback periods, and ROI. The financial model allows the construction of parametric tradeoffs based on ranges of variables which can be said to actually encompass the ``true'' cost of operations and determine what level of ``true'' costs can be tolerated by private capitalization.

  10. Environmental Cost Analysis System (ECAS) Status and Compliance Requirements for EM Consolidated Business Center Contracts - 13204

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, P.C.; Moe, M.A.; Hombach, W.G.

    2013-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) has developed a web-accessible database to collect actual cost data from completed EM projects to support cost estimating and analysis. This Environmental Cost Analysis System (ECAS) database was initially deployed in early 2009 containing the cost and parametric data from 77 decommissioning, restoration, and waste management projects completed under the Rocky Flats Closure Project. In subsequent years we have added many more projects to ECAS and now have a total of 280 projects from 8 major DOE sites. This data is now accessible to DOE users through a web-based reportingmore » tool that allows users to tailor report outputs to meet their specific needs. We are using it as a principal resource supporting the EM Consolidated Business Center (EMCBC) and the EM Applied Cost Engineering (ACE) team cost estimating and analysis efforts across the country. The database has received Government Accountability Office review as supporting its recommended improvements in DOE's cost estimating process, as well as review from the DOE Office of Acquisition and Project Management (APM). Moving forward, the EMCBC has developed a Special Contract Requirement clause or 'H-Clause' to be included in all current and future EMCBC procurements identifying the process that contractors will follow to provide DOE their historical project data in a format compatible with ECAS. Changes to DOE O 413.3B implementation are also in progress to capture historical costs as part of the Critical Decision project closeout process. (authors)« less

  11. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models.

    PubMed

    Andersson, Therese M L; Dickman, Paul W; Eloranta, Sandra; Lambert, Paul C

    2011-06-22

    When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. © 2011 Andersson et al; licensee BioMed Central Ltd.

  12. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models

    PubMed Central

    2011-01-01

    Background When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Methods Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. Results We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Conclusions Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. PMID:21696598

  13. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  14. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  15. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  16. A Robust Adaptive Autonomous Approach to Optimal Experimental Design

    NASA Astrophysics Data System (ADS)

    Gu, Hairong

    Experimentation is the fundamental tool of scientific inquiries to understand the laws governing the nature and human behaviors. Many complex real-world experimental scenarios, particularly in quest of prediction accuracy, often encounter difficulties to conduct experiments using an existing experimental procedure for the following two reasons. First, the existing experimental procedures require a parametric model to serve as the proxy of the latent data structure or data-generating mechanism at the beginning of an experiment. However, for those experimental scenarios of concern, a sound model is often unavailable before an experiment. Second, those experimental scenarios usually contain a large number of design variables, which potentially leads to a lengthy and costly data collection cycle. Incompetently, the existing experimental procedures are unable to optimize large-scale experiments so as to minimize the experimental length and cost. Facing the two challenges in those experimental scenarios, the aim of the present study is to develop a new experimental procedure that allows an experiment to be conducted without the assumption of a parametric model while still achieving satisfactory prediction, and performs optimization of experimental designs to improve the efficiency of an experiment. The new experimental procedure developed in the present study is named robust adaptive autonomous system (RAAS). RAAS is a procedure for sequential experiments composed of multiple experimental trials, which performs function estimation, variable selection, reverse prediction and design optimization on each trial. Directly addressing the challenges in those experimental scenarios of concern, function estimation and variable selection are performed by data-driven modeling methods to generate a predictive model from data collected during the course of an experiment, thus exempting the requirement of a parametric model at the beginning of an experiment; design optimization is performed to select experimental designs on the fly of an experiment based on their usefulness so that fewest designs are needed to reach useful inferential conclusions. Technically, function estimation is realized by Bayesian P-splines, variable selection is realized by Bayesian spike-and-slab prior, reverse prediction is realized by grid-search and design optimization is realized by the concepts of active learning. The present study demonstrated that RAAS achieves statistical robustness by making accurate predictions without the assumption of a parametric model serving as the proxy of latent data structure while the existing procedures can draw poor statistical inferences if a misspecified model is assumed; RAAS also achieves inferential efficiency by taking fewer designs to acquire useful statistical inferences than non-optimal procedures. Thus, RAAS is expected to be a principled solution to real-world experimental scenarios pursuing robust prediction and efficient experimentation.

  17. Advanced Technology Lifecycle Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.; Mankins, John C.

    2004-01-01

    Developing credible mass and cost estimates for space exploration and development architectures require multidisciplinary analysis based on physics calculations, and parametric estimates derived from historical systems. Within the National Aeronautics and Space Administration (NASA), concurrent engineering environment (CEE) activities integrate discipline oriented analysis tools through a computer network and accumulate the results of a multidisciplinary analysis team via a centralized database or spreadsheet Each minute of a design and analysis study within a concurrent engineering environment is expensive due the size of the team and supporting equipment The Advanced Technology Lifecycle Analysis System (ATLAS) reduces the cost of architecture analysis by capturing the knowledge of discipline experts into system oriented spreadsheet models. A framework with a user interface presents a library of system models to an architecture analyst. The analyst selects models of launchers, in-space transportation systems, and excursion vehicles, as well as space and surface infrastructure such as propellant depots, habitats, and solar power satellites. After assembling the architecture from the selected models, the analyst can create a campaign comprised of missions spanning several years. The ATLAS controller passes analyst specified parameters to the models and data among the models. An integrator workbook calls a history based parametric analysis cost model to determine the costs. Also, the integrator estimates the flight rates, launched masses, and architecture benefits over the years of the campaign. An accumulator workbook presents the analytical results in a series of bar graphs. In no way does ATLAS compete with a CEE; instead, ATLAS complements a CEE by ensuring that the time of the experts is well spent Using ATLAS, an architecture analyst can perform technology sensitivity analysis, study many scenarios, and see the impact of design decisions. When the analyst is satisfied with the system configurations, technology portfolios, and deployment strategies, he or she can present the concepts to a team, which will conduct a detailed, discipline-oriented analysis within a CEE. An analog to this approach is the music industry where a songwriter creates the lyrics and music before entering a recording studio.

  18. Civil Service Workforce Market Supply and the Effect on Cost Estimating Relationship (CERS) that May Effect the Productivity Factors for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Sterk, Steve; Chesley, Stephan

    2008-01-01

    The upcoming retirement of the Baby Boomers will leave a workforce age gap between the younger generation (the future NASA decision makers) and the gray beards. This paper will reflect on the average age of the workforce across NASA Centers, the Aerospace Industry and other Government Agencies, like DoD. This paper will dig into Productivity and Realization Factors and how they get applied to bi-monthly (payroll) data for true full-time equivalent (FTE) calculations that could be used at each of the NASA Centers and other business systems that are on the forefront in being implemented. This paper offers some comparative costs analysis/solutions, from simple FTE cost-estimating relationships (CERs) versus CERs for monthly time-phasing activities for small research projects that start and get completed within a government fiscal year. This paper will present the results of a parametric study investigating the cost-effectiveness of alternative performance-based CERs and how they get applied into the Center's forward pricing rate proposals (FPRP). True CERs based on the relationship of a younger aged workforce will have some effects on labor rates used in both commercial cost models and other internal home-grown cost models which may impact the productivity factors for future NASA missions.

  19. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  20. A Nonparametric Approach to Estimate Classification Accuracy and Consistency

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.; Cheng, Ying

    2014-01-01

    When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…

  1. The cost-effectiveness of a patient centred pressure ulcer prevention care bundle: Findings from the INTACT cluster randomised trial.

    PubMed

    Whitty, Jennifer A; McInnes, Elizabeth; Bucknall, Tracey; Webster, Joan; Gillespie, Brigid M; Banks, Merrilyn; Thalib, Lukman; Wallis, Marianne; Cumsille, Jose; Roberts, Shelley; Chaboyer, Wendy

    2017-10-01

    Pressure ulcers are serious, avoidable, costly and common adverse outcomes of healthcare. To evaluate the cost-effectiveness of a patient-centred pressure ulcer prevention care bundle compared to standard care. Cost-effectiveness and cost-benefit analyses of pressure ulcer prevention performed from the health system perspective using data collected alongside a cluster-randomised trial. Eight tertiary hospitals in Australia. Adult patients receiving either a patient-centred pressure ulcer prevention care bundle (n=799) or standard care (n=799). Direct costs related to the intervention and preventative strategies were collected from trial data and supplemented by micro-costing data on patient turning and skin care from a 4-week substudy (n=317). The time horizon for the economic evaluation matched the trial duration, with the endpoint being diagnosis of a new pressure ulcer, hospital discharge/transfer or 28days; whichever occurred first. For the cost-effectiveness analysis, the primary outcome was the incremental costs of prevention per additional hospital acquired pressure ulcer case avoided, estimated using a two-stage cluster-adjusted non-parametric bootstrap method. The cost-benefit analysis estimated net monetary benefit, which considered both the costs of prevention and any difference in length of stay. All costs are reported in AU$(2015). The care bundle cost AU$144.91 (95%CI: $74.96 to $246.08) more per patient than standard care. The largest contributors to cost were clinical nurse time for repositioning and skin inspection. In the cost-effectiveness analysis, the care bundle was estimated to cost an additional $3296 (95%CI: dominant to $144,525) per pressure ulcer avoided. This estimate is highly uncertain. Length of stay was unexpectedly higher in the care bundle group. In a cost-benefit analysis which considered length of stay, the net monetary benefit for the care bundle was estimated to be -$2320 (95%CI -$3900, -$1175) per patient, suggesting the care bundle was not a cost-effective use of resources. A pressure ulcer prevention care bundle consisting of multicomponent nurse training and patient education may promote best practice nursing care but may not be cost-effective in preventing hospital acquired pressure ulcer. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A comparison of selected parametric and non-parametric imputation methods for estimating forest biomass and basal area

    Treesearch

    Donald Gagliasso; Susan Hummel; Hailemariam Temesgen

    2014-01-01

    Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future...

  3. GEE-Smoothing Spline in Semiparametric Model with Correlated Nominal Data

    NASA Astrophysics Data System (ADS)

    Ibrahim, Noor Akma; Suliadi

    2010-11-01

    In this paper we propose GEE-Smoothing spline in the estimation of semiparametric models with correlated nominal data. The method can be seen as an extension of parametric generalized estimating equation to semiparametric models. The nonparametric component is estimated using smoothing spline specifically the natural cubic spline. We use profile algorithm in the estimation of both parametric and nonparametric components. The properties of the estimators are evaluated using simulation studies.

  4. Reference interval estimation: Methodological comparison using extensive simulations and empirical data.

    PubMed

    Daly, Caitlin H; Higgins, Victoria; Adeli, Khosrow; Grey, Vijay L; Hamid, Jemila S

    2017-12-01

    To statistically compare and evaluate commonly used methods of estimating reference intervals and to determine which method is best based on characteristics of the distribution of various data sets. Three approaches for estimating reference intervals, i.e. parametric, non-parametric, and robust, were compared with simulated Gaussian and non-Gaussian data. The hierarchy of the performances of each method was examined based on bias and measures of precision. The findings of the simulation study were illustrated through real data sets. In all Gaussian scenarios, the parametric approach provided the least biased and most precise estimates. In non-Gaussian scenarios, no single method provided the least biased and most precise estimates for both limits of a reference interval across all sample sizes, although the non-parametric approach performed the best for most scenarios. The hierarchy of the performances of the three methods was only impacted by sample size and skewness. Differences between reference interval estimates established by the three methods were inflated by variability. Whenever possible, laboratories should attempt to transform data to a Gaussian distribution and use the parametric approach to obtain the most optimal reference intervals. When this is not possible, laboratories should consider sample size and skewness as factors in their choice of reference interval estimation method. The consequences of false positives or false negatives may also serve as factors in this decision. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  5. Using Survival Analysis to Improve Estimates of Life Year Gains in Policy Evaluations.

    PubMed

    Meacock, Rachel; Sutton, Matt; Kristensen, Søren Rud; Harrison, Mark

    2017-05-01

    Policy evaluations taking a lifetime horizon have converted estimated changes in short-term mortality to expected life year gains using general population life expectancy. However, the life expectancy of the affected patients may differ from the general population. In trials, survival models are commonly used to extrapolate life year gains. The objective was to demonstrate the feasibility and materiality of using parametric survival models to extrapolate future survival in health care policy evaluations. We used our previous cost-effectiveness analysis of a pay-for-performance program as a motivating example. We first used the cohort of patients admitted prior to the program to compare 3 methods for estimating remaining life expectancy. We then used a difference-in-differences framework to estimate the life year gains associated with the program using general population life expectancy and survival models. Patient-level data from Hospital Episode Statistics was utilized for patients admitted to hospitals in England for pneumonia between 1 April 2007 and 31 March 2008 and between 1 April 2009 and 31 March 2010, and linked to death records for the period from 1 April 2007 to 31 March 2011. In our cohort of patients, using parametric survival models rather than general population life expectancy figures reduced the estimated mean life years remaining by 30% (9.19 v. 13.15 years, respectively). However, the estimated mean life year gains associated with the program are larger using survival models (0.380 years) compared to using general population life expectancy (0.154 years). Using general population life expectancy to estimate the impact of health care policies can overestimate life expectancy but underestimate the impact of policies on life year gains. Using a longer follow-up period improved the accuracy of estimated survival and program impact considerably.

  6. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  7. Parametric and non-parametric species delimitation methods result in the recognition of two new Neotropical woody bamboo species.

    PubMed

    Ruiz-Sanchez, Eduardo

    2015-12-01

    The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The linear transformation model with frailties for the analysis of item response times.

    PubMed

    Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A

    2013-02-01

    The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.

  9. Formation of parametric images using mixed-effects models: a feasibility study.

    PubMed

    Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh

    2016-03-01

    Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter.

    PubMed

    Hoffmann, Stefan A; Wohltat, Christian; Müller, Kristian M; Arndt, Katja M

    2017-01-01

    For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.

  11. Parametric Analysis of Light Truck and Automobile Maintenance

    DOT National Transportation Integrated Search

    1979-05-01

    Utilizing the Automotive and Light Truck Service and Repair Data Base developed in the campanion report, parametric analyses were made of the relationships between maintenance costs, schduled and unschduled, and vehicle parameters; body class, manufa...

  12. Regression analysis on the variation in efficiency frontiers for prevention stage of HIV/AIDS.

    PubMed

    Kamae, Maki S; Kamae, Isao; Cohen, Joshua T; Neumann, Peter J

    2011-01-01

    To investigate how the cost effectiveness of preventing HIV/AIDS varies across possible efficiency frontiers (EFs) by taking into account potentially relevant external factors, such as prevention stage, and how the EFs can be characterized using regression analysis given uncertainty of the QALY-cost estimates. We reviewed cost-effectiveness estimates for the prevention and treatment of HIV/AIDS published from 2002-2007 and catalogued in the Tufts Medical Center Cost-Effectiveness Analysis (CEA) Registry. We constructed efficiency frontier (EF) curves by plotting QALYs against costs, using methods used by the Institute for Quality and Efficiency in Health Care (IQWiG) in Germany. We stratified the QALY-cost ratios by prevention stage, country of study, and payer perspective, and estimated EF equations using log and square-root models. A total of 53 QALY-cost ratios were identified for HIV/AIDS in the Tufts CEA Registry. Plotted ratios stratified by prevention stage were visually grouped into a cluster consisting of primary/secondary prevention measures and a cluster consisting of tertiary measures. Correlation coefficients for each cluster were statistically significant. For each cluster, we derived two EF equations - one based on the log model, and one based on the square-root model. Our findings indicate that stratification of HIV/AIDS interventions by prevention stage can yield distinct EFs, and that the correlation and regression analyses are useful for parametrically characterizing EF equations. Our study has certain limitations, such as the small number of included articles and the potential for study populations to be non-representative of countries of interest. Nonetheless, our approach could help develop a deeper appreciation of cost effectiveness beyond the deterministic approach developed by IQWiG.

  13. The peats of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.; Williamson, K.D. Jr.; Ramirez, O.

    The authors compare the competitive position of peat for energy with coal, oil, and cogenerative systems in gasifiers and solid-fuel boilers. They also explore the possibility for peat use in industry. To identify the major factors, they analyze costs using a Los Alamos levelized cost code, and they study parametric costs, comparing peat production in constant dollars with interest rates and return on investment. They consider costs of processing plant construction, sizes and kinds of boilers, retrofitting, peat drying, and mining methods. They examine mining requirements for Moin, Changuinola, and El Cairo and review wet mining and dewatering methods. Peatmore » can, indeed, be competitive with other energy sources, but this depends on the ratio of fuel costs to boiler costs. This ratio is nearly constant in comparison with cogeneration in a steam-only production system. For grate boilers using Costa Rican high-ash peat, and for small nonautomatic boilers now used in Costa Rica, the authors recommend combustion tests. An appendix contains a preliminary mining plan and cost estimate for the El Cairo peat deposit. 8 refs., 43 figs., 19 tabs.« less

  14. Estimating survival of radio-tagged birds

    USGS Publications Warehouse

    Bunck, C.M.; Pollock, K.H.; Lebreton, J.-D.; North, P.M.

    1993-01-01

    Parametric and nonparametric methods for estimating survival of radio-tagged birds are described. The general assumptions of these methods are reviewed. An estimate based on the assumption of constant survival throughout the period is emphasized in the overview of parametric methods. Two nonparametric methods, the Kaplan-Meier estimate of the survival funcrion and the log rank test, are explained in detail The link between these nonparametric methods and traditional capture-recapture models is discussed aloag with considerations in designing studies that use telemetry techniques to estimate survival.

  15. Comparing Costs of Telephone versus Face-to-Face Extended Care Programs for the Management of Obesity in Rural Settings

    PubMed Central

    Radcliff, Tiffany A.; Bobroff, Linda B.; Lutes, Lesley D.; Durning, Patricia E.; Daniels, Michael J.; Limacher, Marian C.; Janicke, David M.; Martin, A. Daniel; Perri, Michael G.

    2012-01-01

    Background A major challenge following successful weight loss is continuing the behaviors required for long-term weight maintenance. This challenge may be exacerbated in rural areas with limited local support resources. Objective This study describes and compares program costs and cost-effectiveness for 12-month extended care lifestyle maintenance programs following an initial 6-month weight loss program. Design A 1-year prospective controlled randomized clinical trial. Participants/Setting The study included 215 female participants age 50 or older from rural areas who completed an initial 6-month lifestyle program for weight loss. The study was conducted from June 1, 2003, to May 31, 2007. Intervention The intervention was delivered through local Cooperative Extension Service offices in rural Florida. Participants were randomly-assigned to a 12-month extended care program using either individual telephone counseling (n=67), group face-to-face counseling (n=74), or a mail/control group (n=74). Main Outcome Measures Program delivery costs, weight loss, and self-reported health status were directly assessed through questionnaires and program activity logs. Costs were estimated across a range of enrollment sizes to allow inferences beyond the study sample. Statistical Analyses Performed Non-parametric and parametric tests of differences across groups for program outcomes were combined with direct program cost estimates and expected value calculations to determine which scales of operation favored alternative formats for lifestyle maintenance. Results Median weight regain during the intervention year was 1.7 kg for participants in the face-to-face format, 2.1 kg for the telephone format, and 3.1 kg for the mail/control format. For a typical group size of 13 participants, the face-to-face format had higher fixed costs, which translated into higher overall program costs ($420 per participant) when compared to individual telephone counseling ($268 per participant) and control ($226 per participant) programs. While the net weight lost after the 12-month maintenance program was higher for the face-to-face and telephone programs compared to the control group, the average cost per expected kilogram of weight lost was higher for the face-to-face program ($47/kg) compared to the other two programs (approximately $33/kg for telephone and control). Conclusions Both the scale of operations and local demand for programs are important considerations in selecting a delivery format for lifestyle maintenance. In this study, the telephone format had a lower cost, but similar outcomes compared to the face-to-face format. PMID:22818246

  16. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.

    PubMed

    Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien

    2017-01-01

    Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.

  17. Comparison of parametric and bootstrap method in bioequivalence test.

    PubMed

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  18. Comparison of Parametric and Bootstrap Method in Bioequivalence Test

    PubMed Central

    Ahn, Byung-Jin

    2009-01-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption. PMID:19915699

  19. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation.

    PubMed

    Heath, Anna; Manolopoulou, Ioanna; Baio, Gianluca

    2016-10-15

    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the 'cost' of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process (GP) regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional GP, often substantially. We demonstrate that the EVPPI calculated using our method for GP regression is in line with the standard GP regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  20. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula.

    PubMed

    Taubman, Sarah L; Robins, James M; Mittleman, Murray A; Hernán, Miguel A

    2009-12-01

    Estimating the population risk of disease under hypothetical interventions--such as the population risk of coronary heart disease (CHD) were everyone to quit smoking and start exercising or to start exercising if diagnosed with diabetes--may not be possible using standard analytic techniques. The parametric g-formula, which appropriately adjusts for time-varying confounders affected by prior exposures, is especially well suited to estimating effects when the intervention involves multiple factors (joint interventions) or when the intervention involves decisions that depend on the value of evolving time-dependent factors (dynamic interventions). We describe the parametric g-formula, and use it to estimate the effect of various hypothetical lifestyle interventions on the risk of CHD using data from the Nurses' Health Study. Over the period 1982-2002, the 20-year risk of CHD in this cohort was 3.50%. Under a joint intervention of no smoking, increased exercise, improved diet, moderate alcohol consumption and reduced body mass index, the estimated risk was 1.89% (95% confidence interval: 1.46-2.41). We discuss whether the assumptions required for the validity of the parametric g-formula hold in the Nurses' Health Study data. This work represents the first large-scale application of the parametric g-formula in an epidemiologic cohort study.

  1. Fuzzy C-mean clustering on kinetic parameter estimation with generalized linear least square algorithm in SPECT

    NASA Astrophysics Data System (ADS)

    Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan

    2006-03-01

    Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.

  2. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  3. A novel SURE-based criterion for parametric PSF estimation.

    PubMed

    Xue, Feng; Blu, Thierry

    2015-02-01

    We propose an unbiased estimate of a filtered version of the mean squared error--the blur-SURE (Stein's unbiased risk estimate)--as a novel criterion for estimating an unknown point spread function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective functional over a family of Wiener processings. Based on this estimated blur kernel, we then perform nonblind deconvolution using our recently developed algorithm. The SURE-based framework is exemplified with a number of parametric PSF, involving a scaling factor that controls the blur size. A typical example of such parametrization is the Gaussian kernel. The experimental results demonstrate that minimizing the blur-SURE yields highly accurate estimates of the PSF parameters, which also result in a restoration quality that is very similar to the one obtained with the exact PSF, when plugged into our recent multi-Wiener SURE-LET deconvolution algorithm. The highly competitive results obtained outline the great potential of developing more powerful blind deconvolution algorithms based on SURE-like estimates.

  4. A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data

    PubMed Central

    Jiang, Fei; Haneuse, Sebastien

    2016-01-01

    In the analysis of semi-competing risks data interest lies in estimation and inference with respect to a so-called non-terminal event, the observation of which is subject to a terminal event. Multi-state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non-terminal and terminal events specified, in part, by a unit-specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi-competing risks analysis that permit the non-parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi-parametric efficient score under the complete data setting and propose a non-parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small-sample operating characteristics evaluated via simulation. Although the proposed semi-parametric transformation model and non-parametric score imputation method are motivated by the analysis of semi-competing risks data, they are broadly applicable to any analysis of multivariate time-to-event outcomes in which a unit-specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer. PMID:28439147

  5. Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding

    NASA Astrophysics Data System (ADS)

    Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng

    2017-05-01

    Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.

  6. Cost-effectiveness analysis of trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2): positive advanced breast cancer.

    PubMed

    Le, Quang A; Bae, Yuna H; Kang, Jenny H

    2016-10-01

    The EMILIA trial demonstrated that trastuzumab emtansine (T-DM1) significantly increased the median profession-free and overall survival relative to combination therapy with lapatinib plus capecitabine (LC) in patients with HER2-positive advanced breast cancer (ABC) previously treated with trastuzumab and a taxane. We performed an economic analysis of T-DM1 as a second-line therapy compared to LC and monotherapy with capecitabine (C) from both perspectives of the US payer and society. We developed four possible Markov models for ABC to compare the projected life-time costs and outcomes of T-DM1, LC, and C. Model transition probabilities were estimated from the EMILIA and EGF100151 clinical trials. Direct costs of the therapies, major adverse events, laboratory tests, and disease progression, indirect costs (productivity losses due to morbidity and mortality), and health utilities were obtained from published sources. The models used 3 % discount rate and reported in 2015 US dollars. Probabilistic sensitivity analysis and model averaging were used to account for model parametric and structural uncertainty. When incorporating both model parametric and structural uncertainty, the resulting incremental cost-effectiveness ratios (ICER) comparing T-DM1 to LC and T-DM1 to C were $183,828 per quality-adjusted life year (QALY) and $126,001/QALY from the societal perspective, respectively. From the payer's perspective, the ICERs were $220,385/QALY (T-DM1 vs. LC) and $168,355/QALY (T-DM1 vs. C). From both perspectives of the US payer and society, T-DM1 is not cost-effective when comparing to the LC combination therapy at a willingness-to-pay threshold of $150,000/QALY. T-DM1 might have a better chance to be cost-effective compared to capecitabine monotherapy from the US societal perspective.

  7. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  8. Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters.

    PubMed

    Angelis, Georgios I; Thielemans, Kris; Tziortzi, Andri C; Turkheimer, Federico E; Tsoumpas, Charalampos

    2011-07-01

    In dynamic positron emission tomography data many researchers have attempted to exploit kinetic models within reconstruction such that parametric images are estimated directly from measurements. This work studies a direct parametric maximum likelihood expectation maximization algorithm applied to [(18)F]DOPA data using reference-tissue input function. We use a modified version for direct reconstruction with a gradually descending scheme of subsets (i.e. 18-6-1) initialized with the FBP parametric image for faster convergence and higher accuracy. The results compared with analytic reconstructions show quantitative robustness (i.e. minimal bias) and clinical reproducibility within six human acquisitions in the region of clinical interest. Bland-Altman plots for all the studies showed sufficient quantitative agreement between the direct reconstructed parametric maps and the indirect FBP (--0.035x+0.48E--5). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach

    PubMed Central

    Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M.; El Fakhri, Georges

    2013-01-01

    Purpose: Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Methods: Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. Results: At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%–29% and 32%–70% for 50 × 106 and 10 × 106 detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40–50 iterations), while more than 500 iterations were needed for CG. Conclusions: The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method. PMID:24089922

  10. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach.

    PubMed

    Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges

    2013-10-01

    Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.

  11. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  12. Parametric sensitivity study for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  13. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cost component analysis.

    PubMed

    Lörincz, András; Póczos, Barnabás

    2003-06-01

    In optimizations the dimension of the problem may severely, sometimes exponentially increase optimization time. Parametric function approximatiors (FAPPs) have been suggested to overcome this problem. Here, a novel FAPP, cost component analysis (CCA) is described. In CCA, the search space is resampled according to the Boltzmann distribution generated by the energy landscape. That is, CCA converts the optimization problem to density estimation. Structure of the induced density is searched by independent component analysis (ICA). The advantage of CCA is that each independent ICA component can be optimized separately. In turn, (i) CCA intends to partition the original problem into subproblems and (ii) separating (partitioning) the original optimization problem into subproblems may serve interpretation. Most importantly, (iii) CCA may give rise to high gains in optimization time. Numerical simulations illustrate the working of the algorithm.

  15. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement.

    PubMed

    Nadal-Serrano, Jose M; Nadal-Serrano, Adolfo; Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts.

  16. Democratizing science with the aid of parametric design and additive manufacturing: Design and fabrication of a versatile and low-cost optical instrument for scattering measurement

    PubMed Central

    Lopez-Vallejo, Marisa

    2017-01-01

    This paper focuses on the application of rapid prototyping techniques using additive manufacturing in combination with parametric design to create low-cost, yet accurate and reliable instruments. The methodology followed makes it possible to make instruments with a degree of customization until now available only to a narrow audience, helping democratize science. The proposal discusses a holistic design-for-manufacturing approach that comprises advanced modeling techniques, open-source design strategies, and an optimization algorithm using free parametric software for both professional and educational purposes. The design and fabrication of an instrument for scattering measurement is used as a case of study to present the previous concepts. PMID:29112987

  17. Direct adaptive robust tracking control for 6 DOF industrial robot with enhanced accuracy.

    PubMed

    Yin, Xiuxing; Pan, Li

    2018-01-01

    A direct adaptive robust tracking control is proposed for trajectory tracking of 6 DOF industrial robot in the presence of parametric uncertainties, external disturbances and uncertain nonlinearities. The controller is designed based on the dynamic characteristics in the working space of the end-effector of the 6 DOF robot. The controller includes robust control term and model compensation term that is developed directly based on the input reference or desired motion trajectory. A projection-type parametric adaptation law is also designed to compensate for parametric estimation errors for the adaptive robust control. The feasibility and effectiveness of the proposed direct adaptive robust control law and the associated projection-type parametric adaptation law have been comparatively evaluated based on two 6 DOF industrial robots. The test results demonstrate that the proposed control can be employed to better maintain the desired trajectory tracking even in the presence of large parametric uncertainties and external disturbances as compared with PD controller and nonlinear controller. The parametric estimates also eventually converge to the real values along with the convergence of tracking errors, which further validate the effectiveness of the proposed parametric adaption law. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Impact of work-related cancers in Taiwan-Estimation with QALY (quality-adjusted life year) and healthcare costs.

    PubMed

    Lee, Lukas Jyuhn-Hsiarn; Lin, Cheng-Kuan; Hung, Mei-Chuan; Wang, Jung-Der

    2016-12-01

    This study estimates the annual numbers of eight work-related cancers, total losses of quality-adjusted life years (QALYs), and lifetime healthcare expenditures that possibly could be saved by improving occupational health in Taiwan. Three databases were interlinked: the Taiwan Cancer Registry, the National Mortality Registry, and the National Health Insurance Research Database. Annual numbers of work-related cancers were estimated based on attributable fractions (AFs) abstracted from a literature review. The survival functions for eight cancers were estimated and extrapolated to lifetime using a semi-parametric method. A convenience sample of 8846 measurements of patients' quality of life with EQ-5D was collected for utility values and multiplied by survival functions to estimate quality-adjusted life expectancies (QALEs). The loss-of-QALE was obtained by subtracting the QALE of cancer from age- and sex-matched referents simulated from national vital statistics. The lifetime healthcare expenditures were estimated by multiplying the survival probability with mean monthly costs paid by the National Health Insurance for cancer diagnosis and treatment and summing this for the expected lifetime. A total of 3010 males and 726 females with eight work-related cancers were estimated in 2010. Among them, lung cancer ranked first in terms of QALY loss, with an annual total loss-of-QALE of 28,463 QALYs and total lifetime healthcare expenditures of US$36.6 million. Successful prevention of eight work-related cancers would not only avoid the occurrence of 3736 cases of cancer, but would also save more than US$70 million in healthcare costs and 46,750 QALYs for the Taiwan society in 2010.

  19. Three Essays in Energy Economics and Industrial Organization, with Applications to Electricity and Distribution Networks

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Electricity industries are experiencing upward cost pressures in many parts of the world. Chapter 1 of this thesis studies the production technology of electricity distributors. Although production and cost functions are mathematical duals, practitioners typically estimate only one or the other. This chapter proposes an approach for joint estimation of production and costs. Combining such quantity and price data has the effect of adding statistical information without introducing additional parameters into the model. We define a GMM estimator that produces internally consistent parameter estimates for both the production function and the cost function. We consider a multi-output framework, and show how to account for the presence of certain types of simultaneity and measurement error. The methodology is applied to data on 73 Ontario distributors for the period 2002-2012. As expected, the joint model results in a substantial improvement in the precision of parameter estimates. Chapter 2 focuses on productivity trends in electricity distribution. We apply two methodologies for estimating productivity growth . an index based approach, and an econometric cost based approach . to our data on the 73 Ontario distributors for the period 2002 to 2012. The resulting productivity growth estimates are approximately 1% per year, suggesting a reversal of the positive estimates that have generally been reported in previous periods. We implement flexible semi-parametric variants to assess the robustness of these conclusions and discuss the use of such statistical analyses for calibrating productivity and relative efficiencies within a price-cap framework. In chapter 3, I turn to the historically important problem of vertical contractual relations. While the existing literature has established that resale price maintenance is sufficient to coordinate the distribution network of a manufacturer, this chapter asks whether such vertical restraints are necessary. Specifically, I study the vertical contracting problem between an upstream manufacturer and its downstream distributors in a setting where spot market contracts fail, but resale price maintenance cannot be appealed to due to legal prohibition. I show that a bonus scheme based on retail revenues is sufficient to provide incentives to decentralized retailers to elicit the correct levels of both price and service.

  20. Three Essays in Energy Economics and Industrial Organization, with Applications to Electricity and Distribution Networks

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Electricity industries are experiencing upward cost pressures in many parts of the world. Chapter 1 of this thesis studies the production technology of electricity distributors. Although production and cost functions are mathematical duals, practitioners typically estimate only one or the other. This chapter proposes an approach for joint estimation of production and costs. Combining such quantity and price data has the effect of adding statistical information without introducing additional parameters into the model. We define a GMM estimator that produces internally consistent parameter estimates for both the production function and the cost function. We consider a multi-output framework, and show how to account for the presence of certain types of simultaneity and measurement error. The methodology is applied to data on 73 Ontario distributors for the period 2002-2012. As expected, the joint model results in a substantial improvement in the precision of parameter estimates. Chapter 2 focuses on productivity trends in electricity distribution. We apply two methodologies for estimating productivity growth---an index based approach, and an econometric cost based approach---to our data on the 73 Ontario distributors for the period 2002 to 2012. The resulting productivity growth estimates are approximately -1% per year, suggesting a reversal of the positive estimates that have generally been reported in previous periods. We implement flexible semi-parametric variants to assess the robustness of these conclusions and discuss the use of such statistical analyses for calibrating productivity and relative efficiencies within a price-cap framework. In chapter 3, I turn to the historically important problem of vertical contractual relations. While the existing literature has established that resale price maintenance is sufficient to coordinate the distribution network of a manufacturer, this chapter asks whether such vertical restraints are necessary. Specifically, I study the vertical contracting problem between an upstream manufacturer and its downstream distributors in a setting where spot market contracts fail, but resale price maintenance cannot be appealed to due to legal prohibition. I show that a bonus scheme based on retail revenues is sufficient to provide incentives to decentralized retailers to elicit the correct levels of both price and service.

  1. An Empirical Model Building Criterion Based on Prediction with Applications in Parametric Cost Estimation.

    DTIC Science & Technology

    1980-08-01

    varia- ble is denoted by 7, the total sum of squares of deviations from that mean is defined by n - SSTO - (-Y) (2.6) iul and the regression sum of...squares by SSR - SSTO - SSE (2.7) II 14 A selection criterion is a rule according to which a certain model out of the 2p possible models is labeled "best...dis- cussed next. 1. The R2 Criterion The coefficient of determination is defined by R2 . 1 - SSE/ SSTO . (2.8) It is clear that R is the proportion of

  2. A Parametric Regression of the Cost of Base Realignment Action (COBRA) Model

    DTIC Science & Technology

    1993-09-20

    Douglas D. Hardman , Captain, USAF Michael S. Nelson, Captain, USAF AFIT/GEE/ENS/93S-03 93 P’ 8 143 Approved for public release, distribution unlimited 93... Hardman CLASS: GEE 93S Captain Michael Nelson TITLE: A Parametric Regression of the Cost of Base Realignment Action (COBRA) Model DEFENSE DATE: 20...Science in Engineering and Environmental Management Douglas D. Hardman , B.S.E.E. Michael S. Nelson, B.S.C.E Captain, USAF Captain, USAF September 1993

  3. Benchmark dose analysis via nonparametric regression modeling

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057

  4. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  5. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor withmore » H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.« less

  6. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

    PubMed

    Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C

    2002-03-01

    Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant negative influences of employment status and partnership on costs. All three models provided a R2 of about.31. The Residuals of the linear OLS model revealed significant deviances from normality and homoscedasticity. The residuals of the log-transformed model are normally distributed but still heteroscedastic. The linear OLS model provided the lowest prediction error and the best forecast of the dependent cost variable. The log-transformed model provided the lowest RMSE if the heteroscedastic bias correction was used. The RMSE of the GLM with a log link and a gamma distribution was higher than those of the linear OLS model and the log-transformed OLS model. The difference between the RMSE of the linear OLS model and that of the log-transformed OLS model without bias correction was significant at the 95% level. As result of the cross-validation procedure, the linear OLS model provided the lowest RMSE followed by the log-transformed OLS model with a heteroscedastic bias correction. The GLM showed the weakest model fit again. None of the differences between the RMSE resulting form the cross- validation procedure were found to be significant. The comparison of the fit indices of the different regression models revealed that the linear OLS model provided a better fit than the log-transformed model and the GLM, but the differences between the models RMSE were not significant. Due to the small number of cases in the study the lack of significance does not sufficiently proof that the differences between the RSME for the different models are zero and the superiority of the linear OLS model can not be generalized. The lack of significant differences among the alternative estimators may reflect a lack of sample size adequate to detect important differences among the estimators employed. Further studies with larger case number are necessary to confirm the results. Specification of an adequate regression models requires a careful examination of the characteristics of the data. Estimation of standard errors and confidence intervals by nonparametric methods which are robust against deviations from the normal distribution and the homoscedasticity of residuals are suitable alternatives to the transformation of the skew distributed dependent variable. Further studies with more adequate case numbers are needed to confirm the results.

  7. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    NASA Technical Reports Server (NTRS)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  8. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    NASA Astrophysics Data System (ADS)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  9. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    PubMed

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  10. Cost-minimization analysis of panitumumab compared with cetuximab for first-line treatment of patients with wild-type RAS metastatic colorectal cancer.

    PubMed

    Graham, Christopher N; Hechmati, Guy; Fakih, Marwan G; Knox, Hediyyih N; Maglinte, Gregory A; Hjelmgren, Jonas; Barber, Beth; Schwartzberg, Lee S

    2015-01-01

    To compare the costs of first-line treatment with panitumumab + FOLFOX in comparison to cetuximab + FOLFIRI among patients with wild-type (WT) RAS metastatic colorectal cancer (mCRC) in the US. A cost-minimization model was developed assuming similar treatment efficacy between both regimens. The model estimated the costs associated with drug acquisition, treatment administration frequency (every 2 weeks for panitumumab, weekly for cetuximab), and incidence of infusion reactions. Average anti-EGFR doses were calculated from the ASPECCT clinical trial, and average doses of chemotherapy regimens were based on product labels. Using the medical component of the consumer price index, adverse event costs were inflated to 2014 US dollars, and all other costs were reported in 2014 US dollars. The time horizon for the model was based on average first-line progression-free survival of a WT RAS patient, estimated from parametric survival analyses of PRIME clinical trial data. Relative to cetuximab + FOLFIRI in the first-line treatment of WT RAS mCRC, the cost-minimization model demonstrated lower projected drug acquisition, administration, and adverse event costs for patients who received panitumumab + FOLFOX. The overall cost per patient for first-line treatment was $179,219 for panitumumab + FOLFOX vs $202,344 for cetuximab + FOLFIRI, resulting in a per-patient saving of $23,125 (11.4%) in favor of panitumumab + FOLFOX. From a value perspective, the cost-minimization model supports panitumumab + FOLFOX instead of cetuximab + FOLFIRI as the preferred first-line treatment of WT RAS mCRC patients requiring systemic therapy.

  11. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less

  12. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  13. On non-parametric maximum likelihood estimation of the bivariate survivor function.

    PubMed

    Prentice, R L

    The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.

  14. Quantitative estimation of source complexity in tsunami-source inversion

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Cummins, Phil R.; Hawkins, Rhys; Jakir Hossen, M.

    2016-04-01

    This work analyses tsunami waveforms to infer the spatiotemporal evolution of sea-surface displacement (the tsunami source) caused by earthquakes or other sources. Since the method considers sea-surface displacement directly, no assumptions about the fault or seafloor deformation are required. While this approach has no ability to study seismic aspects of rupture, it greatly simplifies the tsunami source estimation, making it much less dependent on subjective fault and deformation assumptions. This results in a more accurate sea-surface displacement evolution in the source region. The spatial discretization is by wavelet decomposition represented by a trans-D Bayesian tree structure. Wavelet coefficients are sampled by a reversible jump algorithm and additional coefficients are only included when required by the data. Therefore, source complexity is consistent with data information (parsimonious) and the method can adapt locally in both time and space. Since the source complexity is unknown and locally adapts, no regularization is required, resulting in more meaningful displacement magnitudes. By estimating displacement uncertainties in a Bayesian framework we can study the effect of parametrization choice on the source estimate. Uncertainty arises from observation errors and limitations in the parametrization to fully explain the observations. As a result, parametrization choice is closely related to uncertainty estimation and profoundly affects inversion results. Therefore, parametrization selection should be included in the inference process. Our inversion method is based on Bayesian model selection, a process which includes the choice of parametrization in the inference process and makes it data driven. A trans-dimensional (trans-D) model for the spatio-temporal discretization is applied here to include model selection naturally and efficiently in the inference by sampling probabilistically over parameterizations. The trans-D process results in better uncertainty estimates since the parametrization adapts parsimoniously (in both time and space) according to the local data resolving power and the uncertainty about the parametrization choice is included in the uncertainty estimates. We apply the method to the tsunami waveforms recorded for the great 2011 Japan tsunami. All data are recorded on high-quality sensors (ocean-bottom pressure sensors, GPS gauges, and DART buoys). The sea-surface Green's functions are computed by JAGURS and include linear dispersion effects. By treating the noise level at each gauge as unknown, individual gauge contributions to the source estimate are appropriately and objectively weighted. The results show previously unreported detail of the source, quantify uncertainty spatially, and produce excellent data fits. The source estimate shows an elongated peak trench-ward from the hypo centre that closely follows the trench, indicating significant sea-floor deformation near the trench. Also notable is a bi-modal (negative to positive) displacement feature in the northern part of the source near the trench. The feature has ~2 m amplitude and is clearly resolved by the data with low uncertainties.

  15. A probabilistic method for computing quantitative risk indexes from medical injuries compensation claims.

    PubMed

    Dalle Carbonare, S; Folli, F; Patrini, E; Giudici, P; Bellazzi, R

    2013-01-01

    The increasing demand of health care services and the complexity of health care delivery require Health Care Organizations (HCOs) to approach clinical risk management through proper methods and tools. An important aspect of risk management is to exploit the analysis of medical injuries compensation claims in order to reduce adverse events and, at the same time, to optimize the costs of health insurance policies. This work provides a probabilistic method to estimate the risk level of a HCO by computing quantitative risk indexes from medical injury compensation claims. Our method is based on the estimate of a loss probability distribution from compensation claims data through parametric and non-parametric modeling and Monte Carlo simulations. The loss distribution can be estimated both on the whole dataset and, thanks to the application of a Bayesian hierarchical model, on stratified data. The approach allows to quantitatively assessing the risk structure of the HCO by analyzing the loss distribution and deriving its expected value and percentiles. We applied the proposed method to 206 cases of injuries with compensation requests collected from 1999 to the first semester of 2007 by the HCO of Lodi, in the Northern part of Italy. We computed the risk indexes taking into account the different clinical departments and the different hospitals involved. The approach proved to be useful to understand the HCO risk structure in terms of frequency, severity, expected and unexpected loss related to adverse events.

  16. Parametric study of modern airship productivity

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Flaig, K.

    1980-01-01

    A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.

  17. Prevalence Incidence Mixture Models

    Cancer.gov

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  18. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  19. Climate change and vector-borne diseases: an economic impact analysis of malaria in Africa.

    PubMed

    Egbendewe-Mondzozo, Aklesso; Musumba, Mark; McCarl, Bruce A; Wu, Ximing

    2011-03-01

    A semi-parametric econometric model is used to study the relationship between malaria cases and climatic factors in 25 African countries. Results show that a marginal change in temperature and precipitation levels would lead to a significant change in the number of malaria cases for most countries by the end of the century. Consistent with the existing biophysical malaria model results, the projected effects of climate change are mixed. Our model projects that some countries will see an increase in malaria cases but others will see a decrease. We estimate projected malaria inpatient and outpatient treatment costs as a proportion of annual 2000 health expenditures per 1,000 people. We found that even under minimal climate change scenario, some countries may see their inpatient treatment cost of malaria increase more than 20%.

  20. Modeling integrated water user decisions in intermittent supply systems

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.; Tarawneh, Tarek; Abdel-Khaleq, Rania; Lund, Jay R.

    2007-07-01

    We apply systems analysis to estimate household water use in an intermittent supply system considering numerous interdependent water user behaviors. Some 39 household actions include conservation; improving local storage or water quality; and accessing sources having variable costs, availabilities, reliabilities, and qualities. A stochastic optimization program with recourse decisions identifies the infrastructure investments and short-term coping actions a customer can adopt to cost-effectively respond to a probability distribution of piped water availability. Monte Carlo simulations show effects for a population of customers. Model calibration reproduces the distribution of billed residential water use in Amman, Jordan. Parametric analyses suggest economic and demand responses to increased availability and alternative pricing. It also suggests potential market penetration for conservation actions, associated water savings, and subsidies to entice further adoption. We discuss new insights to size, target, and finance conservation.

  1. Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package

    PubMed Central

    Decker, Anna L.; Hubbard, Alan; Crespi, Catherine M.; Seto, Edmund Y.W.; Wang, May C.

    2015-01-01

    While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multi-variable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice. PMID:26046009

  2. Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations

    NASA Astrophysics Data System (ADS)

    Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying

    2010-09-01

    Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).

  3. A convolution model for computing the far-field directivity of a parametric loudspeaker array.

    PubMed

    Shi, Chuang; Kajikawa, Yoshinobu

    2015-02-01

    This paper describes a method to compute the far-field directivity of a parametric loudspeaker array (PLA), whereby the steerable parametric loudspeaker can be implemented when phased array techniques are applied. The convolution of the product directivity and the Westervelt's directivity is suggested, substituting for the past practice of using the product directivity only. Computed directivity of a PLA using the proposed convolution model achieves significant improvement in agreement to measured directivity at a negligible computational cost.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization.more » The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.« less

  5. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    ERIC Educational Resources Information Center

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 11: Advanced steam systems. [energy conversion efficiency for electric power plants using steam

    NASA Technical Reports Server (NTRS)

    Wolfe, R. W.

    1976-01-01

    A parametric analysis was made of three types of advanced steam power plants that use coal in order to have a comparison of the cost of electricity produced by them a wide range of primary performance variables. Increasing the temperature and pressure of the steam above current industry levels resulted in increased energy costs because the cost of capital increased more than the fuel cost decreased. While the three plant types produced comparable energy cost levels, the pressurized fluidized bed boiler plant produced the lowest energy cost by the small margin of 0.69 mills/MJ (2.5 mills/kWh). It is recommended that this plant be designed in greater detail to determine its cost and performance more accurately than was possible in a broad parametric study and to ascertain problem areas which will require development effort. Also considered are pollution control measures such as scrubbers and separates for particulate emissions from stack gases.

  7. Estimation and confidence intervals for empirical mixing distributions

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1995-01-01

    Questions regarding collections of parameter estimates can frequently be expressed in terms of an empirical mixing distribution (EMD). This report discusses empirical Bayes estimation of an EMD, with emphasis on the construction of interval estimates. Estimation of the EMD is accomplished by substitution of estimates of prior parameters in the posterior mean of the EMD. This procedure is examined in a parametric model (the normal-normal mixture) and in a semi-parametric model. In both cases, the empirical Bayes bootstrap of Laird and Louis (1987, Journal of the American Statistical Association 82, 739-757) is used to assess the variability of the estimated EMD arising from the estimation of prior parameters. The proposed methods are applied to a meta-analysis of population trend estimates for groups of birds.

  8. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  9. Study of wrap-rib antenna design

    NASA Technical Reports Server (NTRS)

    Wade, W. D.; Sinha, A.; Singh, R.

    1979-01-01

    The results of a parametric design study conducted to develop the significant characteristics and technology limitations of space deployable antenna systems with aperture sizes ranging from 50 up to 300 m and F/D ratios between 0.5 and 3.0 are presented. Wrap/rib type reflectors of both the prime and offset fed geometry and associated feed support structures were considered. The significant constraints investigated as limitations on achievable aperture were inherent manufacturability, orbit dynamic and thermal stability, antenna weight, and antenna stowed volume. A data base, resulting in the defined maximum achievable aperture size as a function of diameter, frequency and estimated cost, was formed.

  10. The cost of colorectal cancer according to the TNM stage.

    PubMed

    Mar, Javier; Errasti, Jose; Soto-Gordoa, Myriam; Mar-Barrutia, Gilen; Martinez-Llorente, José Miguel; Domínguez, Severina; García-Albás, Juan José; Arrospide, Arantzazu

    2017-02-01

    The aim of this study was to measure the cost of treatment of colorectal cancer in the Basque public health system according to the clinical stage. We retrospectively collected demographic data, clinical data and resource use of a sample of 529 patients. For stagesi toiii the initial and follow-up costs were measured. The calculation of cost for stageiv combined generalized linear models to relate the cost to the duration of follow-up based on parametric survival analysis. Unit costs were obtained from the analytical accounting system of the Basque Health Service. The sample included 110 patients with stagei, 171 with stageii, 158 with stageiii and 90 with stageiv colorectal cancer. The initial total cost per patient was 8,644€ for stagei, 12,675€ for stageii and 13,034€ for stageiii. The main component was hospitalization cost. Calculated by extrapolation for stageiv mean survival was 1.27years. Its average annual cost was 22,403€, and 24,509€ to death. The total annual cost for colorectal cancer extrapolated to the whole Spanish health system was 623.9million€. The economic burden of colorectal cancer is important and should be taken into account in decision-making. The combination of generalized linear models and survival analysis allows estimation of the cost of metastatic stage. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Da; Ma, Yuan-Chen; Liu, Li; Kang, Jie; Ma, Zhi-Sai; Yu, Lei

    2018-01-01

    Identification of time-varying modal parameters contributes to the structural health monitoring, fault detection, vibration control, etc. of the operational time-varying structural systems. However, it is a challenging task because there is not more information for the identification of the time-varying systems than that of the time-invariant systems. This paper presents a vector time-dependent autoregressive model and least squares support vector machine based modal parameter estimator for linear time-varying structural systems in case of output-only measurements. To reduce the computational cost, a Wendland's compactly supported radial basis function is used to achieve the sparsity of the Gram matrix. A Gamma-test-based non-parametric approach of selecting the regularization factor is adapted for the proposed estimator to replace the time-consuming n-fold cross validation. A series of numerical examples have illustrated the advantages of the proposed modal parameter estimator on the suppression of the overestimate and the short data. A laboratory experiment has further validated the proposed estimator.

  12. A framework for multivariate data-based at-site flood frequency analysis: Essentiality of the conjugal application of parametric and nonparametric approaches

    NASA Astrophysics Data System (ADS)

    Vittal, H.; Singh, Jitendra; Kumar, Pankaj; Karmakar, Subhankar

    2015-06-01

    In watershed management, flood frequency analysis (FFA) is performed to quantify the risk of flooding at different spatial locations and also to provide guidelines for determining the design periods of flood control structures. The traditional FFA was extensively performed by considering univariate scenario for both at-site and regional estimation of return periods. However, due to inherent mutual dependence of the flood variables or characteristics [i.e., peak flow (P), flood volume (V) and flood duration (D), which are random in nature], analysis has been further extended to multivariate scenario, with some restrictive assumptions. To overcome the assumption of same family of marginal density function for all flood variables, the concept of copula has been introduced. Although, the advancement from univariate to multivariate analyses drew formidable attention to the FFA research community, the basic limitation was that the analyses were performed with the implementation of only parametric family of distributions. The aim of the current study is to emphasize the importance of nonparametric approaches in the field of multivariate FFA; however, the nonparametric distribution may not always be a good-fit and capable of replacing well-implemented multivariate parametric and multivariate copula-based applications. Nevertheless, the potential of obtaining best-fit using nonparametric distributions might be improved because such distributions reproduce the sample's characteristics, resulting in more accurate estimations of the multivariate return period. Hence, the current study shows the importance of conjugating multivariate nonparametric approach with multivariate parametric and copula-based approaches, thereby results in a comprehensive framework for complete at-site FFA. Although the proposed framework is designed for at-site FFA, this approach can also be applied to regional FFA because regional estimations ideally include at-site estimations. The framework is based on the following steps: (i) comprehensive trend analysis to assess nonstationarity in the observed data; (ii) selection of the best-fit univariate marginal distribution with a comprehensive set of parametric and nonparametric distributions for the flood variables; (iii) multivariate frequency analyses with parametric, copula-based and nonparametric approaches; and (iv) estimation of joint and various conditional return periods. The proposed framework for frequency analysis is demonstrated using 110 years of observed data from Allegheny River at Salamanca, New York, USA. The results show that for both univariate and multivariate cases, the nonparametric Gaussian kernel provides the best estimate. Further, we perform FFA for twenty major rivers over continental USA, which shows for seven rivers, all the flood variables followed nonparametric Gaussian kernel; whereas for other rivers, parametric distributions provide the best-fit either for one or two flood variables. Thus the summary of results shows that the nonparametric method cannot substitute the parametric and copula-based approaches, but should be considered during any at-site FFA to provide the broadest choices for best estimation of the flood return periods.

  13. Protocol for economic evaluation alongside a cluster-randomised controlled trial of a psychoeducational intervention for the primary prevention of postnatal mental health problems in first-time mothers.

    PubMed

    Ride, Jemimah; Rowe, Heather; Wynter, Karen; Fisher, Jane; Lorgelly, Paula

    2014-10-03

    Postnatal mental health problems, which are an international public health priority, are a suitable target for preventive approaches. The financial burden of these disorders is borne across sectors in society, including health, early childhood, education, justice and the workforce. This paper describes the planned economic evaluation of What Were We Thinking, a psychoeducational intervention for the prevention of postnatal mental health problems in first-time mothers. The evaluation will be conducted alongside a cluster-randomised controlled trial of its clinical effectiveness. Cost-effectiveness and costs-utility analyses will be conducted, resulting in estimates of cost per percentage point reduction in combined 30-day prevalence of depression, anxiety and adjustment disorders and cost per quality-adjusted life year gained. Uncertainty surrounding these estimates will be addressed using non-parametric bootstrapping and represented using cost-effectiveness acceptability curves. Additional cost analyses relevant for implementation will also be conducted. Modelling will be employed to estimate longer term cost-effectiveness if the intervention is found to be clinically effective during the period of the trial. Approval to conduct the study was granted by the Southern Health (now Monash Health) Human Research Ethics Committee (24 April 2013; 11388B). The study was registered with the Monash University Human Research Ethics Committee (30 April 2013; CF12/1022-2012000474). The Education and Policy Research Committee, Victorian Government Department of Education and Early Childhood Development approved the study (22 March 2012; 2012_001472). Use of the EuroQol was registered with the EuroQol Group; 16 August 2012. The trial was registered with the Australian New Zealand Clinical Trials Registry on 7 May 2012 (registration number ACTRN12613000506796). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Latent component-based gear tooth fault detection filter using advanced parametric modeling

    NASA Astrophysics Data System (ADS)

    Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.

    2009-10-01

    In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.

  15. Parametric Model Based On Imputations Techniques for Partly Interval Censored Data

    NASA Astrophysics Data System (ADS)

    Zyoud, Abdallah; Elfaki, F. A. M.; Hrairi, Meftah

    2017-12-01

    The term ‘survival analysis’ has been used in a broad sense to describe collection of statistical procedures for data analysis. In this case, outcome variable of interest is time until an event occurs where the time to failure of a specific experimental unit might be censored which can be right, left, interval, and Partly Interval Censored data (PIC). In this paper, analysis of this model was conducted based on parametric Cox model via PIC data. Moreover, several imputation techniques were used, which are: midpoint, left & right point, random, mean, and median. Maximum likelihood estimate was considered to obtain the estimated survival function. These estimations were then compared with the existing model, such as: Turnbull and Cox model based on clinical trial data (breast cancer data), for which it showed the validity of the proposed model. Result of data set indicated that the parametric of Cox model proved to be more superior in terms of estimation of survival functions, likelihood ratio tests, and their P-values. Moreover, based on imputation techniques; the midpoint, random, mean, and median showed better results with respect to the estimation of survival function.

  16. The costs of transit fare prepayment programs : a parametric cost analysis.

    DOT National Transportation Integrated Search

    Despite the renewed interest in transit fare prepayment plans over the past : 10 years, few transit managers have a clear idea of how much it costs to operate : and maintain a fare prepayment program. This report provides transit managers : with the ...

  17. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  18. A Frequency-Domain Multipath Parameter Estimation and Mitigation Method for BOC-Modulated GNSS Signals

    PubMed Central

    Sun, Chao; Feng, Wenquan; Du, Songlin

    2018-01-01

    As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589

  19. Estimation of Life-Year Loss and Lifetime Costs for Different Stages of Colon Adenocarcinoma in Taiwan

    PubMed Central

    Chen, Po-Chuan; Lee, Jenq-Chang; Wang, Jung-Der

    2015-01-01

    Backgrounds and aims Life-expectancy of colon cancer patients cannot be accurately answered due to the lack of both large datasets and long-term follow-ups, which impedes accurate estimation of lifetime cost to treat colon cancer patients. In this study, we applied a method to estimate life-expectancy of colon cancer patients in Taiwan and calculate the lifetime costs by different stages and age groups. Methods A total of 17,526 cases with pathologically verified colon adenocarcinoma between 2002 and 2009 were extracted from Taiwan Cancer Registry database for analysis. All patients were followed-up until the end of 2011. Life-expectancy, expected-years-of-life-lost and lifetime costs were estimated, using a semi-parametric survival extrapolation method and borrowing information from life tables of vital statistics. Results Patients with more advanced stages of colon cancer were generally younger and less co-morbid with major chronic diseases than those with stages I and II. The LE of stage I was not significantly different from that of the age- and sex-matched general population, whereas those of stages II, III, and IV colon cancer patients after diagnosis were 16.57±0.07, 13.35±0.07, and 4.05±0.05 years, respectively; the corresponding expected-years-of-life-lost were 1.28±0.07, 5.93±0.07 and 16.42±0.06 years, significantly shorter than the general population after accounting for lead time bias. Besides, the lifetime cost of managing stage II colon cancer patients would be US $8,416±1939, 14,334±1,755, and 21,837±1,698, respectively, indicating a big saving for early diagnosis and treatment after stratification for age and sex. Conclusions Treating colon cancer at younger age and earlier stage saves more life-years and healthcare costs. Future studies are indicated to apply these quantitative results into the cost-effectiveness evaluation of screening program for colon cancers. PMID:26207912

  20. Cost-effectiveness analysis of panitumumab plus mFOLFOX6 compared with bevacizumab plus mFOLFOX6 for first-line treatment of patients with wild-type RAS metastatic colorectal cancer.

    PubMed

    Graham, Christopher N; Hechmati, Guy; Hjelmgren, Jonas; de Liège, Frédérique; Lanier, Julie; Knox, Hediyyih; Barber, Beth

    2014-11-01

    To investigate the cost-effectiveness of panitumumab plus mFOLFOX6 (oxaliplatin, 5-fluorouracil and leucovorin) compared with bevacizumab plus mFOLFOX6 in first-line treatment of patients with wild-type RAS metastatic colorectal cancer (mCRC). A semi-Markov model was constructed from a French health collective perspective, with health states related to first-line treatment (progression-free), disease progression with and without subsequent active treatment, resection of metastases, disease-free after successful resection and death. Parametric survival analyses of patient-level progression-free and overall survival data from the only head-to-head clinical trial of panitumumab and bevacizumab (PEAK) were performed to estimate transitions to disease progression and death. Additional data from PEAK informed the amount of each drug consumed, duration of therapy, subsequent therapy use, and toxicities related to mCRC treatment. Literature and French public data sources were used to estimate unit costs associated with treatment and duration of subsequent active therapies. Utility weights were calculated from patient-level data from panitumumab trials in the first-, second- and third-line settings. A life-time perspective was applied. Scenario, one-way, and probabilistic sensitivity analyses were performed. Based on a head-to-head clinical trial that demonstrates better efficacy outcomes for patients with wild-type RAS mCRC who receive panitumumab plus mFOLFOX6 versus bevacizumab plus mFOLFOX6, the incremental cost per life-year gained was estimated to be €26,918, and the incremental cost per quality-adjusted life year (QALY) gained was estimated to be €36,577. Sensitivity analyses indicate the model is robust to alternative parameters and assumptions. The incremental cost per QALY gained indicates that panitumumab plus mFOLFOX6 represents good value for money in comparison to bevacizumab plus mFOLFOX6 and, with a willingness-to-pay ranging from €40,000 to €60,000, can be considered cost-effective in first-line treatment of patients with wild-type RAS mCRC. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Alternative evaluation metrics for risk adjustment methods.

    PubMed

    Park, Sungchul; Basu, Anirban

    2018-06-01

    Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Turboprop cargo aircraft systems study

    NASA Technical Reports Server (NTRS)

    Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.

    1981-01-01

    The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.

  3. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    NASA Astrophysics Data System (ADS)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  4. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  5. Determining the multi-scale hedge ratios of stock index futures using the lower partial moments method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Zhou, Haigang; Zhao, Shaoquan

    2017-01-01

    This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.

  6. Cost comparison between home telemonitoring and usual care of older adults: a randomized trial (Tele-ERA).

    PubMed

    Upatising, Benjavan; Wood, Douglas L; Kremers, Walter K; Christ, Sharon L; Yih, Yuehwern; Hanson, Gregory J; Takahashi, Paul Y

    2015-01-01

    From 1992 to 2008, older adults in the United States incurred more healthcare expense per capita than any other age group. Home telemonitoring has emerged as a potential solution to reduce these costs, but evidence is mixed. The primary aim of the study was to evaluate whether the mean difference in total direct medical cost consequence between older adults receiving additional home telemonitoring care (TELE) (n=102) and those receiving usual medical care (UC) (n=103) were significant. Inpatient, outpatient, emergency department, decedents, survivors, and 30-day readmission costs were evaluated as secondary aim. Multivariate generalized linear models (GLMs) and parametric bootstrapping method were used to model cost and to determine significance of the cost differences. We also compared the differences in arithmetic mean costs. From the conditional GLMs, the estimated mean cost differences (TELE versus UC) for total, inpatient, outpatient, and ED were -$9,537 (p=0.068), -$8,482 (p =0.098), -$1,160 (p=0.177), and $106 (p=0.619), respectively. Mean postenrollment cost was 11% lower than the prior year for TELE versus 22% higher for UC. The ratio of mean cost for decedents to survivors was 2.1:1 (TELE) versus 12.7:1 (UC). There were no significant differences in the mean total cost between the two treatment groups. The TELE group had less variability in cost of care, lower decedents to survivors cost ratio, and lower total 30-day readmission cost than the UC group.

  7. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  8. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  9. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  10. Nonparametric functional data estimation applied to ozone data: prediction and extreme value analysis.

    PubMed

    Quintela-del-Río, Alejandro; Francisco-Fernández, Mario

    2011-02-01

    The study of extreme values and prediction of ozone data is an important topic of research when dealing with environmental problems. Classical extreme value theory is usually used in air-pollution studies. It consists in fitting a parametric generalised extreme value (GEV) distribution to a data set of extreme values, and using the estimated distribution to compute return levels and other quantities of interest. Here, we propose to estimate these values using nonparametric functional data methods. Functional data analysis is a relatively new statistical methodology that generally deals with data consisting of curves or multi-dimensional variables. In this paper, we use this technique, jointly with nonparametric curve estimation, to provide alternatives to the usual parametric statistical tools. The nonparametric estimators are applied to real samples of maximum ozone values obtained from several monitoring stations belonging to the Automatic Urban and Rural Network (AURN) in the UK. The results show that nonparametric estimators work satisfactorily, outperforming the behaviour of classical parametric estimators. Functional data analysis is also used to predict stratospheric ozone concentrations. We show an application, using the data set of mean monthly ozone concentrations in Arosa, Switzerland, and the results are compared with those obtained by classical time series (ARIMA) analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Time-Varying Delay Estimation Applied to the Surface Electromyography Signals Using the Parametric Approach

    NASA Astrophysics Data System (ADS)

    Luu, Gia Thien; Boualem, Abdelbassit; Duy, Tran Trung; Ravier, Philippe; Butteli, Olivier

    Muscle Fiber Conduction Velocity (MFCV) can be calculated from the time delay between the surface electromyographic (sEMG) signals recorded by electrodes aligned with the fiber direction. In order to take into account the non-stationarity during the dynamic contraction (the most daily life situation) of the data, the developed methods have to consider that the MFCV changes over time, which induces time-varying delays and the data is non-stationary (change of Power Spectral Density (PSD)). In this paper, the problem of TVD estimation is considered using a parametric method. First, the polynomial model of TVD has been proposed. Then, the TVD model parameters are estimated by using a maximum likelihood estimation (MLE) strategy solved by a deterministic optimization technique (Newton) and stochastic optimization technique, called simulated annealing (SA). The performance of the two techniques is also compared. We also derive two appropriate Cramer-Rao Lower Bounds (CRLB) for the estimated TVD model parameters and for the TVD waveforms. Monte-Carlo simulation results show that the estimation of both the model parameters and the TVD function is unbiased and that the variance obtained is close to the derived CRBs. A comparison with non-parametric approaches of the TVD estimation is also presented and shows the superiority of the method proposed.

  12. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  13. On the validation of cloud parametrization schemes in numerical atmospheric models with satellite data from ISCCP

    NASA Astrophysics Data System (ADS)

    Meinke, I.

    2003-04-01

    A new method is presented to validate cloud parametrization schemes in numerical atmospheric models with satellite data of scanning radiometers. This method is applied to the regional atmospheric model HRM (High Resolution Regional Model) using satellite data from ISCCP (International Satellite Cloud Climatology Project). Due to the limited reliability of former validations there has been a need for developing a new validation method: Up to now differences between simulated and measured cloud properties are mostly declared as deficiencies of the cloud parametrization scheme without further investigation. Other uncertainties connected with the model or with the measurements have not been taken into account. Therefore changes in the cloud parametrization scheme based on such kind of validations might not be realistic. The new method estimates uncertainties of the model and the measurements. Criteria for comparisons of simulated and measured data are derived to localize deficiencies in the model. For a better specification of these deficiencies simulated clouds are classified regarding their parametrization. With this classification the localized model deficiencies are allocated to a certain parametrization scheme. Applying this method to the regional model HRM the quality of forecasting cloud properties is estimated in detail. The overestimation of simulated clouds in low emissivity heights especially during the night is localized as model deficiency. This is caused by subscale cloudiness. As the simulation of subscale clouds in the regional model HRM is described by a relative humidity parametrization these deficiencies are connected with this parameterization.

  14. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification of a parametric, empirical, or process simulation method or model for calculating substitute data... available process simulation methods and models. 1.2Petition Requirements Continuously monitor, determine... desulfurization, a corresponding empirical correlation or process simulation parametric method using appropriate...

  15. NASA's X-Plane Database and Parametric Cost Model v 2.0

    NASA Technical Reports Server (NTRS)

    Sterk, Steve; Ogluin, Anthony; Greenberg, Marc

    2016-01-01

    The NASA Armstrong Cost Engineering Team with technical assistance from NASA HQ (SID)has gone through the full process in developing new CERs from Version #1 to Version #2 CERs. We took a step backward and reexamined all of the data collected, such as dependent and independent variables, cost, dry weight, length, wingspan, manned versus unmanned, altitude, Mach number, thrust, and skin. We used a well- known statistical analysis tool called CO$TAT instead of using "R" multiple linear or the "Regression" tool found in Microsoft Excel(TradeMark). We setup an "array of data" by adding 21" dummy variables;" we analyzed the standard error (SE) and then determined the "best fit." We have parametrically priced-out several future X-planes and compared our results to those of other resources. More work needs to be done in getting "accurate and traceable cost data" from historical X-plane records!

  16. Creating A Data Base For Design Of An Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Chen, Wei-Chung

    1993-01-01

    Report describes use of Taguchi method of parametric design to create data base facilitating optimization of design of impeller in centrifugal pump. Data base enables systematic design analysis covering all significant design parameters. Reduces time and cost of parametric optimization of design: for particular impeller considered, one can cover 4,374 designs by computational simulations of performance for only 18 cases.

  17. A strategy for improved computational efficiency of the method of anchored distributions

    NASA Astrophysics Data System (ADS)

    Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram

    2013-06-01

    This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.

  18. Cost-effectiveness analysis of endovascular versus neurosurgical treatment for ruptured intracranial aneurysms in the United States

    PubMed Central

    Maud, Alberto; Lakshminarayan, Kamakshi; Suri, M. Fareed K.; Vazquez, Gabriela; Lanzino, Giuseppe; Qureshi, Adnan I.

    2009-01-01

    Object The results of the International Subarachnoid Aneurysm Trial (ISAT) demonstrated lower rates of death and disability with endovascular treatment (coiling) than with open surgery (clipping) to secure the ruptured intracranial aneurysm. However, cost-effectiveness may not be favorable because of the greater need for follow-up cerebral angiograms and additional follow-up treatment with endovascular methods. In this study, the authors’ goal was to compare the cost-effectiveness of endovascular and neurosurgical treatments in patients with ruptured intracranial aneurysms who were eligible to undergo either type of treatment. Methods Clinical data (age, sex, frequency of retreatment, and rebleeding) and quality of life values were obtained from the ISAT. Total cost included those associated with disability, hospitalization, retreatment, and rebleeding. Cost estimates were derived from the Premier Perspective Comparative Database, data from long-term care in stroke patients, and relevant literature. Incremental cost-effectiveness ratios (ICERs) were estimated during a 1-year period. Parametric bootstrapping was used to determine the uncertainty of the estimates. Results The median estimated costs of endovascular and neurosurgical treatments (in US dollars) were $45,493 (95th percentile range $44,693–$46,365) and $41,769 (95th percentile range $41,094–$42,518), respectively. The overall quality-adjusted life years (QALY) in the endovascular group was 0.69, and for the neurosurgical group it was 0.64. The cost per QALY in the endovascular group was $65,424 (95th percentile range $64,178–$66,772), and in the neurosurgical group it was $64,824 (95th percentile range $63,679–$66,086). The median estimated ICER at 1 year for endovascular treatment versus neurosurgical treatment was $72,872 (95th percentile range $50,344–$98,335) per QALY gained. Given that most postprocedure angiograms and additional treatments occurred in the 1st year and the 1-year disability status is unlikely to change in the future, ICER for endovascular treatment will progressively decrease over time. Conclusions Using outcome and economic data obtained in the US at 1 year after the procedure, endovascular treatment is more costly but is associated with better outcomes than the neurosurgical alternative among patients with ruptured intracranial aneurysms who are eligible to undergo either procedure. With accrual of additional years with a better outcome status, the ICER for endovascular coiling would be expected to progressively decrease and eventually reverse. PMID:19199452

  19. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  20. Software Reliability 2002

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    In FY01 we learned that hardware reliability models need substantial changes to account for differences in software, thus making software reliability measurements more effective, accurate, and easier to apply. These reliability models are generally based on familiar distributions or parametric methods. An obvious question is 'What new statistical and probability models can be developed using non-parametric and distribution-free methods instead of the traditional parametric method?" Two approaches to software reliability engineering appear somewhat promising. The first study, begin in FY01, is based in hardware reliability, a very well established science that has many aspects that can be applied to software. This research effort has investigated mathematical aspects of hardware reliability and has identified those applicable to software. Currently the research effort is applying and testing these approaches to software reliability measurement, These parametric models require much project data that may be difficult to apply and interpret. Projects at GSFC are often complex in both technology and schedules. Assessing and estimating reliability of the final system is extremely difficult when various subsystems are tested and completed long before others. Parametric and distribution free techniques may offer a new and accurate way of modeling failure time and other project data to provide earlier and more accurate estimates of system reliability.

  1. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    PubMed

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  2. PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS

    EPA Science Inventory

    We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...

  3. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  4. Technology requirements for future Earth-to-geosynchronous orbit transportation systems. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Caluori, V. A.; Conrad, R. T.; Jenkins, J. C.

    1980-01-01

    Technological requirements and forecasts of rocket engine parameters and launch vehicles for future Earth to geosynchronous orbit transportation systems are presented. The parametric performance, weight, and envelope data for the LOX/CH4, fuel cooled, staged combustion cycle and the hydrogen cooled, expander bleed cycle engine concepts are discussed. The costing methodology and ground rules used to develop the engine study are summarized. The weight estimating methodology for winged launched vehicles is described and summary data, used to evaluate and compare weight data for dedicated and integrated O2/H2 subsystems for the SSTO, HLLV and POTV are presented. Detail weights, comparisons, and weight scaling equations are provided.

  5. Evaluation of the influence of dominance rules for the assembly line design problem under consideration of product design alternatives

    NASA Astrophysics Data System (ADS)

    Oesterle, Jonathan; Lionel, Amodeo

    2018-06-01

    The current competitive situation increases the importance of realistically estimating product costs during the early phases of product and assembly line planning projects. In this article, several multi-objective algorithms using difference dominance rules are proposed to solve the problem associated with the selection of the most effective combination of product and assembly lines. The list of developed algorithms includes variants of ant colony algorithms, evolutionary algorithms and imperialist competitive algorithms. The performance of each algorithm and dominance rule is analysed by five multi-objective quality indicators and fifty problem instances. The algorithms and dominance rules are ranked using a non-parametric statistical test.

  6. Applying Statistical Models and Parametric Distance Measures for Music Similarity Search

    NASA Astrophysics Data System (ADS)

    Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph

    Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.

  7. Parametric Study of a YAV-8B Harrier in Ground Effect Using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.

  8. Parametric study of different contributors to tumor thermal profile

    NASA Astrophysics Data System (ADS)

    Tepper, Michal; Gannot, Israel

    2014-03-01

    Treating cancer is one of the major challenges of modern medicine. There is great interest in assessing tumor development in in vivo animal and human models, as well as in in vitro experiments. Existing methods are either limited by cost and availability or by their low accuracy and reproducibility. Thermography holds the potential of being a noninvasive, low-cost, irradiative and easy-to-use method for tumor monitoring. Tumors can be detected in thermal images due to their relatively higher or lower temperature compared to the temperature of the healthy skin surrounding them. Extensive research is performed to show the validity of thermography as an efficient method for tumor detection and the possibility of extracting tumor properties from thermal images, showing promising results. However, deducing from one type of experiment to others is difficult due to the differences in tumor properties, especially between different types of tumors or different species. There is a need in a research linking different types of tumor experiments. In this research, parametric analysis of possible contributors to tumor thermal profiles was performed. The effect of tumor geometric, physical and thermal properties was studied, both independently and together, in phantom model experiments and computer simulations. Theoretical and experimental results were cross-correlated to validate the models used and increase the accuracy of simulated complex tumor models. The contribution of different parameters in various tumor scenarios was estimated and the implication of these differences on the observed thermal profiles was studied. The correlation between animal and human models is discussed.

  9. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  10. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  11. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems

    NASA Astrophysics Data System (ADS)

    Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio

    2018-04-01

    We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.

  12. Preliminary Multi-Variable Parametric Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    This slide presentation reviews creating a preliminary multi-variable cost model for the contract costs of making a space telescope. There is discussion of the methodology for collecting the data, definition of the statistical analysis methodology, single variable model results, testing of historical models and an introduction of the multi variable models.

  13. Energy Conversion Alternatives Study (ECAS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  14. Has Metal-On-Metal Resurfacing Been a Cost-Effective Intervention for Health Care Providers?-A Registry Based Study.

    PubMed

    Pulikottil-Jacob, Ruth; Connock, Martin; Kandala, Ngianga-Bakwin; Mistry, Hema; Grove, Amy; Freeman, Karoline; Costa, Matthew; Sutcliffe, Paul; Clarke, Aileen

    2016-01-01

    Total hip replacement for end stage arthritis of the hip is currently the most common elective surgical procedure. In 2007 about 7.5% of UK implants were metal-on-metal joint resurfacing (MoM RS) procedures. Due to poor revision performance and concerns about metal debris, the use of RS had declined by 2012 to about a 1% share of UK hip procedures. This study estimated the lifetime cost-effectiveness of metal-on-metal resurfacing (RS) procedures versus commonly employed total hip replacement (THR) methods. We performed a cost-utility analysis using a well-established multi-state semi-Markov model from an NHS and personal and social services perspective. We used individual patient data (IPD) from the National Joint Registry (NJR) for England and Wales on RS and THR surgery for osteoarthritis recorded from April 2003 to December 2012. We used flexible parametric modelling of NJR RS data to guide identification of patient subgroups and RS devices which delivered revision rates within the NICE 5% revision rate benchmark at 10 years. RS procedures overall have an estimated revision rate of 13% at 10 years, compared to <4% for most THR devices. New NICE guidance now recommends a revision rate benchmark of <5% at 10 years. 60% of RS implants in men and 2% in women were predicted to be within the revision benchmark. RS devices satisfying the 5% benchmark were unlikely to be cost-effective compared to THR at a standard UK willingness to pay of £20,000 per quality-adjusted life-year. However, the probability of cost effectiveness was sensitive to small changes in the costs of devices or in quality of life or revision rate estimates. Our results imply that in most cases RS has not been a cost-effective resource and should probably not be adopted by decision makers concerned with the cost effectiveness of hip replacement, or by patients concerned about the likelihood of revision, regardless of patient age or gender.

  15. Parametric mediational g-formula approach to mediation analysis with time-varying exposures, mediators, and confounders

    PubMed Central

    Lin, Sheng-Hsuan; Young, Jessica; Logan, Roger; Tchetgen Tchetgen, Eric J.; VanderWeele, Tyler J.

    2016-01-01

    The assessment of direct and indirect effects with time-varying mediators and confounders is a common but challenging problem, and standard mediation analysis approaches are generally not applicable in this context. The mediational g-formula was recently proposed to address this problem, paired with a semi-parametric estimation approach to evaluate longitudinal mediation effects empirically. In this paper, we develop a parametric estimation approach to the mediational g-formula, including a feasible algorithm implemented in a freely available SAS macro. In the Framingham Heart Study data, we apply this method to estimate the interventional analogues of natural direct and indirect effects of smoking behaviors sustained over a 10-year period on blood pressure when considering weight change as a time-varying mediator. Compared with not smoking, smoking 20 cigarettes per day for 10 years was estimated to increase blood pressure by 1.2 (95 % CI: −0.7, 2.7) mm-Hg. The direct effect was estimated to increase blood pressure by 1.5 (95 % CI: −0.3, 2.9) mm-Hg, and the indirect effect was −0.3 (95% CI: −0.5, −0.1) mm-Hg, which is negative because smoking which is associated with lower weight is associated in turn with lower blood pressure. These results provide evidence that weight change in fact partially conceals the detrimental effects of cigarette smoking on blood pressure. Our work represents, to our knowledge, the first application of the parametric mediational g-formula in an epidemiologic cohort study. PMID:27984420

  16. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods

    PubMed Central

    2014-01-01

    Background Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. Methods We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. Results In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. Conclusions The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes. PMID:24888356

  17. Incorporating external evidence in trial-based cost-effectiveness analyses: the use of resampling methods.

    PubMed

    Sadatsafavi, Mohsen; Marra, Carlo; Aaron, Shawn; Bryan, Stirling

    2014-06-03

    Cost-effectiveness analyses (CEAs) that use patient-specific data from a randomized controlled trial (RCT) are popular, yet such CEAs are criticized because they neglect to incorporate evidence external to the trial. A popular method for quantifying uncertainty in a RCT-based CEA is the bootstrap. The objective of the present study was to further expand the bootstrap method of RCT-based CEA for the incorporation of external evidence. We utilize the Bayesian interpretation of the bootstrap and derive the distribution for the cost and effectiveness outcomes after observing the current RCT data and the external evidence. We propose simple modifications of the bootstrap for sampling from such posterior distributions. In a proof-of-concept case study, we use data from a clinical trial and incorporate external evidence on the effect size of treatments to illustrate the method in action. Compared to the parametric models of evidence synthesis, the proposed approach requires fewer distributional assumptions, does not require explicit modeling of the relation between external evidence and outcomes of interest, and is generally easier to implement. A drawback of this approach is potential computational inefficiency compared to the parametric Bayesian methods. The bootstrap method of RCT-based CEA can be extended to incorporate external evidence, while preserving its appealing features such as no requirement for parametric modeling of cost and effectiveness outcomes.

  18. On the calculation of puckering free energy surfaces

    NASA Astrophysics Data System (ADS)

    Sega, M.; Autieri, E.; Pederiva, F.

    2009-06-01

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  19. On the calculation of puckering free energy surfaces.

    PubMed

    Sega, M; Autieri, E; Pederiva, F

    2009-06-14

    Cremer-Pople puckering coordinates appear to be the natural candidate variables to explore the conformational space of cyclic compounds and in literature different parametrizations have been used to this end. However, while every parametrization is equivalent in identifying conformations, it is not obvious that they can also act as proper collective variables for the exploration of the puckered conformations free energy surface. It is shown that only the polar parametrization is fit to produce an unbiased estimate of the free energy landscape. As an example, the case of a six-membered ring, glucuronic acid, is presented, showing the artifacts that are generated when a wrong parametrization is used.

  20. Estimating solar ultraviolet irradiance (290-385 nm) by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    NASA Astrophysics Data System (ADS)

    Foyo-Moreno, I.; Vida, J.; Olmo, F. J.; Alados-Arboledas, L.

    2000-11-01

    Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290-385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.

  1. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.

    PubMed

    Wolf, Elizabeth Skubak; Anderson, David F

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  2. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling.

    PubMed

    Neugebauer, Romain; Fireman, Bruce; Roy, Jason A; Raebel, Marsha A; Nichols, Gregory A; O'Connor, Patrick J

    2013-08-01

    Clinical trials are unlikely to ever be launched for many comparative effectiveness research (CER) questions. Inferences from hypothetical randomized trials may however be emulated with marginal structural modeling (MSM) using observational data, but success in adjusting for time-dependent confounding and selection bias typically relies on parametric modeling assumptions. If these assumptions are violated, inferences from MSM may be inaccurate. In this article, we motivate the application of a data-adaptive estimation approach called super learning (SL) to avoid reliance on arbitrary parametric assumptions in CER. Using the electronic health records data from adults with new-onset type 2 diabetes, we implemented MSM with inverse probability weighting (IPW) estimation to evaluate the effect of three oral antidiabetic therapies on the worsening of glomerular filtration rate. Inferences from IPW estimation were noticeably sensitive to the parametric assumptions about the associations between both the exposure and censoring processes and the main suspected source of confounding, that is, time-dependent measurements of hemoglobin A1c. SL was successfully implemented to harness flexible confounding and selection bias adjustment from existing machine learning algorithms. Erroneous IPW inference about clinical effectiveness because of arbitrary and incorrect modeling decisions may be avoided with SL. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A Nonparametric Geostatistical Method For Estimating Species Importance

    Treesearch

    Andrew J. Lister; Rachel Riemann; Michael Hoppus

    2001-01-01

    Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test statistics are...

  4. Cost Comparison Between Home Telemonitoring and Usual Care of Older Adults: A Randomized Trial (Tele-ERA)

    PubMed Central

    Upatising, Benjavan; Wood, Douglas L.; Kremers, Walter K.; Christ, Sharon L.; Yih, Yuehwern; Hanson, Gregory J.

    2015-01-01

    Abstract Background: From 1992 to 2008, older adults in the United States incurred more healthcare expense per capita than any other age group. Home telemonitoring has emerged as a potential solution to reduce these costs, but evidence is mixed. The primary aim of the study was to evaluate whether the mean difference in total direct medical cost consequence between older adults receiving additional home telemonitoring care (TELE) (n=102) and those receiving usual medical care (UC) (n=103) were significant. Inpatient, outpatient, emergency department, decedents, survivors, and 30-day readmission costs were evaluated as secondary aim. Materials and Methods: Multivariate generalized linear models (GLMs) and parametric bootstrapping method were used to model cost and to determine significance of the cost differences. We also compared the differences in arithmetic mean costs. Results: From the conditional GLMs, the estimated mean cost differences (TELE versus UC) for total, inpatient, outpatient, and ED were −$9,537 (p=0.068), −$8,482 (p =0.098), −$1,160 (p=0.177), and $106 (p=0.619), respectively. Mean postenrollment cost was 11% lower than the prior year for TELE versus 22% higher for UC. The ratio of mean cost for decedents to survivors was 2.1:1 (TELE) versus 12.7:1 (UC). Conclusions: There were no significant differences in the mean total cost between the two treatment groups. The TELE group had less variability in cost of care, lower decedents to survivors cost ratio, and lower total 30-day readmission cost than the UC group. PMID:25453392

  5. Cost analysis of a coal-fired power plant using the NPV method

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.

    2015-12-01

    The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.

  6. Estimating restricted mean treatment effects with stacked survival models

    PubMed Central

    Wey, Andrew; Vock, David M.; Connett, John; Rudser, Kyle

    2016-01-01

    The difference in restricted mean survival times between two groups is a clinically relevant summary measure. With observational data, there may be imbalances in confounding variables between the two groups. One approach to account for such imbalances is estimating a covariate-adjusted restricted mean difference by modeling the covariate-adjusted survival distribution, and then marginalizing over the covariate distribution. Since the estimator for the restricted mean difference is defined by the estimator for the covariate-adjusted survival distribution, it is natural to expect that a better estimator of the covariate-adjusted survival distribution is associated with a better estimator of the restricted mean difference. We therefore propose estimating restricted mean differences with stacked survival models. Stacked survival models estimate a weighted average of several survival models by minimizing predicted error. By including a range of parametric, semi-parametric, and non-parametric models, stacked survival models can robustly estimate a covariate-adjusted survival distribution and, therefore, the restricted mean treatment effect in a wide range of scenarios. We demonstrate through a simulation study that better performance of the covariate-adjusted survival distribution often leads to better mean-squared error of the restricted mean difference although there are notable exceptions. In addition, we demonstrate that the proposed estimator can perform nearly as well as Cox regression when the proportional hazards assumption is satisfied and significantly better when proportional hazards is violated. Finally, the proposed estimator is illustrated with data from the United Network for Organ Sharing to evaluate post-lung transplant survival between large and small-volume centers. PMID:26934835

  7. Phase noise suppression through parametric filtering

    NASA Astrophysics Data System (ADS)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  8. Conceptual design of reduced energy transports

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1975-01-01

    This paper reports the results of a conceptual design study of new, near-term fuel-conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the 'optimum' configuration characteristics and on economic performance. Supercritical wing technology and advanced engine cycles were assumed. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It yields about 30% more seat-miles/gal than current wide-body aircraft. At the higher fuel costs anticipated in the future, the reduced energy design has about the same economic performance as existing designs.

  9. Impact of low cost refurbishable and standard spacecraft upon future NASA space programs. Payload effects follow-on study, appendix

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Mission analysis is discussed, including the consolidation and expansion of mission equipment and experiment characteristics, and determination of simplified shuttle flight schedule. Parametric analysis of standard space hardware and preliminary shuttle/payload constraints analysis are evaluated, along with the cost impact of low cost standard hardware.

  10. Advanced Machine Learning Emulators of Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  11. Secondary outcome analysis for data from an outcome-dependent sampling design.

    PubMed

    Pan, Yinghao; Cai, Jianwen; Longnecker, Matthew P; Zhou, Haibo

    2018-04-22

    Outcome-dependent sampling (ODS) scheme is a cost-effective way to conduct a study. For a study with continuous primary outcome, an ODS scheme can be implemented where the expensive exposure is only measured on a simple random sample and supplemental samples selected from 2 tails of the primary outcome variable. With the tremendous cost invested in collecting the primary exposure information, investigators often would like to use the available data to study the relationship between a secondary outcome and the obtained exposure variable. This is referred as secondary analysis. Secondary analysis in ODS designs can be tricky, as the ODS sample is not a random sample from the general population. In this article, we use the inverse probability weighted and augmented inverse probability weighted estimating equations to analyze the secondary outcome for data obtained from the ODS design. We do not make any parametric assumptions on the primary and secondary outcome and only specify the form of the regression mean models, thus allow an arbitrary error distribution. Our approach is robust to second- and higher-order moment misspecification. It also leads to more precise estimates of the parameters by effectively using all the available participants. Through simulation studies, we show that the proposed estimator is consistent and asymptotically normal. Data from the Collaborative Perinatal Project are analyzed to illustrate our method. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Determination of Cost-Effectiveness Threshold for Health Care Interventions in Malaysia.

    PubMed

    Lim, Yen Wei; Shafie, Asrul Akmal; Chua, Gin Nie; Ahmad Hassali, Mohammed Azmi

    2017-09-01

    One major challenge in prioritizing health care using cost-effectiveness (CE) information is when alternatives are more expensive but more effective than existing technology. In such a situation, an external criterion in the form of a CE threshold that reflects the willingness to pay (WTP) per quality-adjusted life-year is necessary. To determine a CE threshold for health care interventions in Malaysia. A cross-sectional, contingent valuation study was conducted using a stratified multistage cluster random sampling technique in four states in Malaysia. One thousand thirteen respondents were interviewed in person for their socioeconomic background, quality of life, and WTP for a hypothetical scenario. The CE thresholds established using the nonparametric Turnbull method ranged from MYR12,810 to MYR22,840 (~US $4,000-US $7,000), whereas those estimated with the parametric interval regression model were between MYR19,929 and MYR28,470 (~US $6,200-US $8,900). Key factors that affected the CE thresholds were education level, estimated monthly household income, and the description of health state scenarios. These findings suggest that there is no single WTP value for a quality-adjusted life-year. The CE threshold estimated for Malaysia was found to be lower than the threshold value recommended by the World Health Organization. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. Cost-effectiveness of cerebrospinal biomarkers for the diagnosis of Alzheimer's disease.

    PubMed

    Lee, Spencer A W; Sposato, Luciano A; Hachinski, Vladimir; Cipriano, Lauren E

    2017-03-16

    Accurate and timely diagnosis of Alzheimer's disease (AD) is important for prompt initiation of treatment in patients with AD and to avoid inappropriate treatment of patients with false-positive diagnoses. Using a Markov model, we estimated the lifetime costs and quality-adjusted life-years (QALYs) of cerebrospinal fluid biomarker analysis in a cohort of patients referred to a neurologist or memory clinic with suspected AD who remained without a definitive diagnosis of AD or another condition after neuroimaging. Parametric values were estimated from previous health economic models and the medical literature. Extensive deterministic and probabilistic sensitivity analyses were performed to evaluate the robustness of the results. At a 12.7% pretest probability of AD, biomarker analysis after normal neuroimaging findings has an incremental cost-effectiveness ratio (ICER) of $11,032 per QALY gained. Results were sensitive to the pretest prevalence of AD, and the ICER increased to over $50,000 per QALY when the prevalence of AD fell below 9%. Results were also sensitive to patient age (biomarkers are less cost-effective in older cohorts), treatment uptake and adherence, biomarker test characteristics, and the degree to which patients with suspected AD who do not have AD benefit from AD treatment when they are falsely diagnosed. The cost-effectiveness of biomarker analysis depends critically on the prevalence of AD in the tested population. In general practice, where the prevalence of AD after clinical assessment and normal neuroimaging findings may be low, biomarker analysis is unlikely to be cost-effective at a willingness-to-pay threshold of $50,000 per QALY gained. However, when at least 1 in 11 patients has AD after normal neuroimaging findings, biomarker analysis is likely cost-effective. Specifically, for patients referred to memory clinics with memory impairment who do not present neuroimaging evidence of medial temporal lobe atrophy, pretest prevalence of AD may exceed 15%. Biomarker analysis is a potentially cost-saving diagnostic method and should be considered for adoption in high-prevalence centers.

  14. Estimating extreme losses for the Florida Public Hurricane Model—part II

    NASA Astrophysics Data System (ADS)

    Gulati, Sneh; George, Florence; Hamid, Shahid

    2018-02-01

    Rising global temperatures are leading to an increase in the number of extreme events and losses (http://www.epa.gov/climatechange/science/indicators/). Accurate estimation of these extreme losses with the intention of protecting themselves against them is critical to insurance companies. In a previous paper, Gulati et al. (2014) discussed probable maximum loss (PML) estimation for the Florida Public Hurricane Loss Model (FPHLM) using parametric and nonparametric methods. In this paper, we investigate the use of semi-parametric methods to do the same. Detailed analysis of the data shows that the annual losses from FPHLM do not tend to be very heavy tailed, and therefore, neither the popular Hill's method nor the moment's estimator work well. However, Pickand's estimator with threshold around the 84th percentile provides a good fit for the extreme quantiles for the losses.

  15. Economics of immunization information systems in the United States: assessing costs and efficiency.

    PubMed

    Bartlett, Diana L; Molinari, Noelle-Angelique M; Ortega-Sanchez, Ismael R; Urquhart, Gary A

    2006-08-22

    One of the United States' national health objectives for 2010 is that 95% of children aged <6 years participate in fully operational population-based immunization information systems (IIS). Despite important progress, child participation in most IIS has increased slowly, in part due to limited economic knowledge about IIS operations. Should IIS need further improvement, characterizing costs and identifying factors that affect IIS efficiency become crucial. Data were collected from a national sampling frame of the 56 states/cities that received federal immunization grants under U.S. Public Health Service Act 317b and completed the federal 1999 Immunization Registry Annual Report. The sampling frame was stratified by IIS functional status, children's enrollment in the IIS, and whether the IIS had been developed as an independent system or was integrated into a larger system. These sites self-reported IIS developmental and operational program costs for calendar years 1998-2002 using a standardized data collection tool and underwent on-site interviews to verify reported data with information from the state/city financial management system and other financial records. A parametric cost-per-patient-record (CPR) model was estimated. The model assessed the impact of labor and non-labor resources used in development and operations tasks, as well as the impact of information technology, local providers' participation and compliance with federal IIS performance standards (e.g., ensuring the confidentiality and security of information, ensure timely vaccination data at the time of patient encounter, and produce official immunization records). Given the number of records minimizing CPR, the additional amount of resources needed to meet national health goals for the year 2010 was also calculated. Estimated CPR was as high as $10.30 and as low as $0.09 in operating IIS. About 20% of IIS had between 2.9 to 3.2 million records and showed CPR estimates of $0.09. Overall, CPR was highly sensitive to local providers' participation. To achieve the 2010 goals, additional aggregated costs were estimated to be $75.6 million nationwide. Efficiently increasing the number of records in IIS would require additional resources and careful consideration of various strategies to minimize CPR, such as boosting providers' participation.

  16. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  17. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion

    USGS Publications Warehouse

    Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur

    2011-01-01

    Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.

  18. Optimal Auxiliary-Covariate Based Two-Phase Sampling Design for Semiparametric Efficient Estimation of a Mean or Mean Difference, with Application to Clinical Trials

    PubMed Central

    Gilbert, Peter B.; Yu, Xuesong; Rotnitzky, Andrea

    2014-01-01

    To address the objective in a clinical trial to estimate the mean or mean difference of an expensive endpoint Y, one approach employs a two-phase sampling design, wherein inexpensive auxiliary variables W predictive of Y are measured in everyone, Y is measured in a random sample, and the semi-parametric efficient estimator is applied. This approach is made efficient by specifying the phase-two selection probabilities as optimal functions of the auxiliary variables and measurement costs. While this approach is familiar to survey samplers, it apparently has seldom been used in clinical trials, and several novel results practicable for clinical trials are developed. Simulations are performed to identify settings where the optimal approach significantly improves efficiency compared to approaches in current practice. Proofs and R code are provided. The optimality results are developed to design an HIV vaccine trial, with objective to compare the mean “importance-weighted” breadth (Y) of the T cell response between randomized vaccine groups. The trial collects an auxiliary response (W) highly predictive of Y, and measures Y in the optimal subset. We show that the optimal design-estimation approach can confer anywhere between absent and large efficiency gain (up to 24% in the examples) compared to the approach with the same efficient estimator but simple random sampling, where greater variability in the cost-standardized conditional variance of Y given W yields greater efficiency gains. Accurate estimation of E[Y∣W] is important for realizing the efficiency gain, which is aided by an ample phase-two sample and by using a robust fitting method. PMID:24123289

  19. Cost Modeling for Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Parametric cost models are an important tool for planning missions, compare concepts and justify technology investments. This paper presents on-going efforts to develop single variable and multi-variable cost models for space telescope optical telescope assembly (OTA). These models are based on data collected from historical space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models.

  20. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    PubMed

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  1. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)

    NASA Astrophysics Data System (ADS)

    Durmaz, Murat; Karslioglu, Mahmut Onur

    2015-04-01

    There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.

  2. Using multiple decrement models to estimate risk and morbidity from specific AIDS illnesses. Multicenter AIDS Cohort Study (MACS).

    PubMed

    Hoover, D R; Peng, Y; Saah, A J; Detels, R R; Day, R S; Phair, J P

    A simple non-parametric approach is developed to simultaneously estimate net incidence and morbidity time from specific AIDS illnesses in populations at high risk for death from these illnesses and other causes. The disease-death process has four-stages that can be recast as two sandwiching three-state multiple decrement processes. Non-parametric estimation of net incidence and morbidity time with error bounds are achieved from these sandwiching models through modification of methods from Aalen and Greenwood, and bootstrapping. An application to immunosuppressed HIV-1 infected homosexual men reveals that cytomegalovirus disease, Kaposi's sarcoma and Pneumocystis pneumonia are likely to occur and cause significant morbidity time.

  3. An agent-based model evaluation of economic control strategies for paratuberculosis in a dairy herd.

    PubMed

    Verteramo Chiu, Leslie J; Tauer, Loren W; Al-Mamun, Mohammad A; Kaniyamattam, Karun; Smith, Rebecca L; Grohn, Yrjo T

    2018-04-25

    This paper uses an agent-based simulation model to estimate the costs associated with Mycobacterium avium ssp. paratuberculosis (MAP), or Johne's disease, in a milking herd, and to determine the net benefits of implementing various control strategies. The net present value (NPV) of a 1,000-cow milking herd is calculated over 20 yr, parametrized to a representative US commercial herd. The revenues of the herd are generated from sales of milk and culled animals. The costs include all variable and fixed costs necessary to operate a representative 1,000-cow milking herd. We estimate the NPV of the herd with no MAP infection, under an expected endemic infection distribution with no controls, and under an expected endemic infection distribution with various controls. The initial number of cows in a herd with an endemic MAP infection is distributed as 75% susceptible, 13% latent, 9% low MAP shedding, and 3% high MAP shedding. Control strategies include testing using ELISA and fecal culture tests and culling of cows that test positive, and culling based on observable milk production decrease. Results show that culling cows based on test results does not increase the herd's NPV and in most cases decreases NPV due to test costs as well as false positives and negatives with their associated costs (e.g., culling healthy cows and keeping infected cows). Culling consistently low producing cows when MAP is believed to be present in the herd produces higher NPV over the strategy of testing and culling MAP infected animals, and over the case of no MAP control. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Economic policy optimization based on both one stochastic model and the parametric control theory

    NASA Astrophysics Data System (ADS)

    Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit

    2016-06-01

    A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)

  5. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.

  6. Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

    PubMed

    Kattner, Florian; Cochrane, Aaron; Green, C Shawn

    2017-09-01

    The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

  7. Preliminary Multi-Variable Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hendrichs, Todd

    2010-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. This paper reviews the methodology used to develop space telescope cost models; summarizes recently published single variable models; and presents preliminary results for two and three variable cost models. Some of the findings are that increasing mass reduces cost; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and technology development as a function of time reduces cost at the rate of 50% per 17 years.

  8. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  9. Model-free estimation of the psychometric function

    PubMed Central

    Żychaluk, Kamila; Foster, David H.

    2009-01-01

    A subject's response to the strength of a stimulus is described by the psychometric function, from which summary measures, such as a threshold or slope, may be derived. Traditionally, this function is estimated by fitting a parametric model to the experimental data, usually the proportion of successful trials at each stimulus level. Common models include the Gaussian and Weibull cumulative distribution functions. This approach works well if the model is correct, but it can mislead if not. In practice, the correct model is rarely known. Here, a nonparametric approach based on local linear fitting is advocated. No assumption is made about the true model underlying the data, except that the function is smooth. The critical role of the bandwidth is identified, and its optimum value estimated by a cross-validation procedure. As a demonstration, seven vision and hearing data sets were fitted by the local linear method and by several parametric models. The local linear method frequently performed better and never worse than the parametric ones. Supplemental materials for this article can be downloaded from app.psychonomic-journals.org/content/supplemental. PMID:19633355

  10. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Elizabeth Skubak, E-mail: ewolf@saintmarys.edu; Anderson, David F., E-mail: anderson@math.wisc.edu

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased formore » a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.« less

  11. Quantification of variability and uncertainty for air toxic emission inventories with censored emission factor data.

    PubMed

    Frey, H Christopher; Zhao, Yuchao

    2004-11-15

    Probabilistic emission inventories were developed for urban air toxic emissions of benzene, formaldehyde, chromium, and arsenic for the example of Houston. Variability and uncertainty in emission factors were quantified for 71-97% of total emissions, depending upon the pollutant and data availability. Parametric distributions for interunit variability were fit using maximum likelihood estimation (MLE), and uncertainty in mean emission factors was estimated using parametric bootstrap simulation. For data sets containing one or more nondetected values, empirical bootstrap simulation was used to randomly sample detection limits for nondetected values and observations for sample values, and parametric distributions for variability were fit using MLE estimators for censored data. The goodness-of-fit for censored data was evaluated by comparison of cumulative distributions of bootstrap confidence intervals and empirical data. The emission inventory 95% uncertainty ranges are as small as -25% to +42% for chromium to as large as -75% to +224% for arsenic with correlated surrogates. Uncertainty was dominated by only a few source categories. Recommendations are made for future improvements to the analysis.

  12. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    NASA Astrophysics Data System (ADS)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  13. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  14. The influence of linear elements on plant species diversity of Mediterranean rural landscapes: assessment of different indices and statistical approaches.

    PubMed

    García del Barrio, J M; Ortega, M; Vázquez De la Cueva, A; Elena-Rosselló, R

    2006-08-01

    This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements--habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land--whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index. Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50x20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators. The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.

  15. Preliminary design study of advanced multistage axial flow core compressors

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.

    1977-01-01

    A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.

  16. Cost Modeling for Space Optical Telescope Assemblies

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Parametric cost models are used to plan missions, compare concepts and justify technology investments. This paper reviews an on-going effort to develop cost modes for space telescopes. This paper summarizes the methodology used to develop cost models and documents how changes to the database have changed previously published preliminary cost models. While the cost models are evolving, the previously published findings remain valid: it costs less per square meter of collecting aperture to build a large telescope than a small telescope; technology development as a function of time reduces cost; and lower areal density telescopes cost more than more massive telescopes.

  17. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    PubMed

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  18. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  19. Earth Rotation Parameters from DSN VLBI: 1993

    NASA Technical Reports Server (NTRS)

    Steppe, J.; Oliveau, S.; Sovers, O.

    1993-01-01

    This year we have introduced several modeling improvements, including estimating a parametric model for the mearly-diurnal and nearly-semidiurnal tidal frequency variations of UTI and polar motion, and estimating site velocities.

  20. Performance and Cost Evaluation of Cryogenic Solid Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Adirim, Harry; Lo, Roger; Knecht, Thomas; Reinbold, Georg-Friedrich; Poller, Sascha

    2002-01-01

    Under the sponsorship of the German Aerospace Center DLR, Cryogenic Solid Propulsion (CSP) is now in its 6th year of R&D. The development proceeds as a joint international university-, small business-, space industry- and professional research effort (Berlin University of Technology / AI: Aerospace Institute, Berlin / Bauman Moscow State Technical University, Russia / ASTRIUM GmbH, Bremen / Fraunhofer Institute for Chemical Technology, Berghausen). This paper aims at introducing CSP as a novel type of chemical propellant that uses frozen liquids as Oxygen (SOX) or Hydrogen Peroxide (SH2O2) inside of a coherent solid Hydrocarbon (PE, PU or HTPB) matrix in solid rocket motors. Theoretically any conceivable chemical rocket propellant combination (including any environmentally benign ,,green propellant") can be used in solid rocket propellant motors if the definition of solids is not restricted to "solid at ambient temperature". The CSP concept includes all suitable high energy propellant combinations, but is not limited to them. Any liquid or hybrid bipropellant combination is (Isp-wise) superior to any conventional solid propellant formulation. While CSPs do share some of the disadvantages of solid propulsion (e.g. lack of cooling fluid and preset thrust-time function), they definitely share one of their most attractive advantages: the low number of components that is the base for high reliability and low cost of structures. In this respect, CSPs are superior to liquid propellant rocket motors with whom, they share the high Isp performance. High performance, low cost, low pollution CSP technology could bring about a near term improvement for chemical Earth-to-orbit high thrust propulsion. In the long run it could surpass conventional chemical propulsion because it is better suited for applying High Energy Density Matter (HEDM) than any other mode of propulsion. So far, ongoing preliminary analyses have not shown any insuperable problems in areas of concern, such as cooling equipment and its operation during fabrication and launch, neither were there problems with thrust to weight ratio of un-cooled but insulated Cryogenic Solid Motors which ascend into their trajectory while leaving the cooling equipment at the launch pad. In performance calculations for new launchers with CSP-replacements of boosters or existing stages, ARIANE 5 and a 3-stage launcher with CSP - 1st stage into GTO serve as examples. For keeping payload-capacity in the reference orbit constant, the modeling of a rocket system essentially requires a process of iteration, in which the propellant mass is varied as central parameter and - with the help of a CSP mass-model - all other dimensions of the booster are derived from mass models etc. accordingly. The process is repeated until the payload resulting from GTO track-optimization corresponds with that of the model ARIANE 5 in sufficient approximation. Under the assumptions made, the application of cryogenic motors lead to a clear reduction of the launch mass. This is essentially caused by the lower propellant mass and secondary by the reduced structure mass. Finally cost calculations have been made by ASTRIUM and demonstrated the cost saving potential of CSP propulsion. For estimating development, production, ground facilities, and operating cost, the parametric cost modeling tool has been used in combination with Cost Estimating Relationships (CER). Parametric cost models only allow comparative analyses, therefore ARIANE 5 in its current (P1) configuration has been estimated using the same mission model as for the CSP launcher. As conclusion of these cost assessment can be stated, that the utilization of cryogenic solid propulsion could offer a considerable cost savings potential. Academic and industrial cooperation is crucial for the challenging R&D work required. It will take the combined capacities of all experts involved to unlock the promises of clean, high Isp CSP propulsion for chemical Earth-to-orbit transportation in next 10 to 15 years to come.

  1. Cost-effectiveness of a nurse practitioner-family physician model of care in a nursing home: controlled before and after study.

    PubMed

    Lacny, Sarah; Zarrabi, Mahmood; Martin-Misener, Ruth; Donald, Faith; Sketris, Ingrid; Murphy, Andrea L; DiCenso, Alba; Marshall, Deborah A

    2016-09-01

    To examine the cost-effectiveness of a nurse practitioner-family physician model of care compared with family physician-only care in a Canadian nursing home. As demand for long-term care increases, alternative care models including nurse practitioners are being explored. Cost-effectiveness analysis using a controlled before-after design. The study included an 18-month 'before' period (2005-2006) and a 21-month 'after' time period (2007-2009). Data were abstracted from charts from 2008-2010. We calculated incremental cost-effectiveness ratios comparing the intervention (nurse practitioner-family physician model; n = 45) to internal (n = 65), external (n = 70) and combined internal/external family physician-only control groups, measured as the change in healthcare costs divided by the change in emergency department transfers/person-month. We assessed joint uncertainty around costs and effects using non-parametric bootstrapping and cost-effectiveness acceptability curves. Point estimates of the incremental cost-effectiveness ratio demonstrated the nurse practitioner-family physician model dominated the internal and combined control groups (i.e. was associated with smaller increases in costs and emergency department transfers/person-month). Compared with the external control, the intervention resulted in a smaller increase in costs and larger increase in emergency department transfers. Using a willingness-to-pay threshold of $1000 CAD/emergency department transfer, the probability the intervention was cost-effective compared with the internal, external and combined control groups was 26%, 21% and 25%. Due to uncertainty around the distribution of costs and effects, we were unable to make a definitive conclusion regarding the cost-effectiveness of the nurse practitioner-family physician model; however, these results suggest benefits that could be confirmed in a larger study. © 2016 John Wiley & Sons Ltd.

  2. Impact of Hydrogeological Uncertainty on Estimation of Environmental Risks Posed by Hydrocarbon Transportation Networks

    NASA Astrophysics Data System (ADS)

    Ciriello, V.; Lauriola, I.; Bonvicini, S.; Cozzani, V.; Di Federico, V.; Tartakovsky, Daniel M.

    2017-11-01

    Ubiquitous hydrogeological uncertainty undermines the veracity of quantitative predictions of soil and groundwater contamination due to accidental hydrocarbon spills from onshore pipelines. Such predictions, therefore, must be accompanied by quantification of predictive uncertainty, especially when they are used for environmental risk assessment. We quantify the impact of parametric uncertainty on quantitative forecasting of temporal evolution of two key risk indices, volumes of unsaturated and saturated soil contaminated by a surface spill of light nonaqueous-phase liquids. This is accomplished by treating the relevant uncertain parameters as random variables and deploying two alternative probabilistic models to estimate their effect on predictive uncertainty. A physics-based model is solved with a stochastic collocation method and is supplemented by a global sensitivity analysis. A second model represents the quantities of interest as polynomials of random inputs and has a virtually negligible computational cost, which enables one to explore any number of risk-related contamination scenarios. For a typical oil-spill scenario, our method can be used to identify key flow and transport parameters affecting the risk indices, to elucidate texture-dependent behavior of different soils, and to evaluate, with a degree of confidence specified by the decision-maker, the extent of contamination and the correspondent remediation costs.

  3. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  4. Parametric system identification of catamaran for improving controller design

    NASA Astrophysics Data System (ADS)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  5. Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Lerch, Jens

    This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.

  6. Direct health care costs associated with obesity in Chinese population in 2011.

    PubMed

    Shi, Jingcheng; Wang, Yao; Cheng, Wenwei; Shao, Hui; Shi, Lizheng

    2017-03-01

    Overweight and obesity are established major risk factors for type 2 diabetes, and major public health concerns in China. This study aims to assess the economic burden associated with overweight and obesity in the Chinese population ages 45 and older. The Chinese Health and Retirement Longitudinal Study (CHARLS) in 2011 included 13,323 respondents of ages 45 and older living in 450 rural and urban communities across China. Demographic information, height, weight, direct health care costs for outpatient visits, hospitalization, and medications for self-care were extracted from the CHARLS database. Health Care costs were calculated in 2011 Chinese currency. The body mass index (BMI) was used to categorize underweight, normal weight, overweight, and obese populations. Descriptive analyses and a two-part regression model were performed to investigate the association of BMI with health care costs. To account for non-normality of the cost data, we applied a non-parametric bootstrap approach using the percentile method to estimate the 95% confidence intervals (95% CIs). Overweight and obese groups had significantly higher total direct health care costs (RMB 2246.4, RMB 2050.7, respectively) as compared with the normal-weight group (RMB 1886.0). When controlling for demographic characteristics, overweight and obese adults were 15.0% and 35.9% more likely to incur total health care costs, and obese individuals had 14.2% higher total health care costs compared with the normal-weight group. Compared with the normal-weight counterparts, the annual total direct health care costs were significantly higher among obese adults in China. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Long-term economic consequences of child maltreatment: a population-based study.

    PubMed

    Thielen, Frederick W; Ten Have, Margreet; de Graaf, Ron; Cuijpers, Pim; Beekman, Aartjan; Evers, Silvia; Smit, Filip

    2016-12-01

    Child maltreatment is prognostically associated with long-term detrimental consequences for mental health. These consequences are reflected in higher costs due to health service utilization and productivity losses in adulthood. An above-average sense of mastery can have protective effects in the pathogenesis of mental disorders and thus potentially cushion adverse impacts of maltreatment. This should be reflected in lower costs in individuals with a history of child maltreatment and a high sense of mastery. The aims of the study were to prognostically estimate the excess costs of health service uptake and productivity losses in adults with a history of child maltreatment and to evaluate how mastery may act as an effect modifier. Data were used on 5618 individuals participating in the Netherlands Mental Health Survey and Incidence Study (NEMESIS). We focussed on measures of child maltreatment (emotional neglect, physical, psychological and sexual abuse) and economic costs owing to health-care uptake and productivity losses when people with a history of abuse have grown into adulthood. We evaluated how mastery acted as an effect modifier. Estimates were adjusted for demographics and parental psychopathology. Post-stratification weights were used to account for initial non-response and dropout. Due to the non-normal distribution of the costs data, sample errors, 95 % confidence intervals, and p values were calculated using non-parametric bootstrapping (1000 replications). Exposure to child maltreatment occurs frequently (6.9-24.8 %) and is associated with substantial excess costs in adulthood. To illustrate, adjusted annual excess costs attributable to emotional neglect are €1,360 (95 % CI: 615-215) per adult. Mastery showed a significant effect on these figures: annual costs were €1,608 in those with a low sense of mastery, but only €474 in those with a firmer sense of mastery. Child maltreatment has profound mental health consequences and is associated with staggering long-term economic costs, rendering lack of action very costly. Our data lends credibility to the hypothesis that mastery may help to cushion the adverse consequences of child maltreatment. Further research on mastery may help to ameliorate individual burden and in addition offer some economic benefits.

  8. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  9. Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits

    DTIC Science & Technology

    2017-08-29

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N

  10. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided.

  12. Discrete-time switching periodic adaptive control for time-varying parameters with unknown periodicity

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Huang, Deqing; Yang, Wanqiu

    2018-06-01

    In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.

  13. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    Synthetic streamflow data generation involves the synthesis of likely streamflow patterns that are statistically indistinguishable from the observed streamflow data. The various kinds of stochastic models adopted for multi-season streamflow generation in hydrology are: i) parametric models which hypothesize the form of the periodic dependence structure and the distributional form a priori (examples are PAR, PARMA); disaggregation models that aim to preserve the correlation structure at the periodic level and the aggregated annual level; ii) Nonparametric models (examples are bootstrap/kernel based methods), which characterize the laws of chance, describing the stream flow process, without recourse to prior assumptions as to the form or structure of these laws; (k-nearest neighbor (k-NN), matched block bootstrap (MABB)); non-parametric disaggregation model. iii) Hybrid models which blend both parametric and non-parametric models advantageously to model the streamflows effectively. Despite many of these developments that have taken place in the field of stochastic modeling of streamflows over the last four decades, accurate prediction of the storage and the critical drought characteristics has been posing a persistent challenge to the stochastic modeler. This is partly because, usually, the stochastic streamflow model parameters are estimated by minimizing a statistically based objective function (such as maximum likelihood (MLE) or least squares (LS) estimation) and subsequently the efficacy of the models is being validated based on the accuracy of prediction of the estimates of the water-use characteristics, which requires large number of trial simulations and inspection of many plots and tables. Still accurate prediction of the storage and the critical drought characteristics may not be ensured. In this study a multi-objective optimization framework is proposed to find the optimal hybrid model (blend of a simple parametric model, PAR(1) model and matched block bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  14. Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Panza, G. F.; Romanelli, F.

    2001-12-01

    In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html

  15. The contribution of Raman spectroscopy to the analytical quality control of cytotoxic drugs in a hospital environment: eliminating the exposure risks for staff members and their work environment.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette

    2014-08-15

    The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Review of Statistical Methods for Analysing Healthcare Resources and Costs

    PubMed Central

    Mihaylova, Borislava; Briggs, Andrew; O'Hagan, Anthony; Thompson, Simon G

    2011-01-01

    We review statistical methods for analysing healthcare resource use and costs, their ability to address skewness, excess zeros, multimodality and heavy right tails, and their ease for general use. We aim to provide guidance on analysing resource use and costs focusing on randomised trials, although methods often have wider applicability. Twelve broad categories of methods were identified: (I) methods based on the normal distribution, (II) methods following transformation of data, (III) single-distribution generalized linear models (GLMs), (IV) parametric models based on skewed distributions outside the GLM family, (V) models based on mixtures of parametric distributions, (VI) two (or multi)-part and Tobit models, (VII) survival methods, (VIII) non-parametric methods, (IX) methods based on truncation or trimming of data, (X) data components models, (XI) methods based on averaging across models, and (XII) Markov chain methods. Based on this review, our recommendations are that, first, simple methods are preferred in large samples where the near-normality of sample means is assured. Second, in somewhat smaller samples, relatively simple methods, able to deal with one or two of above data characteristics, may be preferable but checking sensitivity to assumptions is necessary. Finally, some more complex methods hold promise, but are relatively untried; their implementation requires substantial expertise and they are not currently recommended for wider applied work. Copyright © 2010 John Wiley & Sons, Ltd. PMID:20799344

  17. Comparison of Kasai Autocorrelation and Maximum Likelihood Estimators for Doppler Optical Coherence Tomography

    PubMed Central

    Chan, Aaron C.; Srinivasan, Vivek J.

    2013-01-01

    In optical coherence tomography (OCT) and ultrasound, unbiased Doppler frequency estimators with low variance are desirable for blood velocity estimation. Hardware improvements in OCT mean that ever higher acquisition rates are possible, which should also, in principle, improve estimation performance. Paradoxically, however, the widely used Kasai autocorrelation estimator’s performance worsens with increasing acquisition rate. We propose that parametric estimators based on accurate models of noise statistics can offer better performance. We derive a maximum likelihood estimator (MLE) based on a simple additive white Gaussian noise model, and show that it can outperform the Kasai autocorrelation estimator. In addition, we also derive the Cramer Rao lower bound (CRLB), and show that the variance of the MLE approaches the CRLB for moderate data lengths and noise levels. We note that the MLE performance improves with longer acquisition time, and remains constant or improves with higher acquisition rates. These qualities may make it a preferred technique as OCT imaging speed continues to improve. Finally, our work motivates the development of more general parametric estimators based on statistical models of decorrelation noise. PMID:23446044

  18. A semi-parametric within-subject mixture approach to the analyses of responses and response times.

    PubMed

    Molenaar, Dylan; Bolsinova, Maria; Vermunt, Jeroen K

    2018-05-01

    In item response theory, modelling the item response times in addition to the item responses may improve the detection of possible between- and within-subject differences in the process that resulted in the responses. For instance, if respondents rely on rapid guessing on some items but not on all, the joint distribution of the responses and response times will be a multivariate within-subject mixture distribution. Suitable parametric methods to detect these within-subject differences have been proposed. In these approaches, a distribution needs to be assumed for the within-class response times. In this paper, it is demonstrated that these parametric within-subject approaches may produce false positives and biased parameter estimates if the assumption concerning the response time distribution is violated. A semi-parametric approach is proposed which resorts to categorized response times. This approach is shown to hardly produce false positives and parameter bias. In addition, the semi-parametric approach results in approximately the same power as the parametric approach. © 2017 The British Psychological Society.

  19. Quantification of soil water retention parameters using multi-section TDR-waveform analysis

    NASA Astrophysics Data System (ADS)

    Baviskar, S. M.; Heimovaara, T. J.

    2017-06-01

    Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.

  20. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  1. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  2. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

    NASA Astrophysics Data System (ADS)

    Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.

    2009-07-01

    Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

  3. Multi Response Optimization of Laser Micro Marking Process:A Grey- Fuzzy Approach

    NASA Astrophysics Data System (ADS)

    Shivakoti, I.; Das, P. P.; Kibria, G.; Pradhan, B. B.; Mustafa, Z.; Ghadai, R. K.

    2017-07-01

    The selection of optimal parametric combination for efficient machining has always become a challenging issue for the manufacturing researcher. The optimal parametric combination always provides a better machining which improves the productivity, product quality and subsequently reduces the production cost and time. The paper presents the hybrid approach of Grey relational analysis and Fuzzy logic to obtain the optimal parametric combination for better laser beam micro marking on the Gallium Nitride (GaN) work material. The response surface methodology has been implemented for design of experiment considering three parameters with their five levels. The parameter such as current, frequency and scanning speed has been considered and the mark width, mark depth and mark intensity has been considered as the process response.

  4. Capture-Recapture Estimators in Epidemiology with Applications to Pertussis and Pneumococcal Invasive Disease Surveillance

    PubMed Central

    Braeye, Toon; Verheagen, Jan; Mignon, Annick; Flipse, Wim; Pierard, Denis; Huygen, Kris; Schirvel, Carole; Hens, Niel

    2016-01-01

    Introduction Surveillance networks are often not exhaustive nor completely complementary. In such situations, capture-recapture methods can be used for incidence estimation. The choice of estimator and their robustness with respect to the homogeneity and independence assumptions are however not well documented. Methods We investigated the performance of five different capture-recapture estimators in a simulation study. Eight different scenarios were used to detect and combine case-information. The scenarios increasingly violated assumptions of independence of samples and homogeneity of detection probabilities. Belgian datasets on invasive pneumococcal disease (IPD) and pertussis provided motivating examples. Results No estimator was unbiased in all scenarios. Performance of the parametric estimators depended on how much of the dependency and heterogeneity were correctly modelled. Model building was limited by parameter estimability, availability of additional information (e.g. covariates) and the possibilities inherent to the method. In the most complex scenario, methods that allowed for detection probabilities conditional on previous detections estimated the total population size within a 20–30% error-range. Parametric estimators remained stable if individual data sources lost up to 50% of their data. The investigated non-parametric methods were more susceptible to data loss and their performance was linked to the dependence between samples; overestimating in scenarios with little dependence, underestimating in others. Issues with parameter estimability made it impossible to model all suggested relations between samples for the IPD and pertussis datasets. For IPD, the estimates for the Belgian incidence for cases aged 50 years and older ranged from 44 to58/100,000 in 2010. The estimates for pertussis (all ages, Belgium, 2014) ranged from 24.2 to30.8/100,000. Conclusion We encourage the use of capture-recapture methods, but epidemiologists should preferably include datasets for which the underlying dependency structure is not too complex, a priori investigate this structure, compensate for it within the model and interpret the results with the remaining unmodelled heterogeneity in mind. PMID:27529167

  5. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  6. Potassium topping cycles for stationary power. [conceptual analysis

    NASA Technical Reports Server (NTRS)

    Rossbach, R. J.

    1975-01-01

    A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency.

  7. Cost-effectiveness of novel relapsed-refractory multiple myeloma therapies in Norway: lenalidomide plus dexamethasone vs bortezomib.

    PubMed

    Möller, Jörgen; Nicklasson, Lars; Murthy, Ananthram

    2011-01-01

    To estimate the cost-effectiveness (cost per additional life-year [LY] and quality-adjusted life-year [QALY] gained) of lenalidomide plus dexamethasone (LEN/DEX) compared with bortezomib for the treatment of relapsed-refractory multiple myeloma (rrMM) in Norway. A discrete-event simulation model was developed to predict patients? disease course using patient data, best response, and efficacy levels obtained from LEN/DEX MM-009/-010 trials and the bortezomib (APEX) published clinical trial. Predictive equations for time-to-progression (TTP) and post-progression survival (PPS) were developed by identifying the best fitting parametric survival distributions and selecting the most significant predictors. Disease and adverse event management was obtained via survey from Norwegian experts. Costs, derived from official Norwegian pricing data bases, included drug, administration, monitoring, and adverse event management costs. Complete or partial responders were 65% for LEN/DEX compared to 43% for bortezomib. Derived median TTP was 11.45 months for LEN/DEX compared to 5.15 months for bortezomib. LYs and QALYs were higher for LEN/DEX (4.06 and 2.95, respectively) than for bortezomib (3.11 and 2.19, respectively). The incremental costs per QALY and LY gained from LEN/DEX were NOK 247,978 and NOK 198,714, respectively, compared to bortezomib. Multiple sensitivity analyses indicated the findings were stable. The parameters with the greatest impact were 4-year time horizon (NOK 441,457/QALY) and higher bound confidence intervals for PPS (NOK 118,392). The model analyzed two therapies not compared in head-to-head trials, and predicted results using an equation incorporating patient-level characteristics. It is a limited estimation of the costs and outcomes in a Norwegian setting. The simulation model showed that treatment with LEN/DEX leads to greater LYs and QALYs when compared to bortezomib in the treatment of rrMM patients. The incremental cost-effectiveness ratio indicated treatment with LEN/DEX to be cost-effective and was the basis of the reimbursement approval of LEN/DEX in Norway.

  8. Failure Time Distributions: Estimates and Asymptotic Results.

    DTIC Science & Technology

    1980-01-01

    of the models. A parametric family of distributions is proposed for approximating life distri- butions whose hazard rate is bath-tub shaped, this...of the limiting dirtributions of the models. A parametric family of distributions is proposed for approximating life distribution~s whose hazard rate...12. always justified. But, because of this gener- ality, the possible limit laws for the maximum form a very large family . The

  9. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  10. Estimation of railroad capacity using parametric methods.

    DOT National Transportation Integrated Search

    2013-12-01

    This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...

  11. Rank-preserving regression: a more robust rank regression model against outliers.

    PubMed

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A modified Leslie-Gower predator-prey interaction model and parameter identifiability

    NASA Astrophysics Data System (ADS)

    Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed

    2018-01-01

    In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.

  13. Preliminary Cost Model for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  14. Can you trust the parametric standard errors in nonlinear least squares? Yes, with provisos.

    PubMed

    Tellinghuisen, Joel

    2018-04-01

    Questions about the reliability of parametric standard errors (SEs) from nonlinear least squares (LS) algorithms have led to a general mistrust of these precision estimators that is often unwarranted. The importance of non-Gaussian parameter distributions is illustrated by converting linear models to nonlinear by substituting e A , ln A, and 1/A for a linear parameter a. Monte Carlo (MC) simulations characterize parameter distributions in more complex cases, including when data have varying uncertainty and should be weighted, but weights are neglected. This situation leads to loss of precision and erroneous parametric SEs, as is illustrated for the Lineweaver-Burk analysis of enzyme kinetics data and the analysis of isothermal titration calorimetry data. Non-Gaussian parameter distributions are generally asymmetric and biased. However, when the parametric SE is <10% of the magnitude of the parameter, both the bias and the asymmetry can usually be ignored. Sometimes nonlinear estimators can be redefined to give more normal distributions and better convergence properties. Variable data uncertainty, or heteroscedasticity, can sometimes be handled by data transforms but more generally requires weighted LS, which in turn require knowledge of the data variance. Parametric SEs are rigorously correct in linear LS under the usual assumptions, and are a trustworthy approximation in nonlinear LS provided they are sufficiently small - a condition favored by the abundant, precise data routinely collected in many modern instrumental methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Orbit transfer vehicle engine study. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.

  16. The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucher, Martin; Racine, Benjamin; Tent, Bartjan van, E-mail: bucher@apc.univ-paris7.fr, E-mail: benjar@uio.no, E-mail: vantent@th.u-psud.fr

    2016-05-01

    We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlation function) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called f NL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in ordermore » to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.« less

  17. Current estimates of the cure fraction: a feasibility study of statistical cure for breast and colorectal cancer.

    PubMed

    Stedman, Margaret R; Feuer, Eric J; Mariotto, Angela B

    2014-11-01

    The probability of cure is a long-term prognostic measure of cancer survival. Estimates of the cure fraction, the proportion of patients "cured" of the disease, are based on extrapolating survival models beyond the range of data. The objective of this work is to evaluate the sensitivity of cure fraction estimates to model choice and study design. Data were obtained from the Surveillance, Epidemiology, and End Results (SEER)-9 registries to construct a cohort of breast and colorectal cancer patients diagnosed from 1975 to 1985. In a sensitivity analysis, cure fraction estimates are compared from different study designs with short- and long-term follow-up. Methods tested include: cause-specific and relative survival, parametric mixture, and flexible models. In a separate analysis, estimates are projected for 2008 diagnoses using study designs including the full cohort (1975-2008 diagnoses) and restricted to recent diagnoses (1998-2008) with follow-up to 2009. We show that flexible models often provide higher estimates of the cure fraction compared to parametric mixture models. Log normal models generate lower estimates than Weibull parametric models. In general, 12 years is enough follow-up time to estimate the cure fraction for regional and distant stage colorectal cancer but not for breast cancer. 2008 colorectal cure projections show a 15% increase in the cure fraction since 1985. Estimates of the cure fraction are model and study design dependent. It is best to compare results from multiple models and examine model fit to determine the reliability of the estimate. Early-stage cancers are sensitive to survival type and follow-up time because of their longer survival. More flexible models are susceptible to slight fluctuations in the shape of the survival curve which can influence the stability of the estimate; however, stability may be improved by lengthening follow-up and restricting the cohort to reduce heterogeneity in the data. Published by Oxford University Press 2014.

  18. Parametric Cost and Schedule Modeling for Early Technology Development

    DTIC Science & Technology

    2018-04-02

    Best Paper in the Analysis Methods Category and 2017 Best Paper Overall awards. It was also presented at the 2017 NASA Cost and Schedule Symposium... Methods over the Project Life Cycle .............................................................................................. 2 Figure 2. Average...information contribute to the lack of data, objective models, and methods that can be broadly applied in early planning stages. Scientific

  19. PARAMETRIC ANALYSIS OF THE INSTALLATION AND OPERATING COSTS OF ACTIVE SOIL DEPRESSURIZATION SYSTEMS FOR RESIDENTIAL RADON MITIGATION

    EPA Science Inventory

    The report gives results of a recent analysis showing that cost- effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. ctive soi...

  20. Cost-effectiveness analysis in the Spanish setting of the PEAK trial of panitumumab plus mFOLFOX6 compared with bevacizumab plus mFOLFOX6 for first-line treatment of patients with wild-type RAS metastatic colorectal cancer.

    PubMed

    Rivera, Fernando; Valladares, Manuel; Gea, Salvador; López-Martínez, Noemí

    2017-06-01

    To assess the cost-effectiveness of panitumumab in combination with mFOLFOX6 (oxaliplatin, 5-fluorouracil, and leucovorin) vs bevacizumab in combination with mFOLFOX6 as first-line treatment of patients with wild-type RAS metastatic colorectal cancer (mCRC) in Spain. A semi-Markov model was developed including the following health states: Progression free; Progressive disease: Treat with best supportive care; Progressive disease: Treat with subsequent active therapy; Attempted resection of metastases; Disease free after metastases resection; Progressive disease: after resection and relapse; and Death. Parametric survival analyses of patient-level progression free survival and overall survival data from the PEAK Phase II clinical trial were used to estimate health state transitions. Additional data from the PEAK trial were considered for the dose and duration of therapy, the use of subsequent therapy, the occurrence of adverse events, and the incidence and probability of time to metastasis resection. Utility weightings were calculated from patient-level data from panitumumab trials evaluating first-, second-, and third-line treatments. The study was performed from the Spanish National Health System (NHS) perspective including only direct costs. A life-time horizon was applied. Probabilistic sensitivity analyses and scenario sensitivity analyses were performed to assess the robustness of the model. Based on the PEAK trial, which demonstrated greater efficacy of panitumumab vs bevacizumab, both in combination with mFOLFOX6 first-line in wild-type RAS mCRC patients, the estimated incremental cost per life-year gained was €16,567 and the estimated incremental cost per quality-adjusted life year gained was €22,794. The sensitivity analyses showed the model was robust to alternative parameters and assumptions. The analysis was based on a simulation model and, therefore, the results should be interpreted cautiously. Based on the PEAK Phase II clinical trial and taking into account Spanish costs, the results of the analysis showed that first-line treatment of mCRC with panitumumab + mFOLFOX6 could be considered a cost-effective option compared with bevacizumab + mFOLFOX6 for the Spanish NHS.

  1. Occupational radon exposure and lung cancer mortality: estimating intervention effects using the parametric g-formula.

    PubMed

    Edwards, Jessie K; McGrath, Leah J; Buckley, Jessie P; Schubauer-Berigan, Mary K; Cole, Stephen R; Richardson, David B

    2014-11-01

    Traditional regression analysis techniques used to estimate associations between occupational radon exposure and lung cancer focus on estimating the effect of cumulative radon exposure on lung cancer. In contrast, public health interventions are typically based on regulating radon concentration rather than workers' cumulative exposure. Estimating the effect of cumulative occupational exposure on lung cancer may be difficult in situations vulnerable to the healthy worker survivor bias. Workers in the Colorado Plateau Uranium Miners cohort (n = 4,134) entered the study between 1950 and 1964 and were followed for lung cancer mortality through 2005. We use the parametric g-formula to compare the observed lung cancer mortality to the potential lung cancer mortality had each of 3 policies to limit monthly radon exposure been in place throughout follow-up. There were 617 lung cancer deaths over 135,275 person-years of follow-up. With no intervention on radon exposure, estimated lung cancer mortality by age 90 was 16%. Lung cancer mortality was reduced for all interventions considered, and larger reductions in lung cancer mortality were seen for interventions with lower monthly radon exposure limits. The most stringent guideline, the Mine Safety and Health Administration standard of 0.33 working-level months, reduced lung cancer mortality from 16% to 10% (risk ratio = 0.67 [95% confidence interval = 0.61 to 0.73]). This work illustrates the utility of the parametric g-formula for estimating the effects of policies regarding occupational exposures, particularly in situations vulnerable to the healthy worker survivor bias.

  2. Evaluating effects of developmental education for college students using a regression discontinuity design.

    PubMed

    Moss, Brian G; Yeaton, William H

    2013-10-01

    Annually, American colleges and universities provide developmental education (DE) to millions of underprepared students; however, evaluation estimates of DE benefits have been mixed. Using a prototypic exemplar of DE, our primary objective was to investigate the utility of a replicative evaluative framework for assessing program effectiveness. Within the context of the regression discontinuity (RD) design, this research examined the effectiveness of a DE program for five, sequential cohorts of first-time college students. Discontinuity estimates were generated for individual terms and cumulatively, across terms. Participants were 3,589 first-time community college students. DE program effects were measured by contrasting both college-level English grades and a dichotomous measure of pass/fail, for DE and non-DE students. Parametric and nonparametric estimates of overall effect were positive for continuous and dichotomous measures of achievement (grade and pass/fail). The variability of program effects over time was determined by tracking results within individual terms and cumulatively, across terms. Applying this replication strategy, DE's overall impact was modest (an effect size of approximately .20) but quite consistent, based on parametric and nonparametric estimation approaches. A meta-analysis of five RD results yielded virtually the same estimate as the overall, parametric findings. Subset analysis, though tentative, suggested that males benefited more than females, while academic gains were comparable for different ethnicities. The cumulative, within-study comparison, replication approach offers considerable potential for the evaluation of new and existing policies, particularly when effects are relatively small, as is often the case in applied settings.

  3. Efficient design and inference for multistage randomized trials of individualized treatment policies.

    PubMed

    Dawson, Ree; Lavori, Philip W

    2012-01-01

    Clinical demand for individualized "adaptive" treatment policies in diverse fields has spawned development of clinical trial methodology for their experimental evaluation via multistage designs, building upon methods intended for the analysis of naturalistically observed strategies. Because often there is no need to parametrically smooth multistage trial data (in contrast to observational data for adaptive strategies), it is possible to establish direct connections among different methodological approaches. We show by algebraic proof that the maximum likelihood (ML) and optimal semiparametric (SP) estimators of the population mean of the outcome of a treatment policy and its standard error are equal under certain experimental conditions. This result is used to develop a unified and efficient approach to design and inference for multistage trials of policies that adapt treatment according to discrete responses. We derive a sample size formula expressed in terms of a parametric version of the optimal SP population variance. Nonparametric (sample-based) ML estimation performed well in simulation studies, in terms of achieved power, for scenarios most likely to occur in real studies, even though sample sizes were based on the parametric formula. ML outperformed the SP estimator; differences in achieved power predominately reflected differences in their estimates of the population mean (rather than estimated standard errors). Neither methodology could mitigate the potential for overestimated sample sizes when strong nonlinearity was purposely simulated for certain discrete outcomes; however, such departures from linearity may not be an issue for many clinical contexts that make evaluation of competitive treatment policies meaningful.

  4. Functional mapping of reaction norms to multiple environmental signals through nonparametric covariance estimation

    PubMed Central

    2011-01-01

    Background The identification of genes or quantitative trait loci that are expressed in response to different environmental factors such as temperature and light, through functional mapping, critically relies on precise modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different environmental factors. Results We implement a more robust nonparametric covariance estimator to model these interactions within the framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show that this estimator can be useful in modeling interactions that exist between two environmental signals. The interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic interaction effects. Conclusions The nonparametric covariance estimator has an advantage over separable parametric covariance estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical settings. PMID:21269481

  5. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    PubMed

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  6. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography

    PubMed Central

    Packham, B; Barnes, G; dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-01-01

    Abstract Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477

  7. Robust Machine Learning Variable Importance Analyses of Medical Conditions for Health Care Spending.

    PubMed

    Rose, Sherri

    2018-03-11

    To propose nonparametric double robust machine learning in variable importance analyses of medical conditions for health spending. 2011-2012 Truven MarketScan database. I evaluate how much more, on average, commercially insured enrollees with each of 26 of the most prevalent medical conditions cost per year after controlling for demographics and other medical conditions. This is accomplished within the nonparametric targeted learning framework, which incorporates ensemble machine learning. Previous literature studying the impact of medical conditions on health care spending has almost exclusively focused on parametric risk adjustment; thus, I compare my approach to parametric regression. My results demonstrate that multiple sclerosis, congestive heart failure, severe cancers, major depression and bipolar disorders, and chronic hepatitis are the most costly medical conditions on average per individual. These findings differed from those obtained using parametric regression. The literature may be underestimating the spending contributions of several medical conditions, which is a potentially critical oversight. If current methods are not capturing the true incremental effect of medical conditions, undesirable incentives related to care may remain. Further work is needed to directly study these issues in the context of federal formulas. © Health Research and Educational Trust.

  8. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses

    PubMed Central

    Nowak, Michael D.; Smith, Andrew B.; Simpson, Carl; Zwickl, Derrick J.

    2013-01-01

    Molecular divergence time analyses often rely on the age of fossil lineages to calibrate node age estimates. Most divergence time analyses are now performed in a Bayesian framework, where fossil calibrations are incorporated as parametric prior probabilities on node ages. It is widely accepted that an ideal parameterization of such node age prior probabilities should be based on a comprehensive analysis of the fossil record of the clade of interest, but there is currently no generally applicable approach for calculating such informative priors. We provide here a simple and easily implemented method that employs fossil data to estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade, which can be used to fit an informative parametric prior probability distribution on a node age. Specifically, our method uses the extant diversity and the stratigraphic distribution of fossil lineages confidently assigned to a clade to fit a branching model of lineage diversification. Conditioning this on a simple model of fossil preservation, we estimate the likely amount of missing history prior to the oldest fossil occurrence of a clade. The likelihood surface of missing history can then be translated into a parametric prior probability distribution on the age of the clade of interest. We show that the method performs well with simulated fossil distribution data, but that the likelihood surface of missing history can at times be too complex for the distribution-fitting algorithm employed by our software tool. An empirical example of the application of our method is performed to estimate echinoid node ages. A simulation-based sensitivity analysis using the echinoid data set shows that node age prior distributions estimated under poor preservation rates are significantly less informative than those estimated under high preservation rates. PMID:23755303

  9. Economics of immunization information systems in the United States: assessing costs and efficiency

    PubMed Central

    Bartlett, Diana L; Molinari, Noelle-Angelique M; Ortega-Sanchez, Ismael R; Urquhart, Gary A

    2006-01-01

    Background One of the United States' national health objectives for 2010 is that 95% of children aged <6 years participate in fully operational population-based immunization information systems (IIS). Despite important progress, child participation in most IIS has increased slowly, in part due to limited economic knowledge about IIS operations. Should IIS need further improvement, characterizing costs and identifying factors that affect IIS efficiency become crucial. Methods Data were collected from a national sampling frame of the 56 states/cities that received federal immunization grants under U.S. Public Health Service Act 317b and completed the federal 1999 Immunization Registry Annual Report. The sampling frame was stratified by IIS functional status, children's enrollment in the IIS, and whether the IIS had been developed as an independent system or was integrated into a larger system. These sites self-reported IIS developmental and operational program costs for calendar years 1998–2002 using a standardized data collection tool and underwent on-site interviews to verify reported data with information from the state/city financial management system and other financial records. A parametric cost-per-patient-record (CPR) model was estimated. The model assessed the impact of labor and non-labor resources used in development and operations tasks, as well as the impact of information technology, local providers' participation and compliance with federal IIS performance standards (e.g., ensuring the confidentiality and security of information, ensure timely vaccination data at the time of patient encounter, and produce official immunization records). Given the number of records minimizing CPR, the additional amount of resources needed to meet national health goals for the year 2010 was also calculated. Results Estimated CPR was as high as $10.30 and as low as $0.09 in operating IIS. About 20% of IIS had between 2.9 to 3.2 million records and showed CPR estimates of $0.09. Overall, CPR was highly sensitive to local providers' participation. To achieve the 2010 goals, additional aggregated costs were estimated to be $75.6 million nationwide. Conclusion Efficiently increasing the number of records in IIS would require additional resources and careful consideration of various strategies to minimize CPR, such as boosting providers' participation. PMID:16925823

  10. Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas

    NASA Astrophysics Data System (ADS)

    Dodangeh, Esmaeel; Shahedi, Kaka; Shiau, Jenq-Tzong; MirAkbari, Maryam

    2017-08-01

    Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall τ estimation method for copulas parameter estimation. The methods were employed to study joint severity-duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The Q_{75} index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma-GEV, LN2-exponential, and LN2-gamma were selected as the best paired drought severity-duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov-Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-τ is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall τ estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.

  11. The Design-To-Cost Manifold

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1990-01-01

    Design-to-cost is a popular technique for controlling costs. Although qualitative techniques exist for implementing design to cost, quantitative methods are sparse. In the launch vehicle and spacecraft engineering process, the question whether to minimize mass is usually an issue. The lack of quantification in this issue leads to arguments on both sides. This paper presents a mathematical technique which both quantifies the design-to-cost process and the mass/complexity issue. Parametric cost analysis generates and applies mathematical formulas called cost estimating relationships. In their most common forms, they are continuous and differentiable. This property permits the application of the mathematics of differentiable manifolds. Although the terminology sounds formidable, the application of the techniques requires only a knowledge of linear algebra and ordinary differential equations, common subjects in undergraduate scientific and engineering curricula. When the cost c is expressed as a differentiable function of n system metrics, setting the cost c to be a constant generates an n-1 dimensional subspace of the space of system metrics such that any set of metric values in that space satisfies the constant design-to-cost criterion. This space is a differentiable manifold upon which all mathematical properties of a differentiable manifold may be applied. One important property is that an easily implemented system of ordinary differential equations exists which permits optimization of any function of the system metrics, mass for example, over the design-to-cost manifold. A dual set of equations defines the directions of maximum and minimum cost change. A simplified approximation of the PRICE H(TM) production-production cost is used to generate this set of differential equations over [mass, complexity] space. The equations are solved in closed form to obtain the one dimensional design-to-cost trade and design-for-cost spaces. Preliminary results indicate that cost is relatively insensitive to changes in mass and that the reduction of complexity, both in the manufacturing process and of the spacecraft, is dominant in reducing cost.

  12. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    PubMed

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  13. A Nonparametric Mean-Variance Smoothing Method to Assess Arabidopsis Cold Stress Transcriptional Regulator CBF2 Overexpression Microarray Data

    PubMed Central

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request. PMID:21611181

  14. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  15. Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature with application to recurrent events and individual participant data meta-analysis.

    PubMed

    Crowther, Michael J; Look, Maxime P; Riley, Richard D

    2014-09-28

    Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multicenter clinical trials, and individual participant data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper, we extend parametric frailty models including the exponential, Weibull and Gompertz proportional hazards (PH) models and the log logistic, log normal, and generalized gamma accelerated failure time models to allow any number of normally distributed random effects. Furthermore, we extend the flexible parametric survival model of Royston and Parmar, modeled on the log-cumulative hazard scale using restricted cubic splines, to include random effects while also allowing for non-PH (time-dependent effects). Maximum likelihood is used to estimate the models utilizing adaptive or nonadaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies representing clinically plausible scenarios of a multicenter trial and IPD meta-analysis, showing good performance of the estimation method. The flexible parametric mixed effects model is illustrated using a dataset of patients with kidney disease and repeated times to infection and an IPD meta-analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is provided to implement the methods. Copyright © 2014 John Wiley & Sons, Ltd.

  16. A parametric ribcage geometry model accounting for variations among the adult population.

    PubMed

    Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2016-09-06

    The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting

    PubMed Central

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2015-01-01

    Summary The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function. PMID:27346982

  18. Data-Adaptive Bias-Reduced Doubly Robust Estimation.

    PubMed

    Vermeulen, Karel; Vansteelandt, Stijn

    2016-05-01

    Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.

  19. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.

    PubMed

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2016-06-01

    The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.

  20. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  1. Effect of non-normality on test statistics for one-way independent groups designs.

    PubMed

    Cribbie, Robert A; Fiksenbaum, Lisa; Keselman, H J; Wilcox, Rand R

    2012-02-01

    The data obtained from one-way independent groups designs is typically non-normal in form and rarely equally variable across treatment populations (i.e., population variances are heterogeneous). Consequently, the classical test statistic that is used to assess statistical significance (i.e., the analysis of variance F test) typically provides invalid results (e.g., too many Type I errors, reduced power). For this reason, there has been considerable interest in finding a test statistic that is appropriate under conditions of non-normality and variance heterogeneity. Previously recommended procedures for analysing such data include the James test, the Welch test applied either to the usual least squares estimators of central tendency and variability, or the Welch test with robust estimators (i.e., trimmed means and Winsorized variances). A new statistic proposed by Krishnamoorthy, Lu, and Mathew, intended to deal with heterogeneous variances, though not non-normality, uses a parametric bootstrap procedure. In their investigation of the parametric bootstrap test, the authors examined its operating characteristics under limited conditions and did not compare it to the Welch test based on robust estimators. Thus, we investigated how the parametric bootstrap procedure and a modified parametric bootstrap procedure based on trimmed means perform relative to previously recommended procedures when data are non-normal and heterogeneous. The results indicated that the tests based on trimmed means offer the best Type I error control and power when variances are unequal and at least some of the distribution shapes are non-normal. © 2011 The British Psychological Society.

  2. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  3. Guidance, navigation, and control trades for an Electric Orbit Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Zondervan, K. P.; Bauer, T. A.; Jenkin, A. B.; Metzler, R. A.; Shieh, R. A.

    The USAF Space Division initiated the Electric Insertion Transfer Experiment (ELITE) in the fall of 1988. The ELITE space mission is planned for the mid 1990s and will demonstrate technological readiness for the development of operational solar-powered electric orbit transfer vehicles (EOTVs). To minimize the cost of ground operations, autonomous flight is desirable. Thus, the guidance, navigation, and control (GNC) functions of an EOTV should reside on board. In order to define GNC requirements for ELITE, parametric trades must be performed for an operational solar-powered EOTV so that a clearer understanding of the performance aspects is obtained. Parametric trades for the GNC subsystems have provided insight into the relationship between pointing accuracy, transfer time, and propellant utilization. Additional trades need to be performed, taking into account weight, cost, and degree of autonomy.

  4. Pitch-Learning Algorithm For Speech Encoders

    NASA Technical Reports Server (NTRS)

    Bhaskar, B. R. Udaya

    1988-01-01

    Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.

  5. Generalizations and Extensions of the Probability of Superiority Effect Size Estimator

    ERIC Educational Resources Information Center

    Ruscio, John; Gera, Benjamin Lee

    2013-01-01

    Researchers are strongly encouraged to accompany the results of statistical tests with appropriate estimates of effect size. For 2-group comparisons, a probability-based effect size estimator ("A") has many appealing properties (e.g., it is easy to understand, robust to violations of parametric assumptions, insensitive to outliers). We review…

  6. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  7. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  8. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  9. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Missing Data Estimation Procedures C... (CONTINUED) CONTINUOUS EMISSION MONITORING Pt. 75, App. C Appendix C to Part 75—Missing Data Estimation Procedures 1. Parametric Monitoring Procedure for Missing SO2 Concentration or NOX Emission Rate Data 1...

  10. A frequency-domain estimator for use in adaptive control systems

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter

    1991-01-01

    This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.

  11. Geometric calibration of a coordinate measuring machine using a laser tracking system

    NASA Astrophysics Data System (ADS)

    Umetsu, Kenta; Furutnani, Ryosyu; Osawa, Sonko; Takatsuji, Toshiyuki; Kurosawa, Tomizo

    2005-12-01

    This paper proposes a calibration method for a coordinate measuring machine (CMM) using a laser tracking system. The laser tracking system can measure three-dimensional coordinates based on the principle of trilateration with high accuracy and is easy to set up. The accuracy of length measurement of a single laser tracking interferometer (laser tracker) is about 0.3 µm over a length of 600 mm. In this study, we first measured 3D coordinates using the laser tracking system. Secondly, 21 geometric errors, namely, parametric errors of the CMM, were estimated by the comparison of the coordinates obtained by the laser tracking system and those obtained by the CMM. As a result, the estimated parametric errors agreed with those estimated by a ball plate measurement, which demonstrates the validity of the proposed calibration system.

  12. Astronomy sortie mission definition study. Addendum: Follow-on analyses

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results of design analyses, trade studies, and planning data of the Astronomy Sortie Mission Definition Study are presented. An in-depth analysis of UV instruments, nondeployed solar payload, and on-orbit access is presented. Planning data are considered, including the cost and schedules associated with the astronomy instruments and/or support hardware. Costs are presented in a parametric fashion.

  13. Hepatitis C in the era of direct-acting antivirals: real-world costs of untreated chronic hepatitis C; a cross-sectional study.

    PubMed

    Kieran, Jennifer Ann; Norris, Suzanne; O'Leary, Aisling; Walsh, Cathal; Merriman, Raphael; Houlihan, D; McCormick, P Aiden; McKiernan, Susan; Bergin, Colm; Barry, Michael

    2015-10-26

    Recent advances in Hepatitis C therapeutics offer the possibility of cure but will be expensive. The cost of treatment may be partially offset by the avoidance of advanced liver disease. We performed a micro-costing study of the ambulatory healthcare utilisation of patients with Hepatitis C supplemented with inpatient diagnosis related group costs. The staff utilisation costs associated with a Hepatitis C ambulatory visit were measured and combined with the costs of investigations to establish a mean cost per consultation. An annualised estimate of cost was produced by multiplying this by the number of consultations accessed, stratified by degree of liver impairment. Inpatient costs were established by identifying the number of inpatient episodes and multiplying by Irish diagnosis related group costs. Non-parametric bootstrapping was performed to derive mean and 95%CI values. Two hundred and twenty-five patients were identified. The cost of an outpatient medical review was €136 (€3.60 SD). The cost of a Hepatitis C nursing review was €128 (€7.30 SD). The annual mean costs of care were as follows (95%CI): Mild €398 (€336, €482), Moderate €417(€335, €503), Compensated cirrhosis €1790 (€990, €3164), Decompensated cirrhosis €8302 (€3945, €14,637), Transplantation Year 1 €137,176 (€136,024, €138,306), Transplantation after Year 1 €5337 (€4942, €5799), Hepatocellular carcinoma €21,992 (€15,222, €29,467), Sustained virological response €44 (€16, €73). The direct medical cost associated with Hepatitis C care in Ireland is substantial and increases exponentially with progression of liver disease. The follow-up costs of patients with a sustained virological response in this cohort were low in comparison to patients with chronic infection.

  14. Analysis of the Bayesian Cramér-Rao lower bound in astrometry. Studying the impact of prior information in the location of an object

    NASA Astrophysics Data System (ADS)

    Echeverria, Alex; Silva, Jorge F.; Mendez, Rene A.; Orchard, Marcos

    2016-10-01

    Context. The best precision that can be achieved to estimate the location of a stellar-like object is a topic of permanent interest in the astrometric community. Aims: We analyze bounds for the best position estimation of a stellar-like object on a CCD detector array in a Bayesian setting where the position is unknown, but where we have access to a prior distribution. In contrast to a parametric setting where we estimate a parameter from observations, the Bayesian approach estimates a random object (I.e., the position is a random variable) from observations that are statistically dependent on the position. Methods: We characterize the Bayesian Cramér-Rao (CR) that bounds the minimum mean square error (MMSE) of the best estimator of the position of a point source on a linear CCD-like detector, as a function of the properties of detector, the source, and the background. Results: We quantify and analyze the increase in astrometric performance from the use of a prior distribution of the object position, which is not available in the classical parametric setting. This gain is shown to be significant for various observational regimes, in particular in the case of faint objects or when the observations are taken under poor conditions. Furthermore, we present numerical evidence that the MMSE estimator of this problem tightly achieves the Bayesian CR bound. This is a remarkable result, demonstrating that all the performance gains presented in our analysis can be achieved with the MMSE estimator. Conclusions: The Bayesian CR bound can be used as a benchmark indicator of the expected maximum positional precision of a set of astrometric measurements in which prior information can be incorporated. This bound can be achieved through the conditional mean estimator, in contrast to the parametric case where no unbiased estimator precisely reaches the CR bound.

  15. Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Lind, Rick

    1998-01-01

    Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.

  16. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  17. Multi-parametric variational data assimilation for hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.

    2017-12-01

    Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.

  18. The formulation and estimation of a spatial skew-normal generalized ordered-response model.

    DOT National Transportation Integrated Search

    2016-06-01

    This paper proposes a new spatial generalized ordered response model with skew-normal kernel error terms and an : associated estimation method. It contributes to the spatial analysis field by allowing a flexible and parametric skew-normal : distribut...

  19. A program for the Bayesian Neural Network in the ROOT framework

    NASA Astrophysics Data System (ADS)

    Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang

    2011-12-01

    We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.

  20. Analytic modeling of aerosol size distributions

    NASA Technical Reports Server (NTRS)

    Deepack, A.; Box, G. P.

    1979-01-01

    Mathematical functions commonly used for representing aerosol size distributions are studied parametrically. Methods for obtaining best fit estimates of the parameters are described. A catalog of graphical plots depicting the parametric behavior of the functions is presented along with procedures for obtaining analytical representations of size distribution data by visual matching of the data with one of the plots. Examples of fitting the same data with equal accuracy by more than one analytic model are also given.

  1. Development of Regional Supply Functions and a Least-Cost Model for Allocating Water Resources in Utah: A Parametric Linear Programming Approach.

    DTIC Science & Technology

    SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).

  2. The total assessment profile, volume 2. [including societal impact, cost effectiveness, and economic analysis

    NASA Technical Reports Server (NTRS)

    Leininger, G.; Jutila, S.; King, J.; Muraco, W.; Hansell, J.; Lindeen, J.; Franckowiak, E.; Flaschner, A.

    1975-01-01

    Appendices are presented which include discussions of interest formulas, factors in regionalization, parametric modeling of discounted benefit-sacrifice streams, engineering economic calculations, and product innovation. For Volume 1, see .

  3. Self-calibration for lensless color microscopy.

    PubMed

    Flasseur, Olivier; Fournier, Corinne; Verrier, Nicolas; Denis, Loïc; Jolivet, Frédéric; Cazier, Anthony; Lépine, Thierry

    2017-05-01

    Lensless color microscopy (also called in-line digital color holography) is a recent quantitative 3D imaging method used in several areas including biomedical imaging and microfluidics. By targeting cost-effective and compact designs, the wavelength of the low-end sources used is known only imprecisely, in particular because of their dependence on temperature and power supply voltage. This imprecision is the source of biases during the reconstruction step. An additional source of error is the crosstalk phenomenon, i.e., the mixture in color sensors of signals originating from different color channels. We propose to use a parametric inverse problem approach to achieve self-calibration of a digital color holographic setup. This process provides an estimation of the central wavelengths and crosstalk. We show that taking the crosstalk phenomenon into account in the reconstruction step improves its accuracy.

  4. Source Lines Counter (SLiC) Version 4.0

    NASA Technical Reports Server (NTRS)

    Monson, Erik W.; Smith, Kevin A.; Newport, Brian J.; Gostelow, Roli D.; Hihn, Jairus M.; Kandt, Ronald K.

    2011-01-01

    Source Lines Counter (SLiC) is a software utility designed to measure software source code size using logical source statements and other common measures for 22 of the programming languages commonly used at NASA and the aerospace industry. Such metrics can be used in a wide variety of applications, from parametric cost estimation to software defect analysis. SLiC has a variety of unique features such as automatic code search, automatic file detection, hierarchical directory totals, and spreadsheet-compatible output. SLiC was written for extensibility; new programming language support can be added with minimal effort in a short amount of time. SLiC runs on a variety of platforms including UNIX, Windows, and Mac OSX. Its straightforward command-line interface allows for customization and incorporation into the software build process for tracking development metrics. T

  5. The value of improved (ERS) information based on domestic distribution effects of U.S. agriculture crops

    NASA Technical Reports Server (NTRS)

    Bradford, D. F.; Kelejian, H. H.; Brusch, R.; Gross, J.; Fishman, H.; Feenberg, D.

    1974-01-01

    The value of improving information for forecasting future crop harvests was investigated. Emphasis was placed upon establishing practical evaluation procedures firmly based in economic theory. The analysis was applied to the case of U.S. domestic wheat consumption. Estimates for a cost of storage function and a demand function for wheat were calculated. A model of market determinations of wheat inventories was developed for inventory adjustment. The carry-over horizon is computed by the solution of a nonlinear programming problem, and related variables such as spot and future price at each stage are determined. The model is adaptable to other markets. Results are shown to depend critically on the accuracy of current and proposed measurement techniques. The quantitative results are presented parametrically, in terms of various possible values of current and future accuracies.

  6. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  7. Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.

    PubMed

    Xu, Xiaoguang; Kypraios, Theodore; O'Neill, Philip D

    2016-10-01

    This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these assumptions, we develop a Bayesian non-parametric approach using Gaussian Processes, specifically to estimate the infection process. The methods are illustrated with both simulated and real data sets, the former illustrating that the methods can recover the true infection process quite well in practice, and the latter illustrating that the methods can be successfully applied in different settings. © The Author 2016. Published by Oxford University Press.

  8. Cost-effectiveness analysis of treatments for vertebral compression fractures.

    PubMed

    Edidin, Avram A; Ong, Kevin L; Lau, Edmund; Schmier, Jordana K; Kemner, Jason E; Kurtz, Steven M

    2012-07-01

    Vertebral compression fractures (VCFs) can be treated by nonsurgical management or by minimally invasive surgical treatment including vertebroplasty and balloon kyphoplasty. The purpose of the present study was to characterize the cost to Medicare for treating VCF-diagnosed patients by nonsurgical management, vertebroplasty, or kyphoplasty. We hypothesized that surgical treatments for VCFs using vertebroplasty or kyphoplasty would be a cost-effective alternative to nonsurgical management for the Medicare patient population. Cost per life-year gained for VCF patients in the US Medicare population was compared between operated (kyphoplasty and vertebroplasty) and non-operated patients and between kyphoplasty and vertebroplasty patients, all as a function of patient age and gender. Life expectancy was estimated using a parametric Weibull survival model (adjusted for comorbidities) for 858 978 VCF patients in the 100% Medicare dataset (2005-2008). Median payer costs were identified for each treatment group for up to 3 years following VCF diagnosis, based on 67 018 VCF patients in the 5% Medicare dataset (2005-2008). A discount rate of 3% was used for the base case in the cost-effectiveness analysis, with 0% and 5% discount rates used in sensitivity analyses. After accounting for the differences in median costs and using a discount rate of 3%, the cost per life-year gained for kyphoplasty and vertebroplasty patients ranged from $US1863 to $US6687 and from $US2452 to $US13 543, respectively, compared with non-operated patients. The cost per life-year gained for kyphoplasty compared with vertebroplasty ranged from -$US4878 (cost saving) to $US2763. Among patients for whom surgical treatment was indicated, kyphoplasty was found to be cost effective, and perhaps even cost saving, compared with vertebroplasty. Even for the oldest patients (85 years of age and older), both interventions would be considered cost effective in terms of cost per life-year gained.

  9. Divergences and estimating tight bounds on Bayes error with applications to multivariate Gaussian copula and latent Gaussian copula

    NASA Astrophysics Data System (ADS)

    Thelen, Brian J.; Xique, Ismael J.; Burns, Joseph W.; Goley, G. Steven; Nolan, Adam R.; Benson, Jonathan W.

    2017-04-01

    In Bayesian decision theory, there has been a great amount of research into theoretical frameworks and information- theoretic quantities that can be used to provide lower and upper bounds for the Bayes error. These include well-known bounds such as Chernoff, Battacharrya, and J-divergence. Part of the challenge of utilizing these various metrics in practice is (i) whether they are "loose" or "tight" bounds, (ii) how they might be estimated via either parametric or non-parametric methods, and (iii) how accurate the estimates are for limited amounts of data. In general what is desired is a methodology for generating relatively tight lower and upper bounds, and then an approach to estimate these bounds efficiently from data. In this paper, we explore the so-called triangle divergence which has been around for a while, but was recently made more prominent in some recent research on non-parametric estimation of information metrics. Part of this work is motivated by applications for quantifying fundamental information content in SAR/LIDAR data, and to help in this, we have developed a flexible multivariate modeling framework based on multivariate Gaussian copula models which can be combined with the triangle divergence framework to quantify this information, and provide approximate bounds on Bayes error. In this paper we present an overview of the bounds, including those based on triangle divergence and verify that under a number of multivariate models, the upper and lower bounds derived from triangle divergence are significantly tighter than the other common bounds, and often times, dramatically so. We also propose some simple but effective means for computing the triangle divergence using Monte Carlo methods, and then discuss estimation of the triangle divergence from empirical data based on Gaussian Copula models.

  10. Delineating parameter unidentifiabilities in complex models

    NASA Astrophysics Data System (ADS)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  11. Estimating piecewise exponential frailty model with changing prior for baseline hazard function

    NASA Astrophysics Data System (ADS)

    Thamrin, Sri Astuti; Lawi, Armin

    2016-02-01

    Piecewise exponential models provide a very flexible framework for modelling univariate survival data. It can be used to estimate the effects of different covariates which are influenced by the survival data. Although in a strict sense it is a parametric model, a piecewise exponential hazard can approximate any shape of a parametric baseline hazard. In the parametric baseline hazard, the hazard function for each individual may depend on a set of risk factors or explanatory variables. However, it usually does not explain all such variables which are known or measurable, and these variables become interesting to be considered. This unknown and unobservable risk factor of the hazard function is often termed as the individual's heterogeneity or frailty. This paper analyses the effects of unobserved population heterogeneity in patients' survival times. The issue of model choice through variable selection is also considered. A sensitivity analysis is conducted to assess the influence of the prior for each parameter. We used the Markov Chain Monte Carlo method in computing the Bayesian estimator on kidney infection data. The results obtained show that the sex and frailty are substantially associated with survival in this study and the models are relatively quite sensitive to the choice of two different priors.

  12. [Age- and sex-specific reference intervals for 10 health examination items: mega-data from a Japanese Health Service Association].

    PubMed

    Suka, Machi; Yoshida, Katsumi; Kawai, Tadashi; Aoki, Yoshikazu; Yamane, Noriyuki; Yamauchi, Kuniaki

    2005-07-01

    To determine age- and sex-specific reference intervals for 10 health examination items in Japanese adults. Health examination data were accumulated from 24 different prefectural health service associations affiliated with the Japan Association of Health Service. Those who were non-smokers, drank less than 7 days/week, and had a body mass index of 18.5-24.9kg/m2 were sampled as a reference population (n = 737,538; 224,947 men and 512,591 women). After classified by age and sex, reference intervals for 10 health examination items (systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, glucose, uric acid, AST, ALT, gamma-GT, and hemoglobin) were estimated using the parametric and nonparametric methods. In every item except for hemoglobin, men had higher reference intervals than women. Systolic blood pressure, total cholesterol, and glucose showed an upward trend in values with increasing age. Hemoglobin showed a downward trend in values with increasing age. Triglyceride, ALT, and gamma-GT reached a peak in middle age. Overall, parametric estimates showed narrower reference intervals than non-parametric estimates. Reference intervals vary with age and sex. Age- and sex-specific reference intervals may contribute to better assessment of health examination data.

  13. Cost-effectiveness of pembrolizumab versus docetaxel for the treatment of previously treated PD-L1 positive advanced NSCLC patients in the United States.

    PubMed

    Huang, Min; Lou, Yanyan; Pellissier, James; Burke, Thomas; Liu, Frank Xiaoqing; Xu, Ruifeng; Velcheti, Vamsidhar

    2017-02-01

    This analysis aimed to evaluate the cost-effectiveness of pembrolizumab compared with docetaxel in patients with previously treated advanced non-squamous cell lung cancer (NSCLC) with PD-L1 positive tumors (total proportion score [TPS] ≥ 50%). The analysis was conducted from a US third-party payer perspective. A partitioned-survival model was developed using data from patients from the KEYNOTE 010 clinical trial. The model used Kaplan-Meier (KM) estimates of progression-free survival (PFS) and overall survival (OS) from the trial for patients treated with either pembrolizumab 2 mg/kg or docetaxel 75 mg/m 2 with extrapolation based on fitted parametric functions and long-term registry data. Quality-adjusted life years (QALYs) were derived based on EQ-5D data from KEYNOTE 010 using a time to death approach. Costs of drug acquisition/administration, adverse event management, and clinical management of advanced NSCLC were included in the model. The base-case analysis used a time horizon of 20 years. Costs and health outcomes were discounted at a rate of 3% per year. A series of one-way and probabilistic sensitivity analyses were performed to test the robustness of the results. Base case results project for PD-L1 positive (TPS ≥50%) patients treated with pembrolizumab a mean survival of 2.25 years. For docetaxel, a mean survival time of 1.07 years was estimated. Expected QALYs were 1.71 and 0.76 for pembrolizumab and docetaxel, respectively. The incremental cost per QALY gained with pembrolizumab vs docetaxel is $168,619/QALY, which is cost-effective in the US using a threshold of 3-times GDP per capita. Sensitivity analyses showed the results to be robust over plausible values of the majority of inputs. Results were most sensitive to extrapolation of overall survival. Pembrolizumab improves survival, increases QALYs, and can be considered as a cost-effective option compared to docetaxel in PD-L1 positive (TPS ≥50%) pre-treated advanced NSCLC patients in the US.

  14. Cost-effectiveness of ceritinib in patients previously treated with crizotinib in anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer in Canada.

    PubMed

    Hurry, Manjusha; Zhou, Zheng-Yi; Zhang, Jie; Zhang, Chenxue; Fan, Liangyi; Rebeira, Mayvis; Xie, Jipan

    2016-10-01

    To assess the cost-effectiveness of ceritinib vs alternatives in patients who discontinue treatment with crizotinib in anaplastic lymphoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC) from a Canadian public healthcare perspective. A partitioned survival model with three health states (stable, progressive, and death) was developed. Comparators were chosen based on reported utilization from a retrospective Canadian chart study; comparators were pemetrexed, best supportive care (BSC), and historical control (HC). HC comprised of all treatment alternatives reported. Progression-free survival and overall survival for ceritinib were estimated using data reported from single-arm clinical trials (ASCEND-1 [NCT01283516] and ASCEND-2 [NCT01685060]). Survival data for comparators were obtained from published clinical trials in a NSCLC population and from a Canadian retrospective chart study. Parametric models were used to extrapolate outcomes beyond the trial period. Drug acquisition, administration, resource use, and adverse event (AE) costs were obtained from databases. Utilities for health states and disutilities for AEs based on EQ-5D were derived from literature. Incremental costs per quality-adjusted life year (QALY) gained were estimated. Univariate and probabilistic sensitivity analyses were performed. Over 4 years, ceritinib was associated with 0.86 QALYs and total direct costs of $89,740 for the post-ALK population. The incremental cost-effectiveness ratio (ICER) was $149,117 comparing ceritinib vs BSC, $80,100 vs pemetrexed, and $104,436 vs HC. Additional scenarios included comparison to docetaxel with an ICER of $149,780 and using utility scores reported from PROFILE 1007, with a reported ICER ranging from $67,311 vs pemetrexed to $119,926 vs BSC. Due to limitations in clinical efficacy input, extensive sensitivity analyses were carried out whereby results remained consistent with the base-case findings. Based on the willingness-to-pay threshold for end-of-life cancer drugs, ceritinib may be considered as a cost-effective option compared with other alternatives in patients who have progressed or are intolerant to crizotinib in Canada.

  15. Construction of joint confidence regions for the optimal true class fractions of Receiver Operating Characteristic (ROC) surfaces and manifolds.

    PubMed

    Bantis, Leonidas E; Nakas, Christos T; Reiser, Benjamin; Myall, Daniel; Dalrymple-Alford, John C

    2017-06-01

    The three-class approach is used for progressive disorders when clinicians and researchers want to diagnose or classify subjects as members of one of three ordered categories based on a continuous diagnostic marker. The decision thresholds or optimal cut-off points required for this classification are often chosen to maximize the generalized Youden index (Nakas et al., Stat Med 2013; 32: 995-1003). The effectiveness of these chosen cut-off points can be evaluated by estimating their corresponding true class fractions and their associated confidence regions. Recently, in the two-class case, parametric and non-parametric methods were investigated for the construction of confidence regions for the pair of the Youden-index-based optimal sensitivity and specificity fractions that can take into account the correlation introduced between sensitivity and specificity when the optimal cut-off point is estimated from the data (Bantis et al., Biomet 2014; 70: 212-223). A parametric approach based on the Box-Cox transformation to normality often works well while for markers having more complex distributions a non-parametric procedure using logspline density estimation can be used instead. The true class fractions that correspond to the optimal cut-off points estimated by the generalized Youden index are correlated similarly to the two-class case. In this article, we generalize these methods to the three- and to the general k-class case which involves the classification of subjects into three or more ordered categories, where ROC surface or ROC manifold methodology, respectively, is typically employed for the evaluation of the discriminatory capacity of a diagnostic marker. We obtain three- and multi-dimensional joint confidence regions for the optimal true class fractions. We illustrate this with an application to the Trail Making Test Part A that has been used to characterize cognitive impairment in patients with Parkinson's disease.

  16. Type I Error Rates and Power Estimates of Selected Parametric and Nonparametric Tests of Scale.

    ERIC Educational Resources Information Center

    Olejnik, Stephen F.; Algina, James

    1987-01-01

    Estimated Type I Error rates and power are reported for the Brown-Forsythe, O'Brien, Klotz, and Siegal-Tukey procedures. The effect of aligning the data using deviations from group means or group medians is investigated. (RB)

  17. Development of FIAT-Based Parametric Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concept

    NASA Astrophysics Data System (ADS)

    Sepka, S. A.; Samareh, J. A.

    2014-06-01

    Mass estimating relationships have been formulated to determine a vehicle's Thermal Protection System material and required thickness for safe Earth entry. We focus on developing MERs, the resulting equations, model limitations, and model accuracy.

  18. Accurate Biomass Estimation via Bayesian Adaptive Sampling

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Knuth, Kevin H.; Castle, Joseph P.; Lvov, Nikolay

    2005-01-01

    The following concepts were introduced: a) Bayesian adaptive sampling for solving biomass estimation; b) Characterization of MISR Rahman model parameters conditioned upon MODIS landcover. c) Rigorous non-parametric Bayesian approach to analytic mixture model determination. d) Unique U.S. asset for science product validation and verification.

  19. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    NASA Astrophysics Data System (ADS)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  1. Experimental estimation of transmissibility matrices for industrial multi-axis vibration isolation systems

    NASA Astrophysics Data System (ADS)

    Beijen, Michiel A.; Voorhoeve, Robbert; Heertjes, Marcel F.; Oomen, Tom

    2018-07-01

    Vibration isolation is essential for industrial high-precision systems to suppress external disturbances. The aim of this paper is to develop a general identification approach to estimate the frequency response function (FRF) of the transmissibility matrix, which is a key performance indicator for vibration isolation systems. The major challenge lies in obtaining a good signal-to-noise ratio in view of a large system weight. A non-parametric system identification method is proposed that combines floor and shaker excitations. Furthermore, a method is presented to analyze the input power spectrum of the floor excitations, both in terms of magnitude and direction. In turn, the input design of the shaker excitation signals is investigated to obtain sufficient excitation power in all directions with minimum experiment cost. The proposed methods are shown to provide an accurate FRF of the transmissibility matrix in three relevant directions on an industrial active vibration isolation system over a large frequency range. This demonstrates that, despite their heavy weight, industrial vibration isolation systems can be accurately identified using this approach.

  2. Hurricane Properties for KSC and Mid-Florida Coastal Sites

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Rawlins, Michael A.; Kross, Dennis A.

    2000-01-01

    Hurricane information and climatologies are needed at Kennedy Space Center (KSC) Florida for launch operational planning purposes during the late summer and early fall Atlantic hurricane season. Also these results are needed to be used in estimating the potential magnitudes of hurricane and tropical storm impact on coastal Florida sites when passing within 50, 100 and 400 nm of that site. Roll-backs of the Space Shuttle and other launch vehicles, on pad, are very costly when a tropical storm approaches. A decision for the vehicle to roll-back or ride-out needs to be made. Therefore the historical Atlantic basin hurricane climatological properties were generated to be used for operational planning purposes and in the estimation of potential damage to launch vehicles, supporting equipment, buildings, etc.. The historical 1885-1998 Atlantic basin hurricane data were compiled and analyzed with respect to the coastal Florida site of KSC. Statistical information generated includes hurricane and tropical storm probabilities for path, maximum wind, and lowest pressure, presented for the areas within 50, 100 and 400 nm of KSC. These statistics are then compared to similar parametric statistics for the entire Atlantic basin.

  3. Investigation of environmental change pattern in Japan

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. In the Plains of Tokachi, where the scale of agricultural field was comparatively large in Japan, LANDSAT data with its accuracy have proved to be useful enough to observe the actual condition of agricultural land use and changes more accurately than present methods. Species and ages of grasses in pasture were identified and soils were classified into several types. The actual land cover and ecological environment were remarkably changeable at the rapidly industrialized area by the urbanization in the flat plane and also by the forest works and road construction in the mountainous area. The practical use of the recognition results was proved as the base map of the field survey or the retouching work of the vegetation and land use. There was a 10% cut in cost, labor, and time. Vegetation cover in Tokyo districts was estimated by both the multiregression model and the parametric model. Multicorrelation coefficient between observed value and estimated value was 0.87 and standard deviation was + or - 15%. Vegetation cover in Tokyo was mapped into five levels with equal intervals of 20%.

  4. A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system

    NASA Technical Reports Server (NTRS)

    Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.

    1979-01-01

    An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.

  5. Comparison of methods for estimating the attributable risk in the context of survival analysis.

    PubMed

    Gassama, Malamine; Bénichou, Jacques; Dartois, Laureen; Thiébaut, Anne C M

    2017-01-23

    The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox's model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points. Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort. In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.

  6. Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis

    NASA Astrophysics Data System (ADS)

    Fischer, R. D.

    1986-10-01

    The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.

  7. A new adaptive algorithm for automated feature extraction in exponentially damped signals for health monitoring of smart structures

    NASA Astrophysics Data System (ADS)

    Qarib, Hossein; Adeli, Hojjat

    2015-12-01

    In this paper authors introduce a new adaptive signal processing technique for feature extraction and parameter estimation in noisy exponentially damped signals. The iterative 3-stage method is based on the adroit integration of the strengths of parametric and nonparametric methods such as multiple signal categorization, matrix pencil, and empirical mode decomposition algorithms. The first stage is a new adaptive filtration or noise removal scheme. The second stage is a hybrid parametric-nonparametric signal parameter estimation technique based on an output-only system identification technique. The third stage is optimization of estimated parameters using a combination of the primal-dual path-following interior point algorithm and genetic algorithm. The methodology is evaluated using a synthetic signal and a signal obtained experimentally from transverse vibrations of a steel cantilever beam. The method is successful in estimating the frequencies accurately. Further, it estimates the damping exponents. The proposed adaptive filtration method does not include any frequency domain manipulation. Consequently, the time domain signal is not affected as a result of frequency domain and inverse transformations.

  8. Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal.

    PubMed

    Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi

    2016-02-01

    Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.

  9. SU-E-T-598: Parametric Equation for Quick and Reliable Estimate of Stray Neutron Doses in Proton Therapy and Application for Intracranial Tumor Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfrate, A; Farah, J; Sayah, R

    2015-06-15

    Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less

  10. Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals.

    PubMed

    Wang, Ying; Feng, Chenglian; Liu, Yuedan; Zhao, Yujie; Li, Huixian; Zhao, Tianhui; Guo, Wenjing

    2017-02-01

    Transition metals in the fourth period of the periodic table of the elements are widely widespread in aquatic environments. They could often occur at certain concentrations to cause adverse effects on aquatic life and human health. Generally, parametric models are mostly used to construct species sensitivity distributions (SSDs), which result in comparison for water quality criteria (WQC) of elements in the same period or group of the periodic table might be inaccurate and the results could be biased. To address this inadequacy, the non-parametric kernel density estimation (NPKDE) with its optimal bandwidths and testing methods were developed for establishing SSDs. The NPKDE was better fit, more robustness and better predicted than conventional normal and logistic parametric density estimations for constructing SSDs and deriving acute HC5 and WQC for transition metals in the fourth period of the periodic table. The decreasing sequence of HC5 values for the transition metals in the fourth period was Ti > Mn > V > Ni > Zn > Cu > Fe > Co > Cr(VI), which were not proportional to atomic number in the periodic table, and for different metals the relatively sensitive species were also different. The results indicated that except for physical and chemical properties there are other factors affecting toxicity mechanisms of transition metals. The proposed method enriched the methodological foundation for WQC. Meanwhile, it also provided a relatively innovative, accurate approach for the WQC derivation and risk assessment of the same group and period metals in aquatic environments to support protection of aquatic organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2007-01-01

    Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.

  12. Dense motion estimation using regularization constraints on local parametric models.

    PubMed

    Patras, Ioannis; Worring, Marcel; van den Boomgaard, Rein

    2004-11-01

    This paper presents a method for dense optical flow estimation in which the motion field within patches that result from an initial intensity segmentation is parametrized with models of different order. We propose a novel formulation which introduces regularization constraints between the model parameters of neighboring patches. In this way, we provide the additional constraints for very small patches and for patches whose intensity variation cannot sufficiently constrain the estimation of their motion parameters. In order to preserve motion discontinuities, we use robust functions as a regularization mean. We adopt a three-frame approach and control the balance between the backward and forward constraints by a real-valued direction field on which regularization constraints are applied. An iterative deterministic relaxation method is employed in order to solve the corresponding optimization problem. Experimental results show that the proposed method deals successfully with motions large in magnitude, motion discontinuities, and produces accurate piecewise-smooth motion fields.

  13. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  14. Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images.

    PubMed

    Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P; Gee, James C

    2009-01-01

    We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities.

  15. Automatic Correction of Intensity Nonuniformity from Sparseness of Gradient Distribution in Medical Images

    PubMed Central

    Zheng, Yuanjie; Grossman, Murray; Awate, Suyash P.; Gee, James C.

    2013-01-01

    We propose to use the sparseness property of the gradient probability distribution to estimate the intensity nonuniformity in medical images, resulting in two novel automatic methods: a non-parametric method and a parametric method. Our methods are easy to implement because they both solve an iteratively re-weighted least squares problem. They are remarkably accurate as shown by our experiments on images of different imaged objects and from different imaging modalities. PMID:20426191

  16. Analytical estimation on divergence and flutter vibrations of symmetrical three-phase induction stator via field-synchronous coordinates

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie

    2017-01-01

    The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.

  17. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain.

    PubMed

    Kral, L

    2007-05-01

    We present a complex stabilization and control system for a commercially available optical parametric oscillator. The system is able to stabilize the oscillator's output wavelength at a narrow spectral line of atomic iodine with subpicometer precision, allowing utilization of this solid-state parametric oscillator as a front end of a high-power photodissociation laser chain formed by iodine gas amplifiers. In such setup, a precise wavelength matching between the front end and the amplifier chain is necessary due to extremely narrow spectral lines of the gaseous iodine (approximately 20 pm). The system is based on a personal computer, a heated iodine cell, and a few other low-cost components. It automatically identifies the proper peak within the iodine absorption spectrum, and then keeps the oscillator tuned to this peak with high precision and reliability. The use of the solid-state oscillator as the front end allows us to use the whole iodine laser system as a pump laser for the optical parametric chirped pulse amplification, as it enables precise time synchronization with a signal Ti:sapphire laser.

  18. Structural cost optimization of photovoltaic central power station modules and support structure

    NASA Technical Reports Server (NTRS)

    Sutton, P. D.; Stolte, W. J.; Marsh, R. O.

    1979-01-01

    The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent

  19. Gastroenterologist and nurse management of symptoms after pelvic radiotherapy for cancer: an economic evaluation of a clinical randomized controlled trial (the ORBIT study).

    PubMed

    Jordan, Jake; Gage, Heather; Benton, Barbara; Lalji, Amyn; Norton, Christine; Andreyev, H Jervoise N

    2017-01-01

    Over 20 distressing gastrointestinal symptoms affect many patients after pelvic radiotherapy, but in the United Kingdom few are referred for assessment. Algorithmic-based treatment delivered by either a consultant gastroenterologist or a clinical nurse specialist has been shown in a randomized trial to be statistically and clinically more effective than provision of a self-help booklet. In this study, we assessed cost-effectiveness. Outcomes were measured at baseline (pre-randomization) and 6 months. Change in quality-adjusted life years (QALYs) was the primary outcome for the economic evaluation; a secondary analysis used change in the bowel subset score of the modified Inflammatory Bowel Disease Questionnaire (IBDQ-B). Intervention costs, British pounds 2013, covered visits with the gastroenterologist or nurse, investigations, medications and treatments. Incremental outcomes and incremental costs were estimated simultaneously using multivariate linear regression. Uncertainty was handled non-parametrically using bootstrap with replacement. The mean (SD) cost of treatment was £895 (499) for the nurse and £1101 (567) for the consultant. The nurse was dominated by usual care, which was cheaper and achieved better outcomes. The mean cost per QALY gained from the consultant, compared to usual care, was £250,455; comparing the consultant to the nurse, it was £25,875. Algorithmic care produced better outcomes compared to the booklet only, as reflected in the IBDQ-B results, at a cost of ~£1,000. Algorithmic treatment of radiation bowel injury by a consultant or a nurse results in significant symptom relief for patients but was not found to be cost-effective according to the National Institute for Health and Care Excellence (NICE) criteria.

  20. Exercise-based cardiac rehabilitation after heart valve surgery: cost analysis of healthcare use and sick leave.

    PubMed

    Hansen, T B; Zwisler, A D; Berg, S K; Sibilitz, K L; Thygesen, L C; Doherty, P; Søgaard, R

    2015-01-01

    Owing to a lack of evidence, patients undergoing heart valve surgery have been offered exercise-based cardiac rehabilitation (CR) since 2009 based on recommendations for patients with ischaemic heart disease in Denmark. The aim of this study was to investigate the impact of CR on the costs of healthcare use and sick leave among heart valve surgery patients over 12 months post surgery. We conducted a nationwide survey on the CR participation of all patients having undergone valve surgery between 1 January 2011 and 30 June 2011 (n=667). Among the responders (n=500, 75%), the resource use categories of primary and secondary healthcare, prescription medication and sick leave were analysed for CR participants (n=277) and non-participants (n=223) over 12 months. A difference-in-difference analysis was undertaken. All estimates were presented as the means per patient (95% CI) based on non-parametric bootstrapping of SEs. Total costs during the 12 months following surgery were €16 065 per patient (95% CI 13 730 to 18 399) in the CR group and €15 182 (12 695 to 17 670) in the non-CR group. CR led to 5.6 (2.9 to 8.3, p<0.01) more outpatient visits per patient. No statistically significant differences in other cost categories or total costs €1330 (-4427 to 7086, p=0.65) were found between the groups. CR, as provided in Denmark, can be considered cost neutral. CR is associated with more outpatient visits, but CR participation potentially offsets more expensive outpatient visits. Further studies should investigate the benefits of CR to heart valve surgery patients as part of a formal cost-utility analysis.

  1. Space biology initiative program definition review. Trade study 4: Design modularity and commonality

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.

  2. A global goodness-of-fit test for receiver operating characteristic curve analysis via the bootstrap method.

    PubMed

    Zou, Kelly H; Resnic, Frederic S; Talos, Ion-Florin; Goldberg-Zimring, Daniel; Bhagwat, Jui G; Haker, Steven J; Kikinis, Ron; Jolesz, Ferenc A; Ohno-Machado, Lucila

    2005-10-01

    Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap. A simple log (or logit) and a more flexible Box-Cox normality transformations were applied to untransformed or transformed data from two clinical studies to predict complications following percutaneous coronary interventions (PCIs) and for image-guided neurosurgical resection results predicted by tumor volume, respectively. We compared a non-parametric with a parametric binormal estimate of the underlying ROC curve. To construct such a GOF test, we used the non-parametric and parametric areas under the curve (AUCs) as the metrics, with a resulting p value reported. In the interventional cardiology example, logit and Box-Cox transformations of the predictive probabilities led to satisfactory AUCs (AUC=0.888; p=0.78, and AUC=0.888; p=0.73, respectively), while in the brain tumor resection example, log and Box-Cox transformations of the tumor size also led to satisfactory AUCs (AUC=0.898; p=0.61, and AUC=0.899; p=0.42, respectively). In contrast, significant departures from GOF were observed without applying any transformation prior to assuming a binormal model (AUC=0.766; p=0.004, and AUC=0.831; p=0.03), respectively. In both studies the p values suggested that transformations were important to consider before applying any binormal model to estimate the AUC. Our analyses also demonstrated and confirmed the predictive values of different classifiers for determining the interventional complications following PCIs and resection outcomes in image-guided neurosurgery.

  3. Relation between cost of drug treatment and body mass index in people with type 2 diabetes in Latin America.

    PubMed

    Elgart, Jorge Federico; Prestes, Mariana; Gonzalez, Lorena; Rucci, Enzo; Gagliardino, Juan Jose

    2017-01-01

    Despite the frequent association of obesity with type 2 diabetes (T2D), the effect of the former on the cost of drug treatment of the latest has not been specifically addressed. We studied the association of overweight/obesity on the cost of drug treatment of hyperglycemia, hypertension and dyslipidemia in a population with T2D. This observational study utilized data from the QUALIDIAB database on 3,099 T2D patients seen in Diabetes Centers in Argentina, Chile, Colombia, Peru, and Venezuela. Data were grouped according to body mass index (BMI) as Normal (18.5≤BMI<25), Overweight (25≤BMI<30), and Obese (BMI≥30). Thereafter, we assessed clinical and metabolic data and cost of drug treatment in each category. Statistical analyses included group comparisons for continuous variables (parametric or non-parametric tests), Chi-square tests for differences between proportions, and multivariable regression analysis to assess the association between BMI and monthly cost of drug treatment. Although all groups showed comparable degree of glycometabolic control (FBG, HbA1c), we found significant differences in other metabolic control indicators. Total cost of drug treatment of hyperglycemia and associated cardiovascular risk factors (CVRF) increased significantly (p<0.001) with increment of BMI. Hyperglycemia treatment cost showed a significant increase concordant with BMI whereas hypertension and dyslipidemia did not. Despite different values and percentages of increase, this growing cost profile was reproduced in every participating country. BMI significantly and independently affected hyperglycemia treatment cost. Our study shows for the first time that BMI significantly increases total expenditure on drugs for T2D and its associated CVRF treatment in Latin America.

  4. Integrated-circuit balanced parametric amplifier

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.

  5. Integral abutment bridges under thermal loading : numerical simulations and parametric study.

    DOT National Transportation Integrated Search

    2016-06-01

    Integral abutment bridges (IABs) have become of interest due to their decreased construction and maintenance costs in : comparison to conventional jointed bridges. Most prior IAB research was related to substructure behavior, and, as a result, most :...

  6. Comparison of mode estimation methods and application in molecular clock analysis

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Shah, Prachi

    2003-01-01

    BACKGROUND: Distributions of time estimates in molecular clock studies are sometimes skewed or contain outliers. In those cases, the mode is a better estimator of the overall time of divergence than the mean or median. However, different methods are available for estimating the mode. We compared these methods in simulations to determine their strengths and weaknesses and further assessed their performance when applied to real data sets from a molecular clock study. RESULTS: We found that the half-range mode and robust parametric mode methods have a lower bias than other mode methods under a diversity of conditions. However, the half-range mode suffers from a relatively high variance and the robust parametric mode is more susceptible to bias by outliers. We determined that bootstrapping reduces the variance of both mode estimators. Application of the different methods to real data sets yielded results that were concordant with the simulations. CONCLUSION: Because the half-range mode is a simple and fast method, and produced less bias overall in our simulations, we recommend the bootstrapped version of it as a general-purpose mode estimator and suggest a bootstrap method for obtaining the standard error and 95% confidence interval of the mode.

  7. A tool for the estimation of the distribution of landslide area in R

    NASA Astrophysics Data System (ADS)

    Rossi, M.; Cardinali, M.; Fiorucci, F.; Marchesini, I.; Mondini, A. C.; Santangelo, M.; Ghosh, S.; Riguer, D. E. L.; Lahousse, T.; Chang, K. T.; Guzzetti, F.

    2012-04-01

    We have developed a tool in R (the free software environment for statistical computing, http://www.r-project.org/) to estimate the probability density and the frequency density of landslide area. The tool implements parametric and non-parametric approaches to the estimation of the probability density and the frequency density of landslide area, including: (i) Histogram Density Estimation (HDE), (ii) Kernel Density Estimation (KDE), and (iii) Maximum Likelihood Estimation (MLE). The tool is available as a standard Open Geospatial Consortium (OGC) Web Processing Service (WPS), and is accessible through the web using different GIS software clients. We tested the tool to compare Double Pareto and Inverse Gamma models for the probability density of landslide area in different geological, morphological and climatological settings, and to compare landslides shown in inventory maps prepared using different mapping techniques, including (i) field mapping, (ii) visual interpretation of monoscopic and stereoscopic aerial photographs, (iii) visual interpretation of monoscopic and stereoscopic VHR satellite images and (iv) semi-automatic detection and mapping from VHR satellite images. Results show that both models are applicable in different geomorphological settings. In most cases the two models provided very similar results. Non-parametric estimation methods (i.e., HDE and KDE) provided reasonable results for all the tested landslide datasets. For some of the datasets, MLE failed to provide a result, for convergence problems. The two tested models (Double Pareto and Inverse Gamma) resulted in very similar results for large and very large datasets (> 150 samples). Differences in the modeling results were observed for small datasets affected by systematic biases. A distinct rollover was observed in all analyzed landslide datasets, except for a few datasets obtained from landslide inventories prepared through field mapping or by semi-automatic mapping from VHR satellite imagery. The tool can also be used to evaluate the probability density and the frequency density of landslide volume.

  8. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  9. Parametric Cost Study of AC-DC Wayside Power Systems

    DOT National Transportation Integrated Search

    1975-09-01

    The wayside power system provides all the power requirements of an electric vehicle operating on a fixed guideway. For a given set of specifications there are numerous wayside power supply configurations which will be satisfactory from a technical st...

  10. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  11. Study of a Tracking and Data Acquisition System (TDAS) in the 1990's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.

  12. A computer program for multiple decrement life table analyses.

    PubMed

    Poole, W K; Cooley, P C

    1977-06-01

    Life table analysis has traditionally been the tool of choice in analyzing distribution of "survival" times when a parametric form for the survival curve could not be reasonably assumed. Chiang, in two papers [1,2] formalized the theory of life table analyses in a Markov chain framework and derived maximum likelihood estimates of the relevant parameters for the analyses. He also discussed how the techniques could be generalized to consider competing risks and follow-up studies. Although various computer programs exist for doing different types of life table analysis [3] to date, there has not been a generally available, well documented computer program to carry out multiple decrement analyses, either by Chiang's or any other method. This paper describes such a program developed by Research Triangle Institute. A user's manual is available at printing costs which supplements the contents of this paper with a discussion of the formula used in the program listing.

  13. Does pharmacist-supervised intervention through pharmaceutical care program influence direct healthcare cost burden of newly diagnosed diabetics in a tertiary care teaching hospital in Nepal: a non-clinical randomised controlled trial approach.

    PubMed

    Upadhyay, Dinesh Kumar; Ibrahim, Mohamed Izham Mohamed; Mishra, Pranaya; Alurkar, Vijay M; Ansari, Mukhtar

    2016-02-29

    Cost is a vital component for people with chronic diseases as treatment is expected to be long or even lifelong in some diseases. Pharmacist contributions in decreasing the healthcare cost burden of chronic patients are not well described due to lack of sufficient evidences worldwide. In developing countries like Nepal, the estimation of direct healthcare cost burden among newly diagnosed diabetics is still a challenge for healthcare professionals, and pharmacist role in patient care is still theoretical and practically non-existent. This study reports the impact of pharmacist-supervised intervention through pharmaceutical care program on direct healthcare costs burden of newly diagnosed diabetics in Nepal through a non-clinical randomised controlled trial approach. An interventional, pre-post non-clinical randomised controlled study was conducted among randomly distributed 162 [control (n = 54), test 1 (n = 54) and test 2 (n = 54) groups] newly diagnosed diabetics by a consecutive sampling method for 18 months. Direct healthcare costs (direct medical and non-medical costs) from patients perspective was estimated by 'bottom up' approach to identify their out-of-pocket expenses (1USD = NPR 73.38) before and after intervention at the baseline, 3, 6, 9 and 12 months follow-ups. Test groups' patients were nourished with pharmaceutical care intervention while control group patients only received care from physician/nurses. Non-parametric tests i.e. Friedman test, Mann-Whitney U test and Wilcoxon signed rank test were used to find the differences in direct healthcare costs among the groups before and after the intervention (p ≤ 0.05). Friedman test identified significant differences in direct healthcare cost of test 1 (p < 0.001) and test 2 (p < 0.001) groups patients. However, Mann-Whitney U test justified significant differences in direct healthcare cost between control group and test 1 group, and test 2 group patients at 6-months (p = 0.009, p = 0.010 respectively), 9-months (p = 0.005, p = 0.001 respectively) and 12-months (p < 0.001, p < 0.001 respectively). Pharmacist supervised intervention through pharmaceutical care program significantly decreased direct healthcare costs of diabetics in test groups compared to control group and hence describes pharmacist's contribution in minimizing direct healthcare cost burden of patients.

  14. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    NASA Astrophysics Data System (ADS)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  15. Model risk for European-style stock index options.

    PubMed

    Gençay, Ramazan; Gibson, Rajna

    2007-01-01

    In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.

  16. Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ashe, Thomas L.; Otting, William D.

    1993-01-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  17. Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Petitjean, Caroline; Preteux, Francoise J.

    2004-05-01

    We address the issue of modeling and quantifying myocardial contraction from 4D MR sequences, and present an unsupervised approach for building and using a statistical 3D motion atlas for the normal heart. This approach relies on a state-of-the-art variational non rigid registration (NRR) technique using generalized information measures, which allows for robust intra-subject motion estimation and inter-subject anatomical alignment. The atlas is built from a collection of jointly acquired tagged and cine MR exams in short- and long-axis views. Subject-specific non parametric motion estimates are first obtained by incremental NRR of tagged images onto the end-diastolic (ED) frame. Individual motion data are then transformed into the coordinate system of a reference subject using subject-to-reference mappings derived by NRR of cine ED images. Finally, principal component analysis of aligned motion data is performed for each cardiac phase, yielding a mean model and a set of eigenfields encoding kinematic ariability. The latter define an organ-dedicated hierarchical motion basis which enables parametric motion measurement from arbitrary tagged MR exams. To this end, the atlas is transformed into subject coordinates by reference-to-subject NRR of ED cine frames. Atlas-based motion estimation is then achieved by parametric NRR of tagged images onto the ED frame, yielding a compact description of myocardial contraction during diastole.

  18. A parametric generalization of the Hayne estimator for line transect sampling

    USGS Publications Warehouse

    Burnham, Kenneth P.

    1979-01-01

    The Hayne model for line transect sampling is generalized by using an elliptical (rather than circular) flushing model for animal detection. By assuming the ration of major and minor axes lengths is constant for all animals, a model results which allows estimation of population density based directly upon sighting distances and sighting angles. The derived estimator of animal density is a generalization of the Hayne estimator for line transect sampling.

  19. A general framework for parametric survival analysis.

    PubMed

    Crowther, Michael J; Lambert, Paul C

    2014-12-30

    Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.

  20. flexsurv: A Platform for Parametric Survival Modeling in R

    PubMed Central

    Jackson, Christopher H.

    2018-01-01

    flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modeled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package (Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. flexsurv also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the mstate package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. PMID:29593450

  1. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  2. A Monte Carlo Study of the Effect of Item Characteristic Curve Estimation on the Accuracy of Three Person-Fit Statistics

    ERIC Educational Resources Information Center

    St-Onge, Christina; Valois, Pierre; Abdous, Belkacem; Germain, Stephane

    2009-01-01

    To date, there have been no studies comparing parametric and nonparametric Item Characteristic Curve (ICC) estimation methods on the effectiveness of Person-Fit Statistics (PFS). The primary aim of this study was to determine if the use of ICCs estimated by nonparametric methods would increase the accuracy of item response theory-based PFS for…

  3. A Non-Parametric Probability Density Estimator and Some Applications.

    DTIC Science & Technology

    1984-05-01

    distributions, which are assumed to be representa- tive of platykurtic , mesokurtic, and leptokurtic distribu- tions in general. The dissertation is... platykurtic distributions. Consider, for example, the uniform distribution shown in Figure 4. 34 o . 1., Figure 4 -Sensitivity to Support Estimation The...results of the density function comparisons indicate that the new estimator is clearly -Z superior for platykurtic distributions, equal to the best 59

  4. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    PubMed

    Nillesen, Maartje M; Lopata, Richard G P; Gerrits, Inge H; Kapusta, Livia; Thijssen, Johan M; de Korte, Chris L

    2008-04-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired. Pixel-based speckle statistics of manually segmented blood and myocardial regions were investigated by fitting various probability density functions (pdf). The statistics of heart muscle and blood could both be optimally modeled by a K-pdf or Gamma-pdf (Kolmogorov-Smirnov goodness-of-fit test). Scale and shape parameters of both distributions could differentiate between blood and myocardium. Local estimation of these parameters was used to obtain parametric images, where window size was related to speckle size (5 x 2 speckles). Moment-based and maximum-likelihood estimators were used. Scale parameters were still able to differentiate blood from myocardium; however, smoothing of edges of anatomical structures occurred. Estimation of the shape parameter required a larger window size, leading to unacceptable blurring. Using these parameters as an input for segmentation resulted in unreliable segmentation. Adaptive mean squares filtering was then introduced using the moment-based scale parameter (sigma(2)/mu) of the Gamma-pdf to automatically steer the two-dimensional (2D) local filtering process. This method adequately preserved sharpness of the edges. In conclusion, a trade-off between preservation of sharpness of edges and goodness-of-fit when estimating local shape and scale parameters is evident for parametric images. For this reason, adaptive filtering outperforms parametric imaging for the segmentation of echocardiographic images.

  5. Water Residence Time estimation by 1D deconvolution in the form of a l2 -regularized inverse problem with smoothness, positivity and causality constraints

    NASA Astrophysics Data System (ADS)

    Meresescu, Alina G.; Kowalski, Matthieu; Schmidt, Frédéric; Landais, François

    2018-06-01

    The Water Residence Time distribution is the equivalent of the impulse response of a linear system allowing the propagation of water through a medium, e.g. the propagation of rain water from the top of the mountain towards the aquifers. We consider the output aquifer levels as the convolution between the input rain levels and the Water Residence Time, starting with an initial aquifer base level. The estimation of Water Residence Time is important for a better understanding of hydro-bio-geochemical processes and mixing properties of wetlands used as filters in ecological applications, as well as protecting fresh water sources for wells from pollutants. Common methods of estimating the Water Residence Time focus on cross-correlation, parameter fitting and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution, regularized, non-parametric inverse problem algorithm that enforces smoothness and uses constraints of causality and positivity to estimate the Water Residence Time curve. Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime per test case; compared to the popular and fast cross-correlation method, it produces a more precise Water Residence Time curve even in the case of noisy measurements. The algorithm needs only one regularization parameter to balance between smoothness of the Water Residence Time and accuracy of the reconstruction. We propose an approach on how to automatically find a suitable value of the regularization parameter from the input data only. Tests on real data illustrate the potential of this method to analyze hydrological datasets.

  6. Charm and the rise of the pp-bar total cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.T.; Dash, J.W.

    We give a detailed description of the pp-bar forward amplitude through CERN SPS collider energies, using the flavored Pomeron model as an effective parametrization of nonperturbative QCD. We show that the rise in the total cross section between CERN ISR and SPS collider energies is consistent with the onset of charmed-particle production up to the level of a few millibarns, along with other processes, and in agreement with available data. In contrast with our estimates of charm production, perturbative QCD charm-production calculations are well below the data. We give estimates of the p-bar and K/sup +- / multiplicities at SPSmore » collider energies. We also present a simplified version of the flavoring model in order to facilitate comparisons between it and other parametrizations.« less

  7. Testing in semiparametric models with interaction, with applications to gene-environment interactions.

    PubMed

    Maity, Arnab; Carroll, Raymond J; Mammen, Enno; Chatterjee, Nilanjan

    2009-01-01

    Motivated from the problem of testing for genetic effects on complex traits in the presence of gene-environment interaction, we develop score tests in general semiparametric regression problems that involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-parametrically modelled covariates. We find that the score test in this type of model, as recently developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of functions which are defined as solutions of integral equations, making implementation difficult and computationally taxing. We develop profiled score statistics which are unbiased and asymptotically efficient and can be performed by using standard bandwidth selection methods. In addition, to overcome the difficulty of solving functional equations, we give easy interpretations of the target functions, which in turn allow us to develop estimation procedures that can be easily implemented by using standard computational methods. We present simulation studies to evaluate type I error and power of the method proposed compared with a naive test that does not consider interaction. Finally, we illustrate our methodology by analysing data from a case-control study of colorectal adenoma that was designed to investigate the association between colorectal adenoma and the candidate gene NAT2 in relation to smoking history.

  8. Multi-state modelling of repeated hospitalisation and death in patients with heart failure: The use of large administrative databases in clinical epidemiology.

    PubMed

    Ieva, Francesca; Jackson, Christopher H; Sharples, Linda D

    2017-06-01

    In chronic diseases like heart failure (HF), the disease course and associated clinical event histories for the patient population vary widely. To improve understanding of the prognosis of patients and enable health care providers to assess and manage resources, we wish to jointly model disease progression, mortality and their relation with patient characteristics. We show how episodes of hospitalisation for disease-related events, obtained from administrative data, can be used as a surrogate for disease status. We propose flexible multi-state models for serial hospital admissions and death in HF patients, that are able to accommodate important features of disease progression, such as multiple ordered events and competing risks. Fully parametric and semi-parametric semi-Markov models are implemented using freely available software in R. The models were applied to a dataset from the administrative data bank of the Lombardia region in Northern Italy, which included 15,298 patients who had a first hospitalisation ending in 2006 and 4 years of follow-up thereafter. This provided estimates of the associations of age and gender with rates of hospital admission and length of stay in hospital, and estimates of the expected total time spent in hospital over five years. For example, older patients and men were readmitted more frequently, though the total time in hospital was roughly constant with age. We also discuss the relative merits of parametric and semi-parametric multi-state models, and model assessment and comparison.

  9. Parameterization models for pesticide exposure via crop consumption.

    PubMed

    Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier

    2012-12-04

    An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.

  10. Cost-Aware Design of a Discrimination Strategy for Unexploded Ordnance Cleanup

    DTIC Science & Technology

    2011-02-25

    Acronyms ANN: Artificial Neural Network AUC: Area Under the Curve BRAC: Base Realignment And Closure DLRT: Distance Likelihood Ratio Test EER...Discriminative Aggregate Nonparametric [25] Artificial Neural Network ANN Discriminative Aggregate Parametric [33] 11 Results and Discussion Task #1

  11. The Role of Parametric Assumptions in Adaptive Bayesian Estimation

    ERIC Educational Resources Information Center

    Alcala-Quintana, Rocio; Garcia-Perez, Miguel A.

    2004-01-01

    Variants of adaptive Bayesian procedures for estimating the 5% point on a psychometric function were studied by simulation. Bias and standard error were the criteria to evaluate performance. The results indicated a superiority of (a) uniform priors, (b) model likelihood functions that are odd symmetric about threshold and that have parameter…

  12. Forest Stand Canopy Structure Attribute Estimation from High Resolution Digital Airborne Imagery

    Treesearch

    Demetrios Gatziolis

    2006-01-01

    A study of forest stand canopy variable assessment using digital, airborne, multispectral imagery is presented. Variable estimation involves stem density, canopy closure, and mean crown diameter, and it is based on quantification of spatial autocorrelation among pixel digital numbers (DN) using variogram analysis and an alternative, non-parametric approach known as...

  13. Parametric, nonparametric and parametric modelling of a chaotic circuit time series

    NASA Astrophysics Data System (ADS)

    Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.

    2000-09-01

    The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.

  14. Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras

    NASA Astrophysics Data System (ADS)

    He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.

  15. Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Data Set

    NASA Technical Reports Server (NTRS)

    Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.

    2002-01-01

    The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.

  16. The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations.

    PubMed

    Liu, Chunping; Laporte, Audrey; Ferguson, Brian S

    2008-09-01

    In the health economics literature there is an ongoing debate over approaches used to estimate the efficiency of health systems at various levels, from the level of the individual hospital - or nursing home - up to that of the health system as a whole. The two most widely used approaches to evaluating the efficiency with which various units deliver care are non-parametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA). Productivity researchers tend to have very strong preferences over which methodology to use for efficiency estimation. In this paper, we use Monte Carlo simulation to compare the performance of DEA and SFA in terms of their ability to accurately estimate efficiency. We also evaluate quantile regression as a potential alternative approach. A Cobb-Douglas production function, random error terms and a technical inefficiency term with different distributions are used to calculate the observed output. The results, based on these experiments, suggest that neither DEA nor SFA can be regarded as clearly dominant, and that, depending on the quantile estimated, the quantile regression approach may be a useful addition to the armamentarium of methods for estimating technical efficiency.

  17. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    EPA Pesticide Factsheets

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  18. Hamilton's rule and the causes of social evolution

    PubMed Central

    Bourke, Andrew F. G.

    2014-01-01

    Hamilton's rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton's rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton's rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton's rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton's rule regarding conditions for social evolution and their causes. PMID:24686934

  19. Hamilton's rule and the causes of social evolution.

    PubMed

    Bourke, Andrew F G

    2014-05-19

    Hamilton's rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton's rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton's rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton's rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton's rule regarding conditions for social evolution and their causes.

  20. Computer aided system for parametric design of combination die

    NASA Astrophysics Data System (ADS)

    Naranje, Vishal G.; Hussein, H. M. A.; Kumar, S.

    2017-09-01

    In this paper, a computer aided system for parametric design of combination dies is presented. The system is developed using knowledge based system technique of artificial intelligence. The system is capable to design combination dies for production of sheet metal parts having punching and cupping operations. The system is coded in Visual Basic and interfaced with AutoCAD software. The low cost of the proposed system will help die designers of small and medium scale sheet metal industries for design of combination dies for similar type of products. The proposed system is capable to reduce design time and efforts of die designers for design of combination dies.

  1. Modeling Personnel Turnover in the Parametric Organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A primary issue in organizing a new parametric cost analysis function is to determine the skill mix and number of personnel required. The skill mix can be obtained by a functional decomposition of the tasks required within the organization and a matrixed correlation with educational or experience backgrounds. The number of personnel is a function of the skills required to cover all tasks, personnel skill background and cross training, the intensity of the workload for each task, migration through various tasks by personnel along a career path, personnel hiring limitations imposed by management and the applicant marketplace, personnel training limitations imposed by management and personnel capability, and the rate at which personnel leave the organization for whatever reason. Faced with the task of relating all of these organizational facets in order to grow a parametric cost analysis (PCA) organization from scratch, it was decided that a dynamic model was required in order to account for the obvious dynamics of the forming organization. The challenge was to create such a simple model which would be credible during all phases of organizational development. The model development process was broken down into the activities of determining the tasks required for PCA, determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the dynamic model, implementing the dynamic model, and testing the dynamic model.

  2. Parametric estimates for the receiver operating characteristic curve generalization for non-monotone relationships.

    PubMed

    Martínez-Camblor, Pablo; Pardo-Fernández, Juan C

    2017-01-01

    Diagnostic procedures are based on establishing certain conditions and then checking if those conditions are satisfied by a given individual. When the diagnostic procedure is based on a continuous marker, this is equivalent to fix a region or classification subset and then check if the observed value of the marker belongs to that region. Receiver operating characteristic curve is a valuable and popular tool to study and compare the diagnostic ability of a given marker. Besides, the area under the receiver operating characteristic curve is frequently used as an index of the global discrimination ability. This paper revises and widens the scope of the receiver operating characteristic curve definition by setting the classification subsets in which the final decision is based in the spotlight of the analysis. We revise the definition of the receiver operating characteristic curve in terms of particular classes of classification subsets and then focus on a receiver operating characteristic curve generalization for situations in which both low and high values of the marker are associated with more probability of having the studied characteristic. Parametric and non-parametric estimators of the receiver operating characteristic curve generalization are investigated. Monte Carlo studies and real data examples illustrate their practical performance.

  3. International comparisons of the technical efficiency of the hospital sector: panel data analysis of OECD countries using parametric and non-parametric approaches.

    PubMed

    Varabyova, Yauheniya; Schreyögg, Jonas

    2013-09-01

    There is a growing interest in the cross-country comparisons of the performance of national health care systems. The present work provides a comparison of the technical efficiency of the hospital sector using unbalanced panel data from OECD countries over the period 2000-2009. The estimation of the technical efficiency of the hospital sector is performed using nonparametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA). Internal and external validity of findings is assessed by estimating the Spearman rank correlations between the results obtained in different model specifications. The panel-data analyses using two-step DEA and one-stage SFA show that countries, which have higher health care expenditure per capita, tend to have a more technically efficient hospital sector. Whether the expenditure is financed through private or public sources is not related to the technical efficiency of the hospital sector. On the other hand, the hospital sector in countries with higher income inequality and longer average hospital length of stay is less technically efficient. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Parametric regression model for survival data: Weibull regression model as an example

    PubMed Central

    2016-01-01

    Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846

  5. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  6. Implementation of Instrumental Variable Bounds for Data Missing Not at Random.

    PubMed

    Marden, Jessica R; Wang, Linbo; Tchetgen, Eric J Tchetgen; Walter, Stefan; Glymour, M Maria; Wirth, Kathleen E

    2018-05-01

    Instrumental variables are routinely used to recover a consistent estimator of an exposure causal effect in the presence of unmeasured confounding. Instrumental variable approaches to account for nonignorable missing data also exist but are less familiar to epidemiologists. Like instrumental variables for exposure causal effects, instrumental variables for missing data rely on exclusion restriction and instrumental variable relevance assumptions. Yet these two conditions alone are insufficient for point identification. For estimation, researchers have invoked a third assumption, typically involving fairly restrictive parametric constraints. Inferences can be sensitive to these parametric assumptions, which are typically not empirically testable. The purpose of our article is to discuss another approach for leveraging a valid instrumental variable. Although the approach is insufficient for nonparametric identification, it can nonetheless provide informative inferences about the presence, direction, and magnitude of selection bias, without invoking a third untestable parametric assumption. An important contribution of this article is an Excel spreadsheet tool that can be used to obtain empirical evidence of selection bias and calculate bounds and corresponding Bayesian 95% credible intervals for a nonidentifiable population proportion. For illustrative purposes, we used the spreadsheet tool to analyze HIV prevalence data collected by the 2007 Zambia Demographic and Health Survey (DHS).

  7. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate of 6.67% and ranged from 41.34% to 0% false positives of the 2,394 gray matter pixels for any cross-validated normal subject. In conclusion, adequate approximation to Gaussian distribution and high cross-validation can be achieved by the Key Institute's LORETA programs by using a log10 transform and parametric statistics, and parametric normative comparisons had lower false positive rates than the non-parametric tests.

  8. Economic evaluation of a weight control program with e-mail and telephone counseling among overweight employees: a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Distance lifestyle counseling for weight control is a promising public health intervention in the work setting. Information about the cost-effectiveness of such interventions is lacking, but necessary to make informed implementation decisions. The purpose of this study was to perform an economic evaluation of a six-month program with lifestyle counseling aimed at weight reduction in an overweight working population with a two-year time horizon from a societal perspective. Methods A randomized controlled trial comparing a program with two modes of intervention delivery against self-help. 1386 Employees from seven companies participated (67% male, mean age 43 (SD 8.6) years, mean BMI 29.6 (SD 3.5) kg/m2). All groups received self-directed lifestyle brochures. The two intervention groups additionally received a workbook-based program with phone counseling (phone; n=462) or a web-based program with e-mail counseling (internet; n=464). Body weight was measured at baseline and 24 months after baseline. Quality of life (EuroQol-5D) was assessed at baseline, 6, 12, 18 and 24 months after baseline. Resource use was measured with six-monthly diaries and valued with Dutch standard costs. Missing data were multiply imputed. Uncertainty around differences in costs and incremental cost-effectiveness ratios was estimated by applying non-parametric bootstrapping techniques and graphically plotting the results in cost-effectiveness planes and cost-effectiveness acceptability curves. Results At two years the incremental cost-effectiveness ratio was €1009/kg weight loss in the phone group and €16/kg weight loss in the internet group. The cost-utility analysis resulted in €245,243/quality adjusted life year (QALY) and €1337/QALY, respectively. The results from a complete-case analysis were slightly more favorable. However, there was considerable uncertainty around all outcomes. Conclusions Neither intervention mode was proven to be cost-effective compared to self-help. Trial registration ISRCTN04265725 PMID:22967224

  9. Challenges in risk estimation using routinely collected clinical data: The example of estimating cervical cancer risks from electronic health-records.

    PubMed

    Landy, Rebecca; Cheung, Li C; Schiffman, Mark; Gage, Julia C; Hyun, Noorie; Wentzensen, Nicolas; Kinney, Walter K; Castle, Philip E; Fetterman, Barbara; Poitras, Nancy E; Lorey, Thomas; Sasieni, Peter D; Katki, Hormuzd A

    2018-06-01

    Electronic health-records (EHR) are increasingly used by epidemiologists studying disease following surveillance testing to provide evidence for screening intervals and referral guidelines. Although cost-effective, undiagnosed prevalent disease and interval censoring (in which asymptomatic disease is only observed at the time of testing) raise substantial analytic issues when estimating risk that cannot be addressed using Kaplan-Meier methods. Based on our experience analysing EHR from cervical cancer screening, we previously proposed the logistic-Weibull model to address these issues. Here we demonstrate how the choice of statistical method can impact risk estimates. We use observed data on 41,067 women in the cervical cancer screening program at Kaiser Permanente Northern California, 2003-2013, as well as simulations to evaluate the ability of different methods (Kaplan-Meier, Turnbull, Weibull and logistic-Weibull) to accurately estimate risk within a screening program. Cumulative risk estimates from the statistical methods varied considerably, with the largest differences occurring for prevalent disease risk when baseline disease ascertainment was random but incomplete. Kaplan-Meier underestimated risk at earlier times and overestimated risk at later times in the presence of interval censoring or undiagnosed prevalent disease. Turnbull performed well, though was inefficient and not smooth. The logistic-Weibull model performed well, except when event times didn't follow a Weibull distribution. We have demonstrated that methods for right-censored data, such as Kaplan-Meier, result in biased estimates of disease risks when applied to interval-censored data, such as screening programs using EHR data. The logistic-Weibull model is attractive, but the model fit must be checked against Turnbull non-parametric risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Estimating and modeling the cure fraction in population-based cancer survival analysis.

    PubMed

    Lambert, Paul C; Thompson, John R; Weston, Claire L; Dickman, Paul W

    2007-07-01

    In population-based cancer studies, cure is said to occur when the mortality (hazard) rate in the diseased group of individuals returns to the same level as that expected in the general population. The cure fraction (the proportion of patients cured of disease) is of interest to patients and is a useful measure to monitor trends in survival of curable disease. There are 2 main types of cure fraction model, the mixture cure fraction model and the non-mixture cure fraction model, with most previous work concentrating on the mixture cure fraction model. In this paper, we extend the parametric non-mixture cure fraction model to incorporate background mortality, thus providing estimates of the cure fraction in population-based cancer studies. We compare the estimates of relative survival and the cure fraction between the 2 types of model and also investigate the importance of modeling the ancillary parameters in the selected parametric distribution for both types of model.

  11. Estimation of rates-across-sites distributions in phylogenetic substitution models.

    PubMed

    Susko, Edward; Field, Chris; Blouin, Christian; Roger, Andrew J

    2003-10-01

    Previous work has shown that it is often essential to account for the variation in rates at different sites in phylogenetic models in order to avoid phylogenetic artifacts such as long branch attraction. In most current models, the gamma distribution is used for the rates-across-sites distributions and is implemented as an equal-probability discrete gamma. In this article, we introduce discrete distribution estimates with large numbers of equally spaced rate categories allowing us to investigate the appropriateness of the gamma model. With large numbers of rate categories, these discrete estimates are flexible enough to approximate the shape of almost any distribution. Likelihood ratio statistical tests and a nonparametric bootstrap confidence-bound estimation procedure based on the discrete estimates are presented that can be used to test the fit of a parametric family. We applied the methodology to several different protein data sets, and found that although the gamma model often provides a good parametric model for this type of data, rate estimates from an equal-probability discrete gamma model with a small number of categories will tend to underestimate the largest rates. In cases when the gamma model assumption is in doubt, rate estimates coming from the discrete rate distribution estimate with a large number of rate categories provide a robust alternative to gamma estimates. An alternative implementation of the gamma distribution is proposed that, for equal numbers of rate categories, is computationally more efficient during optimization than the standard gamma implementation and can provide more accurate estimates of site rates.

  12. Prospects for reduced energy transports: A preliminary analysis

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.

    1974-01-01

    The recent energy crisis and subsequent substantial increase in fuel prices have provided increased incentive to reduce the fuel consumption of civil transport aircraft. At the present time many changes in operational procedures have been introduced to decrease fuel consumption of the existing fleet. In the future, however, it may become desirable or even necessary to introduce new fuel-conservative aircraft designs. This paper reports the results of a preliminary study of new near-term fuel conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the optimum configuration characteristics and on economic performance. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a nominal reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It has about 30% less fuel consumption on a seat-mile basis.

  13. Parametric Modeling as a Technology of Rapid Prototyping in Light Industry

    NASA Astrophysics Data System (ADS)

    Tomilov, I. N.; Grudinin, S. N.; Frolovsky, V. D.; Alexandrov, A. A.

    2016-04-01

    The paper deals with the parametric modeling method of virtual mannequins for the purposes of design automation in clothing industry. The described approach includes the steps of generation of the basic model on the ground of the initial one (obtained in 3D-scanning process), its parameterization and deformation. The complex surfaces are presented by the wireframe model. The modeling results are evaluated with the set of similarity factors. Deformed models are compared with their virtual prototypes. The results of modeling are estimated by the standard deviation factor.

  14. Empirical velocity profiles for galactic rotation curves

    NASA Astrophysics Data System (ADS)

    López Fune, E.

    2018-04-01

    A unified parametrization of the circular velocity, which accurately fits 850 galaxy rotation curves without needing in advance the knowledge of the luminous matter components, nor a fixed dark matter halo model, is proposed. A notable feature is that the associated gravitational potential increases with the distance from the galaxy centre, giving rise to a length-scale indicating a finite size of a galaxy, and after, the Keplerian fall-off of the parametrized circular velocity is recovered according to Newtonian gravity, making possible the estimation of the total mass enclosed by the galaxy.

  15. Moon-Based Advanced Reusable Transportation Architecture: The MARTA Project

    NASA Astrophysics Data System (ADS)

    Alexander, R.; Bechtel, R.; Chen, T.; Cormier, T.; Kalaver, S.; Kirtas, M.; Lewe, J.-H.; Marcus, L.; Marshall, D.; Medlin, M.; McIntire, J.; Nelson, D.; Remolina, D.; Scott, A.; Weglian, J.; Olds, J.

    2000-01-01

    The Moon-based Advanced Reusable Transportation Architecture (MARTA) Project conducted an in-depth investigation of possible Low Earth Orbit (LEO) to lunar surface transportation systems capable of sending both astronauts and large masses of cargo to the Moon and back. This investigation was conducted from the perspective of a private company operating the transportation system for a profit. The goal of this company was to provide an Internal Rate of Return (IRR) of 25% to its shareholders. The technical aspect of the study began with a wide open design space that included nuclear rockets and tether systems as possible propulsion systems. Based on technical, political, and business considerations, the architecture was quickly narrowed down to a traditional chemical rocket using liquid oxygen and liquid hydrogen. However, three additional technologies were identified for further investigation: aerobraking, in-situ resource utilization (ISRU), and a mass driver on the lunar surface. These three technologies were identified because they reduce the mass of propellant used. Operational costs are the largest expense with propellant cost the largest contributor. ISRU, the production of materials using resources on the Moon, was considered because an Earth to Orbit (ETO) launch cost of 1600 per kilogram made taking propellant from the Earth's surface an expensive proposition. The use of an aerobrake to circularize the orbit of a vehicle coming from the Moon towards Earth eliminated 3, 100 meters per second of velocity change (Delta V), eliminating almost 30% of the 11,200 m/s required for one complete round trip. The use of a mass driver on the lunar surface, in conjunction with an ISRU production facility, would reduce the amount of propellant required by eliminating using propellant to take additional propellant from the lunar surface to Low Lunar Orbit (LLO). However, developing and operating such a system required further study to identify if it was cost effective. The vehicle was modeled using the Simulated Probabilistic Parametric Lunar Architecture Tool (SPPLAT), which incorporated the disciplines of Weights and Sizing, Trajectories, and Cost. This tool used ISRU propellant cost, Technology Reduction Factor (a dry weight reduction due to improved technology), and vehicle engine specific impulse as inputs. Outputs were vehicle dry weight, total propellant used per trip, and cost to charge the customer in order to guarantee an IRR of 25%. SPPLAT also incorporated cost estimation error, weight estimation error, market growth, and ETO launch cost as uncertainty variables. Based on the stipulation that the venture be profitable, the price to charge the customer was highly dependent on ISRU propellant cost and relatively insensitive to the other inputs. The best estimate of ISRU cost is 1000/kg, and results in a price to charge the customer of 2600/kg of payload. If ISRU cost can be reduced to 160/kg, the price to the customer is reduced to just 800/kg of payload. Additionally, the mass driver was only cost effective at an ISRU propellant cost greater than 250/kg, although it reduced total propellant used by 35%. In conclusion, this mission is achievable with current technology, but is only profitable with greater research into the enabling technology of ISRU propellant production.

  16. Optimization of space manufacturing systems

    NASA Technical Reports Server (NTRS)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  17. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

    Treesearch

    Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo

    2009-01-01

    New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...

  18. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost.

    Treesearch

    D.J. Nicolsky; V.E. Romanovsky; G.G. Panteleev

    2008-01-01

    A variational data assimilation algorithm is developed to reconstruct thermal properties, porosity, and parametrization of the unfrozen water content for fully saturated soils. The algorithm is tested with simulated synthetic temperatures. The simulations are performed to determine the robustness and sensitivity of algorithm to estimate soil properties from in-situ...

  19. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  20. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  1. Leveraging prognostic baseline variables to gain precision in randomized trials

    PubMed Central

    Colantuoni, Elizabeth; Rosenblum, Michael

    2015-01-01

    We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751

  2. Keeping nurses at work: a duration analysis.

    PubMed

    Holmås, Tor Helge

    2002-09-01

    A shortage of nurses is currently a problem in several countries, and an important question is therefore how one can increase the supply of nursing labour. In this paper, we focus on the issue of nurses leaving the public health sector by utilising a unique data set containing information on both the supply and demand side of the market. To describe the exit rate from the health sector we apply a semi-parametric hazard rate model. In the estimations, we correct for unobserved heterogeneity by both a parametric (Gamma) and a non-parametric approach. We find that both wages and working conditions have an impact on nurses' decision to quit. Furthermore, failing to correct for the fact that nurses' income partly consists of compensation for inconvenient working hours results in a considerable downward bias of the wage effect. Copyright 2002 John Wiley & Sons, Ltd.

  3. Review of mechanisms, methods, and theory for determining recharge to shallow aquifers in North Dakota

    USGS Publications Warehouse

    Horak, W.F.

    1988-01-01

    Effective management of ground-water resources requires knowledge of all components of the water budget for the aquifer of interest. Efforts to simulate ground-water flow prior to development and the effects of proposed pumping in several of North Dakota's shallow glacial aquifers have been hindered by the lack of reliable estimates of ground-water recharge. This study was done to (1) review the methods that have been used to measure recharge, (2) review the theory of unsaturated flow and the methods for characterizing the physical properties of unsaturated media, (3) consider the relative merits of a rigorous data-intensive approach versus an estimation approach to the study of recharge, and (4) review past and current agronomic research in North Dakota for applicability of the research and the data generated to the study of recharge.Direct, quantitative techniques for evaluating recharge are rarely applied. The theory for computing fluxes in unsaturated media is well established and numerous physics-based models that effectively implement the theory are available, but the data required for the models generally are lacking. Many parametric approaches have been developed to avoid the large data requirements of the physics-based approaches for analyzing flow in the unsaturated zone. However, the parametric approaches normally include fitting coefficients that must be calibrated for every study site, thereby detracting from the general utility of the parametric approach. The functional relation of matric potential to moisture content is required for physics-based soil-water models, whether analytic or numeric. Laboratory methods to determine these relations are tedious, costly, and may not give results representative of the soils as they occur in the field. Many models have been proposed to estimate the moisture-characteristic curve and hydraulic-conductivity function from basic soil properties, but none yield results that are universally satisfactory. In situ methods, because they require minimal disturbance of the soil profile and may be used repeatedly on the same soil mass, have become the preferred means for acquiring physical data, especially hydraulic conductivity. Hydro logic investigations, except for recent studies of hazardous-waste disposal sites, rarely have included physical characterizations of unsaturated media. Any of four phenomena could hinder attempts to simulate unsaturated flow in settings typical of North Dakota; variability of soil properties, hysteresis, frozen ground, and macropore development. The spatial and temporal variability of soil properties probably is the greatest complicating phenomenon and must be dealt with by detailed characterization of the properties. Hysteresis can detract from the accuracy of flow calculations for some soils under certain conditions but, for the present, our scant knowledge of soil physical properties is a greater hindrance to reliable soi1-water mode 1 ing than is the hysteresis phenomenon. A1 though seasona1ly frozen ground undoubtedly affects hydrologic processes in North Dakota, much more research is needed before meaningful quantitative treatment is possible. Finally, macropores can influence soil-water movement significantly, but macropore development may not be common on the intensively farmed, coarse-textured soils that typically overlie North Dakota's glacial aquifers. Lysimetry currently is the only reliable means of analyzing macropore flow.The soil-related research that has been conducted in North Dakota to date (1983) provides little of the type of information required to estimate ground-water recharge. Useful data could be developed by systematically evaluating the hydraulic characteristics of the prominent soil types overlying North Dakota's shallow glacial aquifers. These data would be required to enable use of a physics-based approach to estimating recharge. The size of the aquifer under study, its economic value, and the resources available for data collection should be considered when choosing between parametric or physics-based methods.

  4. Encouraging smokers to quit: the cost effectiveness of reimbursing the costs of smoking cessation treatment.

    PubMed

    Kaper, Janneke; Wagena, Edwin J; van Schayck, Constant P; Severens, Johan L

    2006-01-01

    Smoking cessation should be encouraged in order to increase life expectancy and reduce smoking-related healthcare costs. Results of a randomised trial suggested that reimbursing the costs of smoking cessation treatment (SCT) may lead to an increased use of SCT and an increased number of quitters versus no reimbursement. To assess whether reimbursement for SCT is a cost-effective intervention (from the Dutch societal perspective), we calculated the incremental costs per quitter and extrapolated this outcome to incremental costs per QALY saved versus no reimbursement. In the reimbursement trial, 1266 Dutch smokers were randomly assigned to the intervention or control group using a randomised double consent design. Reimbursement for SCT was offered to the intervention group for a period of 6 months. No reimbursement was offered to the control group. Prolonged abstinence from smoking was determined 6 months after the end of the reimbursement period. The QALYs gained from quitting were calculated until 80 years of age using data from the US. Costs (year 2002 values) were determined from the societal perspective during the reimbursement period (May-November 2002). Benefits were discounted at 4% per annum. The uncertainty of the incremental cost-effectiveness ratios was estimated using non-parametric bootstrapping. Eighteen participants in the control group (2.8%) and 35 participants in the intervention group (5.5%) successfully quit smoking. The costs per participant were 291 euro and 322 euro, respectively. If society is willing to pay 1000 euro or 10,000 euro for an additional 12-month quitter, the probability that reimbursement for SCT would be cost effective was 50% or 95%, respectively. If society is willing to pay 18,000 euro for a QALY, the probability that reimbursement for SCT would be cost effective was 95%. However, the external validity of the extrapolation from quitters to QALYs is uncertain and several assumptions had to be made. Reimbursement for SCT may be cost effective if Dutch society is willing to pay 10,000 euro for an additional quitter or 18,000 euro for a QALY.

  5. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-02-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  6. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-07-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  7. Task-based detectability comparison of exponential transformation of free-response operating characteristic (EFROC) curve and channelized Hotelling observer (CHO)

    NASA Astrophysics Data System (ADS)

    Khobragade, P.; Fan, Jiahua; Rupcich, Franco; Crotty, Dominic J.; Gilat Schmidt, Taly

    2016-03-01

    This study quantitatively evaluated the performance of the exponential transformation of the free-response operating characteristic curve (EFROC) metric, with the Channelized Hotelling Observer (CHO) as a reference. The CHO has been used for image quality assessment of reconstruction algorithms and imaging systems and often it is applied to study the signal-location-known cases. The CHO also requires a large set of images to estimate the covariance matrix. In terms of clinical applications, this assumption and requirement may be unrealistic. The newly developed location-unknown EFROC detectability metric is estimated from the confidence scores reported by a model observer. Unlike the CHO, EFROC does not require a channelization step and is a non-parametric detectability metric. There are few quantitative studies available on application of the EFROC metric, most of which are based on simulation data. This study investigated the EFROC metric using experimental CT data. A phantom with four low contrast objects: 3mm (14 HU), 5mm (7HU), 7mm (5 HU) and 10 mm (3 HU) was scanned at dose levels ranging from 25 mAs to 270 mAs and reconstructed using filtered backprojection. The area under the curve values for CHO (AUC) and EFROC (AFE) were plotted with respect to different dose levels. The number of images required to estimate the non-parametric AFE metric was calculated for varying tasks and found to be less than the number of images required for parametric CHO estimation. The AFE metric was found to be more sensitive to changes in dose than the CHO metric. This increased sensitivity and the assumption of unknown signal location may be useful for investigating and optimizing CT imaging methods. Future work is required to validate the AFE metric against human observers.

  8. Cost Effectiveness of Pembrolizumab vs. Standard-of-Care Chemotherapy as First-Line Treatment for Metastatic NSCLC that Expresses High Levels of PD-L1 in the United States.

    PubMed

    Huang, Min; Lou, Yanyan; Pellissier, James; Burke, Thomas; Liu, Frank Xiaoqing; Xu, Ruifeng; Velcheti, Vamsidhar

    2017-08-01

    Our objectives were to evaluate the cost effectiveness of pembrolizumab compared with standard-of-care (SoC) platinum-based chemotherapy as first-line treatment in patients with metastatic non-small-cell lung cancer (NSCLC) that expresses high levels of programmed death ligand-1 (PD-L1) [tumour proportion score (TPS) ≥50%], from a US third-party public healthcare payer perspective. We conducted a partitioned-survival model with a cycle length of 1 week and a base-case time horizon of 20 years. Parametric models were fitted to Kaplan-Meier estimates of time on treatment, progression-free survival and overall survival from the KEYNOTE-024 randomized clinical trial (patients aged ≥18 years with stage IV NSCLC, TPS ≥50%, without epidermal growth factor receptor (EGFR)-activating mutations or anaplastic lymphoma kinase (ALK) translocations who received no prior systemic chemotherapy) and validated with long-term registry data. Quality-adjusted life-years (QALYs) were calculated based on EuroQoL-5 Dimensions (EQ-5D) utility data collected in the trial. Costs ($US, year 2016 values) for drug acquisition/administration, adverse events and clinical management were included. Costs and outcomes were discounted at 3% per year. A series of deterministic and probabilistic sensitivity analyses were performed to test the robustness of the results. In the base-case scenario, pembrolizumab resulted in an expected gain of 1.31 life-years (LYs) and 1.05 QALYs and an incremental cost of $US102,439 compared with SoC. The incremental cost per QALY gain was $US97,621/QALY and the incremental cost per LY gain was $US78,344/LY. Pembrolizumab is projected to be a cost-effective option compared with SoC platinum-based chemotherapy as first-line treatment in adults with metastatic NSCLC expressing high levels of PD-L1.

  9. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-03-01

    Aboveground biomass estimation is critical in understanding forest contribution to regional carbon cycles. Despite the successful application of high spatial and spectral resolution sensors in aboveground biomass (AGB) estimation, there are challenges related to high acquisition costs, small area coverage, multicollinearity and limited availability. These challenges hamper the successful regional scale AGB quantification. The aim of this study was to assess the utility of the newly-launched medium-resolution multispectral Landsat 8 Operational Land Imager (OLI) dataset with a large swath width, in quantifying AGB in a forest plantation. We applied different sets of spectral analysis (test I: spectral bands; test II: spectral vegetation indices and test III: spectral bands + spectral vegetation indices) in testing the utility of Landsat 8 OLI using two non-parametric algorithms: stochastic gradient boosting and the random forest ensembles. The results of the study show that the medium-resolution multispectral Landsat 8 OLI dataset provides better AGB estimates for Eucalyptus dunii, Eucalyptus grandis and Pinus taeda especially when using the extracted spectral information together with the derived spectral vegetation indices. We also noted that incorporating the optimal subset of the most important selected medium-resolution multispectral Landsat 8 OLI bands improved AGB accuracies. We compared medium-resolution multispectral Landsat 8 OLI AGB estimates with Landsat 7 ETM + estimates and the latter yielded lower estimation accuracies. Overall, this study demonstrates the invaluable potential and strength of applying the relatively affordable and readily available newly-launched medium-resolution Landsat 8 OLI dataset, with a large swath width (185-km) in precisely estimating AGB. This strength of the Landsat OLI dataset is crucial especially in sub-Saharan Africa where high-resolution remote sensing data availability remains a challenge.

  10. Age-dependent biochemical quantities: an approach for calculating reference intervals.

    PubMed

    Bjerner, J

    2007-01-01

    A parametric method is often preferred when calculating reference intervals for biochemical quantities, as non-parametric methods are less efficient and require more observations/study subjects. Parametric methods are complicated, however, because of three commonly encountered features. First, biochemical quantities seldom display a Gaussian distribution, and there must either be a transformation procedure to obtain such a distribution or a more complex distribution has to be used. Second, biochemical quantities are often dependent on a continuous covariate, exemplified by rising serum concentrations of MUC1 (episialin, CA15.3) with increasing age. Third, outliers often exert substantial influence on parametric estimations and therefore need to be excluded before calculations are made. The International Federation of Clinical Chemistry (IFCC) currently recommends that confidence intervals be calculated for the reference centiles obtained. However, common statistical packages allowing for the adjustment of a continuous covariate do not make this calculation. In the method described in the current study, Tukey's fence is used to eliminate outliers and two-stage transformations (modulus-exponential-normal) in order to render Gaussian distributions. Fractional polynomials are employed to model functions for mean and standard deviations dependent on a covariate, and the model is selected by maximum likelihood. Confidence intervals are calculated for the fitted centiles by combining parameter estimation and sampling uncertainties. Finally, the elimination of outliers was made dependent on covariates by reiteration. Though a good knowledge of statistical theory is needed when performing the analysis, the current method is rewarding because the results are of practical use in patient care.

  11. Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.

    2018-03-01

    This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.

  12. An appraisal of statistical procedures used in derivation of reference intervals.

    PubMed

    Ichihara, Kiyoshi; Boyd, James C

    2010-11-01

    When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.

  13. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.

  14. Estimating and comparing microbial diversity in the presence of sequencing errors

    PubMed Central

    Chiu, Chun-Huo

    2016-01-01

    Estimating and comparing microbial diversity are statistically challenging due to limited sampling and possible sequencing errors for low-frequency counts, producing spurious singletons. The inflated singleton count seriously affects statistical analysis and inferences about microbial diversity. Previous statistical approaches to tackle the sequencing errors generally require different parametric assumptions about the sampling model or about the functional form of frequency counts. Different parametric assumptions may lead to drastically different diversity estimates. We focus on nonparametric methods which are universally valid for all parametric assumptions and can be used to compare diversity across communities. We develop here a nonparametric estimator of the true singleton count to replace the spurious singleton count in all methods/approaches. Our estimator of the true singleton count is in terms of the frequency counts of doubletons, tripletons and quadrupletons, provided these three frequency counts are reliable. To quantify microbial alpha diversity for an individual community, we adopt the measure of Hill numbers (effective number of taxa) under a nonparametric framework. Hill numbers, parameterized by an order q that determines the measures’ emphasis on rare or common species, include taxa richness (q = 0), Shannon diversity (q = 1, the exponential of Shannon entropy), and Simpson diversity (q = 2, the inverse of Simpson index). A diversity profile which depicts the Hill number as a function of order q conveys all information contained in a taxa abundance distribution. Based on the estimated singleton count and the original non-singleton frequency counts, two statistical approaches (non-asymptotic and asymptotic) are developed to compare microbial diversity for multiple communities. (1) A non-asymptotic approach refers to the comparison of estimated diversities of standardized samples with a common finite sample size or sample completeness. This approach aims to compare diversity estimates for equally-large or equally-complete samples; it is based on the seamless rarefaction and extrapolation sampling curves of Hill numbers, specifically for q = 0, 1 and 2. (2) An asymptotic approach refers to the comparison of the estimated asymptotic diversity profiles. That is, this approach compares the estimated profiles for complete samples or samples whose size tends to be sufficiently large. It is based on statistical estimation of the true Hill number of any order q ≥ 0. In the two approaches, replacing the spurious singleton count by our estimated count, we can greatly remove the positive biases associated with diversity estimates due to spurious singletons and also make fair comparisons across microbial communities, as illustrated in our simulation results and in applying our method to analyze sequencing data from viral metagenomes. PMID:26855872

  15. The Propensity Score Analytical Framework: An Overview and Institutional Research Example

    ERIC Educational Resources Information Center

    Herzog, Serge

    2014-01-01

    Estimating the effect of campus math tutoring support, this study demonstrates the use of propensity score weighted and matched-data analysis and examines the correspondence with results from parametric regression analysis.

  16. Organizing Space Shuttle parametric data for maintainability

    NASA Technical Reports Server (NTRS)

    Angier, R. C.

    1983-01-01

    A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.

  17. A generalized concept for cost-effective structural design. [Statistical Decision Theory applied to aerospace systems

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Hawk, J. D.

    1975-01-01

    A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.

  18. Experiment in multiple-criteria energy policy analysis

    NASA Astrophysics Data System (ADS)

    Ho, J. K.

    1980-07-01

    An international panel of energy analysts participated in an experiment to use HOPE (holistic preference evaluation): an interactive parametric linear programming method for multiple criteria optimization. The criteria of cost, environmental effect, crude oil, and nuclear fuel were considered, according to BESOM: an energy model for the US in the year 2000.

  19. Coal-Fired Boilers at Navy Bases, Navy Energy Guidance Study, Phase II and III.

    DTIC Science & Technology

    1979-05-01

    several sizes were performed. Central plants containing four equal-sized boilers and central flue gas desulfurization facilities were shown to be less...Conceptual design and parametric cost studies of steam and power generation systems using coal-fired stoker boilers and stack gas scrubbers in

  20. Theoretical Comparison of Fixed Route Bus and Flexible Route Subscription Bus Feeder Service in Low Density Areas

    DOT National Transportation Integrated Search

    1975-03-01

    parametric variation of demand density was used to compare service level and cost of two alternative systems for providing low density feeder service. Supply models for fixed route and flexible route service were developed and applied to determine ra...

  1. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies.

    PubMed

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-07

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18 F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans-each containing 1/8th of the total number of events-were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18 F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of [Formula: see text], the tracer transport rate (ml · min -1 · ml -1 ), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced [Formula: see text] maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced [Formula: see text] estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance.

  2. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in-vivo studies

    PubMed Central

    Petibon, Yoann; Rakvongthai, Yothin; Fakhri, Georges El; Ouyang, Jinsong

    2017-01-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves -TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in-vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans - each containing 1/8th of the total number of events - were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard Ordered Subset Expectation Maximization (OSEM) reconstruction algorithm on one side, and the One-Step Late Maximum a Posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of K1, the tracer transport rate (mL.min−1.mL−1), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced K1 maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced K1 estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in-vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance. PMID:28379843

  3. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other side, which incorporates a quadratic penalty function. The parametric images were then calculated using voxel-wise weighted least-square fitting of the reconstructed myocardial PET TACs. For the direct method, parametric images were estimated directly from the dynamic PET sinograms using a maximum a posteriori (MAP) parametric reconstruction algorithm which optimizes an objective function comprised of the Poisson log-likelihood term, the kinetic model and a quadratic penalty function. Maximization of the objective function with respect to each set of parameters was achieved using a preconditioned conjugate gradient algorithm with a specifically developed pre-conditioner. The performance of the direct method was evaluated by comparing voxel- and segment-wise estimates of {{K}1} , the tracer transport rate (ml · min-1 · ml-1), to those obtained using the indirect method applied to both OSEM and OSL-MAP dynamic reconstructions. The proposed direct reconstruction method produced {{K}1} maps with visibly lower noise than the indirect method based on OSEM and OSL-MAP reconstructions. At normal count levels, the direct method was shown to outperform the indirect method based on OSL-MAP in the sense that at matched level of bias, reduced regional noise levels were obtained. At lower count levels, the direct method produced {{K}1} estimates with significantly lower standard deviation across noise realizations than the indirect method based on OSL-MAP at matched bias level. In all cases, the direct method yielded lower noise and standard deviation than the indirect method based on OSEM. Overall, the proposed direct reconstruction offered a better bias-variance tradeoff than the indirect method applied to either OSEM and OSL-MAP. Direct parametric reconstruction as applied to in vivo dynamic PET MPI data is therefore a promising method for producing MBF maps with lower variance.

  4. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    PubMed Central

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration (High Freq) performed similarly to non-parametric methods, but had the highest recall values, suggesting that this method could be employed for automatic tremor detection. PMID:27258018

  5. The performance of sample selection estimators to control for attrition bias.

    PubMed

    Grasdal, A

    2001-07-01

    Sample attrition is a potential source of selection bias in experimental, as well as non-experimental programme evaluation. For labour market outcomes, such as employment status and earnings, missing data problems caused by attrition can be circumvented by the collection of follow-up data from administrative registers. For most non-labour market outcomes, however, investigators must rely on participants' willingness to co-operate in keeping detailed follow-up records and statistical correction procedures to identify and adjust for attrition bias. This paper combines survey and register data from a Norwegian randomized field trial to evaluate the performance of parametric and semi-parametric sample selection estimators commonly used to correct for attrition bias. The considered estimators work well in terms of producing point estimates of treatment effects close to the experimental benchmark estimates. Results are sensitive to exclusion restrictions. The analysis also demonstrates an inherent paradox in the 'common support' approach, which prescribes exclusion from the analysis of observations outside of common support for the selection probability. The more important treatment status is as a determinant of attrition, the larger is the proportion of treated with support for the selection probability outside the range, for which comparison with untreated counterparts is possible. Copyright 2001 John Wiley & Sons, Ltd.

  6. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    DOE PAGES

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less

  7. Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data

    Treesearch

    Ronald E. McRoberts; Grant M. Domke; Qi Chen; Erik Næsset; Terje Gobakken

    2016-01-01

    The relatively small sampling intensities used by national forest inventories are often insufficient to produce the desired precision for estimates of population parameters unless the estimation process is augmented with auxiliary information, usually in the form of remotely sensed data. The k-Nearest Neighbors (k-NN) technique is a non-parametric,multivariate approach...

  8. Comparative Evaluation of Two Methods to Estimate Natural Gas Production in Texas

    EIA Publications

    2003-01-01

    This report describes an evaluation conducted by the Energy Information Administration (EIA) in August 2003 of two methods that estimate natural gas production in Texas. The first method (parametric method) was used by EIA from February through August 2003 and the second method (multinomial method) replaced it starting in September 2003, based on the results of this evaluation.

  9. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha

    2007-01-01

    The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...

  10. Statistical Theory for the "RCT-YES" Software: Design-Based Causal Inference for RCTs. NCEE 2015-4011

    ERIC Educational Resources Information Center

    Schochet, Peter Z.

    2015-01-01

    This report presents the statistical theory underlying the "RCT-YES" software that estimates and reports impacts for RCTs for a wide range of designs used in social policy research. The report discusses a unified, non-parametric design-based approach for impact estimation using the building blocks of the Neyman-Rubin-Holland causal…

  11. Transverse Single Spin Asymmetry in \\varvec{J}/\\varvec{ψ } Production

    NASA Astrophysics Data System (ADS)

    Sonawane, Bipin; Misra, Anuradha; Padval, Siddhesh; Rawoot, Vaibhav

    2018-05-01

    We estimate transverse single spin asymmetry (TSSA) in electroproduction of J/ψ for J-Lab and EIC energies. We present estimates of TSSAs in J/ψ production within generalized parton model (GPM) using recent parametrizations of gluon Sivers function (GSF) and compare the results obtained using color singlet model (CSM) with those obtained using color evaporation model (CEM) of quarkonium production.

  12. Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures

    PubMed Central

    Nishino, Jo; Kochi, Yuta; Shigemizu, Daichi; Kato, Mamoru; Ikari, Katsunori; Ochi, Hidenori; Noma, Hisashi; Matsui, Kota; Morizono, Takashi; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Matsui, Shigeyuki

    2018-01-01

    Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases. PMID:29740473

  13. PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shiyuan; Huang, Jianhua Z.; Long, James

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequencymore » parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.« less

  14. Detecting and correcting for publication bias in meta-analysis - A truncated normal distribution approach.

    PubMed

    Zhu, Qiaohao; Carriere, K C

    2016-01-01

    Publication bias can significantly limit the validity of meta-analysis when trying to draw conclusion about a research question from independent studies. Most research on detection and correction for publication bias in meta-analysis focus mainly on funnel plot-based methodologies or selection models. In this paper, we formulate publication bias as a truncated distribution problem, and propose new parametric solutions. We develop methodologies of estimating the underlying overall effect size and the severity of publication bias. We distinguish the two major situations, in which publication bias may be induced by: (1) small effect size or (2) large p-value. We consider both fixed and random effects models, and derive estimators for the overall mean and the truncation proportion. These estimators will be obtained using maximum likelihood estimation and method of moments under fixed- and random-effects models, respectively. We carried out extensive simulation studies to evaluate the performance of our methodology, and to compare with the non-parametric Trim and Fill method based on funnel plot. We find that our methods based on truncated normal distribution perform consistently well, both in detecting and correcting publication bias under various situations.

  15. Prescription duration and treatment episodes in oral glucocorticoid users: application of the parametric waiting time distribution.

    PubMed

    Laugesen, Kristina; Støvring, Henrik; Hallas, Jesper; Pottegård, Anton; Jørgensen, Jens Otto Lunde; Sørensen, Henrik Toft; Petersen, Irene

    2017-01-01

    Glucocorticoids are widely used medications. In many pharmacoepidemiological studies, duration of individual prescriptions and definition of treatment episodes are important issues. However, many data sources lack this information. We aimed to estimate duration of individual prescriptions for oral glucocorticoids and to describe continuous treatment episodes using the parametric waiting time distribution. We used Danish nationwide registries to identify all prescriptions for oral glucocorticoids during 1996-2014. We applied the parametric waiting time distribution to estimate duration of individual prescriptions each year by estimating the 80th, 90th, 95th and 99th percentiles for the interarrival distribution. These corresponded to the time since last prescription during which 80%, 90%, 95% and 99% of users presented a new prescription for redemption. We used the Kaplan-Meier survival function to estimate length of first continuous treatment episodes by assigning estimated prescription duration to each prescription and thereby create treatment episodes from overlapping prescriptions. We identified 5,691,985 prescriptions issued to 854,429 individuals of whom 351,202 (41%) only redeemed 1 prescription in the whole study period. The 80th percentile for prescription duration ranged from 87 to 120 days, the 90th percentile from 116 to 150 days, the 95th percentile from 147 to 181 days, and the 99th percentile from 228 to 259 days during 1996-2014. Based on the 80th, 90th, 95th and 99th percentiles of prescription duration, the median length of continuous treatment was 113, 141, 170 and 243 days, respectively. Our method and results may provide an important framework for future pharmacoepidemiological studies. The choice of which percentile of the interarrival distribution to apply as prescription duration has an impact on the level of misclassification. Use of the 80th percentile provides a measure of drug exposure that is specific, while the 99th percentile provides a sensitive measure.

  16. Coronary artery bypass grafting with minimal versus conventional extracorporeal circulation; an economic analysis.

    PubMed

    Anastasiadis, K; Fragoulakis, V; Antonitsis, P; Maniadakis, N

    2013-10-15

    This study aims to develop a methodological framework for the comparative economic evaluation between Minimal Extracorporeal Circulation (MECC) versus conventional Extracorporeal Circulation (CECC) in patients undergoing coronary artery bypass grafting (CABG) in different healthcare systems. Moreover, we evaluate the cost-effectiveness ratio of alternative comparators in the healthcare setting of Greece, Germany, the Netherlands and Switzerland. The effectiveness data utilized were derived from a recent meta-analysis which incorporated 24 randomized clinical trials. Total therapy cost per patient reflects all resources expensed in delivery of therapy and the management of any adverse events, including drugs, diagnostics tests, materials, devices, blood units, the utilization of operating theaters, intensive care units, and wards. Perioperative mortality was used as the primary health outcome to estimate life years gained in treatment arms. Bias-corrected uncertainty intervals were calculated using the percentile method of non-parametric Monte-Carlo simulation. The MECC circuit was more expensive than CECC, with a difference ranging from €180 to €600 depending on the country. However, in terms of total therapy cost per patient the comparison favored MECC in all countries. Specifically it was associated with a reduction of €635 in Greece, €297 in Germany, €1590 in the Netherlands and €375 in Switzerland. In terms of effectiveness, the total life-years gained were slightly higher in favor of MECC. Surgery with MECC may be dominant (lower cost and higher effectiveness) compared to CECC in coronary revascularization procedures and therefore it represents an attractive new option relative to conventional extracorporeal circulation for CABG. © 2013.

  17. Adjusting Expected Mortality Rates Using Information From a Control Population: An Example Using Socioeconomic Status.

    PubMed

    Bower, Hannah; Andersson, Therese M-L; Crowther, Michael J; Dickman, Paul W; Lambe, Mats; Lambert, Paul C

    2018-04-01

    Expected or reference mortality rates are commonly used in the calculation of measures such as relative survival in population-based cancer survival studies and standardized mortality ratios. These expected rates are usually presented according to age, sex, and calendar year. In certain situations, stratification of expected rates by other factors is required to avoid potential bias if interest lies in quantifying measures according to such factors as, for example, socioeconomic status. If data are not available on a population level, information from a control population could be used to adjust expected rates. We have presented two approaches for adjusting expected mortality rates using information from a control population: a Poisson generalized linear model and a flexible parametric survival model. We used a control group from BCBaSe-a register-based, matched breast cancer cohort in Sweden with diagnoses between 1992 and 2012-to illustrate the two methods using socioeconomic status as a risk factor of interest. Results showed that Poisson and flexible parametric survival approaches estimate similar adjusted mortality rates according to socioeconomic status. Additional uncertainty involved in the methods to estimate stratified, expected mortality rates described in this study can be accounted for using a parametric bootstrap, but this might make little difference if using a large control population.

  18. Implications of heterogeneous impacts of protected areas on deforestation and poverty

    PubMed Central

    Hanauer, Merlin M.; Canavire-Bacarreza, Gustavo

    2015-01-01

    Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. PMID:26460125

  19. Implications of heterogeneous impacts of protected areas on deforestation and poverty.

    PubMed

    Hanauer, Merlin M; Canavire-Bacarreza, Gustavo

    2015-11-05

    Protected areas are a popular policy instrument in the global fight against loss of biodiversity and ecosystem services. However, the effectiveness of protected areas in preventing deforestation, and their impacts on poverty, are not well understood. Recent studies have found that Bolivia's protected-area system, on average, reduced deforestation and poverty. We implement several non-parametric and semi-parametric econometric estimators to characterize the heterogeneity in Bolivia's protected-area impacts on joint deforestation and poverty outcomes across a number of socioeconomic and biophysical moderators. Like previous studies from Costa Rica and Thailand, we find that Bolivia's protected areas are not associated with poverty traps. Our results also indicate that protection did not have a differential impact on indigenous populations. However, results from new multidimensional non-parametric estimators provide evidence that the biophysical characteristics associated with the greatest avoided deforestation are the characteristics associated with the potential for poverty exacerbation from protection. We demonstrate that these results would not be identified using the methods implemented in previous studies. Thus, this study provides valuable practical information on the impacts of Bolivia's protected areas for conservation practitioners and demonstrates methods that are likely to be valuable to researchers interested in better understanding the heterogeneity in conservation impacts. © 2015 The Author(s).

  20. Survival analysis of patients with esophageal cancer using parametric cure model.

    PubMed

    Rasouli, Mahboube; Ghadimi, Mahmood Reza; Mahmoodi, Mahmood; Mohammad, Kazem; Zeraati, Hojjat; Hosseini, Mostafa

    2011-01-01

    Esophageal cancer is a major cause of mortality and morbidity in the Caspian littoral north-eastern part of Iran. The aim of this study was to calculate cure function as well as to identify the factors that are related to this function among patients with esophageal cancer in this geographical area. Three hundred fifty nine cases of esophageal cancer registered in the Babol cancer registry during the period of 1990 to 1991 (inclusive) were followed up for 15 years up to 2006. Parametric cure model was used to calculate cure fraction and investigate the factors responsible for probability of cure among patients. Sample of subjects encompassed 62.7% men and 37.3% women, with mean ages of diagnosis was 60.0 and 55.3 years, respectively. The median survival time reached about 9 months and estimated survival rates in 1, 3, and 5 years following diagnosis were 23%, 15% and 13%, respectively. Results show the family history affects the cured fraction independently of its effect on early outcome and has a significant effect on the probability of uncured. The average cure fraction was estimated to be 0.10. As the proportionality assumption of Cox model does not meet in certain circumstances, a parametric cure model can provide a better fit and a better description of survival related outcome.

Top