Sample records for parametric down-conversion pdc

  1. Parametric down-conversion with nonideal and random quasi-phase-matching

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yao; Lin, Chun; Liljestrand, Charlotte; Su, Wei-Min; Canalias, Carlota; Chuu, Chih-Sung

    2016-05-01

    Quasi-phase-matching (QPM) has enriched the capacity of parametric down-conversion (PDC) in generating biphotons for many fundamental tests and advanced applications. However, it is not clear how the nonidealities and randomness in the QPM grating of a parametric down-converter may affect the quantum properties of the biphotons. This paper intends to provide insights into the interplay between PDC and nonideal or random QPM structures. Using a periodically poled nonlinear crystal with short periodicity, we conduct experimental and theoretical studies of PDC subject to nonideal duty cycle and random errors in domain lengths. We report the observation of biphotons emerging through noncritical birefringent-phasematching, which is impossible to occur in PDC with an ideal QPM grating, and a biphoton spectrum determined by the details of nonidealities and randomness. We also observed QPM biphotons with a diminished strength. These features are both confirmed by our theory. Our work provides new perspectives for biphoton engineering with QPM.

  2. Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambilla, E.; Caspani, L.; Lugiato, L. A.

    2010-07-15

    We investigate the spatiotemporal structure of the biphoton correlation in type-II parametric down-conversion (PDC). As in type-I PDC [Phys. Rev. Lett. 102, 223601 (2009)], we find that the correlation is nonfactorizable in space and time. Differently from type I, the type-II correlation in the spontaneous regime displays an asymmetric V-shaped structure in any cross section including time and one transverse dimension. This asymmetry along the temporal coordinate originates from the signal-idler group velocity mismatch and tends to disappear as the parametric gain is raised. We observe a progressive transition toward a symmetric X-shaped geometry similar to that found in typemore » I when stimulated PDC becomes dominant. We also give quantitative evaluations of the localization in space and in time of the correlation, analyze its behavior for different crystal tuning angles, and underline qualitative differences with respect to type-I PDC.« less

  3. Orbital angular momentum modes of high-gain parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Beltran, Lina; Frascella, Gaetano; Perez, Angela M.; Fickler, Robert; Sharapova, Polina R.; Manceau, Mathieu; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2017-04-01

    Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can also be used for imparting rotational motion to particles and providing high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.

  4. Multiphoton correlations in parametric down-conversion and their measurement in the pulsed regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, O A; Iskhakov, T Sh; Penin, A N

    2006-10-31

    We consider normalised intensity correlation functions (CFs) of different orders for light emitted via parametric down-conversion (PDC) and their dependence on the number of photons per mode. The main problem in measuring such correlation functions is their extremely small width, which considerably reduces their contrast. It is shown that if the radiation under study is modulated by a periodic sequence of pulses that are short compared to the CF width, no decrease in the contrast occurs. A procedure is proposed for measuring normalised CFs of various orders in the pulsed regime. For nanosecond-pulsed PDC radiation, normalised second-order CF is measuredmore » experimentally as a function of the mean photon number. (nonlinear optical phenomena)« less

  5. Tailoring the spatiotemporal structure of biphoton entanglement in type-I parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspani, L.; Brambilla, E.; Gatti, A.

    2010-03-15

    We investigate the spatiotemporal structure of the biphoton entangled state produced by parametric down-conversion (PDC) at the output face of the nonlinear crystal. We analyze the geometry of biphoton correlation for different gain regimes (from ultralow to high), different crystal lengths, and different tuning angles of the crystal. While for collinear or quasicollinear phase matching a X-shaped geometry, nonfactorizable in space and time, dominates, in the highly noncollinear conditions we observe a remarkable transition to a factorizable geometry. We show that the geometry of spatiotemporal correlation is a consequence of the angle-frequency relationship imposed by phase matching and that themore » fully spatiotemporal analysis provides a key to control the spatiotemporal properties of the PDC entangled state and in particular to access a biphoton localization in time and space in the femtosecond and micrometer range, respectively.« less

  6. Spatial two-photon coherence of the entangled field produced by down-conversion using a partially spatially coherent pump beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Anand Kumar; Boyd, Robert W.

    2010-01-15

    We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less

  7. Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation

    NASA Astrophysics Data System (ADS)

    Laiho, K.; Pressl, B.; Schlager, A.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2016-10-01

    We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case.

  8. Quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-07-15

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less

  9. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits

    NASA Astrophysics Data System (ADS)

    Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.

    2017-12-01

    We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.

  10. Intrinsic upper bound on two-qubit polarization entanglement predetermined by pump polarization correlations in parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.

    2016-06-01

    We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.

  11. A versatile design for resonant guided-wave parametric down-conversion sources for quantum repeaters

    NASA Astrophysics Data System (ADS)

    Brecht, Benjamin; Luo, Kai-Hong; Herrmann, Harald; Silberhorn, Christine

    2016-05-01

    Quantum repeaters—fundamental building blocks for long-distance quantum communication—are based on the interaction between photons and quantum memories. The photons must fulfil stringent requirements on central frequency, spectral bandwidth and purity in order for this interaction to be efficient. We present a design scheme for monolithically integrated resonant photon-pair sources based on parametric down-conversion in nonlinear waveguides, which facilitate the generation of such photons. We investigate the impact of different design parameters on the performance of our source. The generated photon spectral bandwidths can be varied between several tens of MHz up to around 1 GHz, facilitating an efficient coupling to different memories. The central frequency of the generated photons can be coarsely tuned by adjusting the pump frequency, poling period and sample temperature, and we identify stability requirements on the pump laser and sample temperature that can be readily fulfilled with off-the-shelf components. We find that our source is capable of generating high-purity photons over a wide range of photon bandwidths. Finally, the PDC emission can be frequency fine-tuned over several GHz by simultaneously adjusting the sample temperature and pump frequency. We conclude our study with demonstrating the adaptability of our source to different quantum memories.

  12. Three-photon states in nonlinear crystal superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonosyan, D. A.; Kryuchkyan, G. Yu.; Institute for Physical Researches, National Academy of Sciences Ashtarak-2, 0203 Ashtarak

    2011-04-15

    It has been a longstanding goal in quantum optics to realize controllable sources generating joint multiphoton states, particularly photon triplet with arbitrary spectral characteristics. We demonstrate that such sources can be realized via cascaded parametric down-conversion (PDC) in superlattice structures of nonlinear and linear segments. We consider a scheme that involves two parametric processes--{omega}{sub 0{yields}{omega}1}+{omega}{sub 2}, {omega}{sub 2{yields}{omega}1}+{omega}{sub 1} under pulsed pump--and investigate the spontaneous creation of a photon triplet as well as the generation of high-intensity mode in intracavity three-photon splitting. We show the preparation of Greenberger-Horne-Zeilinger polarization-entangled states in cascaded type-II and type-I PDC in the framework ofmore » considering the dual-grid structure that involves two periodically poled crystals. We demonstrate the method of compensation of the dispersive effects in nonlinear segments by appropriately chosen linear dispersive segments of superlattice for preparation of the heralded joint states of two polarized photons. In the case of intracavity three-photon splitting, we concentrate on the investigation of photon-number distributions, third-order photon-number correlation function, as well as the Wigner functions. These quantities are observed both for short interaction time intervals and the over-transient regime, when dissipative effects are essential.« less

  13. Semi-automatic engineering and tailoring of high-efficiency Bragg-reflection waveguide samples for quantum photonic applications

    NASA Astrophysics Data System (ADS)

    Pressl, B.; Laiho, K.; Chen, H.; Günthner, T.; Schlager, A.; Auchter, S.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.

    2018-04-01

    Semiconductor alloys of aluminum gallium arsenide (AlGaAs) exhibit strong second-order optical nonlinearities. This makes them prime candidates for the integration of devices for classical nonlinear optical frequency conversion or photon-pair production, for example, through the parametric down-conversion (PDC) process. Within this material system, Bragg-reflection waveguides (BRW) are a promising platform, but the specifics of the fabrication process and the peculiar optical properties of the alloys require careful engineering. Previously, BRW samples have been mostly derived analytically from design equations using a fixed set of aluminum concentrations. This approach limits the variety and flexibility of the device design. Here, we present a comprehensive guide to the design and analysis of advanced BRW samples and show how to automatize these tasks. Then, nonlinear optimization techniques are employed to tailor the BRW epitaxial structure towards a specific design goal. As a demonstration of our approach, we search for the optimal effective nonlinearity and mode overlap which indicate an improved conversion efficiency or PDC pair production rate. However, the methodology itself is much more versatile as any parameter related to the optical properties of the waveguide, for example the phasematching wavelength or modal dispersion, may be incorporated as design goals. Further, we use the developed tools to gain a reliable insight in the fabrication tolerances and challenges of real-world sample imperfections. One such example is the common thickness gradient along the wafer, which strongly influences the photon-pair rate and spectral properties of the PDC process. Detailed models and a better understanding of the optical properties of a realistic BRW structure are not only useful for investigating current samples, but also provide important feedback for the design and fabrication of potential future turn-key devices.

  14. Generalized parametric down conversion, many particle interferometry, and Bell's theorem

    NASA Technical Reports Server (NTRS)

    Choi, Hyung Sup

    1992-01-01

    A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.

  15. Experimental preparation of the Werner state via spontaneous parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yongsheng; Huang Yunfeng; Li Chuanfeng

    2002-12-01

    We present an experiment for preparing a Werner state via spontaneous parametric down-conversion and controlled decoherence of photons in this paper. In this experiment two independent {beta}-barium borate crystals are used to produce down-conversion light beams, which are mixed to prepare the Werner state.

  16. Surface spontaneous parametric down-conversion.

    PubMed

    Perina, Jan; Luks, Antonín; Haderka, Ondrej; Scalora, Michael

    2009-08-07

    Surface spontaneous parametric down-conversion is predicted as a consequence of continuity requirements for electric- and magnetic-field amplitudes at a discontinuity of chi;{(2)} nonlinearity. A generalization of the usual two-photon spectral amplitude is suggested to describe this effect. Examples of nonlinear layered structures and periodically poled nonlinear crystals show that surface contributions to spontaneous down-conversion can be important.

  17. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  18. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    PubMed

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  19. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Technical Reports Server (NTRS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-01-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  20. Localization of one-photon state in space and Einstein-Podolsky-Rosen paradox in spontaneous parametric down conversion

    NASA Astrophysics Data System (ADS)

    Penin, A. N.; Reutova, T. A.; Sergienko, A. V.

    1992-02-01

    An experiment on one-photon state localization in space using a correlation technique in Spontaneous Parametric Down Conversion (SPDC) process is discussed. Results of measurements demonstrate an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate and momentum variables of photon states. Results of the experiment can be explained with the help of an advanced wave technique. The experiment is based on the idea that two-photon states of optical electromagnetic fields arising in the nonlinear process of the spontaneous parametric down conversion (spontaneous parametric light scattering) can be explained by quantum mechanical theory with the help of a single wave function.

  1. Unity-Efficiency Parametric Down-Conversion via Amplitude Amplification.

    PubMed

    Niu, Murphy Yuezhen; Sanders, Barry C; Wong, Franco N C; Shapiro, Jeffrey H

    2017-03-24

    We propose an optical scheme, employing optical parametric down-converters interlaced with nonlinear sign gates (NSGs), that completely converts an n-photon Fock-state pump to n signal-idler photon pairs when the down-converters' crystal lengths are chosen appropriately. The proof of this assertion relies on amplitude amplification, analogous to that employed in Grover search, applied to the full quantum dynamics of single-mode parametric down-conversion. When we require that all Grover iterations use the same crystal, and account for potential experimental limitations on crystal-length precision, our optimized conversion efficiencies reach unity for 1≤n≤5, after which they decrease monotonically for n values up to 50, which is the upper limit of our numerical dynamics evaluations. Nevertheless, our conversion efficiencies remain higher than those for a conventional (no NSGs) down-converter.

  2. Towards terahertz detection and calibration through spontaneous parametric down-conversion in the terahertz idler-frequency range generated by a 795 nm diode laser system

    NASA Astrophysics Data System (ADS)

    Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.

    2018-05-01

    We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.

  3. Interfacing a quantum dot with a spontaneous parametric down-conversion source

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Prilmüller, Maximilian; Sehner, Michael; Solomon, Glenn S.; Predojević, Ana; Weihs, Gregor

    2017-09-01

    Quantum networks require interfacing stationary and flying qubits. These flying qubits are usually nonclassical states of light. Here we consider two of the leading source technologies for nonclassical light, spontaneous parametric down-conversion and single semiconductor quantum dots. Down-conversion delivers high-grade entangled photon pairs, whereas quantum dots excel at producing single photons. We report on an experiment that joins these two technologies and investigates the conditions under which optimal interference between these dissimilar light sources may be achieved.

  4. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  5. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    PubMed

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  6. Towards spontaneous parametric down-conversion at low temperatures

    NASA Astrophysics Data System (ADS)

    Akatiev, Dmitrii; Boldyrev, Kirill; Kuzmin, Nikolai; Latypov, Ilnur; Popova, Marina; Shkalikov, Andrey; Kalachev, Alexey

    2017-10-01

    The possibility of observing spontaneous parametric down-conversion in doped nonlinear crystals at low temperatures, which would be useful for combining heralded single-photon sources and quantum memories, is studied theoretically. The ordinary refractive index of a lithium niobate crystal doped with magnesium oxide LiNbO3:MgO is measured at liquid nitrogen and helium temperatures. On the basis of the experimental data, the coefficients of the Sellmeier equation are determined for the temperatures from 5 to 300 K. In addition, a poling period of the nonlinear crystal has been calculated for observing type-0 spontaneous parametric down-conversion (ooo-synchronism) at the liquid helium temperature under pumping at the wavelength of λp = 532 nm and emission of the signal field at the wavelength of λs = 794 nm, which corresponds to the resonant absorption line of Tm3+ doped ions.

  7. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  8. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion.

    PubMed

    Howell, John C; Bennink, Ryan S; Bentley, Sean J; Boyd, R W

    2004-05-28

    We report on a momentum-position realization of the EPR paradox using direct detection in the near and far fields of the photons emitted by collinear type-II phase-matched parametric down conversion. Using this approach we achieved a measured two-photon momentum-position variance product of 0.01 variant Planck's over 2pi (2), which dramatically violates the bounds for the EPR and separability criteria.

  9. Two-Photon Entanglement and EPR Experiments Using Type-2 Spontaneous Parametric Down Conversion

    NASA Technical Reports Server (NTRS)

    Sergienko, A. V.; Shih, Y. H.; Pittman, T. B.; Rubin, M. H.

    1996-01-01

    Simultaneous entanglement in spin and space-time of a two-photon quantum state generated in type-2 spontaneous parametric down-conversion is demonstrated by the observation of quantum interference with 98% visibility in a simple beam-splitter (Hanburry Brown-Twiss) anticorrelation experiment. The nonlocal cancellation of two-photon probability amplitudes as a result of this double entanglement allows us to demonstrate two different types of Bell's inequality violations in one experimental setup.

  10. Nonseparable Werner states in spontaneous parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo

    2006-03-15

    The multiphoton states generated by high-gain spontaneous parametric down-conversion (SPDC) in the presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by 'entanglement witness' methods and by the quantum tomography of the state generated by a high-g SPDC.

  11. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  12. Pump Spectral Bandwidth, Birefringence, and Entanglement in Type-II Parametric Down Conversion

    DOE PAGES

    Erenso, Daniel

    2009-01-01

    The twin photons produced by a type-II spontaneous parametric down conversion are well know as a potential source of photons for quantum teleportation due to the strong entanglement in polarization. This strong entanglement in polarization, however, depends on the spectral composition of the pump photon and the nature of optical isotropy of the crystal. By exact numerical calculation of the concurrence, we have shown that how pump photons spectral width and the birefringence nature of the crystal directly affect the degree of polarization entanglement of the twin photons.

  13. Modeling of enhanced spontaneous parametric down-conversion in plasmonic and dielectric structures with realistic waves

    NASA Astrophysics Data System (ADS)

    Loot, A.; Hizhnyakov, V.

    2018-05-01

    A numerical study of the enhancement of the spontaneous parametric down-conversion in plasmonic and dielectric structures is considered. The modeling is done using a nonlinear transfer-matrix method which is extended to include vacuum fluctuations and realistic waves (e.g. Gaussian beam). The results indicate that in the case of short-range surface plasmon polaritons, the main limiting factor of the enhancement is the short length of the coherent buildup. In the case of long-range surface plasmon polaritons or dielectric guided waves, the very narrow resonances are the main limiting factor instead.

  14. Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications.

    PubMed

    Smirr, Jean-Loup; Guilbaud, Sylvain; Ghalbouni, Joe; Frey, Robert; Diamanti, Eleni; Alléaume, Romain; Zaquine, Isabelle

    2011-01-17

    Fast characterization of pulsed spontaneous parametric down conversion (SPDC) sources is important for applications in quantum information processing and communications. We propose a simple method to perform this task, which only requires measuring the counts on the two output channels and the coincidences between them, as well as modeling the filter used to reduce the source bandwidth. The proposed method is experimentally tested and used for a complete evaluation of SPDC sources (pair emission probability, total losses, and fidelity) of various bandwidths. This method can find applications in the setting up of SPDC sources and in the continuous verification of the quality of quantum communication links.

  15. Einstein-Podolsky-Rosen-Bohm experiment and Bell inequality violation using Type 2 parametric down conversion

    NASA Technical Reports Server (NTRS)

    Kiess, Thomas E.; Shih, Yan-Hua; Sergienko, A. V.; Alley, Carroll O.

    1994-01-01

    We report a new two-photon polarization correlation experiment for realizing the Einstein-Podolsky-Rosen-Bohm (EPRB) state and for testing Bell-type inequalities. We use the pair of orthogonally-polarized light quanta generated in Type 2 parametric down conversion. Using 1 nm interference filters in front of our detectors, we observe from the output of a 0.5mm beta - BaB2O4 (BBO) crystal the EPRB correlations in coincidence counts, and measure an associated Bell inequality violation of 22 standard deviations. The quantum state of the photon pair is a polarization analog of the spin-1/2 singlet state.

  16. Parametric second Stokes Raman laser output pulse shortening to 300 ps due to depletion of pumping of intracavity Raman conversion

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.; Jelínková, H.; Ivleva, L. I.

    2016-10-01

    A new effect of the pulse shortening of the parametrically generated radiation down to hundreds of picosecond via depletion of pumping of intracavity Raman conversion in the miniature passively Q-switched Nd: SrMoO4 parametric self-Raman laser with the increasing energy of the shortened pulse under pulsed pumping by a high-power laser diode bar is demonstrated. The theoretical estimation of the depletion stage duration of the convertible fundamental laser radiation via intracavity Raman conversion is in agreement with the experimentally demonstrated duration of the parametrically generated pulse. Using the mathematical modeling of the pulse shortening quality and quantity deterioration is disclosed, and the solution ways are found by the optimization of the laser parameters.

  17. Development status of the PDC-1 Parabolic Dish Concentrator

    NASA Technical Reports Server (NTRS)

    Thostesen, T.; Soczak, I. F.; Pons, R. L.

    1982-01-01

    The status of development of the 12 m diameter parabolic dish concentrator which is planned for use with the Small Community Solar Thermal Power System. The PDC-1 unit features the use of plastic reflector film bonded to structural plastic gores supported by front-bracing steel ribs. An elevation-over-azimuth mount arrangement is employed, with a conventional wheel-and-track arrangement; outboard trunnions permit the dish to be stored in the face down position, with the added advantage of easy access to the power conversion assembly. The control system is comprised of a central computer (LSI 1123), a manual control panel, a concentrator control unit, two motor controllers, a Sun sensor, and two angular position resolvers. The system is designed for the simultaneous control of several concentrators. The optical testing of reflective panels is described.

  18. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  19. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ(2) nonlinear photonic crystal.

    PubMed

    Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N

    2016-03-21

    We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.

  20. Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Moreau, Paul-Antoine; Mougin-Sisini, Joé; Devaux, Fabrice; Lantz, Eric

    2012-07-01

    We demonstrate Einstein-Podolsky-Rosen (EPR) entanglement by detecting purely spatial quantum correlations in the near and far fields of spontaneous parametric down-conversion generated in a type-2 beta barium borate crystal. Full-field imaging is performed in the photon-counting regime with an electron-multiplying CCD camera. The data are used without any postselection, and we obtain a violation of Heisenberg inequalities with inferred quantities taking into account all the biphoton pairs in both the near and far fields by integration on the entire two-dimensional transverse planes. This ensures a rigorous demonstration of the EPR paradox in its original position-momentum form.

  1. Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm

    NASA Astrophysics Data System (ADS)

    Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.

    2018-04-01

    We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.

  2. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    PubMed

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  3. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer.

    PubMed

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V

    2016-10-28

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02)  THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.

  4. Applied nonlinear optics in the journal 'Quantum Electronics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-12-31

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  5. Top-down mass spectrometry reveals new sequence variants of the major bovine seminal plasma protein PDC-109.

    PubMed

    Laitaoja, Mikko; Sankhala, Rajeshwer S; Swamy, Musti J; Jänis, Janne

    2012-07-01

    The major protein of bovine seminal plasma, PDC-109, is a 109-residue polypeptide that exists as a polydisperse aggregate under native conditions. The oligomeric state of this aggregate varies with ionic strength and the presence of lipids. Binding of PDC-109 to choline phospholipids on the sperm plasma membrane results in an efflux of cholesterol and choline phospholipids, which is an important step in sperm capacitation. In this study, Fourier transform ion cyclotron resonance mass spectrometry was used to analyze PDC-109 purified from bovine seminal plasma. In addition to the previously known PDC-109 variants, four new sequence variants were identified by top-down mass spectrometry. For example, a protein variant containing point mutations P10L and G14R was identified along with another form having a 14-residue truncation in the N-terminal region. Two other minor variants could also be identified from the affinity-purified PDC-109. These results demonstrate that PDC-109 is naturally produced as a mixture of several protein forms, most of which have not been detected in previous studies. Native mass spectrometry revealed that PDC-109 is exclusively monomeric at low protein concentrations, suggesting that the protein oligomers are weakly bound and can easily be disrupted. Ligand binding to PDC-109 was also investigated, and it was observed that two molecules of O-phosphorylcholine bind to each PDC-109 monomer, consistent with previous reports. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Experimental observation of spatial quantum noise reduction below the standard quantum limit with bright twin beams of light

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Nunley, Hayden; Marino, Alberto

    2016-05-01

    Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.

  7. HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha.

    PubMed

    Hardy, Andrew W; Graham, David R; Shearer, Gene M; Herbeuval, Jean-Philippe

    2007-10-30

    Plasmacytoid dendritic cells (pDC) are key players in viral immunity and produce IFN-alpha after HIV-1 exposure, which in turn regulates TNF-related apoptosis-inducing ligand (TRAIL) expression by CD4(+) T cells. We show here that infectious and noninfectious HIV-1 virions induce activation of pDC into TRAIL-expressing IFN-producing killer pDC (IKpDC). IKpDC expressed high levels of activation markers (HLA-DR, CD80, CD83, and CD86) and the migration marker CCR7. Surprisingly, CXCR4 and CCR5 were down-regulated on IKpDC. We also show that HIV-1-induced IKpDC depended on Toll-like receptor 7 (TLR7) activation. HIV-1 or TLR7 agonistexposed IKpDC induced apoptosis of the CD4(+) T cell line SupT1 via the TRAIL pathway. Furthermore, IFN-alpha produced after HIV-induced TLR7 stimulation was responsible for TRAIL expression and the down-regulation of both CXCR4 and CCR5 by IKpDC. In contrast, activation and migration markers were not regulated by IFN-alpha. Finally, IFN-alpha increased the survival of IKpDC. We characterized a subset of pDC with a killer activity that is activated by endosomal-associated viral RNA and not by infection.

  8. Quantum Lidar - Remote Sensing at the Ultimate Limit

    DTIC Science & Technology

    2009-07-01

    of Lossy Propaga- tion of Non-Classical Dual-Mode Entangled Photon States 57 34 Decay of Coherence for a N00N State (N=10) as a Function of...resolution could be beaten by exploiting entangled photons [Boto2000, Kok2001]. This effect is now universally known as quantum super-resolution. We...spontaneous parametric down conversion (SPDC), optical parametric amplifier (OPA), optical parametric oscillator (OPO), and entangled - photon Laser (EPL

  9. Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion

    NASA Technical Reports Server (NTRS)

    Cable, Hugo; Durkin, Gabriel A.

    2010-01-01

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  10. Parameter estimation with entangled photons produced by parametric down-conversion.

    PubMed

    Cable, Hugo; Durkin, Gabriel A

    2010-07-02

    We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.

  11. Distribution of polarization-entangled photonpairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment.

    PubMed

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2008-09-15

    We present a theoretical model for the distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network. This model allows an entanglement distributor who plays the role of a service provider to determine the photon-pair generation rate giving highest two-photon interference fringe visibility for any pair of users, when given user-specific parameters. Usefulness of this model is illustrated in an example and confirmed in an experiment, where polarization-entangled photon-pairs are distributed over 82 km and 132 km of dispersion-managed optical fiber. Experimentally observed visibilities and entanglement fidelities are in good agreement with theoretically predicted values.

  12. [Molecular genetic analysis of amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) in the Kii peninsula].

    PubMed

    Hara, Kenju; Kuwano, Ryozo; Miyashita, Akinori; Kokubo, Yasumasa; Sasaki, Ryogen; Nakahara, Yasuo; Goto, Jun; Nishizawa, Masatoyo; Kuzuhara, Shigeki; Tsuji, Shoji

    2007-11-01

    Recent clinical research have revealed that more than 70% of the patients with ALS/PDC, which is highly prevalent in Hohara area in the Kii peninsula, have family history. 80% of Guamanian patients, who have identical pathological findings to those of ALS/PDC in Kii, are also known to have family history with non-Mendelian trait. These facts suggest strong genetic predisposition to ALS/PDC in both Kii and Guam. However, no genes associated with ALS/PDC have been identified by molecular genetic studies using candidate gene approach. To identify the causative or susceptibility genes for ALS/PDC, we have conducted a genomewide linkage analysis for five families with ALS/PDC in Hohara. The fact that affected individuals were ascertained in successive generations suggest an autosomal dominant (AD) inheritance, while the presence of consanguinity suggests an autosomal recessive (AR) inheritance. Although we can raise possibilities of AD model with incomplete penetrance or AR model with high gene frequency (pseudo-dominant model), the mode of inheritance of ALS/PDC families is complicated and controversial. Therefore, we are also conducting model-free (non-parametric) linkage analysis to identify the disease locus without setting mode of inheritance. More family members and detailed clinical evaluations are required to obtain the convincing evidence of linkage.

  13. Quantum illumination with Gaussian states.

    PubMed

    Tan, Si-Hui; Erkmen, Baris I; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H

    2008-12-19

    An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.

  14. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  15. PDC-bit performance under simulated borehole conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, E.E.; Azar, J.J.

    1993-09-01

    Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less

  16. Multi-copy entanglement purification with practical spontaneous parametric down conversion sources

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai-Shuai; Shu, Qi; Zhou, Lan; Sheng, Yu-Bo

    2017-06-01

    Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  17. Giant narrowband twin-beam generation along the pump-energy propagation direction

    NASA Astrophysics Data System (ADS)

    Pérez, Angela M.; Spasibko, Kirill Yu; Sharapova, Polina R.; Tikhonova, Olga V.; Leuchs, Gerd; Chekhova, Maria V.

    2015-07-01

    Walk-off effects, originating from the difference between the group and phase velocities, limit the efficiency of nonlinear optical interactions. While transverse walk-off can be eliminated by proper medium engineering, longitudinal walk-off is harder to avoid. In particular, ultrafast twin-beam generation via pulsed parametric down-conversion and four-wave mixing is only possible in short crystals or fibres. Here we show that in high-gain parametric down-conversion, one can overcome the destructive role of both effects and even turn them into useful tools for shaping the emission. In our experiment, one of the twin beams is emitted along the pump Poynting vector or its group velocity matches that of the pump. The result is markedly enhanced generation of both twin beams, with the simultaneous narrowing of angular and frequency spectrum. The effect will enable efficient generation of ultrafast twin photons and beams in cavities, waveguides and whispering-gallery mode resonators.

  18. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source.

    PubMed

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-06-28

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication.

  19. Heralded quantum repeater based on the scattering of photons off single emitters using parametric down-conversion source

    PubMed Central

    Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian

    2016-01-01

    Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159

  20. Down-regulation of poison ivy/oak-induced contact sensitivity by treatment with a class II MHC binding peptide:hapten conjugate.

    PubMed

    Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M

    1997-03-01

    Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.

  1. Using Spatial Correlations of SPDC Sources for Increasing the Signal to Noise Ratio in Images

    NASA Astrophysics Data System (ADS)

    Ruíz, A. I.; Caudillo, R.; Velázquez, V. M.; Barrios, E.

    2017-05-01

    We experimentally show that, by using spatial correlations of photon pairs produced by Spontaneous Parametric Down-Conversion, it is possible to increase the Signal to Noise Ratio in images of objects illuminated with those photons; in comparison, objects illuminated with light from a laser present a minor ratio. Our simple experimental set-up was capable to produce an average improvement in signal to noise ratio of 11dB of Parametric Down-Converted light over laser light. This simple method can be easily implemented for obtaining high contrast images of faint objects and for transmitting information with low noise.

  2. Plasmacytoid Dendritic Cells Die by the CD8 T Cell-Dependent Perforin Pathway during Acute Nonviral Inflammation.

    PubMed

    Mossu, Adrien; Daoui, Anna; Bonnefoy, Francis; Aubergeon, Lucie; Saas, Philippe; Perruche, Sylvain

    2016-09-01

    Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Joint temporal density measurements for two-photon state characterization.

    PubMed

    Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey

    2008-10-10

    We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.

  4. Spontaneous parametric down conversion with a depleted pump as an analogue for black hole evaporation/particle production

    NASA Astrophysics Data System (ADS)

    Alsing, P. M.; Fanto, M. L.

    2016-05-01

    In this work we argue that black hole evaporation/particle production has a very close analogy to the laboratory process of spontaneous parametric down conversion, when the pump is allowed to deplete. We present an analytical formulation of the recent one-shot decoupling model that was numerically analyzed in Bradler and Adami Phys. Rev. Lett. 116, 101301 (2016) [arXiv:1505.0284]. We compute the resulting "Page Information" curves, which describe the rate at which information escapes form the black hole as it evaporates, for the reduced density matrices for the evaporating black hole internal degrees of freedom, and emitted Hawking radiation pairs entangled across the horizon. The present work reviews and attempts to elucidate the trilinear Hamiltonian models for black hole evaporation/particle production recently investigated by the authors in Class. Quant. Grav 32, 075010 (2015) [arXiv:1408.4491] and Class. Quant. Grav 33, 015005 (2016) [arXiv:1507.00429].

  5. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  6. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.

    PubMed

    Stothard, David J M; Dunn, Malcolm H

    2010-01-18

    We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.

  7. Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.

    PubMed

    Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua

    2017-07-13

    The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.

  8. cGAS Senses Human Cytomegalovirus and Induces Type I Interferon Responses in Human Monocyte-Derived Cells

    PubMed Central

    Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich

    2016-01-01

    Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035

  9. On the Advanced Wave Model of Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Lvovsky, A. I.; Aichele, T.

    The spatiotemporal optical mode of the single-photon Fock state prepared by conditional measurements on a biphoton is investigated and found to be identical to that of a classical wave due to a nonlinear interaction of the pump wave and Klyshko's advanced wave. We discuss the applicability of this identity in various experimental settings.

  10. Progress towards practical device-independent quantum key distribution with spontaneous parametric down-conversion sources, on-off photodetectors, and entanglement swapping

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Takeoka, Masahiro; Sasaki, Masahide

    2016-04-01

    Device-independent quantum key distribution (DIQKD) guarantees unconditional security of a secret key without making assumptions about the internal workings of the devices used for distribution. It does so using the loophole-free violation of a Bell's inequality. The primary challenge in realizing DIQKD in practice is the detection loophole problem that is inherent to photonic tests of Bell' s inequalities over lossy channels. We revisit the proposal of Curty and Moroder [Phys. Rev. A 84, 010304(R) (2011), 10.1103/PhysRevA.84.010304] to use a linear optics-based entanglement-swapping relay (ESR) to counter this problem. We consider realistic models for the entanglement sources and photodetectors: more precisely, (a) polarization-entangled states based on pulsed spontaneous parametric down-conversion sources with infinitely higher-order multiphoton components and multimode spectral structure, and (b) on-off photodetectors with nonunit efficiencies and nonzero dark-count probabilities. We show that the ESR-based scheme is robust against the above imperfections and enables positive key rates at distances much larger than what is possible otherwise.

  11. Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.

    In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.

  12. Heralded creation of photonic qudits from parametric down-conversion using linear optics

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira

    2018-05-01

    We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.

  13. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  14. Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.

    We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less

  15. Generation of 3.6  μm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion.

    PubMed

    Kuyken, B; Verheyen, P; Tannouri, P; Liu, X; Van Campenhout, J; Baets, R; Green, W M J; Roelkens, G

    2014-03-15

    Mid-infrared light generation through four-wave mixing-based frequency down-conversion in a normal group velocity dispersion silicon waveguide is demonstrated. A telecom-wavelength signal is down-converted across more than 1.2 octaves using a pump at 2190 nm in a 1 cm-long waveguide. At the same time, a 13 dB on-chip parametric gain of the telecom signal is obtained.

  16. Streak camera imaging of single photons at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  17. Insights into a divergent phenazine biosynthetic pathway governed by a plasmid-born esmeraldin gene cluster.

    PubMed

    Rui, Zhe; Ye, Min; Wang, Shuoguo; Fujikawa, Kaori; Akerele, Bankole; Aung, May; Floss, Heinz G; Zhang, Wenjun; Yu, Tin-Wein

    2012-09-21

    Phenazine-type metabolites arise from either phenazine-1-carboxylic acid (PCA) or phenazine-1,6-dicarboxylic acid (PDC). Although the biosynthesis of PCA has been studied extensively, PDC assembly remains unclear. Esmeraldins and saphenamycin, the PDC originated products, are antimicrobial and antitumor metabolites isolated from Streptomyces antibioticus Tü 2706. Herein, the esmeraldin biosynthetic gene cluster was identified on a dispensable giant plasmid. Twenty-four putative esm genes were characterized by bioinformatics, mutagenesis, genetic complementation, and functional protein expressions. Unlike enzymes involved in PCA biosynthesis, EsmA1 and EsmA2 together decisively promoted the PDC yield. The resulting PDC underwent a series of conversions to give 6-acetylphenazine-1-carboxylic acid, saphenic acid, and saphenamycin through a unique one-carbon extension by EsmB1-B5, a keto reduction by EsmC, and an esterification by EsmD1-D3, the atypical polyketide sythases, respectively. Two transcriptional regulators, EsmT1 and EsmT2, are required for esmeraldin production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Two enzymatic reaction pathways in the formation of pyropheophorbide a.

    PubMed

    Suzuki, Yasuyo; Doi, Michio; Shioi, Yuzo

    2002-01-01

    The demethoxycarbonyl reaction of pheophorbide a in plants and algae was investigated. Two types of enzyme that catalyze alternative reactions in the formation of pyropheophorbide a were found. One enzyme, designated 'pheophorbidase (Phedase)', was purified nearly to homogeneity from cotyledons of radish (Raphanus sativus). This enzyme catalyzes the conversion of pheophorbide a to a precursor of pyropheophorbide a, C-13(2)-carboxylpyropheophorbide a, by demethylation, and then the precursor is decarboxylated non-enzymatically to yield pyropheophorbide a. The activity of Phedase was inhibited by the reaction product, methanol. The other enzyme, termed 'pheophorbide demethoxycarbonylase (PDC)', was highly purified from the Chl b-less mutant NL-105 of Chlamydomonas reinhardtii. This enzyme had produced no intermediate as shown in the Phedase reaction, indicating that it converts pheophorbide a directly into pyropheophorbide a, probably by nucleophilic reaction. Phedase and PDC consisted of both senescence-induced and constitutive enzymes. The molecular weight of both Phedases was 113 000 and of senescence-induced PDC was 170 000. The K (m) values against pheophorbide a for both Phedases were 14-15 muM and 283 muM for senescence-induced PDC. The activity of both Phedases was inhibited by the reaction product, methanol, whereas methanol had no specific effect on senescence-induced PDC. Phenylmethylsulfonic fluoride and N-ethylmaleimide inhibited the senescence-induced Phedase and PDC, respectively. Among the 23 species from 15 different families tested, Phedase activity was found in 10 species from three families. PDC activity was not detected in plants lacking Phedase activity, except for Chlamydomonas. Based on these findings, a likely conclusion is that at least two alternative pathways that are catalyzed by two different enzymes, Phedase and PDC, exist for the formation of pyropheophorbide a.

  19. Non-classical Signature of Parametric Fluorescence and its Application in Metrology

    NASA Astrophysics Data System (ADS)

    Hamar, M.; Michálek, V.; Pathak, A.

    2014-08-01

    The article provides a short theoretical background of what the non-classical light means. We applied the criterion for the existence of non-classical effects derived by C.T. Lee on parametric fluorescence. The criterion was originally derived for the study of two light beams with one mode per beam. We checked if the criterion is still working for two multimode beams of parametric down-conversion through numerical simulations. The theoretical results were tested by measurement of photon number statistics of twin beams emitted by nonlinear BBO crystal pumped by intense femtoseconds UV pulse. We used ICCD camera as the detector of photons in both beams. It appears that the criterion can be used for the measurement of the quantum efficiencies of the ICCD cameras.

  20. Analysis of Quantum Information Test-Bed by Parametric Down-Converted Photons Interference Measurement

    NASA Technical Reports Server (NTRS)

    To, Wing H.

    2005-01-01

    Quantum optical experiments require all the components involved to be extremely stable relative to each other. The stability can be "measured" by using an interferometric experiment. A pair of coherent photons produced by parametric down-conversion could be chosen to be orthogonally polarized initially. By rotating the polarization of one of the wave packets, they can be recombined at a beam splitter such that interference will occur. Theoretically, the interference will create four terms in the wave function. Two terms with both photons going to the same detector, and two terms will have the photons each going to different detectors. However, the latter will cancel each other out, thus no photons will arrive at the two detectors simultaneously under ideal conditions. The stability Of the test-bed can then be inferred by the dependence of coincidence count on the rotation angle.

  1. Technical advance: Generation of human pDC equivalents from primary monocytes using Flt3-L and their functional validation under hypoxia.

    PubMed

    Sekar, Divya; Brüne, Bernhard; Weigert, Andreas

    2010-08-01

    The division of labor between DC subsets is evolutionarily well-defined. mDC are efficient in antigen presentation, whereas pDC act as rheostats of the immune system. They activate NK cells, cause bystander activation of mDC, and interact with T cells to induce tolerance. This ambiguity positions pDC at the center of inflammatory diseases, such as cancer, arthritis, and autoimmune diseases. The ability to generate human mDC ex vivo made it possible to engineer them to suit therapy needs. Unfortunately, a similar, easily accessible system to generate human pDC is not available. We describe a method to generate human pDC equivalents ex vivo, termed mo-pDC from peripheral blood monocytes using Flt3-L. mo-pDC showed a characteristic pDC profile, such as high CD123 and BDCA4, but low CD86 and TLR4 surface expression and a low capacity to induce autologous lymphocyte proliferation and to phagocytose apoptotic debris in comparison with mDC. Interestingly, mo-pDC up-regulated the pDC lineage-determining transcription factor E2-2 as well as expression of BDCA2, which is under the transcriptional control of E2-2 but not its inhibitor ID2, during differentiation. mo-pDC produced high levels of IFN-alpha when pretreated overnight with TNF-alpha. Under hypoxia, E2-2 was down-regulated, and ID2 was induced in mo-pDC, whereas surface expression of MHCI, CD86, and BDCA2 was decreased. Furthermore, mo-pDC produced high levels of inflammatory cytokines when differentiated under hypoxia compared with normoxia. Hence, mo-pDC can be used to study differentiation and functions of human pDC under microenvironmental stimuli.

  2. Distillation of the two-mode squeezed state.

    PubMed

    Kurochkin, Yury; Prasad, Adarsh S; Lvovsky, A I

    2014-02-21

    We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the fraction of the photon-pair component in the state, resulting in the increase of both squeezing and entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not experience significant loss of Gaussian character.

  3. Multiphoton entanglement concentration and quantum cryptography.

    PubMed

    Durkin, Gabriel A; Simon, Christoph; Bouwmeester, Dik

    2002-05-06

    Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

  4. The photon: Experimental emphasis on its wave-particle duality

    NASA Technical Reports Server (NTRS)

    Shih, Yan-Hua; Sergienko, A. V.; Rubin, Morton H.; Kiess, Thomas E.; Alley, Carroll O.

    1994-01-01

    Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our laboratory. It is interesting to see that in an interference experiment (wave-like experiment) the photon exhibits its particle property, and in a beam-splitting experiment (particle-like experiment) the photon exhibits its wave property. The two-photon states are produced from Type 1 and Type 2 optical spontaneous parametric down conversion, respectively.

  5. Experimental generation of complex noisy photonic entanglement

    NASA Astrophysics Data System (ADS)

    Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.

    2013-02-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.

  6. Effects of time ordering in quantum nonlinear optics

    NASA Astrophysics Data System (ADS)

    Quesada, Nicolás; Sipe, J. E.

    2014-12-01

    We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.

  7. Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2014-01-01

    Raman amplification based on stimulated Stokes Raman scattering (SSRS) and wavelength conversion based on coherent anti-Stokes Raman scattering (CARS) are theoretically investigated in silicon-on-sapphire (SOS) waveguides in the mid-infrared (IR) region. When the linear phase mismatch Δk is close to zero, the Stokes gain and conversion efficiency drop down quickly due to the effect of parametric gain suppression when the Stokes-pump input ratio is sufficiently large. The Stokes gain increases with the increase of Δk, whereas efficient wavelength conversion needs appropriate Δk under different pump intensities. The conversion efficiency at exact linear phase matching (Δk = 0) is smaller than that at optimal linear phase mismatch by a factor of about 28 dB when the pump intensity is 2 GW cm-2.

  8. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  9. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  10. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    PubMed

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  11. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h-1) similar to that of the evolved Pdc- strain (0.23 h-1). Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1) than the evolved strain (0.20 h-1). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and characterised a mutation in MTH1 enabling Pdc- strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc-S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies. PMID:22978798

  12. Pyrrolo-dC modified duplex DNA as a novel probe for the sensitive assay of base excision repair enzyme activity.

    PubMed

    Lee, Chang Yeol; Park, Ki Soo; Park, Hyun Gyu

    2017-12-15

    We develop a novel approach to determine formamidopyrimidine DNA glycosylase (Fpg) activity by taking advantage of the unique fluorescence property of pyrrolo-dC (PdC) positioned opposite to 8-oxoguanine (8-oxoG) in duplex DNA. In its initial state, PdC in duplex DNA undergoes the efficient stacking and collisional quenching interactions, showing the low fluorescence signal. In contrast, the presence of Fpg, which specifically removes 8-oxoG and incises resulting apurinic (AP) site, transforms duplex DNA into single-stranded (ss) DNAs. As a result, the intrinsic fluorescence signal of PdC in ssDNA is recovered to exhibit the significantly enhanced fluorescence signal. Based on this Fpg-dependent fluorescence response of PdC, we could reliably determine Fpg activity down to 1.25U/ml with a linear response from 0 to 50U/ml. In addition, the diagnostic capability of this strategy was successfully demonstrated by reliably assaying Fpg activity in human blood serum, showing its great potential in the practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  14. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    PubMed Central

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  15. Development and testing of Parabolic Dish Concentrator No. 1

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Thostesen, T. O.

    1984-01-01

    Parabolic Dish Concentrator No. 1 (PDC-1) is a 12-m-diameter prototype concentrator with low life-cycle costs for use with thermal-to-electric energy conversion devices. The concentrator assembly features panels made of a resin transfer molded balsa core/fiberglass sandwich with plastic reflective film as the reflective surface and a ribbed framework to hold the panels in place. The concentrator assembly tracks in azimuth and elevation on a base frame riding on a circular track. It is shown that the panels do not exhibit the proper parabolic contour. However, thermal gradients were discovered in the panels with daily temperature changes. The PDC-1 has sufficient optical quality to operate satisfactorily in a dish-electric system. The PDC-1 development provides the impetus for creating innovative optical testing methods and valuable information for use in designing and fabricating concentrators of future dish-electric systems.

  16. Enhanced Mobility in Concentrated Pyroclastic Density Currents: An Examination of a Self-Fluidization Mechanism

    NASA Astrophysics Data System (ADS)

    Breard, Eric C. P.; Dufek, Josef; Lube, Gert

    2018-01-01

    Pyroclastic density currents (PDCs) are a significant volcanic hazard. However, their dominant transport mechanisms remain poorly understood, in part because of the large variability of PDC types and deposits. Here we combine field data with experimental and numerical simulations to illuminate the twofold fate of particles settling from an ash cloud to form the dense PDC basal flow. At solid fractions >1 vol %, heterogeneous drag leads to formation of mesoscale particle clusters that favor rapid particle settling and result in a mobile dense layer with significant bed weight support. Conversely, at lower concentrations the absence of particle clusters typically leads to formation of poorly mobile dense beds that deposit massive layers. Based on this transport dichotomy, we present a numerical dense-dilute parameter that allows a PDC's dominant transport mechanism to be determined directly from the deposit geometry and grainsize characteristics.

  17. Entangled state quantum cryptography: eavesdropping on the ekert protocol

    PubMed

    Naik; Peterson; White; Berglund; Kwiat

    2000-05-15

    Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability.

  18. Photon-Limited Information in High Resolution Laser Ranging

    DTIC Science & Technology

    2014-05-28

    entangled photons generated by spontaneous parametric down-conversion of a chirped source to perform ranging measurements. Summary of the Most... Matlab program to collect the photon counts from the time to digital converter (TDC). This entailed setting up Matlab to talk to the TDC to get the...SECURITY CLASSIFICATION OF: This project is an effort under the Information in a Photon (InPho) program at DARPA\\DSO. Its purpose is to investigate

  19. Detection of non-classical space-time correlations with a novel type of single-photon camera.

    PubMed

    Just, Felix; Filipenko, Mykhaylo; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd

    2014-07-14

    During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed hybrid photon detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we apply this device to the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.

  20. Multipli-Entangled Photons from a Spontaneous Parametric Down-Conversion Source

    DTIC Science & Technology

    2011-01-01

    Alsing, Corey J. Peters (AFRL/RITA); Enrique J. Galvez ( Colgate University, Hamilton, NY) 5d. PROJECT NUMBER QIS0 5e. TASK NUMBER PR 5f...and Enrique J. Galvez Colgate University, Hamilton, NY (USA) 1. ABSTRACT In this work, we discuss a novel compact source that generates six...single pair of entangled photons per pass in conventional SPDC-based sources. We first describe the experimental testbed used for evaluation and

  1. Palladium Catalyzed Reduction of Nitrobenzene.

    ERIC Educational Resources Information Center

    Mangravite, John A.

    1983-01-01

    Compares two palladium (Pd/C) reducing systems to iron/tin-hydrochloric acid (Fe/HCl and Sn/HCl) reductions and suggests an efficient, clean, and inexpensive procedures for the conversion of nitrobenzene to aniline. Includes laboratory procedures used and discussion of typical results obtained. (JN)

  2. Quantum teleportation in the spin-orbit variables of photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoury, A. Z.; Milman, P.; Laboratoire Materiaux et Phenomenes Quantiques, CNRS UMR 7162, Universite Paris Diderot, F-75013, Paris

    2011-06-15

    We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down-conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories.

  3. Franson Interference Generated by a Two-Level System

    NASA Astrophysics Data System (ADS)

    Peiris, M.; Konthasinghe, K.; Muller, A.

    2017-01-01

    We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).

  4. Practical implementation of multilevel quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulik, S. P.; Maslennikov, G. A.; Moreva, E. V.

    2006-05-15

    The physical principles of a quantum key distribution protocol using four-level optical systems are discussed. Quantum information is encoded into polarization states created by frequency-nondegenerate spontaneous parametric down-conversion in collinear geometry. In the scheme under analysis, the required nonorthogonal states are generated in a single nonlinear crystal. All states in the selected basis are measured deterministically. The results of initial experiments on transformation of the basis polarization states of a four-level optical system are discussed.

  5. InSPACE Experiment

    NASA Image and Video Library

    2012-12-31

    View of Command and Monitoring Panel (CMP),and Power Distribution and Conversion Box (PDC),on the Microgravity Science Glovebox (MSG) rack during Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3 (InSPACE-3) Experiment,in the U.S. Laboratory. Photo was taken during Expedition 34.

  6. Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.

    2012-04-01

    Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional numerical simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) are carried out with the Euler-Lagrange approach of multiphase physics. The fluid phase is modeled as a dusty gas (1.88 kg/m3 dense), and the solid phase is modeled as discrete particles (1 mm, 5 mm, and 10 mm; 1500 kg/m3 dense and irregularly-shaped), which are two-way coupled to the gas, i.e. they affect the fluid turbulence. The initial PDC, which enters a volcano domain 5 km long and 1.9 km high, has the following characteristics: thickness of 200 m, velocity of 20 m/s, temperature of 573 K, turbulence of 5 %, and sediment concentration of 3 % by volume. The actual physics of flow boundary zone is simulated at the PDC base, by monitoring the sediment flux toward the substrate, which acts through the flow boundary zone, and the grain-size distribution. Also, the PDC velocity and dynamic pressure are calculated. The simulations show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. In particular, three generic volcano profiles, straight, concave-upward, and convex-upward are focused on. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.

  7. Violation of continuous-variable Einstein-Podolsky-Rosen steering with discrete measurements.

    PubMed

    Schneeloch, James; Dixon, P Ben; Howland, Gregory A; Broadbent, Curtis J; Howell, John C

    2013-03-29

    In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

  8. Violation of Continuous-Variable Einstein-Podolsky-Rosen Steering with Discrete Measurements

    NASA Astrophysics Data System (ADS)

    Schneeloch, James; Dixon, P. Ben; Howland, Gregory A.; Broadbent, Curtis J.; Howell, John C.

    2013-03-01

    In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

  9. The January 21, 1951 Blast of Mount Lamington in Papua New Guinea: Sequence of Events and Characteristics of the Deposits

    NASA Astrophysics Data System (ADS)

    Belousova, M.; Belousov, A.; Patia, H.; Hoblitt, R. P.

    2011-12-01

    We present the results of a detailed reinvestigation of deposits of the famous 1951 eruption of Mount Lamington which was originally studied by T. Taylor (1958). We found that the climactic phase of the eruption was triggered by a relatively small gravitational collapse of the old intracrater lava dome (debris avalanche V=0.02-0.04 cub. km; L=8.5 km; H/L=0.14). The collapse was followed by vertical explosive fountain which was not buoyant and formed a pyroclastic density current (PDC). This PDC completely devastated an area of 230 sq. km, traveling maximum distance of 15 km in N direction; 3500 people were killed by the eruption. The PDC deposit, which is still well-preserved, was studied in 2 profiles, which are parallel to the longest axis of the surge propagation. The deposit consists of mostly juvenile rock fragments (80-85%) represented by poorly vesicular (4 - 40%) highly crystalline dacite; bombs with poorly developed bread crust surfaces are common in proximal areas. The deposit is in general normally graded and consists of lapilli and coarse ash fining upward into fine ash. The base of the deposit is mixed with soil in proximal areas. Stratigraphic characteristics of the deposit demonstrate strong local fluctuations, but have clear trends with distance from the volcano. At distances from 3 to 12 km from the volcano the maximum deposit thickness decreases from 55 to 5 cm, and the average size of the 10 largest clasts decreases from 4.5 cm to 0.5 cm; Md diameter decreases from -1.5 to 4.5 phi; sorting improves from 3 to 0.7 phi. The surge produced spectacular tree blow-down in the devastated area. Aerial photographs taken one month after eruption show that the PDC was strongly channelized even by small (tens meters) topographic features; the front of the moving PDC was frequently split into multiple small tongues which were variously deflected by topography. The deposit and the tree blow-down features demonstrate many similarities with those of blast-generated PDCs of Bezymianny in 1956 and Mount St. Helens in 1980. A notable difference however is that although some layering similar to the classic A, B, C stratigraphy is present in the proximal deposits of Lamington, the layers are not so clearly distinguished by grain size characteristics and lack the sharp contacts that are common in classic blast deposits. We attribute this difference to the fact that, unlike the St. Helens and Bezymianny examples, the Lamington blast cloud first ascended vertically before collapsing and producing a PDC. Consequently the Lamington PDC ingested more air and was more dilute than those at St. Helens and Bezymianny.

  10. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  11. Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results

    NASA Astrophysics Data System (ADS)

    Devaux, F.; Mougin-Sisini, J.; Moreau, P. A.; Lantz, E.

    2012-07-01

    We propose a scheme to evidence the Einstein-Podolsky-Rosen (EPR) paradox for photons produced by spontaneous down conversion, from measurement of purely spatial correlations of photon positions both in the near- and in the far-field. Experimentally, quantum correlations have been measured in the far-field of parametric fluorescence created in a type II BBO crystal. Imaging is performed in the photon counting regime with an electron-multiplying CCD (EMCCD) camera.

  12. Two-photon geometrical phase

    NASA Astrophysics Data System (ADS)

    Strekalov, D. V.; Shih, Y. H.

    1997-10-01

    An advanced wave model is applied to a two-photon interference experiment to show that the observed interference effect is due to the geometrical phase of a two-photon state produced in spontaneous parametric down-conversion. The polarization state of the signal-idler pair is changed adiabatically so that the ``loop'' on the Poincaré sphere is opened in the signal channel and closed in the idler channel. Therefore, we observed an essentially nonlocal geometrical phase, shared by the entangled photon pair, or a biphoton.

  13. Three-photon N00N states generated by photon subtraction from double photon pairs.

    PubMed

    Kim, Heonoh; Park, Hee Su; Choi, Sang-Kyung

    2009-10-26

    We describe an experimental demonstration of a novel three-photon N00N state generation scheme using a single source of photons based on spontaneous parametric down-conversion (SPDC). The three-photon entangled state is generated when a photon is subtracted from a double pair of photons and detected by a heralding counter. Interference fringes measured with an emulated three-photon detector reveal the three-photon de Broglie wavelength and exhibit visibility > 70% without background subtraction.

  14. Entangled-photon compressive ghost imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  15. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  16. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    NASA Astrophysics Data System (ADS)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  17. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    DTIC Science & Technology

    2013-01-01

    Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S

  18. Entangled State Quantum Cryptography: Eavesdropping on the Ekert Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, D. S.; Peterson, C. G.; White, A. G.

    2000-05-15

    Using polarization-entangled photons from spontaneous parametric down-conversion, we have implemented Ekert's quantum cryptography protocol. The near-perfect correlations of the photons allow the sharing of a secret key between two parties. The presence of an eavesdropper is continually checked by measuring Bell's inequalities. We investigated several possible eavesdropper strategies, including pseudo-quantum-nondemolition measurements. In all cases, the eavesdropper's presence was readily apparent. We discuss a procedure to increase her detectability. (c) 2000 The American Physical Society.

  19. Classical imaging with undetected light

    NASA Astrophysics Data System (ADS)

    Cardoso, A. C.; Berruezo, L. P.; Ávila, D. F.; Lemos, G. B.; Pimenta, W. M.; Monken, C. H.; Saldanha, P. L.; Pádua, S.

    2018-03-01

    We obtained the phase and intensity images of an object by detecting classical light which never interacted with it. With a double passage of a pump and a signal laser beams through a nonlinear crystal, we observe interference between the two idler beams produced by stimulated parametric down conversion. The object is placed in the amplified signal beam after its first passage through the crystal and the image is observed in the interference of the generated idler beams. High contrast images can be obtained even for objects with small transmittance coefficient due to the geometry of the interferometer and to the stimulated parametric emission. Like its quantum counterpart, this three-color imaging concept can be useful when the object must be probed with light at a wavelength for which detectors are not available.

  20. Parametric source of two-photon states with a tunable degree of entanglement and mixing: Experimental preparation of Werner states and maximally entangled mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinelli, C.; Di Nepi, G.; De Martini, F.

    2004-08-01

    A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunablemore » Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach.« less

  1. Bright squeezed vacuum in a nonlinear interferometer: Frequency and temporal Schmidt-mode description

    NASA Astrophysics Data System (ADS)

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-05-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode nonclassical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion, and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases.

  2. A quantum radar detection protocol for fringe visibility enhancement

    NASA Astrophysics Data System (ADS)

    Koltenbah, Benjamin; Parazzoli, Claudio; Capron, Barbara

    2016-05-01

    We present analysis of a radar detection technique using a Photon Addition Homodyne Receiver (PAHR) that improves SNR of the interferometer fringes and reduces uncertainty of the phase measurement. This system uses the concept of Photon Addition (PA) in which the coherent photon distribution is altered. We discuss this process first as a purely mathematical concept to introduce PA and illustrate its effect on coherent photon distribution. We then present a notional proof-of-concept experiment involving a parametric down converter (PDC) and probabilistic post-selection of the results. We end with presentation of a more deterministic PAHR concept that is more suitable for development into a working system. Coherent light illuminates a target and the return signal interferes with the local oscillator reference photons to create the desired fringes. The PAHR alters the photon probability distribution of the returned light via interaction between the return photons and atoms. We refer to this technique as "Atom Interaction" or AI. The returning photons are focused at the properly prepared atomic system. The injected atoms into this region are prepared in the desired quantum state. During the interaction time, the initial quantum state evolves in such a way that the photon distribution function changes resulting in higher photon count, lower phase noise and an increase in fringe SNR. The result is a 3-5X increase of fringe SNR. This method is best suited for low light intensity (low photon count, 0.1-5) applications. The detection protocol could extend the range of existing systems without loss of accuracy, or conversely enhance a system's accuracy for given range. We present quantum mathematical analysis of the method to illustrate how both range and angular resolution improve in comparison with standard measurement techniques. We also suggest an experimental path to validate the method which also will lead toward deployment in the field.

  3. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    PubMed

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Pittman, Todd Butler

    The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.

  5. Development of suspended core soft glass fibers for far-detuned parametric conversion

    NASA Astrophysics Data System (ADS)

    Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz

    2018-04-01

    Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.

  6. Quantum correlations across two octaves from combined up- and down-conversion

    NASA Astrophysics Data System (ADS)

    Li, Jingyan; Olsen, M. K.

    2018-04-01

    We propose and analyze a cascaded optical parametric system which involves three interacting modes across two octaves of frequency difference. Our system, combining degenerate optical parametric oscillation (OPO) with second harmonic generation (SHG), promises to be a useful source of squeezed and entangled light at three differing frequencies. We show how changes in damping rates and the ratio of the two concurrent nonlinearities affect the quantum correlations in the output fields. We analyze the threshold behavior, showing how the normal OPO threshold is changed by the addition of the SHG interactions. We also find that the inclusion of the OPO interaction removes the self-pulsing behavior found in normal SHG. Finally, we show how the Einstein-Podolsky-Rosen correlations can be controlled by the injection of a coherent seed field at the lower frequency.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grice, Warren P; Bennink, Ryan S; Evans, Philip G

    A growing number of experiments make use of multiple pairs of photons generated in the process of spontaneous parametric down-conversion. We show that entanglement in unwanted degrees of freedom can adversely affect the results of these experiments. We also discuss techniques to reduce or eliminate spectral and spatial entanglement, and we present results from two-photon polarization-entangled source with almost no entanglement in these degrees of freedom. Finally, we present two methods for the generation of four-photon polarization- entangled states. In one of these methods, four-photon can be generated without the need for intermediate two-photon entanglement.

  8. Two-photon Anderson localization in a disordered quadratic waveguide array

    NASA Astrophysics Data System (ADS)

    Bai, Y. F.; Xu, P.; Lu, L. L.; Zhong, M. L.; Zhu, S. N.

    2016-05-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks.

  9. Local Sampling of the Wigner Function at Telecom Wavelength with Loss-Tolerant Detection of Photon Statistics.

    PubMed

    Harder, G; Silberhorn, Ch; Rehacek, J; Hradil, Z; Motka, L; Stoklasa, B; Sánchez-Soto, L L

    2016-04-01

    We report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.

  10. Experimental demonstration of four-photon entanglement and high-fidelity teleportation.

    PubMed

    Pan, J W; Daniell, M; Gasparoni, S; Weihs, G; Zeilinger, A

    2001-05-14

    We experimentally demonstrate observation of highly pure four-photon GHZ entanglement produced by parametric down-conversion and a projective measurement. At the same time this also demonstrates teleportation of entanglement with very high purity. Not only does the achieved high visibility enable various novel tests of quantum nonlocality, it also opens the possibility to experimentally investigate various quantum computation and communication schemes with linear optics. Our technique can, in principle, be used to produce entanglement of arbitrarily high order or, equivalently, teleportation and entanglement swapping over multiple stages.

  11. Effect of PDC bit design and confining pressure on bit-balling tendencies while drilling shale using water base mud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-09-01

    A good majority of all oilwell drilling occurs in shale and other clay-bearing rocks. In the light of relatively fewer studies conducted, the problem of bit-balling in PDC bits while drilling shale has been addressed with the primary intention of attempting to quantify the degree of balling, as well as to investigate the influence of bit design and confining pressures. A series of full-scale laboratory drilling tests under simulated down hole conditions were conducted utilizing seven different PDC bits in Catoosa shale. Test results have indicated that the non-dimensional parameter R{sub d} [(bit torque).(weight-on-bit)/(bit diameter)] is a good indicator ofmore » the degree of bit-balling and that it correlated well with Specific-Energy. Furthermore, test results have shown bit-profile and bit-hydraulic design to be key parameters of bit design that dictate the tendency of balling in shales under a given set of operating conditions. A bladed bit was noticed to ball less compared to a ribbed or open-faced bit. Likewise, related to bit profile, test results have indicated that the parabolic profile has a lesser tendency to ball compared to round and flat profiles. The tendency of PDC bits to ball was noticed to increase with increasing confining pressures for the set of drilling conditions used.« less

  12. Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    PubMed Central

    Gigley, Jason P.; Khan, Imtiaz A.

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169

  13. Plasmacytoid DC from aged mice down-regulate CD8 T cell responses by inhibiting cDC maturation after Encephalitozoon cuniculi infection.

    PubMed

    Gigley, Jason P; Khan, Imtiaz A

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.

  14. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    NASA Astrophysics Data System (ADS)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  15. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  16. Two copies of the Einstein-Podolsky-Rosen state of light lead to refutation of EPR ideas.

    PubMed

    Rosołek, Krzysztof; Stobińska, Magdalena; Wieśniak, Marcin; Żukowski, Marek

    2015-03-13

    Bell's theorem applies to the normalizable approximations of original Einstein-Podolsky-Rosen (EPR) state. The constructions of the proof require measurements difficult to perform, and dichotomic observables. By noticing the fact that the four mode squeezed vacuum state produced in type II down-conversion can be seen both as two copies of approximate EPR states, and also as a kind of polarization supersinglet, we show a straightforward way to test violations of the EPR concepts with direct use of their state. The observables involved are simply photon numbers at outputs of polarizing beam splitters. Suitable chained Bell inequalities are based on the geometric concept of distance. For a few settings they are potentially a new tool for quantum information applications, involving observables of a nondichotomic nature, and thus of higher informational capacity. In the limit of infinitely many settings we get a Greenberger-Horne-Zeilinger-type contradiction: EPR reasoning points to a correlation, while quantum prediction is an anticorrelation. Violations of the inequalities are fully resistant to multipair emissions in Bell experiments using parametric down-conversion sources.

  17. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  18. Parametrically coupled fermionic oscillators: Correlation functions and phase-space description

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab

    2015-01-01

    A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.

  19. Effect of Foot-and-Mouth Disease Virus Infection on the Frequency, Phenotype and Function of Circulating Dendritic Cells in Cattle

    PubMed Central

    Sei, Janet J.; Waters, Ryan A.; Kenney, Mary; Barlow, John W.; Golde, William T.

    2016-01-01

    Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms develop within 2 to 3 days of exposure and include fever and vesicular lesions on the tongue and hooves. Dendritic cells (DC) play an essential role in protective immune responses against pathogens. Therefore, investigating their role during FMDV infection would lead to a better understanding of host-pathogen interactions. In this study, following infection of cattle with FMDV, we investigated the frequency and function of conventional (cDC) and plasmacytoid DC (pDC) in blood by using multi-color flow cytometry. We show that the frequency of cDC and pDC increased following FMDV infection and peaked 3 to 4 days post-infection. During peak viremia, the cattle became lymphopenic, the expression of MHC class II molecules on cDC and pDC was dramatically down-regulated, the processing of exogenous antigen by cDC and pDC was impaired, and there was an increase in IL-10 production by DC and monocytes. Notably, after clearance of FMDV from the blood, MHC class II expression returned to pre-infection levels. Altogether, our study demonstrates that in cattle, FMDV inhibits the function of DC, thereby retarding the initiation of adaptive immune responses, potentially enhancing virus shedding during the acute phase of infection. PMID:27008425

  20. From SHG to mid-infrared SPDC generation in strained silicon waveguides

    NASA Astrophysics Data System (ADS)

    Castellan, Claudio; Trenti, Alessandro; Mancinelli, Mattia; Marchesini, Alessandro; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2017-08-01

    The centrosymmetric crystalline structure of Silicon inhibits second order nonlinear optical processes in this material. We report here that, by breaking the silicon symmetry with a stressing silicon nitride over-layer, Second Harmonic Generation (SHG) is obtained in suitably designed waveguides where multi-modal phase-matching is achieved. The modeling of the generated signal provides an effective strain-induced second order nonlinear coefficient of χ(2) = (0.30 +/- 0.02) pm/V. Our work opens also interesting perspectives on the reverse process, the Spontaneous Parametric Down Conversion (SPDC), through which it is possible to generate mid-infrared entangled photon pairs.

  1. Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip

    NASA Astrophysics Data System (ADS)

    Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.

    2014-07-01

    We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.

  2. Optical realization of optimal symmetric real state quantum cloning machine

    NASA Astrophysics Data System (ADS)

    Hu, Gui-Yu; Zhang, Wen-Hai; Ye, Liu

    2010-01-01

    We present an experimentally uniform linear optical scheme to implement the optimal 1→2 symmetric and optimal 1→3 symmetric economical real state quantum cloning machine of the polarization state of the single photon. This scheme requires single-photon sources and two-photon polarization entangled state as input states. It also involves linear optical elements and three-photon coincidence. Then we consider the realistic realization of the scheme by using the parametric down-conversion as photon resources. It is shown that under certain condition, the scheme is feasible by current experimental technology.

  3. Total teleportation of a single-photon state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.

  4. Experimental teleportation of a quantum controlled-NOT gate.

    PubMed

    Huang, Yun-Feng; Ren, Xi-Feng; Zhang, Yong-Sheng; Duan, Lu-Ming; Guo, Guang-Can

    2004-12-10

    Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the coincidence measurements, we teleport the quantum CNOT gate from acting on local qubits to acting on remote qubits. The quality of the quantum gate teleportation is characterized through the method of quantum process tomography, with an average fidelity of 0.84 demonstrated for the teleported gate.

  5. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement

    NASA Astrophysics Data System (ADS)

    Burenkov, I. A.; Sharma, A. K.; Gerrits, T.; Harder, G.; Bartley, T. J.; Silberhorn, C.; Goldschmidt, E. A.; Polyakov, S. V.

    2017-05-01

    We present a method to reconstruct the complete statistical mode structure and optical losses of multimode conjugated optical fields using an experimentally measured joint photon-number probability distribution. We demonstrate that this method evaluates classical and nonclassical properties using a single measurement technique and is well suited for quantum mesoscopic state characterization. We obtain a nearly perfect reconstruction of a field comprised of up to ten modes based on a minimal set of assumptions. To show the utility of this method, we use it to reconstruct the mode structure of an unknown bright parametric down-conversion source.

  6. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  7. Cloning and bioinformatics analysis of PDC genes from Hylocereus undatus

    NASA Astrophysics Data System (ADS)

    Wu, Yunli; Luo, Xian; Lu, Han; Shen, Yu; Yuan, Lei; Luo, Lan

    2018-04-01

    The cDNA of PDC1 and PDC2 were amplified from the seedling of Hylocereus undatus `Guangming 2' by the technique of RACE (rapid amplification of cDNA ends). The PDC1 and PDC2 had a length of 1191bp and 2046 bp, and an open reading frame that encoded a protein of 351 and 604 amino acids, respectively. PDC1 was similar to PDC2 in motif and domain, which indicated that the two protein was relatively conserved to some extent. The 3D structure prediction showed that both of the two proteins of PDC1 and PDC2 were homotetramers. Amino acid sequence comparisons suggested that PDC1 had high identity with Chenopodium quinoa PDC1 (88% identity), PDC2 had high identity with Beta vulgaris PDC2 (84% identity).

  8. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition.

    PubMed

    Hegazy, Rehab; Salama, Abeer; Mansour, Dina; Hassan, Azza

    2016-01-01

    Hexavalent chromium (CrVI) is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf) against potassium dichromate (PDC)-induced acute kidney injury (AKI) in rats. Beside, because previous studies suggest that interlukin-18 (IL-18) and insulin-like growth factor-1 (IGF-1) play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200 mg/kg/day, p.o.) or (300 mg/kg/day, p.o.); the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15 mg/kg, s.c.). PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB), IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1) levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA), Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through triggering FoxO1-induced cell proliferation. Moreover, the study revealed that Lf protected the kidney against Cr-induced AKI in rats and significantly showed antioxidant, anti-inflammatory, and anti-proliferative properties with down-regulation of IL-18 and IGF-1.

  9. Exploring the effects of temperature and grain size on plumes associated with PDCs through analogue experimentation

    NASA Astrophysics Data System (ADS)

    Mitchell, S. J.; Eychenne, J.; Rust, A.

    2015-12-01

    Pyroclastic density currents (PDCs) often loft upwards into convective, buoyant co-PDC plumes. Recent analogue experiments using a unimodal grain size of 22 ± 6 μm (Andrews & Manga, 2012) have established that plume generation is aided by PDC interaction with a topographic barrier. Here, we have simulated the onset of co-PDC plumes from the collapse of concentrated particle-gas mixtures comprised of unimodal or bimodal grain size distributions (GSD) of glass beads, using combinations of lognormal populations with modes of 35, 195 and 590 μm. The collapse of a mixture, with constant mass 2950 ± 150 g, induced the propagation of a gravity current channelized down a 13° sloping tank; a barrier in the tank caused the gravity current to produce a plume of particles. Experiments were recorded with high speed visible and thermal-infrared cameras. Initial GSD and temperature of the mixture were varied to assess the effects of the addition of a coarser component on plume generation. Analogue co-PDC plumes were only produced when a proportion of fine grains (35 μm) was present in the initial granular mixture. Sampling of the particles entrained in the co-PDC plumes revealed that fine grains (35 μm) are preferentially lofted, although a few coarser particles (195 or 590 μm) are also entrained in the co-PDC plumes and settle closer to the area of uplift. Increasing the initial temperature of the mixture increases plume height measured at 1 and 2s after onset; this is supported by repeat experiments at specific conditions. Bimodal mixtures containing both fine (35 μm) and coarser (195 or 590 μm) grains result in plume heights and initial flow velocities higher than observed in unimodal fine-grained experiments of the same total mass of particles. Repeat experiments identify the natural variability in plume generation under the same nominal conditions, which is likely due to the combined variations of momentum during flow propagation and heat-driven buoyancy, as well as the homogeneity of the initial particle mixture.

  10. Selective Hydrogenolysis of Furfural Derivative 2-Methyltetrahydrofuran into Pentanediol Acetate and Pentanol Acetate over Pd/C and Sc(OTf)3 Cocatalytic System.

    PubMed

    Zhang, Kun; Li, Xing-Long; Chen, Shi-Yan; Xu, Hua-Jian; Deng, Jin; Fu, Yao

    2018-02-22

    It is of great significance to convert platform molecules and their derivatives into high value-added alcohols, which have multitudinous applications. This study concerns systematic conversion of 2-methyltetrahydrofuran (MTHF), which is obtained from furfural, into 1-pentanol acetate (PA) and 1,4-pentanediol acetate (PDA). Reaction parameters, such as the Lewis acid species, reaction temperature, and hydrogen pressure, were investigated in detail. 1 H NMR spectroscopy and reaction dynamics study were also conducted to help clarify the reaction mechanism. Results suggested that cleavage of the primary alcohol acetate was less facile than that of the secondary alcohol acetate, with the main product being PA. A PA yield of 91.8 % (150 °C, 3 MPa H 2 , 30 min) was achieved by using Pd/C and Sc(OTf) 3 as a cocatalytic system and an 82 % yield of PDA was achieved (150 °C, 30 min) by using Sc(OTf) 3 catalyst. Simultaneously, the efficient conversion of acetic esters into alcohols by simple saponification was carried out and led to a good yield. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone.

    PubMed

    Mozo Mulero, Cristina; Sáez, Alfonso; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (L Pd ) of 0.2 and 0.02 mg cm -2 . The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H 2 SO 4 . Current densities of 10, 15 and 20 mA cm -2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (X R ) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity.

  12. An alternative to hydrogenation processes. Electrocatalytic hydrogenation of benzophenone

    PubMed Central

    Mozo Mulero, Cristina; Iniesta, Jesús; Montiel, Vicente

    2018-01-01

    The electrocatalytic hydrogenation of benzophenone was performed at room temperature and atmospheric pressure using a polymer electrolyte membrane electrochemical reactor (PEMER). Palladium (Pd) nanoparticles were synthesised and supported on a carbonaceous matrix (Pd/C) with a 28 wt % of Pd with respect to carbon material. Pd/C was characterised by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Cathodes were prepared using Pd electrocatalytic loadings (LPd) of 0.2 and 0.02 mg cm−2. The anode consisted of hydrogen gas diffusion for the electrooxidation of hydrogen gas, and a 117 Nafion exchange membrane acted as a cationic polymer electrolyte membrane. Benzophenone solution was electrochemically hydrogenated in EtOH/water (90/10 v/v) plus 0.1 M H2SO4. Current densities of 10, 15 and 20 mA cm−2 were analysed for the preparative electrochemical hydrogenation of benzophenone and such results led to the highest fractional conversion (XR) of around 30% and a selectivity over 90% for the synthesis of diphenylmethanol upon the lowest current density. With regards to an increase by ten times the Pd electrocatalytic loading the electrocatalytic hydrogenation led neither to an increase in fractional conversion nor to a change in selectivity. PMID:29623115

  13. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49more » layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.« less

  14. Self-seeding ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  15. Two-mode thermal-noise squeezing in an electromechanical resonator.

    PubMed

    Mahboob, I; Okamoto, H; Onomitsu, K; Yamaguchi, H

    2014-10-17

    An electromechanical resonator is developed in which mechanical nonlinearities can be dynamically engineered to emulate the nondegenerate parametric down-conversion interaction. In this configuration, phonons are simultaneously generated in pairs in two macroscopic vibration modes, resulting in the amplification of their motion. In parallel, two-mode thermal squeezed states are also created, which exhibit fluctuations below the thermal motion of their constituent modes as well as harboring correlations between the modes that become almost perfect as their amplification is increased. The existence of correlations between two massive phonon ensembles paves the way towards an entangled macroscopic mechanical system at the single phonon level.

  16. Efficient entanglement distribution over 200 kilometers.

    PubMed

    Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J

    2009-07-06

    Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.

  17. Microwave amplification based on quasiparticle SIS up and down frequency converters

    NASA Astrophysics Data System (ADS)

    Kojima, T.; Uzawa, Y.; Shan, W.

    2018-02-01

    Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS) tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.

  18. Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam

    NASA Astrophysics Data System (ADS)

    Romero, J.; Giovannini, D.; McLaren, M. G.; Galvez, E. J.; Forbes, A.; Padgett, M. J.

    2012-08-01

    We report orbital angular momentum (OAM) and angle correlations between signal and idler photons observed when the nonlinear crystal used in spontaneous parametric down-conversion is illuminated by a non-fundamental Gaussian pump beam. We introduce a π-phase step to the transverse profile of the pump, before it impinges on the crystal to create a phase-flipped Gaussian mode, which is a close approximation to an HG10 Hermite-Gaussian-like beam. The correlations in OAM and angular position are then measured holographically using two separate spatial light modulators in the signal and idler arms. We show the transfer of the OAM spectrum of the pump to the down-converted fields, manifested as a redistribution in the OAM correlations consistent with OAM conservation. This corresponds to a modulation of the angular position correlations consistent with the Fourier relationship between the OAM and angle.

  19. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    PubMed

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Low-level HIV infection of plasmacytoid dendritic cells: onset of cytopathic effects and cell death after PDC maturation.

    PubMed

    Schmidt, Barbara; Scott, Iain; Whitmore, Robert G; Foster, Hillary; Fujimura, Sue; Schmitz, Juergen; Levy, Jay A

    2004-11-24

    Plasmacytoid dendritic cells (PDC), the natural type-1 interferon (IFN) producing cells, are part of the innate immune defense against human immunodeficiency virus (HIV). PDC numbers are reduced in advanced stages of infection. These cells can be infected in vivo by HIV since highly purified PDC showed evidence of infectious HIV. Moreover, when PDC derived from uninfected donors were exposed to high-titered HIV isolates, productive infection occurred although with low-level replication. Using real-time amplification, PDC and unstimulated CD4+ cells were found equally susceptible to HIV infection; however, HIV replication was considerably limited in the PDC. Virus replication was enhanced after PDC treatment with CD40L and antibodies against IFN-alpha, most likely reflecting the reduction in IFN-alpha activity. On maturation, the infected PDC showed multinuclear cell syncytia formation and death. These findings indicate that PDC can be reservoirs for HIV dissemination and that HIV infection of PDC can contribute to their decline.

  1. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.

    PubMed

    Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald

    2015-09-07

    We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

  2. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jing; Han Xiao; Meng Qin

    2013-01-15

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexesmore » were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS. Black-Right-Pointing-Pointer By the energy-band theory and the crystal filed theory, the SPS are analyzed and assigned.« less

  3. Cost-effectiveness of osimertinib in the UK for advanced EGFR-T790M non-small cell lung cancer.

    PubMed

    Bertranou, Evelina; Bodnar, Carolyn; Dansk, Viktor; Greystoke, Alastair; Large, Samuel; Dyer, Matthew

    2018-02-01

    This study presents the cost-utility analysis that was developed to inform the NICE health technology assessment of osimertinib vs platinum-based doublet chemotherapy (PDC) in patients with EGFR-T790M mutation-positive non-small cell lung cancer (NSCLC) who have progressed on epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. A partitioned survival model with three health states (progression-free, progressed disease, and death) from a UK payer perspective and over lifetime (15 years) was developed. Direct costs included disease management, treatment-related (acquisition, administration, monitoring, adverse events), and T790M testing costs. Efficacy and safety data were taken from clinical trials AURA extension and AURA2 for osimertinib and IMPRESS for PDC. An adjusted indirect treatment comparison was applied to reduce the potential bias in the non-randomized comparison. Parametric functions were utilized to extrapolate survival beyond the observed period. Health state utility values were calculated from EQ-5D data collected in the trials and valued using UK tariffs. Resource use and costs were based on published sources. Osimertinib was associated with a gain of 1.541 quality-adjusted life-years (QALYs) at an incremental cost of £64,283 vs PDC (incremental cost-effectiveness ratio [ICER]: £41,705/QALY gained). Scenario analyses showed that none of the plausible scenarios produced an ICER above £44,000 per QALY gained, and probabilistic sensitivity analyses demonstrated a 63.4% probability that osimertinib will be cost-effective at a willingness-to-pay threshold of £50,000. The analysis is subject to some level of uncertainty inherent to phase 2 single-arm data and the immaturity of the currently available survival data for osimertinib. Osimertinib may be considered a cost-effective treatment option compared with PDC in the second-line setting in patients with EGFR-T790M mutation-positive NSCLC from a UK payer perspective. Further data from the ongoing AURA clinical trial program will reduce the inherent uncertainty in the analysis.

  4. PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon.

    PubMed

    Watarai, Hiroshi; Sekine, Etsuko; Inoue, Sayo; Nakagawa, Ryusuke; Kaisho, Tsuneyasu; Taniguchi, Masaru

    2008-02-26

    Type I interferons (IFNs) derived from plasmacytoid dendritic cells (PDCs) are critical for antiviral responses; however, the mechanisms underlying their production remain unclear. We have identified a receptor, PDC-TREM, which is associated with Plexin-A1 (PlxnA1) on the PDC cell surface and is preferentially expressed after TLR-stimulation. Limited TLR signals induced PDC-TREM expression but failed to induce IFN-alpha production. However, when coupled with Sema6D, a ligand for Plexin-A1, limited TLR-stimulation resulted in PDC-TREM-mediated DAP12-dependent phosphorylation of phosphoinositide 3-kinase (PI3K) and extracellular regulated kinase (Erk) 1/2 at 6-9 h, and IFN-alpha was produced. Inhibition of PDC-TREM expression by pdctrem-shRNA, blocking of PDC-TREM-binding with PlxnA1 by PDC-TREM mAb, and DAP12 deficiency all resulted in greatly reduced PDC-TREM-dependent activation of signaling molecules and IFN-alpha production. Thus, PDC-TREM is responsible for IFN-alpha production, whereas TLR signals are essential for PDC-TREM expression.

  5. Pyruvate Dehydrogenase Kinase-4 Structures Reveal a Metastable Open Conformation Fostering Robust Core-free Basal Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.

    2008-10-21

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, comparedmore » with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.« less

  6. Pyruvate dehydrogenase kinase-4 structures reveal a metastable open conformation fostering robust core-free basal activity.

    PubMed

    Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T

    2008-09-12

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.

  7. Photon number amplification/duplication through parametric conversion

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.; Macchiavello, C.; Paris, M.

    1993-01-01

    The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.

  8. Novel Small Molecules Disabling the IL-6/IL-6R/GP130 Heterohexamer Complex

    DTIC Science & Technology

    2013-10-01

    formylated at the C4 position using Vilsmeier-Haack conditions. At this stage, Wittig olefination of the aldehyde and hydrogenation of the resulting olefin...butyllithium and acetaldehyde. The resulting alcohol was subsequently oxidized to the methyl ketone with PDC. Bromination of the ketone could then be...protection of 2,4-dihydroxybenzaldehyde as the methoxymethyl (MOM) ether derivative. Conversion of the aldehyde to the styrene derivative via Wittig

  9. Fluorescence studies on the interaction of choline-binding domain B of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Damai, Rajani S; Anbazhagan, V; Rao, K Babu; Swamy, Musti J

    2009-12-01

    The microenvironment and accessibility of the tryptophan residues in domain B of PDC-109 (PDC-109/B) in the native state and upon ligand binding have been investigated by fluorescence quenching, time-resolved fluorescence and red-edge excitation shift (REES) studies. The increase in the intrinsic fluorescence emission intensity of PDC-109/B upon binding to lysophosphatidylcholine (Lyso-PC) micelles and dimyristoylphosphatidylcholine (DMPC) membranes was considerably less as compared to that observed with the whole PDC-109 protein. The degree of quenching achieved by different quenchers with PDC-109/B bound to Lyso-PC and DMPC membranes was significantly higher as compared to the full PDC-109 protein, indicating that membrane binding afforded considerably lesser protection to the tryptophan residues of domain B as compared to those in the full PDC-109 protein. Finally, changes in red-edge excitation shift (REES) seen with PDC-109/B upon binding to DMPC membranes and Lyso-PC micelles were smaller that the corresponding changes in the REES values observed for the full PDC-109. These results, taken together suggest that intact PDC-109 penetrates deeper into the hydrophobic parts of the membrane as compared to domain B alone, which could be the reason for the inability of PDC-109/B to induce cholesterol efflux, despite its ability to recognize choline phospholipids at the membrane surface.

  10. Conditionally prepared photon and quantum imaging

    NASA Astrophysics Data System (ADS)

    Lvovsky, Alexander I.; Aichele, Thomas

    2004-10-01

    We discuss a classical model allowing one to visualize and characterize the optical mode of the single photon generated by means of a conditional measurement on a biphoton produced in parametric down-conversion. The model is based on Klyshko's advanced wave interpretation, but extends beyond it, providing a precise mathematical description of the advanced wave. The optical mode of the conditional photon is shown to be identical to the mode of the classical difference-frequency field generated due to nonlinear interaction of the partially coherent advanced wave with the pump pulse. With this "nonlinear advanced wave model" most coherence properties of the conditional photon become manifest, which permits one to intuitively understand many recent results, in particular, in quantum imaging.

  11. On-chip III-V monolithic integration of heralded single photon sources and beamsplitters

    NASA Astrophysics Data System (ADS)

    Belhassen, J.; Baboux, F.; Yao, Q.; Amanti, M.; Favero, I.; Lemaître, A.; Kolthammer, W. S.; Walmsley, I. A.; Ducci, S.

    2018-02-01

    We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation gher(2 )(0 )=0.10 ±0.02 that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information.

  12. Widely tunable single photon source with high purity at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Shimizu, Ryosuke; Wakui, Kentaro; Benichi, Hugo; Sasaki, Masahide

    2013-05-06

    We theoretically and experimentally investigate the spectral tunability and purity of photon pairs generated from spontaneous parametric down conversion in periodically poled KTiOPO(4) crystal with group-velocity matching condition. The numerical simulation predicts that the spectral purity can be kept higher than 0.81 when the wavelength is tuned from 1460 nm to 1675 nm, which covers the S-, C-, L-, and U-band in telecommunication wavelengths. We also experimentally measured the joint spectral intensity at 1565 nm, 1584 nm and 1565 nm, yielding Schmidt numbers of 1.01, 1.02 and 1.04, respectively. Such a photon source is useful for quantum information and communication systems.

  13. Quantum Nonlinear Optics without real Photons

    NASA Astrophysics Data System (ADS)

    Macrí, Vincenzo; Frisk Kockum, Anton; Stassi, Roberto; di Stefano, Omar; Savasta, Salvatore; Nori, Franco

    We propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially-separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual, rather than real, photons. This nonlinear optical process is coherent and reversible, so that the two excited atoms can transfer back the excitation to the first one: the atomic analogue of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be extended to consider other nonlinear interatomic processes, e.g. four-qubit mixing, and is an attractive architecture for the realization of quantum devices on a chip. Univ. of Michigan, USA.

  14. Quantum Nonlinear Optics without Photons

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo

    Here we propose a physical process analogous to spontaneous parametric down-conversion, where one excited atom directly transfers its excitation to a couple of spatially separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear optical process is coherent and reversible, so that the couple of excited atoms can transfer back the excitation to the first one: the analogous for atoms of sum-frequency generation. The parameters used here correspond to experimentally-demonstrated values in circuit QED. This approach can be expanded to consider other nonlinear inter-atomic processes as the four-qubit mixing and is an attractive architecture for the realization of quantum devices on a chip.

  15. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    NASA Astrophysics Data System (ADS)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  16. Long-distance practical quantum key distribution by entanglement swapping.

    PubMed

    Scherer, Artur; Sanders, Barry C; Tittel, Wolfgang

    2011-02-14

    We develop a model for practical, entanglement-based long-distance quantum key distribution employing entanglement swapping as a key building block. Relying only on existing off-the-shelf technology, we show how to optimize resources so as to maximize secret key distribution rates. The tools comprise lossy transmission links, such as telecom optical fibers or free space, parametric down-conversion sources of entangled photon pairs, and threshold detectors that are inefficient and have dark counts. Our analysis provides the optimal trade-off between detector efficiency and dark counts, which are usually competing, as well as the optimal source brightness that maximizes the secret key rate for specified distances (i.e. loss) between sender and receiver.

  17. Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory.

    PubMed

    England, Duncan G; Fisher, Kent A G; MacLean, Jean-Philippe W; Bustard, Philip J; Lausten, Rune; Resch, Kevin J; Sussman, Benjamin J

    2015-02-06

    We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.

  18. Experimental detection of steerability in Bell local states with two measurement settings

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Kaplan, Marc; Venuti, Vivien; Pramanik, Tanumoy; Zaquine, Isabelle; Diamanti, Eleni

    2018-04-01

    Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in (2014 Phys. Rev. A 90 050305), enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here, we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.

  19. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  20. Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ashe, Thomas L.; Otting, William D.

    1993-01-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  1. Coordination properties of tridentate (N,O,O) heterocyclic alcohol (PDC) with Cu(II). Mixed ligand complex formation reactions of Cu(II) with PDC and some bio-relevant ligands.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M

    2007-03-01

    The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.

  2. Plasmacytoid Dendritic Cell Dynamics Tune Interferon-Alfa Production in SIV-Infected Cynomolgus Macaques

    PubMed Central

    Bruel, Timothée; Dupuy, Stéphanie; Démoulins, Thomas; Rogez-Kreuz, Christine; Dutrieux, Jacques; Corneau, Aurélien; Cosma, Antonio; Cheynier, Rémi; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Vaslin, Bruno

    2014-01-01

    IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα− production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors. PMID:24497833

  3. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function.

    PubMed

    Conry, Sara J; Milkovich, Kimberly A; Yonkers, Nicole L; Rodriguez, Benigno; Bernstein, Helene B; Asaad, Robert; Heinzel, Frederick P; Tary-Lehmann, Magdalena; Lederman, Michael M; Anthony, Donald D

    2009-11-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-gamma) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-gamma and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-alpha dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-gamma-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-alpha stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-alpha receptor expression, though IFN-alpha receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-alpha-induced NK cell activity and not to altered IFN-alpha receptor, NKP30, NKP44, NKP46, or NKG2D expression.

  4. IL-27 Production and STAT3-Dependent Upregulation of B7-H1 Mediate Immune Regulatory Functions of Liver Plasmacytoid DC1

    PubMed Central

    Matta, Benjamin M.; Raimondi, Giorgio; Rosborough, Brian R.; Sumpter, Tina L.; Thomson, Angus W.

    2012-01-01

    Plasmacytoid (p) dendritic cells (DC) are highly-specialized APC that, in addition to their well-recognized role in anti-viral immunity, also regulate immune responses. Liver-resident pDC are considerably less immunostimulatory than those from secondary lymphoid tissues and are equipped to promote immune tolerance/regulation through various mechanisms. IL-27 is an IL-12-family cytokine that regulates the function of both APC and T cells, although little is known about its role in pDC immunobiology. In this study, we show that mouse liver pDC express higher levels of IL-27p28 and EBV-induced protein (Ebi)3 compared to splenic pDC. Both populations of pDC express the IL-27Rα/WSX-1; however, only liver pDC significantly upregulate expression of the co-regulatory molecule B7 homolog-1 (B7-H1) in response to IL-27. Inhibition of STAT3 activation completely abrogates IL-27-induced upregulation of B7-H1 expression on liver pDC. Liver pDC treated with IL-27 increase the percentage of CD4+Foxp3+ T cells in MLR, which is dependent upon expression of B7-H1. pDC from Ebi3-deficient mice lacking functional IL-27, show increased capacity to stimulate allogeneic T cell proliferation and IFN-γ production in MLR. Liver but not spleen pDC suppress delayed-type hypersensitivity responses to OVA, an effect that is lost with Ebi3−/− and B7-H1−/− liver pDC compared to wild-type (WT) liver pDC. These data suggest that IL-27 signaling in pDC promotes their immunoregulatory function and that IL-27 produced by pDC contributes to their capacity to regulate immuneresponses in vitro and in vivo. PMID:22508931

  5. An Evaluation of the Performance Diagnostic Checklist-Human Services (PDC-HS) Across Domains.

    PubMed

    Wilder, David A; Lipschultz, Joshua; Gehrman, Chana

    2018-06-01

    The Performance Diagnostic Checklist-Human Services (PDC-HS) is an informant-based tool designed to assess the environmental variables that contribute to poor employee performance in human service settings. Although the PDC-HS has been shown to effectively identify variables contributing to problematic performance, interventions based on only two of the four PDC-HS domains have been evaluated to date. In addition, the extent to which PDC-HS-indicated interventions are more effective than nonindicated interventions for two domains remains unclear. In the current study, we administered the PDC-HS to supervisors to assess the variables contributing to infrequent teaching of verbal operants and use of a timer by therapists at a center-based autism treatment program. Each of the four PDC-HS domains was identified as contributing to poor performance for at least one therapist. We then evaluated PDC-HS-indicated interventions for each domain. In addition, to assess the predictive validity of the tool, we evaluated various nonindicated interventions prior to implementing a PDC-HS-indicated intervention for two of the four domains. Results suggest that the PDC-HS-indicated interventions were effective across all four domains and were more effective than the nonindicated interventions for the two domains for which they were evaluated. Results are discussed in terms of the utility of the PDC-HS to identify appropriate interventions to manage therapist performance in human service settings.

  6. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran.

    PubMed

    Saha, Basudeb; Bohn, Christine M; Abu-Omar, Mahdi M

    2014-11-01

    2,5-Dimethylfuran (DMF), a promising cellulosic biofuel candidate from biomass derived intermediates, has received significant attention because of its low oxygen content, high energy density, and high octane value. A bimetallic catalyst combination containing a Lewis-acidic Zn(II) and Pd/C components is effective for 5-hydroxymethylfurfural (HMF) hydrodeoxygenation (HDO) to DMF with high conversion (99%) and selectivity (85% DMF). Control experiments for evaluating the roles of zinc and palladium revealed that ZnCl2 alone did not catalyze the reaction, whereas Pd/C produced 60% less DMF than the combination of both metals. The presence of Lewis acidic component (Zn) was also found to be beneficial for HMF HDO with Ru/C catalyst, but the synergistic effect between the two metal components is more pronounced for the Pd/Zn system than the Ru/Zn. A comparative analysis of the Pd/Zn/C catalyst to previously reported catalytic systems show that the Pd/Zn system containing at least four times less precious metal than the reported catalysts gives comparable or better DMF yields. The catalyst shows excellent recyclability up to 4 cycles, followed by a deactivation, which could be due to coke formation on the catalyst surface. The effectiveness of this combined bimetallic catalyst has also been tested for one-pot conversion of fructose to DMF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Associations of Frequency and Duration of Patient-Doctor Contact in Hemodialysis Facilities with Mortality

    PubMed Central

    Karaboyas, Angelo; Robinson, Bruce M.; Li, Yun; Fukuhara, Shunichi; Bieber, Brian A.; Rayner, Hugh C.; Andreucci, Vittorio E.; Pisoni, Ronald L.; Port, Friedrich K.; Morgenstern, Hal; Akizawa, Tadao; Saran, Rajiv

    2013-01-01

    It is unknown whether regular patient-doctor contact (PDC) contributes to better outcomes for patients undergoing hemodialysis. Here, we analyzed the associations between frequency and duration of PDC during hemodialysis treatments with clinical outcomes among 24,498 patients from 778 facilities in the international Dialysis Outcomes and Practice Patterns Study (DOPPS). The typical facility PDC frequency, estimated by facility personnel, was high (more than once per week) for 55% of facilities, intermediate (once per week) for 24%, and low (less than once per week) for 21%. The mean ± SD estimated duration of a typical interaction between patient and physician was 7.7±5.6 minutes. PDC frequency and duration varied across DOPPS phases and countries; the proportion of facilities with high PDC frequency was 17% in the United States and 73% across the other countries. Compared with high PDC frequency, the adjusted hazard ratio (HR) for all-cause mortality was 1.06 (95% confidence interval [CI], 0.96 to 1.17) for intermediate PDC frequency and 1.11 (95% CI, 1.01 to 1.23) for low PDC frequency (P=0.03 for trend). Furthermore, each 5-minutes-shorter duration of PDC was associated with a 5% higher risk for death, on average (HR, 1.05; 95% CI, 1.01 to 1.09), adjusted for PDC frequency and other covariates. Multivariable analyses also suggested modest inverse associations between both PDC frequency and duration with hospitalization but not with kidney transplantation. Taken together, these results suggest that policies supporting more frequent and longer duration of PDC may improve patient outcomes in hemodialysis. PMID:23886592

  8. PDC-E3BP is not a dominant T-cell autoantigen in primary biliary cirrhosis.

    PubMed

    McHugh, Anna; Robe, Amanda J; Palmer, Jeremy M; Jones, David E J

    2006-05-01

    Autoantibody responses reactive with the E2 and E3BP components of pyruvate dehydrogenase complex (PDC), which characterise primary biliary cirrhosis (PBC) crossreact, precluding the identification, from serological studies, of the antigen to which the principal breakdown of tolerance occurs. Although autoreactive T-cell responses to PDC-E2 have been well characterised it is, at present, unclear whether T-cell tolerance breakdown also occurs to PDC-E3BP. The aims of this study were to characterise autoreactive T-cell responses to PDC-E3BP in PBC and potential factors regulating their expression. Peripheral blood T-cell proliferative responses to purified recombinant human PDC-E2 and PDC-E3BP at a range of concentrations were characterised in PBC patients and control subjects. T-cell proliferative responses to both E2 and E3BP were absent from control subjects (median peak stimulation index (SI) to PDC-E2 1.2 [range 0.3-1.9], 0/10 positive (SI>2.32), median peak SI to PDC-E3BP 1.1 [0.7-2.1

  9. Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection

    PubMed Central

    Jochems, Simon P.; Jacquelin, Beatrice; Chauveau, Lise; Huot, Nicolas; Petitjean, Gaël; Lepelley, Alice; Liovat, Anne-Sophie; Ploquin, Mickaël J.; Cartwright, Emily K.; Bosinger, Steven E.; Silvestri, Guido; Barré-Sinoussi, Françoise; Lebon, Pierre; Schwartz, Olivier

    2015-01-01

    ABSTRACT Human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4+ T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. IMPORTANCE The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing. PMID:25903334

  10. [Clinical aspects, imaging and neuropathology of Kii ALS/PDC].

    PubMed

    Kokubo, Yasumasa

    2007-11-01

    During 1996 and 2006, we examined clinically 37 patients and neuropathologically 13 autopsy cases with amyotrophic lateral sclerosis/parkinsonism-dementia complex of the Kii peninsula (Kii ALS/PDC). The ages of onset were between 52 years and 74 years (mean age: 65.3 years). The male to female ratio was 1:1.85. The ratio of positive family history where ALS or PDC occurred within the fourth degree of the relatives was 78.4% in the patients with Kii ALS/PDC. The average duration of the illness was 6.47 years. Kii ALS/PDC was divided into five clinical subtypes, pure ALS form, ALS with dementia form, PDC with parkinsonism predominant form, PDC with dementia predominant form (that is called late-life dementia in Guam) and PDC with ALS features form. Unique pigmentary retinopathy was found in 33.3% of the patients with Kii ALS/PDC. CT/MRI images showed atrophy of the frontal and temporal lobes and SPECT images showed a decrease in the blood flow of the frontal and temporal lobes. The cardiac 123I-MIBG uptake was decreased in 4 out of 8 patients with ALS/PDC and the decrease in uptake correlated with the modified Hoehn-Yahr staging. The cardinal neuropathological features of Kii ALS/PDC were abundant neurofibrillary tangles (NFTs) associated with loss of nerve cells in the cerebral cortex and the brain stem, and findings of ALS neuropathology. Ultrastructurally, NFTs consisted of paired helical filaments. Tau protein, a main component of NFTs, was consisted of 3R and 4R tau isoforms, and phosphoryrated at 18 sites of tau phosphoryrated sites. The neurons of dentate gyrus of hippocampus and anterior horn cells were stained with anti-TDP-43 antibody. The clinical and neuropathological aspects of Kii ALS/PDC are regarded as being identical with those of Guam ALS/PDC.

  11. Peoria Disposal Co.`s PDC Laboratories: Analyzing and cleaning up -- Literally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAdams, C.L.

    1995-10-01

    In the early 1980s, says Royal Coulter, president and CEO of Peoria Disposal Co. (PDC, Peoria, IL), many PDC customers were unfamiliar with the methods required for the proper characterization of then newly regulated hazardous wastes. So in early 1981, to expedite permitting and, ultimately, acceptance of waste by PDC, a lab was set up so the company could step in and provide the needed services. By focusing on the delivery of quality services in the analysis of groundwater, wastewater, and solid waste for PDC, Coulter says, the laboratory soon developed into a successful and independent commercial operation. In Julymore » of 1981, PDC Laboratories was incorporated as an independent environmental analytical laboratory. PDC Labs is a subsidiary of PDC Technical Services, Inc., which provides environmental consulting and site remediation services, and is itself a wholly-owned subsidiary of Coulter Companies, Inc. Peoria Disposal offers solid waste disposal, industrial waste water treatment, waste stabilization, transportation services, and brokerage services.« less

  12. Type I interferon regulates pDC maturation and Ly49Q expression.

    PubMed

    Toma-Hirano, Makiko; Namiki, Sahori; Miyatake, Shoichiro; Arai, Ken-Ichi; Kamogawa-Schifter, Yumiko

    2007-10-01

    Ly49Q is expressed on peripheral mouse plasmacytoid dendritic cells (pDC). Immature Ly49Q-negative pDC precursors acquire Ly49Q in the bone marrow and then migrate into the periphery. While searching for molecules that regulate pDC maturation, we found that type I interferon (IFN) inhibited Ly49Q acquisition in vitro. Infections that induce type I IFN production by cells other than pDC (a condition mimicked by poly(I:C) injection in vivo) increase the prevalence of Ly49Q(-) pDC in the bone marrow and peripheral lymphoid organs in wild-type but not IFN-alpha/beta receptor knockout BALB/c mice. Moreover, in vivo exposure to type I IFN causes some Ly49Q(-), but not Ly49Q(+), pDC to convert to conventional DC, defined as B220(-) CD11c(+) CD11b(+) cells. These data suggest that type I IFN regulates pDC development and affects their distribution in the body.

  13. Hepatitis B Virus Lacks Immune Activating Capacity, but Actively Inhibits Plasmacytoid Dendritic Cell Function

    PubMed Central

    Woltman, Andrea M.; Shi, Cui C.; Janssen, Harry L. A.

    2011-01-01

    Chronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and patients and chronic HBV patients display impaired IFNα production by pDC. Therefore, HBV and HBV-derived proteins were examined for their effect on human pDC in vitro. In addition, the in vitro findings were compared to the function of pDC derived from chronic HBV patients ex vivo. In contrast to other viruses, HBV did not activate pDC. Moreover, HBV and HBsAg abrogated CpG-A/TLR9-induced, but not Loxoribine/TLR7-induced, mTOR-mediated S6 phosphorylation, subsequent IRF7 phosphorylation and IFNα gene transcription. HBV/HBsAg also diminished upregulation of co-stimulatory molecules, production of TNFα, IP-10 and IL-6 and pDC-induced NK cell function, whereas TLR7-induced pDC function was hardly affected. In line, HBsAg preferentially bound to TLR9-triggered pDC demonstrating that once pDC are able to bind HBV/HBsAg, the virus exerts its immune regulatory effect. HBV not only directly interfered with pDC function, but also indirectly by interfering with monocyte-pDC interaction. Also HBeAg diminished pDC function to a certain extent, but via another unknown mechanism. Interestingly, patients with HBeAg-positive chronic hepatitis B displayed impaired CpG-induced IFNα production by pDC without significant alterations in Loxoribine-induced pDC function compared to HBeAg-negative patients and healthy controls. The lack of activation and the active inhibition of pDC by HBV may both contribute to HBV persistence. The finding that the interaction between pDC and HBV may change upon activation may aid in the identification of a scavenging receptor supporting immunosuppressive effects of HBV and also in the design of novel treatment strategies for chronic HBV. PMID:21246041

  14. The Use of the Performance Diagnostic Checklist-Human Services to Assess and Improve the Job Performance of Individuals with Intellectual Disabilities.

    PubMed

    Smith, Madison; Wilder, David A

    2018-06-01

    The Performance Diagnostic Checklist-Human Services (PDC-HS) is an informant-based tool designed to identify the variables responsible for performance problems. To date, the PDC-HS has not been examined with individuals with intellectual disabilities. In the current study, two supervisors with intellectual disabilities completed the PDC-HS to assess the productivity of two supervisees with disabilities who performed a pricing task in a thrift store. The PDC-HS suggested that performance deficits were due to a lack of training; a PDC-HS-indicated intervention was effective to increase accurate pricing. • The PDC-HS is an informant-based tool designed to identify the variables responsible for employee performance problems in human service settings. • The PDC-HS can be completed by some individuals with intellectual disabilities in a supervisory position to identify the variables responsible for problematic job performance among their supervisees. • A PDC-HS indicated intervention was demonstrated to be effective to improve the job performance of individuals with disabilities. • The PDC-HS may be a useful tool to support performance improvement and job maintenance among individuals with intellectual disabilities.

  15. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus

    PubMed Central

    2013-01-01

    Background The Per-Arnt-Sim (PAS) domain represents a ubiquitous structural fold that is involved in bacterial sensing and adaptation systems, including several virulence related functions. Although PAS domains and the subclass of PhoQ-DcuS-CitA (PDC) domains have a common structure, there is limited amino acid sequence similarity. To gain greater insight into the evolution of PDC/PAS domains present in the bacterial kingdom and staphylococci in specific, the PDC/PAS domains from the genomic sequences of 48 bacteria, representing 5 phyla, were identified using the sensitive search method based on HMM-to-HMM comparisons (HHblits). Results A total of 1,007 PAS domains and 686 PDC domains distributed over 1,174 proteins were identified. For 28 Gram-positive bacteria, the distribution, organization, and molecular evolution of PDC/PAS domains were analyzed in greater detail, with a special emphasis on the genus Staphylococcus. Compared to other bacteria the staphylococci have relatively fewer proteins (6–9) containing PDC/PAS domains. As a general rule, the staphylococcal genomes examined in this study contain a core group of seven PDC/PAS domain-containing proteins consisting of WalK, SrrB, PhoR, ArlS, HssS, NreB, and GdpP. The exceptions to this rule are: 1) S. saprophyticus lacks the core NreB protein; 2) S. carnosus has two additional PAS domain containing proteins; 3) S. epidermidis, S. aureus, and S. pseudintermedius have an additional protein with two PDC domains that is predicted to code for a sensor histidine kinase; 4) S. lugdunensis has an additional PDC containing protein predicted to be a sensor histidine kinase. Conclusions This comprehensive analysis demonstrates that variation in PDC/PAS domains among bacteria has limited correlations to the genome size or pathogenicity; however, our analysis established that bacteria having a motile phase in their life cycle have significantly more PDC/PAS-containing proteins. In addition, our analysis revealed a tremendous amount of variation in the number of PDC/PAS-containing proteins within genera. This variation extended to the Staphylococcus genus, which had between 6 and 9 PDC/PAS proteins and some of these appear to be previously undescribed signaling proteins. This latter point is important because most staphylococcal proteins that contain PDC/PAS domains regulate virulence factor synthesis or antibiotic resistance. PMID:23902280

  16. Reductive evolution and the loss of PDC/PAS domains from the genus Staphylococcus.

    PubMed

    Shah, Neethu; Gaupp, Rosmarie; Moriyama, Hideaki; Eskridge, Kent M; Moriyama, Etsuko N; Somerville, Greg A

    2013-07-31

    The Per-Arnt-Sim (PAS) domain represents a ubiquitous structural fold that is involved in bacterial sensing and adaptation systems, including several virulence related functions. Although PAS domains and the subclass of PhoQ-DcuS-CitA (PDC) domains have a common structure, there is limited amino acid sequence similarity. To gain greater insight into the evolution of PDC/PAS domains present in the bacterial kingdom and staphylococci in specific, the PDC/PAS domains from the genomic sequences of 48 bacteria, representing 5 phyla, were identified using the sensitive search method based on HMM-to-HMM comparisons (HHblits). A total of 1,007 PAS domains and 686 PDC domains distributed over 1,174 proteins were identified. For 28 Gram-positive bacteria, the distribution, organization, and molecular evolution of PDC/PAS domains were analyzed in greater detail, with a special emphasis on the genus Staphylococcus. Compared to other bacteria the staphylococci have relatively fewer proteins (6-9) containing PDC/PAS domains. As a general rule, the staphylococcal genomes examined in this study contain a core group of seven PDC/PAS domain-containing proteins consisting of WalK, SrrB, PhoR, ArlS, HssS, NreB, and GdpP. The exceptions to this rule are: 1) S. saprophyticus lacks the core NreB protein; 2) S. carnosus has two additional PAS domain containing proteins; 3) S. epidermidis, S. aureus, and S. pseudintermedius have an additional protein with two PDC domains that is predicted to code for a sensor histidine kinase; 4) S. lugdunensis has an additional PDC containing protein predicted to be a sensor histidine kinase. This comprehensive analysis demonstrates that variation in PDC/PAS domains among bacteria has limited correlations to the genome size or pathogenicity; however, our analysis established that bacteria having a motile phase in their life cycle have significantly more PDC/PAS-containing proteins. In addition, our analysis revealed a tremendous amount of variation in the number of PDC/PAS-containing proteins within genera. This variation extended to the Staphylococcus genus, which had between 6 and 9 PDC/PAS proteins and some of these appear to be previously undescribed signaling proteins. This latter point is important because most staphylococcal proteins that contain PDC/PAS domains regulate virulence factor synthesis or antibiotic resistance.

  17. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription.

    PubMed

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-07-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with co-factors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Nuclear localization of pyruvate dehydrogenase complex-E2 (PDC-E2), a mitochondrial enzyme, and its role in signal transducer and activator of transcription 5 (STAT5)-dependent gene transcription

    PubMed Central

    Chueh, Fu-Yu; Leong, King-Fu; Cronk, Robert J.; Venkitachalam, Srividya; Pabich, Samantha; Yu, Chao-Lan

    2011-01-01

    STAT (signal transducer and activator of transcription) proteins play a critical role in cellular response to a wide variety of cytokines and growth factors by regulating specific nuclear genes. STAT-dependent gene transcription can be finely tuned through the association with cofactors in the nucleus. We showed previously that STAT5 (including 5a and 5b) specifically interacts with a mitochondrial enzyme PDC-E2 (E2 subunit of pyruvate dehydrogenase complex) in both leukemic T cells and cytokine-stimulated cells. However, the functional significance of this novel association remains largely unknown. Here we report that PDC-E2 may function as a co-activator in STAT5-dependent nuclear gene expression. Subcellular fractionation analysis revealed that a substantial amount of PDC-E2 was constitutively present in the nucleus of BaF3, an interleukin-3 (IL-3)-dependent cell line. IL-3-induced tyrosine-phosphorylated STAT5 associated with nuclear PDC-E2 in co-immunoprecipitation analysis. These findings were confirmed by confocal immunofluorescence microscopy showing constant nuclear localization of PDC-E2 and its co-localization with STAT5 after IL-3 stimulation. Similar to mitochondrial PDC-E2, nuclear PDC-E2 was lipoylated and associated with PDC-E1. Overexpression of PDC-E2 in BaF3 cells augmented IL-3-induced STAT5 activity as measured by reporter assay with consensus STAT5-binding sites. Consistent with the reporter data, PDC-E2 overexpression in BaF3 cells led to elevated mRNA levels of endogenous SOCS3 (suppressor of cytokine signaling 3) gene, a known STAT5 target. We further identified two functional STAT5-binding sites in the SOCS3 gene promoter important for its IL-3-inducibility. The observation that both cis-acting elements were essential to detect the stimulatory effect by PDC-E2 strongly supports the role of PDC-E2 in up-regulating the transactivating ability of STAT5. All together, our results reveal a novel function of PDC-E2 in the nucleus. It also raises the possibility of nuclear-mitochondrial crosstalk through the interaction between STAT5 and PDC-E2. PMID:21397011

  19. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer.

    PubMed

    Stacpoole, Peter W

    2017-11-01

    The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  1. Studies on spatial modes and the correlation anisotropy of entangled photons generated from 2D quadratic nonlinear photonic crystals

    NASA Astrophysics Data System (ADS)

    Luo, X. W.; Xu, P.; Sun, C. W.; Jin, H.; Hou, R. J.; Leng, H. Y.; Zhu, S. N.

    2017-06-01

    Concurrent spontaneous parametric down-conversion (SPDC) processes have proved to be an appealing approach for engineering the path-entangled photonic state with designable and tunable spatial modes. In this work, we propose a general scheme to construct high-dimensional path entanglement and demonstrate the basic properties of concurrent SPDC processes from domain-engineered quadratic nonlinear photonic crystals, including the spatial modes and the photon flux, as well as the anisotropy of spatial correlation under noncollinear quasi-phase-matching geometry. The overall understanding about the performance of concurrent SPDC processes will give valuable references to the construction of compact path entanglement and the development of new types of photonic quantum technologies.

  2. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  3. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  4. Time-Bin-Encoded Boson Sampling with a Single-Photon Device.

    PubMed

    He, Yu; Ding, X; Su, Z-E; Huang, H-L; Qin, J; Wang, C; Unsleber, S; Chen, C; Wang, H; He, Y-M; Wang, X-L; Zhang, W-J; Chen, S-J; Schneider, C; Kamp, M; You, L-X; Wang, Z; Höfling, S; Lu, Chao-Yang; Pan, Jian-Wei

    2017-05-12

    Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sampling using a highly indistinguishable (∼94%) single-photon source based on a single quantum-dot-micropillar device. The protocol requires only one single-photon source, two detectors, and a loop-based interferometer for an arbitrary number of photons. The single-photon pulse train is time-bin encoded and deterministically injected into an electrically programmable multimode network. The observed three- and four-photon boson sampling rates are 18.8 and 0.2 Hz, respectively, which are more than 100 times faster than previous experiments based on parametric down-conversion.

  5. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  6. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise.

    PubMed

    Banaszek, Konrad; Dragan, Andrzej; Wasilewski, Wojciech; Radzewicz, Czesław

    2004-06-25

    We present an experiment demonstrating the entanglement enhanced capacity of a quantum channel with correlated noise, modeled by a fiber optic link exhibiting fluctuating birefringence. In this setting, introducing entanglement between two photons is required to maximize the amount of information that can be encoded into their joint polarization degree of freedom. We demonstrated this effect using a fiber-coupled source of entangled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement. The obtained experimental classical capacity with entangled states is equal to 0.82+/-0.04 per a photon pair, and it exceeds approximately 2.5 times the theoretical upper limit when no quantum correlations are allowed.

  7. Demonstration of PDC-E1 subunits as major antigens in the complement-fixing fraction M4 and re-evaluation of PDC-E1-specific antibodies in PBC patients.

    PubMed

    Berg, Christoph P; Stein, Gerburg M; Klein, Reinhild; Pascu, Maria; Berg, Thomas; Kammer, Winfried; Priemer, Martin; Nordheim, Alfred; Schulze-Osthoff, Klaus; Gregor, Michael; Wesselborg, Sebastian; Berg, Peter A

    2006-09-01

    Primary biliary cirrhosis (PBC) is characterized by the presence of antimitochondrial antibodies (AMA). Autoantibodies specific for the mitochondrial M4 antigen can be detected by a complement fixation test (CFT) but not by immunoblotting. The aim of this study was to elucidate the identity of the M4 antigen. M4 proteins were purified by affinity chromatography using IgG fractions of PBC marker sera being CFT positive (n=5) or negative (n=5) and identified by Western blotting, silver staining and sequence analysis. Further, a cohort of 57 PBC patients was tested for the reactivity to M4 and pyruvate dehydrogenase complex (PDC). Two AMA patterns of the marker sera were visualized: CFT-positive sera were defined as PDC-E2(+)/E1(+) and the CFT-negative sera as PDC-E2(+)/E1(-). The major proteins in the M4 fraction could be related to the PDC-E1 subunits. A clear-cut association between anti-M4 reactivity in the CFT and the reactivity to both PDC subunits could also be documented in the cohort of 57 PBC patients showing anti-PDC-E1alpha and E1beta antibodies at a frequency of 74% and 67%. CFT reactivity against M4 antigens could be preferentially identified as a reaction against PDC-E1. As PDC-E1 subunits as compared with PDC-E2 lack lipoyl-binding sites, they probably have to be considered as an independent and important target.

  8. Coherent state amplification using frequency conversion and a single photon source

    NASA Astrophysics Data System (ADS)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  9. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    NASA Astrophysics Data System (ADS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  10. Optical analysis of down-conversion OLEDs

    NASA Astrophysics Data System (ADS)

    Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht

    2008-02-01

    Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.

  11. Compact, High-Power, Fiber-Laser-Based Coherent Sources Tunable in the Mid-Infrared and THz Spectrum

    DTIC Science & Technology

    2015-02-20

    conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 μm. We have successfully developed... oscillators (OPOs) for the deep mid-infrared (mid-IR) spectral regions >5 µm. We have successfully developed tunable deep mid-IR systems in both...the advancement of nonlinear frequency conversion sources and optical parametric oscillators (OPOs) for the deep mid-infrared (mid- IR) spectral

  12. New PDC bit optimizes drilling performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besson, A.; Gudulec, P. le; Delwiche, R.

    1996-05-01

    The lithology in northwest Argentina contains a major section where polycrystalline diamond compact (PDC) bits have not succeeded in the past. The section consists of dense shales and cemented sandstone stringers with limestone laminations. Conventional PDC bits experienced premature failures in the section. A new generation PDC bit tripled rate of penetration (ROP) and increased by five times the potential footage per bit. Recent improvements in PDC bit technology that enabled the improved performance include: the ability to control the PDC cutter quality; use of an advanced cutter lay out defined by 3D software; using cutter face design code formore » optimized cleaning and cooling; and, mastering vibration reduction features, including spiraled blades.« less

  13. Parametric Raman crystalline anti-Stokes laser at 503 nm with collinear beam interaction at tangential phase matching

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M.; Kubeček, V.

    2017-07-01

    Stimulated-Raman-scattering in crystals can be used for the single-pass frequency-conversion to the Stokes-shifted wavelengths. The anti-Stokes shift can also be achieved but the phase-matching condition has to be fulfilled because of the parametric four-wave mixing process. To widen the angular-tolerance of four-wave mixing and to obtain high-conversion-efficiency into the anti-Stokes, we developed a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally-polarized Raman components in calcite oriented at the phase-matched angle under 532 nm 20 ps laser excitation. The excitation laser beam was split into two orthogonally-polarized components entering the calcite at the certain incidence angles to fulfill the nearly collinear phase-matching and also to compensate walk-off of extraordinary waves for collinear beam interaction. The phase matching of parametric Raman interaction is tangential and insensitive to the angular mismatch if the Poynting vectors of the biharmonic pump and parametrically generated (anti-Stokes) waves are collinear. For the first time it allows to achieve experimentally the highest conversion efficiency into the anti-Stokes wave (503 nm) up to 30% from the probe wave and up to 3.5% from both pump and probe waves in the single-pass picosecond parametric calcite Raman laser. The highest anti-Stokes pulse energy was 1.4 μJ.

  14. PDC expressing CD36, CD61 and IL-10 may contribute to propagation of immune tolerance.

    PubMed

    Parcina, Marijo; Schiller, Martin; Gierschke, Aline; Heeg, Klaus; Bekeredjian-Ding, Isabelle

    2009-05-01

    Human plasmacytoid dendritic cells (PDC) are blood dendritic cell antigen 2 (BDCA2) and blood dendritic cell antigen 4 (BDCA4) positive leukocytes that do not express common lineage markers. They have been described as proinflammatory innate immune cells and are the major source of alphaIFN in the human body. PDC-derived secretion of type I IFNs upon triggering of nucleic acid-sensing toll-like receptors (TLR) primes immune cells to rapidly respond to microbial stimuli and promotes a Th1 response. Here, we report that human PDC express CD36 and CD61 (beta3 integrin), both involved in uptake of apoptotic cells and in induction of tolerance. Freshly isolated PDC and PDC within human blood leukocytes constitutively express IL-10. Thus, PDC may possess a so far neglected role in propagation of immune tolerance.

  15. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.

    PubMed

    Novy, Vera; Brunner, Bernd; Nidetzky, Bernd

    2018-04-11

    Saccharomyces cerevisiae, engineered for L-lactic acid production from glucose and xylose, is a promising production host for lignocellulose-to-lactic acid processes. However, the two principal engineering strategies-pyruvate-to-lactic acid conversion with and without disruption of the competing pyruvate-to-ethanol pathway-have not yet resulted in strains that combine high lactic acid yields (Y LA ) and productivities (Q LA ) on both sugar substrates. Limitations seemingly arise from a dependency on the carbon source and the aeration conditions, but the underlying effects are poorly understood. We have recently presented two xylose-to-lactic acid converting strains, IBB14LA1 and IBB14LA1_5, which have the L-lactic acid dehydrogenase from Plasmodium falciparum (pfLDH) integrated at the pdc1 (pyruvate decarboxylase) locus. IBB14LA1_5 additionally has its pdc5 gene knocked out. In this study, the influence of carbon source and oxygen on Y LA and Q LA in IBB14LA1 and IBB14LA1_5 was investigated. In anaerobic fermentation IBB14LA1 showed a higher Y LA on xylose (0.27 g g Xyl -1 ) than on glucose (0.18 g g Glc -1 ). The ethanol yields (Y EtOH , 0.15 g g Xyl -1 and 0.32 g g Glc -1 ) followed an opposite trend. In IBB14LA1_5, the effect of the carbon source on Y LA was less pronounced (~ 0.80 g g Xyl -1 , and 0.67 g g Glc -1 ). Supply of oxygen accelerated glucose conversions significantly in IBB14LA1 (Q LA from 0.38 to 0.81 g L -1  h -1 ) and IBB14LA1_5 (Q LA from 0.05 to 1.77 g L -1  h -1 ) at constant Y LA (IBB14LA1 ~ 0.18 g g Glc -1 ; IBB14LA1_5 ~ 0.68 g g Glc -1 ). In aerobic xylose conversions, however, lactic acid production ceased completely in IBB14LA1 and decreased drastically in IBB14LA1_5 (Y LA aerobic ≤ 0.25 g g Xyl -1 and anaerobic ~ 0.80 g g Xyl -1 ) at similar Q LA (~ 0.04 g L -1  h -1 ). Switching from aerobic to microaerophilic conditions (pO 2  ~ 2%) prevented lactic acid metabolization, observed for fully aerobic conditions, and increased Q LA and Y LA up to 0.11 g L -1  h -1 and 0.38 g g Xyl -1 , respectively. The pfLDH and PDC activities in IBB14LA1 were measured and shown to change drastically dependent on carbon source and oxygen. Evidence from conversion time courses together with results of activity measurements for pfLDH and PDC show that in IBB14LA1 the distribution of fluxes at the pyruvate branching point is carbon source and oxygen dependent. Comparison of the performance of strain IBB14LA1 and IBB14LA1_5 in conversions under different aeration conditions (aerobic, anaerobic, and microaerophilic) further suggest that xylose, unlike glucose, does not repress the respiratory response in both strains. This study proposes new genetic engineering targets for rendering genetically engineering S. cerevisiae better suited for lactic acid biorefineries.

  16. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yazhou; Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing; Zhou, Yahui

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and diskmore » diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.« less

  17. Novel tannin-based Si, P co-doped carbon for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Ramasahayam, Sunil Kumar; Nasini, Udaya B.; Shaikh, Ali U.; Viswanathan, Tito

    2015-02-01

    Increasing environmental pollution and population compounded by a decrease in the availability of non-renewable resources and fossil fuels has propelled the need for sustainable alternate energy storage technologies particularly in the last two decades. An attempt to meet this crisis was carried out by a unique, microwave-assisted method which has enabled the generation of a novel Si, P co-doped carbon (SiPDC) for supercapacitor applications. The microwave-assisted method is useful in developing SiPDC at a rapid and economical fashion that does not employ any inert or reducing gases, but is high yielding. Varying proportions of precursor materials were utilized to generate four SiPDCs (SiPDC-1, SiPDC-2, SiPDC-3 and SiPDC-4) with varying contents of dopants as evidenced by X-ray photoelectron spectroscopic (XPS) results. Surface area and pore size analysis revealed that SiPDC-2 has a surface area of 641.51 m2 g-1, abundant micropores, mesopores and macropores which are critical for electrical double layer capacitance (EDLC). Of all the SiPDCs, SiPDC-2 exhibited highest capacitance of 276 F g-1 in 1 M H2SO4 and 244 F g-1 in 6 M KOH at a scan rate of 5 mV s-1. Galvanostatic charge-discharge studies performed in 6 M KOH establish the high capacitance of SiPDC-2. SiPDC-2 also exhibited excellent electrochemical stability in 1 M H2SO4 and 6 M KOH.

  18. Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells1

    PubMed Central

    Yin, Zhiwei; Dai, Jihong; Deng, Jing; Sheikh, Faruk; Natalia, Mahwish; Shih, Tiffany; Lewis-Antes, Anita; Amrute, Sheela B.; Garrigues, Ursula; Doyle, Sean; Donnelly, Raymond P; Kotenko, Sergei V; Fitzgerald-Bocarsly, Patricia

    2012-01-01

    Plasmacytoid dendritic cells (pDC) are rare cells found in peripheral blood and lymphoid tissues. pDC are considered to be “professional” type I interferon (IFN) producing cells and produce 10–100-fold more IFN-α than other cell types in response to enveloped viruses or synthetic TLR-7 and -9 agonists. In this study, purified pDC were found to express high levels of IFN-λ receptor mRNA as well as cell-surface IFN-λ receptor. We have developed intracellular flow cytometry assays using antibodies to IFN-λ1/3 or -λ2 to assess the expression of IFN-λ proteins by pDC. We observed that a subset of human pDC expresses only intracellular IFN-α while another subset produces both IFN-α and IFN-λ after stimulation with virus or the TLR9 agonist, CpGA; the cells that co-expressed IFN-α and IFN-λ were the cells with the highest levels of IFN-α expression. Antibody cross-linking of CD4 or BDCA-2 molecules on pDC inhibited both HSV-induced IFN-λ and IFN-α production. Like the production of IFN-α, the HSV-induced IFN-λ production in pDC was mediated through TLR9 and independent of virus replication. Exogenous IFN-λ treatment of pDC resulted in increased virus-induced expression of both IFN-α and IFN-λ. In addition, both exogenous IFN-λ and –α inhibited dexamethasone-induced apoptosis of pDC. We conclude that pDC are major producers of IFN-λ1 and –λ2 in response to viral stimulation and also express functional receptors for this cytokine. Thus, IFN-λ can serve as an autocrine signal to strengthen the antiviral response of pDC by increasing IFN-α and IFN-λ production, resulting in prolonged pDC survival. PMID:22891284

  19. Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells

    NASA Astrophysics Data System (ADS)

    Aspord, Caroline; Laurin, David; Janier, Marc F.; Mandon, Céline A.; Thivolet, Charles; Villiers, Christian; Mowat, Pierre; Madec, Anne-Marie; Tillement, Olivier; Perriat, Pascal; Louis, Cédric; Bérard, Frédéric; Marche, Patrice N.; Plumas, Joël; Billotey, Claire

    2013-11-01

    This study aims to investigate gadolinium-based nanoparticles (Gd-HNP) for in vitro labeling of human plasmacytoid dendritic cells (HuPDC) to allow for in vivo tracking and HuPDC quantifying using magnetic resonance imaging (MRI) following parenteral injection. Human plasmacytoid DC were labeled (LabHuPDC) with fluorescent Gd-HNP (Gd-FITC-HNP) and injected via intraperitoneal and intravenous routes in 4-5 NOD-SCID β2m-/-mice (treated mice = TM). Control mice (CM) were similarly injected with unlabeled HuPDC. In vivo 7 T MRI was performed 24 h later and all spleens were removed in order to measure Gd and fluorescence contents and identify HuPDC. Gd-FITC-HNP efficiently labeled HuPDC (0.05 to 0.1 pg per cell), without altering viability and activation properties. The magnetic resonance (MR) signal was exclusively due to HuPDC. The normalized MR splenic intensity for TM was significantly higher than for CM (p < 0.024), and highly correlated with the spleen Gd content (r = 0.97), and the number of HuPDC found in the spleen (r = 0.94). Gd-FITC-HNP allowed for in vivo tracking and HuPDC quantifying by means of MRI following parenteral injection, with very high sensitivity (<3000 cells per mm3). The safety of these new nanoparticle types must be confirmed via extensive toxicology tests including in vivo stability and biodistribution studies.This study aims to investigate gadolinium-based nanoparticles (Gd-HNP) for in vitro labeling of human plasmacytoid dendritic cells (HuPDC) to allow for in vivo tracking and HuPDC quantifying using magnetic resonance imaging (MRI) following parenteral injection. Human plasmacytoid DC were labeled (LabHuPDC) with fluorescent Gd-HNP (Gd-FITC-HNP) and injected via intraperitoneal and intravenous routes in 4-5 NOD-SCID β2m-/-mice (treated mice = TM). Control mice (CM) were similarly injected with unlabeled HuPDC. In vivo 7 T MRI was performed 24 h later and all spleens were removed in order to measure Gd and fluorescence contents and identify HuPDC. Gd-FITC-HNP efficiently labeled HuPDC (0.05 to 0.1 pg per cell), without altering viability and activation properties. The magnetic resonance (MR) signal was exclusively due to HuPDC. The normalized MR splenic intensity for TM was significantly higher than for CM (p < 0.024), and highly correlated with the spleen Gd content (r = 0.97), and the number of HuPDC found in the spleen (r = 0.94). Gd-FITC-HNP allowed for in vivo tracking and HuPDC quantifying by means of MRI following parenteral injection, with very high sensitivity (<3000 cells per mm3). The safety of these new nanoparticle types must be confirmed via extensive toxicology tests including in vivo stability and biodistribution studies. Corresponding address: Service de Médecine Nucléaire, Hôpital, Nord - CHU Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest-en-Jarez, France. E-mail: claire.billotey@chu-st-etienne.fr

  20. Novel histopathologic feature identified through image analysis augments stage II colorectal cancer clinical reporting

    PubMed Central

    Caie, Peter D.; Zhou, Ying; Turnbull, Arran K.; Oniscu, Anca; Harrison, David J.

    2016-01-01

    A number of candidate histopathologic factors show promise in identifying stage II colorectal cancer (CRC) patients at a high risk of disease-specific death, however they can suffer from low reproducibility and none have replaced classical pathologic staging. We developed an image analysis algorithm which standardized the quantification of specific histopathologic features and exported a multi-parametric feature-set captured without bias. The image analysis algorithm was executed across a training set (n = 50) and the resultant big data was distilled through decision tree modelling to identify the most informative parameters to sub-categorize stage II CRC patients. The most significant, and novel, parameter identified was the ‘sum area of poorly differentiated clusters’ (AreaPDC). This feature was validated across a second cohort of stage II CRC patients (n = 134) (HR = 4; 95% CI, 1.5– 11). Finally, the AreaPDC was integrated with the significant features within the clinical pathology report, pT stage and differentiation, into a novel prognostic index (HR = 7.5; 95% CI, 3–18.5) which improved upon current clinical staging (HR = 4.26; 95% CI, 1.7– 10.3). The identification of poorly differentiated clusters as being highly significant in disease progression presents evidence to suggest that these features could be the source of novel targets to decrease the risk of disease specific death. PMID:27322148

  1. Correlation of membrane binding and hydrophobicity to the chaperone-like activity of PDC-109, the major protein of bovine seminal plasma.

    PubMed

    Sankhala, Rajeshwer S; Damai, Rajani S; Swamy, Musti J

    2011-03-08

    The major protein of bovine seminal plasma, PDC-109 binds to choline phospholipids present on the sperm plasma membrane upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. PDC-109 also shares significant similarities with small heat shock proteins and exhibits chaperone-like activity (CLA). Although the polydisperse nature of this protein has been shown to be important for its CLA, knowledge of other factors responsible for such an activity is scarce. Since surface exposure of hydrophobic residues is known to be an important factor which modulates the CLA of chaperone proteins, in the present study we have probed the surface hydrophobicity of PDC-109 using bisANS and ANS. Further, effect of phospholipids on the structure and chaperone-like activity of PDC-109 was studied. Presence of DMPC was found to increase the CLA of PDC-109 significantly, which could be due to the considerable exposure of hydrophobic regions on the lipid-protein recombinants, which can interact productively with the nonnative structures of target proteins, resulting in their protection. However, inclusion of DMPG instead of DMPC did not significantly alter the CLA of PDC-109, which could be due to the lower specificity of PDC-109 for DMPG as compared to DMPC. Cholesterol incorporation into DMPC membranes led to a decrease in the CLA of PDC-109-lipid recombinants, which could be attributed to reduced accessibility of hydrophobic surfaces to the substrate protein(s). These results underscore the relevance of phospholipid binding and hydrophobicity to the chaperone-like activity of PDC-109.

  2. The lipid composition modulates the influence of the bovine seminal plasma protein PDC-109 on membrane stability.

    PubMed

    Tannert, Astrid; Töpfer-Petersen, Edda; Herrmann, Andreas; Müller, Karin; Müller, Peter

    2007-10-16

    The bovine seminal plasma protein PDC-109 exerts an essential influence on the sperm cell plasma membrane during capacitation. However, by any mechanism, it has to be ensured that this function of the protein on sperm cells is not initiated too early, that is, upon ejaculation when PDC-109 and sperm cells come into first contact, but rather at later stages of sperm genesis in the female genital tract. To answer the question of whether changes of the bovine sperm lipid composition can modulate the effect of PDC-109 on sperm membranes, we have investigated the influence of PDC-109 on the integrity of (i) differently composed lipid vesicles and of (ii) membranes from human red blood cells and bovine spermatozoa. PDC-109 most effectively disturbed lipid membranes composed of choline-containing phospholipids and in the absence of cholesterol. The impact of the protein on lipid vesicles was attenuated in the presence of cholesterol or of noncholine-containing phospholipids, such as phosphatidylethanolamine or phosphatidylserine. An extraction of cholesterol from lipid or biological membranes using methyl-beta-cyclodextrin caused an increased membrane perturbation by PDC-109. Our results argue for a oppositional effect of PDC-109 during sperm cell genesis. We hypothesize that the lipid composition of ejaculated bull sperm cells allows a binding of PDC-109 without leading to an impairment of the plasma membrane. At later stages of sperm cell genesis upon release of cholesterol from sperm membranes, PDC-109 triggers a destabilization of the cells.

  3. The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes.

    PubMed

    Constantin-Teodosiu, Dumitru; Constantin, Despina; Stephens, Francis; Laithwaite, David; Greenhaff, Paul L

    2012-05-01

    High-fat feeding inhibits pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation, which contributes to muscle insulin resistance. We aimed to reveal molecular changes underpinning this process in resting and exercising humans. We also tested whether pharmacological activation of PDC overrides these diet-induced changes. Healthy males consumed a control diet (CD) and on two further occasions an isocaloric high-fat diet (HFD). After each diet, subjects cycled for 60 min after intravenous infusion with saline (CD and HFD) or dichloroacetate (HFD+DCA). Quadriceps muscle biopsies obtained before and after 10 and 60 min of exercise were used to estimate CHO use, PDC activation, and mRNAs associated with insulin, fat, and CHO signaling. Compared with CD, HFD increased resting pyruvate dehydrogenase kinase 2 (PDK2), PDK4, forkhead box class O transcription factor 1 (FOXO1), and peroxisome proliferator-activated receptor transcription factor α (PPARα) mRNA and reduced PDC activation. Exercise increased PDC activation and whole-body CHO use in HFD, but to a lower extent than in CD. Meanwhile PDK4 and FOXO1, but not PPARα or PDK2, mRNA remained elevated. HFD+DCA activated PDC throughout and restored whole-body CHO use during exercise. FOXO1 appears to play a role in HFD-mediated muscle PDK4 upregulation and inhibition of PDC and CHO oxidation in humans. Also, pharmacological activation of PDC restores HFD-mediated inhibition of CHO oxidation during exercise.

  4. Decreased frequency and function of circulating plasmocytoid dendritic cells (pDC) in hepatitis B virus infected humans.

    PubMed

    Duan, Xue-Zhang; Wang, Min; Li, Han-Wei; Zhuang, Hui; Xu, Dongping; Wang, Fu-Sheng

    2004-11-01

    The Type 2 precursor plasmacytoid dendritic cells (pDC) represent the most important cell type in antiviral innate immunity. To understand the function of pDC during hepatitis B virus infection, the frequency and function of circulating pDC were analyzed by flow cytometric analysis, and IFN-alpha secretion of total PBMCs was determined by ELISA assay in 25 healthy subjects and 116 patients at various stages of chronic hepatitis B virus infection (CHB). The number of circulating pDC was found to be significantly lower in patients with CHB and associated liver cirrhosis (LC). The ability of PBMCs to secrete IFN-alpha also decreased significantly. There was a corresponding decrease of circulating NK cells and CD8+ T cells. We observed that lamuvidine antiviral therapy restored the number of circulating pDC and there was a reversal of pDC frequency with the control of HBV replication in chronic HBV patients, indicating these subjects are unlikely to be totally immunocompromised. The decrease of pDC was found to be related to nosocomial infections in LC patients. Our results suggest that CHB patients probably have a quantitative and qualitative impairment of circulating pDC or NK cells, which may be associated with HBV persistent infection as well as the nosocomial infections that arise in LC patients.

  5. Identification of PDC-109-like protein(s) in buffalo seminal plasma.

    PubMed

    Harshan, Hiron M; Sankar, Surya; Singh, L P; Singh, Manish Kumar; Sudharani, S; Ansari, M R; Singh, S K; Majumdar, A C; Joshi, P

    2009-10-01

    The FN-2 family of seminal plasma proteins represents the major protein fraction of bovine seminal plasma. These proteins also constitute the major seminal plasma proteins fraction in horse, goat and bison seminal plasma and are present in pig, rat, mouse, hamster and human seminal plasma. BSP-A1 and BSP-A2, the predominant proteins of the FN-2 family, are collectively termed as PDC-109. Fn-2 proteins play an important role in fertilization, including sperm capacitation and formation of oviductal sperm reservoirs. Significantly, BSP proteins were also shown to have negative effects in the context of sperm storage. No conclusive evidence for the presence of buffalo seminal plasma protein(s) similar to PDC-109 exists. Studies with buffalo seminal plasma indicated that isolation and identification of PDC-109-like protein(s) from buffalo seminal plasma by conventional methods might be difficult. Thus, antibodies raised against PDC-109 isolated, and purified from cattle seminal plasma, were used for investigating the presence of PDC-109-like protein(s) in buffalo seminal plasma. Buffalo seminal plasma proteins were resolved on SDS-PAGE, blotted to nitro cellulose membranes and probed for the presence of PDC-109-like protein(s) using the PDC-109 antisera raised in rabbits. A distinct immunoreactive band well below the 20-kDa regions indicated the presence of PDC-109-like protein(s) in buffalo seminal plasma.

  6. Relationship between the maxillary transverse dimension and palatally displaced canines: A cone-beam computed tomographic study.

    PubMed

    Hong, Wei-Hsin; Radfar, Rebecca; Chung, Chun-Hsi

    2015-05-01

    To examine the relationship between palatally displaced maxillary canines (PDC) and the maxillary transverse dimension using cone-beam computed tomography (CBCT). Thirty-three patients (11 males and 22 females, mean age 18.2 years) with PDC were matched to 66 patients (22 males and 44 females, mean age 18.1 years) without PDC (control) by gender, age, and posterior occlusion. A CBCT image was taken on all the patients prior to any orthodontic treatment. For each patient the maxillary basal bone widths and interdental widths at the maxillary first molars and first and second premolars were measured on axial and coronal sections of CBCT images. In addition, the presence of permanent tooth agenesis and the widths of maxillary incisors were recorded. Similar maxillary transverse dimensions, both skeletally and dentally, were found between the PDC and control groups. In the PDC group, the number of patients with permanent tooth agenesis was six times higher than in the control group. In addition, the maxillary lateral incisors on PDC-affected sides were smaller than those of control group (P < .05). The maxillary transverse dimension, both skeletally and dentally, had no effect on the occurrence of PDC. The higher prevalence of permanent tooth agenesis was found in the PDC group. Moreover, the mean mesiodistal width of maxillary lateral incisors in the PDC group was significantly smaller than in the control group (P < .05).

  7. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet.

    PubMed

    Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter

    2007-04-01

    The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.

  8. Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association.

    PubMed

    Alculumbre, Solana; Raieli, Salvatore; Hoffmann, Caroline; Chelbi, Rabie; Danlos, François-Xavier; Soumelis, Vassili

    2018-02-19

    Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Snare coupling of the pre-pectoral pacing lead delivery catheter to the femoral transseptal apparatus for endocardial cardiac resynchronization therapy : mid-term results.

    PubMed

    Patel, Mehul B; Worley, Seth J

    2013-04-01

    Limitations imposed by the coronary sinus venous anatomy triggered the transseptal approach for endocardial LV lead placement. The alignment of the interatrial septum (IAS) and its neighborhood anatomy does not favor transseptal puncture from the pre-pectoral area. Locating and advancing a pre-pectoral LV lead delivery catheter (PDC) through an opening created in the IAS via femoral transseptal puncture (FTP) is time consuming and technically difficult. We describe a method where the PDC is snare coupled to the femoral transseptal apparatus (FTA). When the FTA is advanced into the left atrium (LA) the coupled PDC follows. The catheter of a 25-mm loop snare kit is replaced with the PDC (SelectSite®). The snare loop is positioned in the right common iliac vein from the pre-pectoral access. The PDC is coupled to the FTA by advancing the transseptal apparatus through the open snare loop. After conventional FTP, the FTA is withdrawn back into the right atrium (RA) over an extra support wire positioned in the LA. The PDC with open snare loop is pulled over the FTA up to the RA. The PDC is advanced to close the snare loop on the extra support wire immediately distal to the tip of the dilator close to the puncture site. The PDC is deflected to align with the FTA. The snare coupled catheters are gently advanced across the IAS into the LA. The PDC is released from the FTA by advancing the snare and opening the loop; the snare is then removed from the PDC. The PDC is deflected and advanced into the left ventricle (LV). After positioning the 4.1 Fr lumen less LV lead, the PDC is sliced and removed. The PDC snare coupled to the FTA was advanced into the LA in all five patients, however, access was lost during catheter manipulation in the one right-sided case. Endocardial LV lead was successfully positioned in all five patients. Snare coupling the pre-pectoral SelectSite® catheter to the FTA is technically simple, reliable and a safe method for transseptal endocardial LV lead placement for left pre-pectoral implantation.

  10. Evidence of significant down-conversion in a Si-based solar cell using CuInS2/ZnS core shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gardelis, Spiros; Nassiopoulou, Androula G.

    2014-05-01

    We report on the increase of up to 37.5% in conversion efficiency of a Si-based solar cell after deposition of light-emitting Cd-free, CuInS2/ZnS core shell quantum dots on the active area of the cell due to the combined effect of down-conversion and the anti- reflecting property of the dots. We clearly distinguished the effect of down-conversion from anti-reflection and estimated an enhancement of up to 10.5% in the conversion efficiency due to down-conversion.

  11. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity.

    PubMed

    Chopin, Michaël; Preston, Simon P; Lun, Aaron T L; Tellier, Julie; Smyth, Gordon K; Pellegrini, Marc; Belz, Gabrielle T; Corcoran, Lynn M; Visvader, Jane E; Wu, Li; Nutt, Stephen L

    2016-04-26

    Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    PubMed

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. PDC cutters improve drilling in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.

    2000-02-01

    Improvements in polycrystalline diamond compact (PDC) cutter technology have contributed immensely to the industry's acceptance of PDC bits as effective drilling tools. These cutters are being engineered to address the needs and requirements of different drilling programs. Extensive research and developments efforts have been dedicated to the analysis of the diamond table/tungsten carbide interface. The paper describes PDC cutter development, operational challenges, offset performance, and field experiences.

  14. DNA Hairpins Containing the Cytidine Analog Pyrrolo-dC: Structural, Thermodynamic, and Spectroscopic Studies

    PubMed Central

    Zhang, Xu; Wadkins, Randy M.

    2009-01-01

    Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D. PMID:19254547

  15. DNA hairpins containing the cytidine analog pyrrolo-dC: structural, thermodynamic, and spectroscopic studies.

    PubMed

    Zhang, Xu; Wadkins, Randy M

    2009-03-04

    Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D.

  16. Effect of idler absorption in pulsed optical parametric oscillators.

    PubMed

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  17. Parametric Raman anti-Stokes laser at 503 nm with phase-matched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping

    NASA Astrophysics Data System (ADS)

    Smetanin, Sergei; Jelínek, Michal; Kubeček, Václav

    2017-05-01

    Lasers based on stimulated-Raman-scattering process can be used for the frequency-conversion to the wavelengths that are not readily available from solid-state lasers. Parametric Raman lasers allow generation of not only Stokes, but also anti-Stokes components. However, practically all the known crystalline parametric Raman anti-Stokes lasers have very low conversion efficiencies of about 1 % at theoretically predicted values of up to 40 % because of relatively narrow angular tolerance of phase matching in comparison with angular divergence of the interacting beams. In our investigation, to widen the angular tolerance of four-wave mixing and to obtain high conversion efficiency into the antiStokes wave we propose and study a new scheme of the parametric Raman anti-Stokes laser at 503 nm with phasematched collinear beam interaction of orthogonally polarized Raman components in calcite under 532 nm 20 ps laser pumping. We use only one 532-nm laser source to pump the Raman-active calcite crystal oriented at the phase matched angle for orthogonally polarized Raman components four-wave mixing. Additionally, we split the 532-nm laser radiation into the orthogonally polarized components entering to the Raman-active calcite crystal at the certain incidence angles to fulfill the tangential phase matching compensating walk-off of extraordinary waves for collinear beam interaction in the crystal with the widest angular tolerance of four-wave mixing. For the first time the highest 503-nm anti-Stokes conversion efficiency of 30 % close to the theoretical limit of about 40 % at overall optical efficiency of the parametric Raman anti-Stokes generation of up to 3.5 % in calcite is obtained due to realization of tangential phase matching insensitive to the angular mismatch.

  18. Pyruvate dehydrogenase complex (PDC) subunits moonlight as interaction partners of phosphorylated STAT5 in adipocytes and adipose tissue.

    PubMed

    Richard, Allison J; Hang, Hardy; Stephens, Jacqueline M

    2017-12-01

    STAT5 proteins play a role in adipocyte development and function, but their specific functions are largely unknown. To this end, we used an unbiased MS-based approach to identify novel STAT5-interacting proteins. We observed that STAT5A bound the E1β and E2 subunits of the pyruvate dehydrogenase complex (PDC). Whereas STAT5A typically localizes to the cytosol or nucleus, PDC normally resides within the mitochondrial matrix where it converts pyruvate to acetyl-CoA. We employed affinity purification and immunoblotting to validate the interaction between STAT5A and PDC subunits in murine and human cultured adipocytes, as well as in adipose tissue. We found that multiple PDC subunits interact with hormone-activated STAT5A in a dose- and time-dependent manner that coincides with tyrosine phosphorylation of STAT5. Using subcellular fractionation and immunofluorescence microscopy, we observed that PDC-E2 is present within the adipocyte nucleus where it associates with STAT5A. Because STAT5A is a transcription factor, we used chromatin immunoprecipitation (ChIP) to assess PDC's ability to interact with STAT5 DNA-binding sites. These analyses revealed that PDC-E2 is bound to a STAT5-binding site in the promoter of the STAT5 target gene c ytokine- i nducible SH 2-containing protein ( cish ). We have demonstrated a compelling interaction between STAT5A and PDC subunits in adipocytes under physiological conditions. There is previous evidence that PDC localizes to cancer cell nuclei where it plays a role in histone acetylation. On the basis of our ChIP data and these previous findings, we hypothesize that PDC may modulate STAT5's ability to regulate gene expression by controlling histone or STAT5 acetylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML.

    PubMed

    Schütz, C; Inselmann, S; Sausslele, S; Dietz, C T; Mu Ller, M C; Eigendorff, E; Brendel, C A; Metzelder, S K; Bru Mmendorf, T H; Waller, C; Dengler, J; Goebeler, M E; Herbst, R; Freunek, G; Hanzel, S; Illmer, T; Wang, Y; Lange, T; Finkernagel, F; Hehlmann, R; Huber, M; Neubauer, A; Hochhaus, A; Guilhot, J; Xavier Mahon, F; Pfirrmann, M; Burchert, A

    2017-04-01

    It is unknown, why only a minority of chronic myeloid leukemia (CML) patients sustains treatment free remission (TFR) after discontinuation of tyrosine kinase inhibitor (TKI) therapy in deep molecular remission (MR). Here we studied, whether expression of the T-cell inhibitory receptor (CTLA-4)-ligand CD86 (B7.2) on plasmacytoid dendritic cells (pDC) affects relapse risk after TKI cessation. CML patients in MR displayed significantly higher CD86 + pDC frequencies than normal donors (P<0.0024), whereas TFR patients had consistently low CD86 + pDC (n=12). This suggested that low CD86 + pDC might be predictive of TFR. Indeed, in a prospective analysis of 122 patients discontinuing their TKI within the EURO-SKI trial, the one-year relapse-free survival (RFS) was 30.1% (95% CI 15.6-47.9) for patients with >95 CD86 + pDC per 10 5 lymphocytes, but 70.0% (95% CI 59.3-78.3) for patients with <95 CD86 + pDC (hazard ratio (HR) 3.4, 95% - CI: 1.9-6.0; P<0.0001). Moreover, only patients with <95 CD86 + pDC derived a significant benefit from longer (>8 years) TKI exposure before discontinuation (HR 0.3, 95% CI 0.1-0.8; P=0.0263). High CD86 + pDC counts significantly correlated with leukemia-specific CD8 + T - cell exhaustion (Spearman correlation: 0.74, 95%-CI: 0.21-0.92; P=0.0098). Our data demonstrate that CML patients with high CD86 + pDC counts have a higher risk of relapse after TKI discontinuation.

  20. Correlation of Membrane Binding and Hydrophobicity to the Chaperone-Like Activity of PDC-109, the Major Protein of Bovine Seminal Plasma

    PubMed Central

    Sankhala, Rajeshwer S.; Damai, Rajani S.; Swamy, Musti J.

    2011-01-01

    The major protein of bovine seminal plasma, PDC-109 binds to choline phospholipids present on the sperm plasma membrane upon ejaculation and plays a crucial role in the subsequent events leading to fertilization. PDC-109 also shares significant similarities with small heat shock proteins and exhibits chaperone-like activity (CLA). Although the polydisperse nature of this protein has been shown to be important for its CLA, knowledge of other factors responsible for such an activity is scarce. Since surface exposure of hydrophobic residues is known to be an important factor which modulates the CLA of chaperone proteins, in the present study we have probed the surface hydrophobicity of PDC-109 using bisANS and ANS. Further, effect of phospholipids on the structure and chaperone-like activity of PDC-109 was studied. Presence of DMPC was found to increase the CLA of PDC-109 significantly, which could be due to the considerable exposure of hydrophobic regions on the lipid-protein recombinants, which can interact productively with the nonnative structures of target proteins, resulting in their protection. However, inclusion of DMPG instead of DMPC did not significantly alter the CLA of PDC-109, which could be due to the lower specificity of PDC-109 for DMPG as compared to DMPC. Cholesterol incorporation into DMPC membranes led to a decrease in the CLA of PDC-109-lipid recombinants, which could be attributed to reduced accessibility of hydrophobic surfaces to the substrate protein(s). These results underscore the relevance of phospholipid binding and hydrophobicity to the chaperone-like activity of PDC-109. PMID:21408153

  1. Patient-Doctor Contact Interval and Clinical Outcomes in Continuous Ambulatory Peritoneal Dialysis Patients.

    PubMed

    Yi, Chunyan; Guo, Qunying; Lin, Jianxiong; Li, Jianying; Yu, Xueqing; Yang, Xiao

    2017-01-01

    The optimal patient-doctor contact (PDC) interval remains unknown in peritoneal dialysis (PD) patients. The aim was to investigate the association between PDC interval and clinical outcomes in continuous ambulatory PD (CAPD) patients. In this retrospective cohort study, CAPD patients who resided in Guangzhou city between January 2006 and December 2012 were included. According to receiver operating characteristic curve analysis, all patients were classified as high (PDC interval ≤2 months) and low (PDC interval >2 months) PDC frequency groups. Biochemical data, clinical events, and clinical outcomes during the follow-up period were compared. Of 433 CAPD patients, the mean age was 51.3 ± 15.7 years, 54.3% of patients were male, and 29.1% with diabetes. The median vintage of PD was 45.8 (26.3-69.1) months. Patients with high PDC frequency (n = 233) had better patient-survival rates (99.6, 87.7, and 76.5% vs. 92.7, 76.5, and 58.7% at 1, 3, and 5 years; p < 0.001), lower peritonitis rate (0.17 vs. 0.23 episodes per patient-year; p < 0.001), and hospitalization rate (0.49 vs. 0.67 episodes per patient-year; p < 0.001) than those in the low PDC frequency group (n = 200). After adjustment for confounders, PDC interval of no more than 2 months was independently associated with better patient survival (hazard ratio 0.60, 95% CI 0.42-0.86, p = 0.006). A PDC interval of 2 months or less was associated with better clinical outcomes in CAPD patients. This indicates that a shorter PDC interval should be encouraged for them to achieve better clinical outcomes. © 2017 S. Karger AG, Basel.

  2. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  3. Loss-resistant unambiguous phase measurement

    NASA Astrophysics Data System (ADS)

    Dinani, Hossein T.; Berry, Dominic W.

    2014-08-01

    Entangled multiphoton states have the potential to provide improved measurement accuracy, but are sensitive to photon loss. It is possible to calculate ideal loss-resistant states that maximize the Fisher information, but it is unclear how these could be experimentally generated. Here we propose a set of states that can be obtained by processing the output from parametric down-conversion. Although these states are not optimal, they provide performance very close to that of optimal states for a range of parameters. Moreover, we show how to use sequences of such states in order to obtain an unambiguous phase measurement that beats the standard quantum limit. We consider the optimization of parameters in order to minimize the final phase variance, and find that the optimum parameters are different from those that maximize the Fisher information.

  4. Tailoring entanglement through domain engineering in a lithium niobate waveguide

    PubMed Central

    Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing

    2014-01-01

    We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555

  5. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array.

    PubMed

    Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André

    2016-12-12

    We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

  6. Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths.

    PubMed

    Bruno, N; Martin, A; Guerreiro, T; Sanguinetti, B; Thew, R T

    2014-07-14

    We report on the generation of indistinguishable photon pairs at telecom wavelengths based on a type-II parametric down conversion process in a periodically poled potassium titanyl phosphate (PPKTP) crystal. The phase matching, pump laser characteristics and coupling geometry are optimised to obtain spectrally uncorrelated photons with high coupling efficiencies. Four photons are generated by a counter-propagating pump in the same crystal and anlysed via two photon interference experiments between photons from each pair source as well as joint spectral and g((2)) measurements. We obtain a spectral purity of 0.91 and coupling efficiencies around 90% for all four photons without any filtering. These pure indistinguishable photon sources at telecom wavelengths are perfectly adapted for quantum network demonstrations and other multi-photon protocols.

  7. Sidechain biology and the immunogenicity of PDC-E2, the major autoantigen of primary biliary cirrhosis.

    PubMed

    Mao, Tin K; Davis, Paul A; Odin, Joseph A; Coppel, Ross L; Gershwin, M Eric

    2004-12-01

    The E2 component of mitochondrial pyruvate dehydrogenase complex (PDC-E2) is the immunodominant autoantigen of primary biliary cirrhosis. Whereas lipoylation of PDC-E2 is essential for enzymatic activity and predominates under normal conditions, other biochemical systems exist that also target the lysine residue, including acylation of fatty acids or xenobiotics and ubiquitinylation. More importantly, the immunogenicity can be affected by derivatization of the lysine residue, as the recognition of lipoylated PDC-E2 by patient autoantibodies is enhanced compared with octanoylated PDC-E2. Furthermore, our laboratory has shown that various xenobiotic modifications of a peptide representing the immunodominant region of PDC-E2 are immunoreactive against patient sera. The only purported regulatory system that prevents the accumulation of potentially autoreactive PDC-E2 is glutathionylation, in which the lysine-lipoic acid moiety is further modified with glutathione during apoptosis. Interestingly, this system is found in several cell lines, including HeLa, Jurkat, and Caco-2 cells, but not in cholangiocytes and salivary gland epithelial cells, both of which are targets for destruction in primary biliary cirrhosis. Hence, the failure of this or other regulatory system(s) may overwhelm the immune system with immunogenic PDC-E2 that can initiate the breakdown of tolerance in a genetically susceptible individual. In this review the authors survey the data available on the biochemical life of PDC-E2, with particular emphasis on the lysine residue and its known interactions with machinery involved in various posttranslational modifications.

  8. Application of microalgae hydrolysate as a fermentation medium for microbial production of 2-pyrone 4,6-dicarboxylic acid.

    PubMed

    Htet, April N; Noguchi, Mana; Ninomiya, Kazuaki; Tsuge, Yota; Kuroda, Kosuke; Kajita, Shinya; Masai, Eiji; Katayama, Yoshihiro; Shikinaka, Kazuhiro; Otsuka, Yuichiro; Nakamura, Masaya; Honda, Ryo; Takahashi, Kenji

    2018-06-01

    Actual biomass of microalgae was tested as a fermentation substrate for microbial production of 2-pyrone 4,6-dicarboxylic acid (PDC). Acid-hydrolyzed green microalgae Chlorella emersonii (algae hydrolysate) was diluted to adjust the glucose concentration to 2 g/L and supplemented with the nutrients of Luria-Bertani (LB) medium (tryptone 10 g/L and yeast extract 5 g/L). When the algae hydrolysate was used as a fermentation source for recombinant Escherichia coli producing PDC, 0.43 g/L PDC was produced with a yield of 20.1% (mol PDC/mol glucose), whereas 0.19 g/L PDC was produced with a yield of 8.6% when LB medium supplemented with glucose was used. To evaluate the potential of algae hydrolysate alone as a fermentation medium for E. coli growth and PDC production, the nutrients of LB medium were reduced from the algae hydrolysate medium. Interestingly, 0.17 g/L PDC was produced even without additional nutrient, which was comparable to the case using pure glucose medium with nutrients of LB medium. When using a high concentration of hydrolysate without additional nutrients, 1.22 g/L PDC was produced after a 24-h cultivation with the yield of 16.1%. Overall, C. emersonii has high potential as cost-effective fermentation substrate for the microbial production of PDC. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Effect of pH in a Pd-based ethanol membraneless air breathing nanofluidic fuel cell with flow-through electrodes

    NASA Astrophysics Data System (ADS)

    López-Rico, C. A.; Galindo-de-la-Rosa, J.; Ledesma-García, J.; Arriaga, L. G.; Guerra-Balcázar, M.; Arjona, N.

    2015-12-01

    In this work, a nanofluidic fuel cell (NFC) in which streams flow through electrodes was used to investigate the role of pH in the cell performance using ethanol as fuel and two Pd nanoparticles as electrocatalysts: one commercially available (Pd/C from ETEK) and other synthesized using ionic liquids (Pd/C IL). The cell performances for both electrocatalysts in acid/acid (anodic/cathodic) streams were of 18.05 and 9.55 mW cm-2 for Pd/C ETEK and Pd/C IL. In alkaline/alkaline streams, decrease to 15.94 mW cm-2 for Pd/C ETEK and increase to 15.37 mW cm-2 for Pd/C IL. In alkaline/acidic streams both electrocatalysts showed similar cell voltages (up to 1 V); meanwhile power densities were of 87.6 and 99.4 mW cm-2 for Pd/C ETEK and Pd/C IL. The raise in cell performance can be related to a decrease in activation losses, the combined used of alkaline and acidic streams and these high values compared with flow-over fuel cells can be related to the enhancement of the cathodic mass transport by using three dimensional porous electrodes and two sources of oxygen: from air and from a saturated solution.

  10. Parametric entry corridors for lunar/Mars aerocapture missions

    NASA Technical Reports Server (NTRS)

    Ling, Lisa M.; Baseggio, Franco M.; Fuhry, Douglas P.

    1991-01-01

    Parametric atmospheric entry corridor data are presented for Earth and Mars aerocapture. Parameter ranges were dictated by the range of mission designs currently envisioned as possibilities for the Human Exploration Initiative (HEI). This data, while not providing a means for exhaustive evaluation of aerocapture performance, should prove to be a useful aid for preliminary mission design and evaluation. Entry corridors are expressed as ranges of allowable vacuum periapse altitude of the planetary approach hyperbolic orbit, with chart provided for conversion to an approximate flight path angle corridor at entry interface (125 km altitude). The corridor boundaries are defined by open-loop aerocapture trajectories which satisfy boundary constraints while utilizing the full aerodynamic control capability of the vehicle (i.e., full lift-up or full lift-down). Parameters examined were limited to those of greatest importance from an aerocapture performance standpoint, including the approach orbit hyperbolic excess velocity, the vehicle lift to drag ratio, maximum aerodynamic load factor limit, and the apoapse of the target orbit. The impact of the atmospheric density bias uncertainties are also included. The corridor data is presented in graphical format, and examples of the utilization of these graphs for mission design and evaluation are included.

  11. Enhanced optical and electrochemical properties of polyaniline/cobalt oxide nano composite

    NASA Astrophysics Data System (ADS)

    Niranjana, M.; Yesappa, L.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Devendrappa, H.

    2018-05-01

    Polyaniline and its composites at different wt. % of Cobalt oxide nano (PDC1, PDC2 and PDC5) were prepared by in-situ chemical reaction method The optical property was carried out using UV-Vis. Absorption Spectroscopy. The electrochemical property like cyclic voltammetry and galvonostatic charging-discharging was carried out for PANI and PDC nanocomposite electrode materials. A specific capacitance of 212.08 F/g and 336.41 F/g with scan rates 100 and 200 mV/s at 0.4 A/g current density respectively. These results are suggesting PDC composite is a prominent candidate for supercapacitor properties applications.

  12. DOD Inventory of Contracted Services: Actions Needed to Help Ensure Inventory Data Are Complete and Accurate

    DTIC Science & Technology

    2015-11-01

    for Personnel and Readiness NAVSEA Naval Sea Systems Command OFPP Office of Federal Procurement Policy OMB Office of Management and Budget PDC ...Documentation of Contractors ( PDC ) process is delegated to the manpower and programing functions at the commands. The PDC process collects information from...review results. Army’s PDC tool, used to inform the inventory review, tracks by location and functional requirement—such as administrative or

  13. Proper nozzle location, bit profile, and cutter arrangement affect PDC-bit performance significantly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Gavito, D.; Azar, J.J.

    1994-09-01

    During the past 20 years, the drilling industry has looked to new technology to halt the exponentially increasing costs of drilling oil, gas, and geothermal wells. This technology includes bit design innovations to improve overall drilling performance and reduce drilling costs. These innovations include development of drag bits that use PDC cutters, also called PDC bits, to drill long, continuous intervals of soft to medium-hard formations more economically than conventional three-cone roller-cone bits. The cost advantage is the result of higher rates of penetration (ROP's) and longer bit life obtained with the PDC bits. An experimental study comparing the effectsmore » of polycrystalline-diamond-compact (PDC)-bit design features on the dynamic pressure distribution at the bit/rock interface was conducted on a full-scale drilling rig. Results showed that nozzle location, bit profile, and cutter arrangement are significant factors in PDC-bit performance.« less

  14. Interaction of mammalian seminal plasma protein PDC-109 with cholesterol: implications for a putative CRAC domain.

    PubMed

    Scolari, Silvia; Müller, Karin; Bittman, Robert; Herrmann, Andreas; Müller, Peter

    2010-10-26

    Seminal plasma proteins of the fibronectin type II (Fn2) family modulate mammalian spermatogenesis by triggering the release of the lipids phosphatidylcholine and cholesterol from sperm cells. Whereas the specific interaction of these proteins with phosphatidylcholine is well-understood, their selectivity for cholesterol is unknown. To characterize the interaction between the bovine Fn2 protein PDC-109 and cholesterol, we have investigated the effect of PDC-109 on the dynamics of fluorescent cholesterol analogues in lipid vesicles by time-resolved fluorescence anisotropy. The data show that PDC-109 decreases the rotational mobility of cholesterol within the membrane and that the extent of this impact depends on the cholesterol structure, indicating a specific influence of PDC-109 on cholesterol. We propose that the cholesterol recognition/interaction amino acid consensus (CRAC) regions of PDC-109 are involved in the interaction with cholesterol.

  15. Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus

    PubMed Central

    Bekeredjian-Ding, Isabelle; Greil, Johann; Ammann, Sandra; Parcina, Marijo

    2014-01-01

    Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination. PMID:24904586

  16. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Up-conversion fluorescence: noncoherent excitation by sunlight.

    PubMed

    Baluschev, S; Miteva, T; Yakutkin, V; Nelles, G; Yasuda, A; Wegner, G

    2006-10-06

    We demonstrate up-conversion of noncoherent sunlight realized by ultralow excitation intensity. The bimolecular up-conversion process in our systems relies on the presence of a metastable triplet excited state, and thus has dramatically different photophysical characteristics relative to the other known methods for photon up-conversion (two-photon absorption, parametric processes, second harmonic generation, sequential multiphoton absorption, etc.).

  18. Test of the cosmic evolution using Gaussian processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming-Jian; Xia, Jun-Qing, E-mail: zhangmj@ihep.ac.cn, E-mail: xiajq@bnu.edu.cn

    2016-12-01

    Much focus was on the possible slowing down of cosmic acceleration under the dark energy parametrization. In the present paper, we investigate this subject using the Gaussian processes (GP), without resorting to a particular template of dark energy. The reconstruction is carried out by abundant data including luminosity distance from Union2, Union2.1 compilation and gamma-ray burst, and dynamical Hubble parameter. It suggests that slowing down of cosmic acceleration cannot be presented within 95% C.L., in considering the influence of spatial curvature and Hubble constant. In order to reveal the reason of tension between our reconstruction and previous parametrization constraint formore » Union2 data, we compare them and find that slowing down of acceleration in some parametrization is only a ''mirage'. Although these parameterizations fits well with the observational data, their tension can be revealed by high order derivative of distance D. Instead, GP method is able to faithfully model the cosmic expansion history.« less

  19. Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions

    PubMed Central

    Boor, P P C; Metselaar, H J; Mancham, S; van der Laan, L J W; Kwekkeboom, J

    2013-01-01

    Plasmacytoid dendritic cells (PDC) are involved in innate immunity by interferon (IFN)-α production, and in adaptive immunity by stimulating T cells and inducing generation of regulatory T cells (Treg). In this study we studied the effects of mammalian target of rapamycin (mTOR) inhibition by rapamycin, a commonly used immunosuppressive and anti-cancer drug, on innate and adaptive immune functions of human PDC. A clinically relevant concentration of rapamycin inhibited Toll-like receptor (TLR)-7-induced IFN-α secretion potently (−64%) but TLR-9-induced IFN-α secretion only slightly (−20%), while the same concentration suppressed proinflammatory cytokine production by TLR-7-activated and TLR-9-activated PDC with similar efficacy. Rapamycin inhibited the ability of both TLR-7-activated and TLR-9-activated PDC to stimulate production of IFN-γ and interleukin (IL)-10 by allogeneic T cells. Surprisingly, mTOR-inhibition enhanced the capacity of TLR-7-activated PDC to stimulate naive and memory T helper cell proliferation, which was caused by rapamycin-induced up-regulation of CD80 expression on PDC. Finally, rapamycin treatment of TLR-7-activated PDC enhanced their capacity to induce CD4+forkhead box protein 3 (FoxP3)+ regulatory T cells, but did not affect the generation of suppressive CD8+CD38+lymphocyte activation gene (LAG)-3+ Treg. In general, rapamycin inhibits innate and adaptive immune functions of TLR-stimulated human PDC, but enhances the ability of TLR-7-stimulated PDC to stimulate CD4+ T cell proliferation and induce CD4+FoxP3+ regulatory T cell generation. PMID:23968562

  20. The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell.

    PubMed

    Yu, Cui-Yun; Yang, Sa; Li, Zhi-Ping; Huang, Can; Ning, Qian; Huang, Wen; Yang, Wen-Tong; He, Dongxiu; Sun, Lichun

    2016-01-01

    The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ((1)H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the hydrophobicity of free DOX. This work proposes a novel strategy for in-situ one-step synthesis of macromolecular pro-drugs and fabrication of a core-shell micelle, demonstrating great potential for cancer chemotherapy.

  1. Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch.

    PubMed

    Khaydarov, J D; Andrews, J H; Singer, K D

    1994-06-01

    We report on experimental intracavity compression of generated pulses (down to one quarter of the pumppulse duration) in a widely tunable synchronously pumped picosecond optical parametric oscillator. This pulse compression takes place when the optical parametric oscillator is well above threshold and is due to the pronounced group-velocity mismatch of the pump and oscillating waves in the nonlinear crystal.

  2. Modeling and Analysis of Gated, Pulsed RFI and Its Effect on GPS Receivers: Analysis of Average Cycle Slip Rate and Average Bit Error Probability

    DTIC Science & Technology

    2014-04-01

    as a function of the pulse duty cycle PDC is [1]: ∆C/N0 = 20 log(1 − PDC ) (1) PDC , PW × PRF (2) where PW represents the pulse width (sec) and PRF is...corresponding degradation in C/N0 should now be modeled as ∆C/N0 = 20 log(1 − PDCLIM) (3) PDCLIM , PDC τobs TTC . (4) The degradation model of Eqn. 3 and 4...cycle that is the product of the duty cycle of the pulsed waveform ( PDC ) and the duty cycle of the of the gating waveform (τobs/TTC). While such a model

  3. The 2002 NIMH Provisional Diagnostic Criteria for Depression of Alzheimer's Disease (PDC-dAD): Gauging their Validity over a Decade Later.

    PubMed

    Sepehry, Amir A; Lee, Philip E; Hsiung, Ging-Yuek R; Beattie, B Lynn; Feldman, Howard H; Jacova, Claudia

    2017-01-01

    Presented herein is evidence for criterion, content, and convergent/discriminant validity of the NIMH-Provisional Diagnostic Criteria for depression of Alzheimer's Disease (PDC-dAD) that were formulated to address depression in Alzheimer's disease (AD). Using meta-analytic and systematic review methods, we examined criterion validity evidence in epidemiological and clinical studies comparing the PDC-dAD to Diagnostic and Statistical Manual of Mental Disorders fourth edition (DSM-IV), and International Classification of Disease (ICD 9) depression diagnostic criteria. We estimated prevalence of depression by PDC, DSM, and ICD with an omnibus event rate effect-size. We also examined diagnostic agreement between PDC and DSM. To gauge content validity, we reviewed rates of symptom endorsement for each diagnostic approach. Finally, we examined the PDC's relationship with assessment scales (global cognition, neuropsychiatric, and depression definition) for convergent validity evidence. The aggregate evidence supports the validity of the PDC-dAD. Our findings suggest that depression in AD differs from other depressive disorders including Major Depressive Disorder (MDD) in that dAD is more prevalent, with generally a milder presentation and with unique features not captured by the DSM. Although the PDC are the current standard for diagnosis of depression in AD, we identified the need for their further optimization based on predictive validity evidence.

  4. Differential epitope mapping of antibodies to PDC-E2 in patients with hematologic malignancies after allogeneic hematopoietic stem cell transplantation and primary biliary cirrhosis.

    PubMed

    Bellucci, Roberto; Oertelt, Sabine; Gallagher, Meagan; Li, Sigui; Zorn, Emmanuel; Weller, Edie; Porcheray, Fabrice; Alyea, Edwin P; Soiffer, Robert J; Munshi, Nikhil C; Gershwin, M Eric; Ritz, Jerome

    2007-03-01

    A unique characteristic of the autoimmune liver disease primary biliary cirrhosis (PBC) is the presence of high-titer and extremely specific autoantibodies to the E2 component of the pyruvate dehydrogenase complex (PDC-E2). Autoantibodies to PDC-E2 antigen have only been detected in patients with disease or in those who subsequently develop PBC. One exception has been a subgroup of patients with multiple myeloma (MM) who underwent allogeneic hematopoietic stem cell transplantation (HSCT) and received donor lymphocyte infusions (DLIs) after transplantation. These patients developed high-titer antibodies to a variety of myeloma-associated antigens, including PDC-E2, coincident with rejection of myeloma cells in vivo. To examine the specificity of autoantibodies to PDC in these patients, we screened sera from patients with MM, chronic leukemias, monoclonal gammopathy of unknown significance (MGUS), PBC, and healthy donors. Three of 11 patients with MM (27%) and 2 of 6 patients with chronic leukemias (33%) developed anti-PDC-E2 antibodies in association with DLI response; 2 of 12 (17%) patients in the MGUS pretreatment control population also had detectable anti-PDC responses. Interestingly, the epitope specificity of these PDC-E2 autoantibodies was distinctive, suggesting that the mechanisms leading to loss of tolerance in the transplantation patients are distinct from PBC.

  5. Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.

    2015-12-01

    Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.

  6. High-gain mid-infrared optical-parametric generation pumped by microchip laser.

    PubMed

    Ishizuki, Hideki; Taira, Takunori

    2016-01-25

    High-gain mid-infrared optical-parametric generation was demonstrated by simple single-pass configuration using PPMgLN devices pumped by giant-pulse microchip laser. Effective mid-infrared wavelength conversion with 1 mJ output energy from 2.4 mJ pumping using conventional PPMgLN could be realized. Broadband optical-parametric generation from 1.7 to 2.6 µm could be also measured using chirped PPMgLN.

  7. Quasi-phase-matched χ(3 )-parametric interactions in sinusoidally tapered waveguides

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammed F.

    2018-01-01

    In this article, I show how periodically tapered waveguides can be employed as efficient quasi-phase-matching schemes for four-wave mixing parametric processes in third-order nonlinear materials. As an example, a thorough study of enhancing third-harmonic generation in sinusoidally tapered fibers has been conducted. The quasi-phase-matching condition has been obtained for nonlinear parametric interactions in these structures using Fourier-series analysis. The dependencies of the conversion efficiency of the third harmonic on the modulation amplitude, tapering period, longitudinal-propagation direction, and pump wavelength have been studied. In comparison to uniform waveguides, the conversion efficiency has been enhanced by orders of magnitudes. I envisage that this work will have a great impact in the field of guided nonlinear optics using centrosymmetric materials.

  8. Enzymatic testing sensitivity, variability and practical diagnostic algorithm for pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Shin, Ha Kyung; Grahame, George; McCandless, Shawn E; Kerr, Douglas S; Bedoyan, Jirair K

    2017-11-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia in children. Prompt and correct diagnosis of PDC deficiency and differentiating between specific vs generalized, or secondary deficiencies has important implications for clinical management and therapeutic interventions. Both genetic and enzymatic testing approaches are being used in the diagnosis of PDC deficiency. However, the diagnostic efficacy of such testing approaches for individuals affected with PDC deficiency has not been systematically investigated in this disorder. We sought to evaluate the diagnostic sensitivity and variability of the various PDC enzyme assays in females and males at the Center for Inherited Disorders of Energy Metabolism (CIDEM). CIDEM data were filtered by lactic acidosis and functional PDC deficiency in at least one cell/tissue type (blood lymphocytes, cultured fibroblasts or skeletal muscle) identifying 186 subjects (51% male and 49% female), about half were genetically resolved with 78% of those determined to have a pathogenic PDHA1 mutation. Assaying PDC in cultured fibroblasts in cases where the underlying genetic etiology is PDHA1, was highly sensitive irrespective of gender; 97% (95% confidence interval [CI]: 90%-100%) and 91% (95% CI: 82%-100%) in females and males, respectively. In contrast to the fibroblast-based testing, the lymphocyte- and muscle-based testing were not sensitive (36% [95% CI: 11%-61%, p=0.0003] and 58% [95% CI: 30%-86%, p=0.014], respectively) for identifying known PDC deficient females with pathogenic PDHA1 mutations. In males with a known PDHA1 mutation, the sensitivity of the various cell/tissue assays (75% lymphocyte, 91% fibroblast and 88% muscle) were not statistically different, and the discordance frequency due to the specific cell/tissue used for assaying PDC was 0.15±0.11. Based on this data, a practical diagnostic algorithm is proposed accounting for current molecular approaches, enzyme testing sensitivity, and variability due to gender, cell/tissue type used for testing, and successive repeat testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions.

    PubMed

    Saas, Philippe; Varin, Alexis; Perruche, Sylvain; Ceroi, Adam

    2017-01-01

    There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC play a detrimental role.

  10. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions

    PubMed Central

    Saas, Philippe; Varin, Alexis; Perruche, Sylvain; Ceroi, Adam

    2017-01-01

    There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC play a detrimental role. PMID:28580131

  11. Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.

    PubMed

    Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa

    2011-11-01

    Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.

  12. An efficient method for gene silencing in human primary plasmacytoid dendritic cells: silencing of the TLR7/IRF-7 pathway as a proof of concept

    PubMed Central

    Smith, Nikaïa; Vidalain, Pierre-Olivier; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2016-01-01

    Plasmacytoid dendritic cells (pDC) are specialized immune cells that produce massive levels of type I interferon in response to pathogens. Unfortunately, pDC are fragile and extremely rare, rendering their functional study a tough challenge. However, because of their central role in numerous pathologies, there is a considerable need for an efficient and reproducible protocol for gene silencing in these cells. In this report, we tested six different methods for siRNA delivery into primary human pDC including viral-based, lipid-based, electroporation, and poly-ethylenimine (PEI) technologies. We show that lipid-based reagent DOTAP was extremely efficient for siRNA delivery into pDC, and did not induce cell death or pDC activation. We successfully silenced Toll-Like Receptor 7 (TLR7), CXCR4 and IFN regulatory factor 7 (IRF-7) gene expression in pDC as assessed by RT-qPCR or cytometry. Finally, we showed that TLR7 or IRF-7 silencing in pDC specifically suppressed IFN-α production upon stimulation, providing a functional validation of our transfection protocol. PMID:27412723

  13. Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

    PubMed

    Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-02-01

    In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Histone deacetylase inhibitor valproic acid affects plasmacytoid dendritic cells phenotype and function.

    PubMed

    Arbez, Jessy; Lamarthée, Baptiste; Gaugler, Béatrice; Saas, Philippe

    2014-08-01

    Plasmacytoid dendritic cells (PDC) represent a rare subset of dendritic cells specialized in the production of type I IFN in response to microbial pathogens. Recent data suggested that histone deacetylase (HDAC) inhibitors possess potent immunomodulatory properties both in vitro and in vivo. In this study, we assayed the ability of the HDAC inhibitor, valproic acid (VPA), to influence the phenotype and functional properties of human PDC isolated from peripheral blood. We showed that VPA inhibited the production of IFN-α and the proinflammatory cytokines TNF-α and IL-6 by CpG-activated PDC. VPA also affected the phenotype of PDC by reducing the expression of costimulatory molecules induced by CpG activation. Moreover, VPA reduced the capacity of CpG-stimulated PDC to promote CD4(+) T cell proliferation and IFN-γ production, while enhancing the proportion of IL-10 positive T cells. These results suggest that HDAC inhibition by VPA alters essential human PDC functions, highlighting the need for monitoring immune functions in cancer patients receiving HDAC inhibitors, but also making these drugs attractive therapies in inflammatory, and autoimmune diseases implicating PDC. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Characteristics of optical parametric oscillator synchronously pumped by Yb:KGW laser and based on periodically poled potassium titanyl phosphate crystal

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2018-03-01

    We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.

  16. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper andmore » a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the 3013 Inner Can (IC) is nearly identical.« less

  17. Wear and performance: An experimental study on PDC bits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, O.; Azar, J.J.

    1997-07-01

    Real-time drilling data, gathered under full-scale conditions, was analyzed to determine the influence of cutter dullness on PDC-bit rate of penetration. It was found that while drilling in shale, the cutters` wearflat area was not a controlling factor on rate of penetration; however, when drilling in limestone, wearflat area significantly influenced PDC bit penetration performance. Similarly, the presence of diamond lips on PDC cutters was found to be unimportant while drilling in shale, but it greatly enhanced bit performance when drilling in limestone.

  18. Bovine seminal PDC-109 protein: an overview of biochemical and functional properties.

    PubMed

    Srivastava, N; Jerome, A; Srivastava, S K; Ghosh, S K; Kumar, Amit

    2013-04-01

    Although long-term storage of bovine semen is desirable for wider use, successful cryopreservation depends on several factors, including various proteins present in seminal plasma. One such group of proteins, viz. bovine seminal plasma (BSP) proteins represents the major protein fraction in bovine seminal plasma. They constitute three major heparin-binding (HB-) acidic proteins secreted by seminal vesicles, viz. BSP-A1/-A2 (PDC-109), BSP-A3 and BSP-30-kDa. By purification studies it was deduced that PDC-109 is a polypeptide of 109 amino acids and contains two tandem repeating fibronectin type-II (Fn-II) domains, preceded by a 23 residue N-terminal domain. Though BSP-A1 and BSP-A2 are biochemically similar they differ only in glycosylation and their mixture is called PDC-109 or gonadostatins. PDC-109 exists as a polydisperse, multimeric self-associated molecule and possesses multifunctional properties, viz. binding to the surface of plasma membrane of spermatozoa causing conformational change in the sperm surface proteins and enhances motility. Besides binding, PDC-109 protein provokes cholesterol efflux from sperm membrane and promotes sperm reservoir by interacting with oviductal membrane. Interaction of sperm with PDC-109 protein induces sperm capacitation and acrosome reaction. However, prolonged exposure of spermatozoa with free floating PDC-109 protein as during processing for preservation, increases cholesterol efflux from spermatozoa. The efflux of sperm membrane cholesterol and disturbance in cholesterol:phospholipids ratio causes destabilization of plasma membrane thereby inducing cryoinjury to the sperm. In this review, the biochemical, functional properties of PDC-109 protein and its role during semen cryopreservation is summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  20. The major protein of bovine seminal plasma, PDC-109, is a molecular chaperone.

    PubMed

    Sankhala, Rajeshwer Singh; Swamy, Musti J

    2010-05-11

    The major protein of bovine seminal plasma, PDC-109, binds to choline phospholipids on the sperm plasma membrane and induces the efflux of cholesterol and choline phospholipids, which is an important step in sperm capacitation. The high abundance, polydisperse nature and reversibility of thermal unfolding of PDC-109 suggest significant similarities to chaperone-like proteins such as spectrin, alpha-crystallin, and alpha-synuclein. In the present study, biochemical and biophysical approaches were employed to investigate the chaperone-like activity of PDC-109. The effect of various stress factors such as high temperature, chemical denaturant (urea), and acidic pH on target proteins such as lactate dehydrogenase, alcohol dehydrogenase, and insulin were studied in both the presence and absence of PDC-109. The results obtained indicate that PDC-109 exhibits chaperone-like activity, as evidenced by its ability to suppress the nonspecific aggregation of target proteins and direct them into productive folding. Atomic force microscopic studies demonstrate that PDC-109 effectively prevents the fibrillation of insulin, which is of considerable significance since amyloidogenesis has been reported to be a serious problem during sperm maturation in certain species. Binding of phosphorylcholine or high ionic strength in the medium inhibited the chaperone-like activity of PDC-109, suggesting that most likely the aggregation state of the protein is important for the chaperone function. These observations show that PDC-109 functions as a molecular chaperone in vitro, suggesting that it may assist the proper folding of proteins involved in the bovine sperm capacitation pathway. To the best of our knowledge, this is the first study reporting chaperone-like activity of a seminal plasma protein.

  1. Critical Role of Plasmacytoid Dendritic Cells in Regulating Gene Expression and Innate Immune Responses to Human Rhinovirus-16

    PubMed Central

    Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.

    2017-01-01

    Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754

  2. Pre-Departure Clearance (PDC): An Analysis of Aviation Safety Reporting System Reports Concerning PDC Related Errors

    NASA Technical Reports Server (NTRS)

    Montalyo, Michael L.; Lebacqz, J. Victor (Technical Monitor)

    1994-01-01

    Airlines operating in the United States are required to operate under instrument flight rules (EFR). Typically, a clearance is issued via voice transmission from clearance delivery at the departing airport. In 1990, the Federal Aviation Administration (FAA) began deployment of the Pre-Departure Clearance (PDC) system at 30 U.S. airports. The PDC system utilizes aeronautical datalink and Aircraft Communication and Reporting System (ACARS) to transmit departure clearances directly to the pilot. An objective of the PDC system is to provide an immediate reduction in voice congestion over the clearance delivery frequency. Participating airports report that this objective has been met. However, preliminary analysis of 42 Aviation Safety Reporting System (ASRS) reports has revealed problems in PDC procedures and formatting which have caused errors in the proper execution of the clearance. It must be acknowledged that this technology, along with other advancements on the flightdeck, is adding more responsibility to the crew and increasing the opportunity for error. The present study uses these findings as a basis for further coding and analysis of an additional 82 reports obtained from an ASRS database search. These reports indicate that clearances are often amended or exceptions are added in order to accommodate local ATC facilities. However, the onboard ACARS is limited in its ability to emphasize or highlight these changes which has resulted in altitude and heading deviations along with increases in ATC workload. Furthermore, few participating airports require any type of PDC receipt confirmation. In fact, 35% of all ASRS reports dealing with PDC's include failure to acquire the PDC at all. Consequently, this study examines pilots' suggestions contained in ASRS reports in order to develop recommendations to airlines and ATC facilities to help reduce the amount of incidents that occur.

  3. Beneficial effect of feeding a ketogenic diet to mothers on brain development in their progeny with a murine model of pyruvate dehydrogenase complex deficiency.

    PubMed

    Pliss, Lioudmila; Jatania, Urvi; Patel, Mulchand S

    2016-06-01

    Pyruvate dehydrogenase complex (PDC) deficiency is a major inborn error of oxidative metabolism of pyruvate in the mitochondria causing congenital lactic acidosis and primarily structural and functional abnormalities of the central nervous system. To provide an alternate source of acetyl-CoA derived from ketone bodies to the developing brain, a formula high in fat content is widely employed as a treatment. In the present study we investigated efficacy of a high-fat diet given to mothers during pregnancy and lactation on lessening of the impact of PDC deficiency on brain development in PDC-deficient female progeny. A murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene was employed in this study. Maternal consumption of a high-fat diet during pregnancy and lactation had no effect on number of live-birth, body growth, tissue PDC activity levels, as well as the in vitro rates of glucose oxidation and fatty acid biosynthesis by the developing brain of PDC-deficient female offspring during the postnatal age 35 days, as compared to the PDC-deficient progeny born to dams on a chow diet. Interestingly, brain weight was normalized in PDC-deficient progeny of high fat-fed mothers with improvement in impairment in brain structure deficit whereas brain weight was significantly decreased and was associated with greater cerebral structural defects in progeny of chow-fed mothers as compared to control progeny of mothers fed either a chow or high fat diet. The findings provide for the first time experimental support for beneficial effects of a ketogenic diet during the prenatal and early postnatal periods on the brain development of PDC-deficient mammalian progeny.

  4. New PDC bit design reduces vibrational problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.; Alexander, W.L.

    1995-05-22

    A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization,more » vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.« less

  5. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    NASA Astrophysics Data System (ADS)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  6. Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.

    PubMed

    Xu, Longtao; Jin, Shilei; Li, Yifei

    2016-04-18

    We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.

  7. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.

    PubMed

    Rana, N F; Gente, S; Rincé, A; Auffray, Y; Laplace, J M

    2012-09-01

    Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase (ldh) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase (pdc) gene (from Sarcina ventriculi or Clostridium acetobutylicum) in place ldh1. When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg(-1) of pdc specific activity, respectively. Highest activity (47 U mg(-1)) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.

  8. Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan

    PubMed Central

    Hata, Yukiko; Ma, Ning; Yoneda, Misao; Morimoto, Satoru; Okano, Hideyuki; Murayama, Shigeo; Kawanishi, Shosuke; Kuzuhara, Shigeki; Kokubo, Yasumasa

    2018-01-01

    Objective: The Kii Peninsula of Japan is known to be a high incidence area of amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) with tauopathy. Nitrative stress and oxidative stress on ALS/PDC and their relationship to tau pathology were clarified. Methods: Seven patients with Kii ALS/PDC (3 males and 4 females, average age 70.7 years, 3 with ALS, 2 with ALS with dementia, and 2 with PDC) were analyzed in this study. Five patients with Alzheimer's disease and five normal aged subjects were used as controls. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded temporal lobe sections (the hippocampal area including hippocampus, prosubiculum, subiculum, presubiculum, and parahippocampal gyri) using antibodies to detect phosphorylated tau (anti-AT-8), nitrated guanine (anti-8-NG), anti-iNOS, anti-NFκB, and oxidized guanine (anti-8-OHdG) antibodies. Results: Most hippocampal neurons of Kii ALS/PDC patients were stained with anti-8-NG, anti-iNOS, anti-NFκB, and anti-8-OHdG antibodies and some AT-8 positive neurons were co-stained with anti-8-NG antibody. The numbers of 8-NG positive neurons and 8-OHdG positive neurons were greater than AT-8 positive neurons and the number of 8-NG positive neurons was larger in patients with Kii ALS/PDC than in controls. Conclusion: Nitrative and oxidative stress may take priority over tau accumulation and lead to the neurodegeneration in Kii ALS/PDC. PMID:29403345

  9. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency

    PubMed Central

    Min, Ting; Yin, Xue-ren; Chen, Kun-song

    2012-01-01

    The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO2 and ethylene treatments efficiently removed the astringency from ‘Mopan’ persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF–DkADH/DkPDC cascade is involved in regulating persimmon de-astringency. PMID:23095993

  10. Identification of HLA-A2–restricted CD8+ Cytotoxic T Cell Responses in Primary Biliary Cirrhosis

    PubMed Central

    Kita, Hiroto; Lian, Zhe-Xiong; Van de Water, Judy; He, Xiao-Song; Matsumura, Shuji; Kaplan, Marshall; Luketic, Velimir; Coppel, Ross L.; Ansari, Aftab A.; Gershwin, M. Eric

    2002-01-01

    Primary biliary cirrhosis (PBC) is characterized by an intense biliary inflammatory CD4+ and CD8+ T cell response. Very limited information on autoantigen-specific cytotoxic T lymphocyte (CTL) responses is available compared with autoreactive CD4+ T cell responses. Using peripheral blood mononuclear cells (PBMCs) from PBC, we identified an HLA-A2–restricted CTL epitope of the E2 component of pyruvate dehydrogenase (PDC-E2), the immunodominant mitochondrial autoantigen. This peptide, amino acids 159–167 of PDC-E2, induces specific MHC class I–restricted CD8+ CTL lines from 10/12 HLA-A2+ PBC patients, but not controls, after in vitro stimulation with antigen-pulsed dendritic cells (DCs). PDC-E2–specific CTLs could also be generated by pulsing DCs with full-length recombinant PDC-E2 protein. Furthermore, using soluble PDC-E2 complexed with either PDC-E2–specific human monoclonal antibody or affinity-purified autoantibodies against PDC-E2, the generation of PDC-E2–specific CTLs, occurred at 100-fold and 10-fold less concentration, respectively, compared with soluble antigen alone. Collectively, these data demonstrate that autoantibody, helper, and CTL epitopes all contain a shared peptide sequence. The finding that autoantigen–immune complexes can not only cross-present but also that presentation of the autoantigen is of a higher relative efficiency, for the first time defines a unique role for autoantibodies in the pathogenesis of an autoimmune disease. PMID:11781370

  11. Nitrative Stress and Tau Accumulation in Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) in the Kii Peninsula, Japan.

    PubMed

    Hata, Yukiko; Ma, Ning; Yoneda, Misao; Morimoto, Satoru; Okano, Hideyuki; Murayama, Shigeo; Kawanishi, Shosuke; Kuzuhara, Shigeki; Kokubo, Yasumasa

    2017-01-01

    Objective: The Kii Peninsula of Japan is known to be a high incidence area of amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) with tauopathy. Nitrative stress and oxidative stress on ALS/PDC and their relationship to tau pathology were clarified. Methods: Seven patients with Kii ALS/PDC (3 males and 4 females, average age 70.7 years, 3 with ALS, 2 with ALS with dementia, and 2 with PDC) were analyzed in this study. Five patients with Alzheimer's disease and five normal aged subjects were used as controls. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded temporal lobe sections (the hippocampal area including hippocampus, prosubiculum, subiculum, presubiculum, and parahippocampal gyri) using antibodies to detect phosphorylated tau (anti-AT-8), nitrated guanine (anti-8-NG), anti-iNOS, anti-NFκB, and oxidized guanine (anti-8-OHdG) antibodies. Results: Most hippocampal neurons of Kii ALS/PDC patients were stained with anti-8-NG, anti-iNOS, anti-NFκB, and anti-8-OHdG antibodies and some AT-8 positive neurons were co-stained with anti-8-NG antibody. The numbers of 8-NG positive neurons and 8-OHdG positive neurons were greater than AT-8 positive neurons and the number of 8-NG positive neurons was larger in patients with Kii ALS/PDC than in controls. Conclusion: Nitrative and oxidative stress may take priority over tau accumulation and lead to the neurodegeneration in Kii ALS/PDC.

  12. Self-healing of quantum entanglement after an obstruction.

    PubMed

    McLaren, Melanie; Mhlanga, Thandeka; Padgett, Miles J; Roux, Filippus S; Forbes, Andrew

    2014-01-01

    Quantum entanglement between photon pairs is fragile and can easily be masked by losses in transmission path and noise in the detection system. When observing the quantum entanglement between the spatial states of photon pairs produced by parametric down-conversion, the presence of an obstruction introduces losses that can mask the correlations associated with the entanglement. Here we show that we can overcome these losses by measuring in the Bessel basis, thus once again revealing the entanglement after propagation beyond the obstruction. We confirm that, for the entanglement of orbital angular momentum, measurement in the Bessel basis is more robust to these losses than measuring in the usually employed Laguerre-Gaussian basis. Our results show that appropriate choice of measurement basis can overcome some limitations of the transmission path, perhaps offering advantages in free-space quantum communication or quantum processing systems.

  13. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglementmore » architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.« less

  14. Parabolic Dish Concentrator (PDC-2) Development

    NASA Technical Reports Server (NTRS)

    Rafinejad, D.

    1984-01-01

    The design of the Parabolic Dish Concentrator (PDC-2) is described. The following five subsystems of the concentrator are discussed: (1) reflective surface subsystem, (2) support structure subsystem, (3) foundation, (4) drive subsystem, and (5) electrical and control subsystem. The status of the PDC-2 development project is assessed.

  15. Four-wave parametric oscillation in sodium vapor by electromagnetically induced diffraction.

    PubMed

    Harada, Ken-ichi; Ogata, Minoru; Mitsunaga, Masaharu

    2007-05-01

    We have observed a novel type of parametric oscillation in sodium atomic vapor where four off-axis signal waves simultaneously build up under resonant and counterpropagating pump beams with elliptical beam profiles. The four waves, two of them Stokes shifted and the other two anti-Stokes shifted, have similar output powers of up to 10 mW with a conversion efficiency of 30% and are parametrically coupled by electromagnetically induced diffraction.

  16. Impact of a telephonic outreach program on medication adherence in Medicare Advantage Prescription Drug (MAPD) plan beneficiaries.

    PubMed

    Park, Haesuk; Adeyemi, Ayoade; Wang, Wei; Roane, Teresa E

    To determine the impact of a telephone call reminder program provided by a campus-based medication therapy management call center on medication adherence in Medicare Advantage Part D (MAPD) beneficiaries with hypertension. The reminder call services were offered to eligible MAPD beneficiaries, and they included a live interactive conversation with patients to assess the use of their medications. This study used a quasi-experimental design for comparing the change in medication adherence between the intervention and matched control groups. Adherence, defined by proportion of days covered (PDC), was measured using incurred medication claims 6 months before and after the adherence program was implemented. A difference-in-differences approach with propensity score matching was used. After propensity score matching, paired samples included 563 patients in each of the intervention and control groups. The mean PDC (standard deviation) increased significantly during postintervention period by 17.3% (33.6; P <0.001) and 13.8% (32.3; P <0.001) for the intervention and the control groups, respectively; the greater difference-in-differences increase of 3.5% (36.3) in the intervention group over the control group was statistically significant (P = 0.022). A generalized estimating equation model adjusting for covariates further confirmed that the reminder call group had a significant increase in pre-post PDC (P = 0.021), as compared with the control group. Antihypertensive medication adherence increased in both reminder call and control groups, but the increase was significantly higher in the intervention group. A telephonic outreach program was effective in improving antihypertensive medication adherence in MAPD beneficiaries. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Simultaneous parametric generation and up-conversion of entangled optical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r

    A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less

  18. PDC bits break ground with advanced vibration mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-10-01

    Advancements in PDC bit technology have resulted in the identification and characterization of different types of vibrational modes that historically have limited PDC bit performance. As a result, concepts have been developed that prevent the initiation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit performance. As a result, concepts have been developed that prevent the imitation of vibration and also mitigate its damaging effects once it occurs. This vibration-reducing concept ensures more efficient use of the energy available to a PDC bit,more » thereby improving its performance. This improved understanding of the complex forces affecting bit performance is driving bit customization for specific drilling programs.« less

  19. Estimating time-varying drug adherence using electronic records: extending the proportion of days covered (PDC) method.

    PubMed

    Bijlsma, Maarten J; Janssen, Fanny; Hak, Eelko

    2016-03-01

    Accurate measurement of drug adherence is essential for valid risk-benefit assessments of pharmacologic interventions. To date, measures of drug adherence have almost exclusively been applied for a fixed-time interval and without considering changes over time. However, patients with irregular dosing behaviour commonly have a different prognosis than patients with stable dosing behaviour. We propose a method, based on the proportion of days covered (PDC) method, to measure time-varying drug adherence and drug dosage using electronic records. We compare a time-fixed PDC method with the time-varying PDC method through detailed examples and through summary statistics of 100 randomly selected patients on statin therapy. We demonstrate that time-varying PDC method better distinguishes an irregularly dosing patient from a stably dosing patient and demonstrate how the time-fixed method can result in a biassed estimate of drug adherence. Furthermore, the time-varying PDC method may be better used to reduce certain types of confounding and misclassification of exposure. The time-varying PDC method may improve longitudinal and time-to-event studies that associate adherence with a clinical outcome or (intervention) studies that seek to describe changes in adherence over time. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Biophysical investigations on the interaction of the major bovine seminal plasma protein, PDC-109, with heparin.

    PubMed

    Sankhala, Rajeshwer S; Damai, Rajani S; Anbazhagan, V; Kumar, C Sudheer; Bulusu, Gopalakrishnan; Swamy, Musti J

    2011-11-10

    PDC-109, the major bovine seminal plasma protein, binds to sperm plasma membrane and modulates capacitation in the presence of heparin. In view of this, the PDC-109/heparin interaction has been investigated employing various biophysical approaches. Isothermal titration calorimetric studies yielded the association constant and changes in enthalpy and entropy for the interaction at 25 °C (pH 7.4) as 1.92 (±0.2) × 10(5) M(-1), 18.6 (±1.6) kcal M(-1), and 86.5 (±5.1) cal M(-1) K(-1), respectively, whereas differential scanning calorimetric studies indicated that heparin binding results in a significant increase in the thermal stability of PDC-109. The affinity decreases with increase in pH and ionic strength, consistent with the involvement of electrostatic forces in this interaction. Circular dichroism spectroscopic studies indicated that PDC-109 retains its conformational features even up to 70-75 °C in the presence of heparin, whereas the native protein unfolds at about 55 °C. Atomic force microscopic studies demonstrated that large oligomeric structures are formed upon binding of PDC-109 to heparin, indicating an increase in the local density of the protein, which may be relevant to the ability of heparin to potentiate PDC-109 induced sperm capacitation.

  1. Spermine and spermidine act as chemical chaperones and enhance chaperone-like and membranolytic activities of major bovine seminal plasma protein, PDC-109.

    PubMed

    Singh, Bhanu Pratap; Saha, Ishita; Nandi, Indrani; Swamy, Musti J

    2017-12-02

    The major bovine seminal plasma protein, PDC-109, binds to choline phospholipids of the sperm plasma membrane and induces an efflux of cholesterol and choline phospholipids (cholesterol efflux), which is crucial for sperm capacitation. PDC-109 also exhibits chaperone-like activity and protects target proteins against various kinds of stress. Here we show that the polyamines spermine and spermidine, present in high concentration in the seminal plasma of various mammals, increase the ability of PDC-109 to perturb membrane structure as well as its chaperone-like activity. Interestingly, spermine/spermidine alone did not perturb membrane structure but exhibited chaperone-like activity by protecting target proteins against thermal and oxidative stress. When spermine/spermidine was used along with PDC-109, the observed chaperone-like activity was considerably higher than that expected for a simple additive effect, suggesting that PDC-109 and the polyamines act in a synergistic fashion. These results indicate that at the high concentrations present in the seminal plasma spermine/spermidine exhibit a positive modulatory effect on the chaperone-like activity of PDC-109 and may also function as chemical chaperones and protect other seminal plasma proteins from various kinds of stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  3. Demonstration of optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber pumped by a picosecond mode-locked ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Si-Gang; Wang, Xiao-Jian; Gou, Dou-Dou; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong

    2014-01-01

    We report the experimental demonstration of the optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber (PCF) with a zero group velocity dispersion (GVD) wavelength of 1062 nm pumped by a homemade tunable picosecond mode-locked ytterbium-doped fiber laser. A broad parametric gain band is obtained by pumping the PCF in the anomalous GVD regime with a relatively low power. Two separated narrow parametric gain bands are observed by pumping the PCF in the normal GVD regime. The peak of the parametric gain profile can be tuned from 927 to 1038 nm and from 1099 to 1228 nm. This widely tunable parametric gain band can be used for a broad band optical parametric amplifier, large span wavelength conversion or a tunable optical parametric oscillator.

  4. Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2014-12-01

    We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.

  5. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and infrastructure may be generated even from small eruptions and across a wide range of eruption styles.

  6. Neuropsychological study of amyotrophic lateral sclerosis and parkinsonism-dementia complex in Kii peninsula, Japan

    PubMed Central

    2014-01-01

    Background The Kii peninsula of Japan is one of the foci of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS/PDC) in the world. The purpose of this study is to clarify the neuropsychological features of the patients with ALS/PDC of the Kii peninsula (Kii ALS/PDC). Methods The medical interview was done on 13 patients with Kii ALS/PDC, 12 patients with Alzheimer’s disease, 10 patients with progressive supranuclear palsy, 10 patients with frontotemporal lobar degeneration and 10 patients with dementia with Lewy bodies. These patients and their carer/spouse were asked to report any history of abulia-apathy, hallucination, personality change and other variety of symptoms. Patients also underwent brain magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and neuropsychological tests comprising the Mini Mental State Examination, Raven’s Colored Progressive Matrices, verbal fluency, and Paired-Associate Word Learning Test and some of them were assessed with the Frontal Assessment Battery (FAB). Results All patients with Kii ALS/PDC had cognitive dysfunction including abulia-apathy, bradyphrenia, hallucination, decrease of extraversion, disorientation, and delayed reaction time. Brain MRI showed atrophy of the frontal and/or temporal lobes, and SPECT revealed a decrease in cerebral blood flow of the frontal and/or temporal lobes in all patients with Kii ALS/PDC. Disorientation, difficulty in word recall, delayed reaction time, and low FAB score were recognized in Kii ALS/PDC patients with cognitive dysfunction. Conclusions The core neuropsychological features of the patients with Kii ALS/PDC were characterized by marked abulia-apathy, bradyphrenia, and hallucination. PMID:25041813

  7. Minimally invasive fluoroscopic percutaneous peritoneal dialysis catheter salvage.

    PubMed

    Narayan, Rajeev; Fried, Terrance; Chica, Gerardo; Schaefer, Mathew; Mullins, Daniel

    2014-06-01

    Peritoneal dialysis catheter (PDC) dysfunction can often be treated fluoroscopically by manipulation with wire, balloon or stiff stylet, saving surgical intervention for refractory cases. We describe an enhanced percutaneous approach to PDC salvage that can lead to a more definitive intervention and salvage for cases refractory to fluoroscopic manipulation. In five cases of PD catheter malfunction, the deep cuff was dissected free after a 0.035 hydrophilic wire was passed into the peritoneum through the PDC. Only the intraperitoneal portion of the PDC was explanted. The PDC was cleared of obstruction and omentum. The intraperitoneal portion of the PDC was reimplanted over wire via a peel-away sheath and the deep cuff sutured. Omental entrapment was present in three of five patients and fibrin occlusion in four of the five cases. All catheters were repaired successfully by the described technique. Post procedure, 3-5 days of lower volume, recumbent PD exchanges were performed prior to full-dose PD. No perioperative complications or leaks were noted. All PDCs were patent at 6 months. One patient required laparoscopy for recurrent omental wrapping 3 months post intervention. PDC salvage in this manner is a cost-effective alternative to laparoscopic repair of PDCs failing catheter manipulation. The infection barrier afforded by the original superficial cuff and subcutaneous tunnel is maintained. PD can be resumed immediately. Only refractory cases need laparoscopy. This procedure allows for a more definitive correction of catheter migration and obstruction, avoids placement of a new PDC or temporary hemodialysis, is cost-effective and expands percutaneous options for dysfunctional PD catheters.

  8. The Proliferation of PDC-Type Environments in Industry and Universities

    NASA Technical Reports Server (NTRS)

    Shishko, R.

    2000-01-01

    JPL's Project Design Cenger (PDC), opened in 1994, has become a model for other facilities of the same type in the aerospace industry. More recently, PDC-type environments have been adopted by some university aerospace departments as an educational tool. This paper discusses some of these facilities and their possible future direction.

  9. Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtanowicz, A.K.; Kuru, E.

    1993-12-01

    An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter`s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verificationsmore » of the model. Qualitative verification shows that the model`s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model`s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.« less

  10. Study on the Effect of Diamond Grain Size on Wear of Polycrystalline Diamond Compact Cutter

    NASA Astrophysics Data System (ADS)

    Abdul-Rani, A. M.; Che Sidid, Adib Akmal Bin; Adzis, Azri Hamim Ab

    2018-03-01

    Drilling operation is one of the most crucial step in oil and gas industry as it proves the availability of oil and gas under the ground. Polycrystalline Diamond Compact (PDC) bit is a type of bit which is gaining popularity due to its high Rate of Penetration (ROP). However, PDC bit can easily wear off especially when drilling hard rock. The purpose of this study is to identify the relationship between the grain sizes of the diamond and wear rate of the PDC cutter using simulation-based study with FEA software (ABAQUS). The wear rates of a PDC cutter with a different diamond grain sizes were calculated from simulated cuttings of cutters against granite. The result of this study shows that the smaller the diamond grain size, the higher the wear resistivity of PDC cutter.

  11. Polymorphisms in the phosducin (PDC) gene on chromosome 1q25-32

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, P.; Mansergh, F.C.; Farrar, G.J.

    1994-09-01

    Phosducin (33 kDa protein or MEKA) is a principal water-soluble phosphoprotein in the rod and cone photoreceptor cells and pinealocytes. This protein modulates the phototransduction cascade by binding to the beta and gamma subunit complexes of transducin. The PDC gene has been mapped to 1q25-32, the region of linkage of two hereditary retinal degenerative disorders; autosomal dominant juvenile-onset open-angle glaucoma and one form of autosomal recessive RP. Using previously published sequence data, PCR primers were designed to amplify the coding and 5{prime} flanking regions of the PDC gene. Direct sequencing revealed three polymorphisms in the 5{prime} flanking region, two ofmore » which were in regions highly homologous between humans and mice. Analysis of the polymorphisms was then extended to larger population samples using SSCPE and denaturing gel analysis. The first polymorphism PDC1 resulted from an insertion of a G residue at position -653/4. Allele frequencies were determined to be 0.51 (insG) and 0.49 (normal) giving a PIC value of 0.50. A deletion of a T residue at position -488 was the basis of the PDC2 polymorphism with allele frequencies of 0.88 (normal) and 0.12 (delT) and a PIC value of 0.21. Interestingly, the allele with an inserted G residue in PDC1 always segregrated with the deleted T allele in PDC2. The third polymorphism PDC3 was caused by a T or G residue at position -1083. Allele frequencies of 0.26 (G residue) and 0.74 (T residue) were determined from an analysis of 80 individuals with an overall PIC value of 0.39. The identification of these three polymorphisms in the PDC gene will be useful for future genetic linkage studies of chromosome 1q in inherited retinopathies.« less

  12. Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus-infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus.

    PubMed

    Frenz, Theresa; Graalmann, Lukas; Detje, Claudia N; Döring, Marius; Grabski, Elena; Scheu, Stefanie; Kalinke, Ulrich

    2014-09-01

    Upon treatment with vesicular stomatitis virus (VSV) particles, plasmacytoid dendritic cells (pDC) are triggered to mount substantial type I IFN responses, whereas myeloid DC (mDC) are only minor producers. Interestingly, bone marrow-derived (BM-)mDC were more vulnerable to infection with enhanced GFP (eGFP)-expressing VSV (VSVeGFP) than BM-pDC. BM-pDC stimulated with wild-type VSV mounted TLR-dependent IFN responses that were independent of RIG-I-like helicase (RLH) signaling. In contrast, in BM-pDC the VSV variant M2 induced particularly high IFN responses triggered in a TLR- and RLH-dependent manner, whereas BM-mDC stimulation was solely RLH-dependent. Importantly, VSVeGFP treatment of BM-pDC derived from IFN-β yellow fluorescent protein (YFP) reporter mice (messenger of IFN-β) resulted in YFP(+) and eGFP(+) single-positive cells, whereas among messenger of IFN-β-BM-mDC most YFP(+) cells were also eGFP(+). This observation indicated that unlike mDC, direct virus infection was not required to trigger IFN responses of pDC. VSV-infected BM-mDC triggered BM-pDC to mount significantly higher IFN responses than free virus particles. Stimulation with infected cells enhanced the percentages of pDC subsets expressing either IFN-β(+) or IFN-α6(+) plus IFN-β(+). Irrespective of whether stimulated with free virus or infected cells, IFN induction was dependent on autophagy of pDC, whereas autophagy of the infected mDC was dispensable. Collectively, these results indicated that productive VSV infection was needed to trigger IFN responses of mDC, but not of pDC, and that IFN responses were primarily induced by virus-infected cells that stimulated pDC in a TLR-dependent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  13. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Random phage mimotopes recognized by monoclonal antibodies against the pyruvate dehydrogenase complex-E2 (PDC-E2).

    PubMed Central

    Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L

    1996-01-01

    Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855289

  15. Use of alternating and pulsed direct current electrified fields for zebra mussel control

    USGS Publications Warehouse

    Luoma, James A.; Dean, Jan C.; Severson, Todd J.; Wise, Jeremy K.; Barbour, Matthew

    2017-01-01

    Alternatives to chemicals for controlling dreissenid mussels are desirable for environmental compatibility, but few alternatives exist. Previous studies have evaluated the use of electrified fields for stunning and/or killing planktonic life stages of dreissenid mussels, however, the available literature on the use of electrified fields to control adult dreissenid mussels is limited. We evaluated the effects of sinusoidal alternating current (AC) and 20% duty cycle square-wave pulsed direct current (PDC) exposure on the survival of adult zebra mussels at water temperatures of 10, 15, and 22 °C. Peak voltage gradients of ~ 17 and 30 Vp/cm in the AC and PDC exposures, respectively, were continuously applied for 24, 48, or 72 h. Peak power densities ranged from 77,999 to 107,199 µW/cm3 in the AC exposures and 245,320 to 313,945 µW/cm3 in the PDC exposures. The peak dose ranged from 6,739 to 27,298 Joules/cm3 and 21,306 to 80,941 Joules/cm3 in the AC and PDC exposures, respectively. The applied power ranged from 16.6 to 68.9 kWh in the AC exposures and from 22.2 to 86.4 kWh in the PDC exposures. Mortality ranged from 2.7 to 92.7% in the AC exposed groups and from 24.0 to 98.7% in PDC exposed groups. Mortality increased with corresponding increases in water temperature and exposure duration, and we observed more zebra mussel mortality in the PDC exposures. Exposures conducted with AC required less of a peak dose (Joules/cm3) but more applied power (kWh) to achieve the same level of adult zebra mussel mortality as corresponding PDC exposures. The results demonstrate that 20% duty cycle square-wave PDC requires less energy than sinusoidal AC to inducing the same level of adult zebra mussel mortality.

  16. Discrete parametric band conversion in silicon for mid-infrared applications.

    PubMed

    Tien, En-Kuang; Huang, Yuewang; Gao, Shiming; Song, Qi; Qian, Feng; Kalyoncu, Salih K; Boyraz, Ozdal

    2010-10-11

    Silicon photonics has great potential for mid-wave-infrared applications. The dispersion of waveguide can be manipulated by waveguide dimension and cladding materials. Simulation shows that <3 μm wide conversion can be achieved by tuning the pump wavelength.

  17. PDC bits: What`s needed to meet tomorrow`s challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, T.M.; Sinor, L.A.

    1994-12-31

    When polycrystalline diamond compact (PDC) bits were introduced in the mid-1970s they showed tantalizingly high penetration rates in laboratory drilling tests. Single cutter tests indicated that they had the potential to drill very hard rocks. Unfortunately, 20 years later we`re still striving to reach the potential that these bits seem to have. Many problems have been overcome, and PDC bits have offered capabilities not possible with roller cone bits. PDC bits provide the most economical bit choice in many areas, but their limited durability has hampered their application in many other areas.

  18. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  19. 31P NMR and AFM studies on the destabilization of cell and model membranes by the major bovine seminal plasma protein, PDC-109.

    PubMed

    Damai, Rajani S; Sankhala, Rajeshwer S; Anbazhagan, Veerappan; Swamy, Musti J

    2010-11-01

    The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by (31)P NMR spectroscopy and atomic force microscopy. Additionally, the effect of cholesterol on the binding of PDC-109 to phosphatidylcholine (PC) membranes was studied. Binding of PDC-109 to MLVs of DMPC and DPPG induced the formation of an isotropic signal in their (31)P NMR spectra, which increased with increasing protein/lipid ratio and temperature, consistent with protein-induced disruption of the MLVs and the formation of small unilamellar vesicles or micelles but not inverse hexagonal or cubic phases. Incorporation of cholesterol in the DMPC MLVs afforded a partial stabilization of the lamellar structure, consistent with previous reports of membrane stabilization by cholesterol. AFM results are consistent with the above findings and show that addition of PDC-109 leads to a complete breakdown of PC membranes. The fraction of isotropic signal in (31)P NMR spectra of DPPG in the presence of PDC-109 was less than that of DMPC under similar conditions, suggesting a significantly higher affinity of the protein for PC. Confocal microscopic studies showed that addition of PDC-109 to human erythrocytes results in a disruption of the plasma membrane and release of hemoglobin into the solution, which was dependent on the protein concentration and incubation time.

  20. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein*

    PubMed Central

    Kacirova, Miroslava; Kosek, Dalibor; Kadek, Alan; Man, Petr; Vecer, Jaroslav; Herman, Petr; Obsilova, Veronika; Obsil, Tomas

    2015-01-01

    Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtβγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtβγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function. PMID:25971962

  1. Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells

    PubMed Central

    Tokita, Daisuke; Sumpter, Tina L.; Raimondi, Giorgio; Zahorchak, Alan F.; Wang, Zhiliang; Nakao, Atsunori; Mazariegos, George V.; Abe, Masanori; Thomson, Angus W.

    2008-01-01

    Background/Aims The liver is comparatively rich in plasmacytoid (p) dendritic cells (DC),- innate immune effector cells that are also thought to play key roles in the induction and regulation of adaptive immunity. Methods Liver and spleen pDC were purified from fms-like tyrosine kinase ligand-reated control or lipopolysaccharide-injected C57BL/10 mice. Flow cytometric and molecular biologic assays were used to characterize their function and interaction with naturally-occurring regulatory T cells (Treg). Results While IL-10 production was greater for freshly-isolated liver compared with splenic pDC, the former produced less bioactive IL-12p70. Moreover, liver pDC expressed a low Delta4/Jagged1 Notch ligand ratio, skewed towards T helper 2 cell differentiation/cytokine production, and promoted allogeneic CD4+ T cell apoptosis. T cell proliferation in response to liver pDC was, however, enhanced by blocking IL-10 function at the initiation of cultures. In the absence of naturally occurring CD4+CD25+ regulatory T cells, similar levels of T cell proliferation were induced by liver and spleen pDC and the pro-apoptotic activity of liver pDC was reversed. Conclusion The inferior T cell allostimulatory activity of in vivo-stimulated liver pDC may depend on the presence and function of Treg, a property that may contribute to inherent liver tolerogenicity. PMID:18926588

  2. Dendritic cell fate is determined by BCL11A

    PubMed Central

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  3. New PDC cutters improve drilling efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.

    1997-10-27

    New polycrystalline diamond compact (PDC) cutters increase penetration rates and cumulative footage through improved abrasion, impact, interface strength, thermal stability, and fatigue characteristics. Studies of formation characterization, vibration analysis, hydraulic layouts, and bit selection continue to improve and expand PDC bit applications. The paper discusses development philosophy, performance characteristics and requirements, Types A, B, and C cutters, and combinations.

  4. Causes of wear of PDC bits and ways of improving their wear resistance

    NASA Astrophysics Data System (ADS)

    Timonin, VV; Smolentsev, AS; Shakhtorin, I. O.; Polushin, NI; Laptev, AI; Kushkhabiev, AS

    2017-02-01

    The scope of the paper encompasses basic factors that influence PDC bit efficiency. Feasible ways of eliminating the negatives are illustrated. The wash fluid flow in a standard bit is modeled, the resultant pattern of the bit washing is analyzed, and the recommendations are made on modification of the PDC bit design.

  5. Risk of developing palatally displaced canines in patients with early detectable dental anomalies: a retrospective cohort study

    PubMed Central

    GARIB, Daniela Gamba; LANCIA, Melissa; KATO, Renata Mayumi; OLIVEIRA, Thais Marchini; NEVES, Lucimara Teixeira das

    2016-01-01

    ABSTRACT The early recognition of risk factors for the occurrence of palatally displaced canines (PDC) can increase the possibility of impaction prevention. Objective To estimate the risk of PDC occurrence in children with dental anomalies identified early during mixed dentition. Material and Methods The sample comprised 730 longitudinal orthodontic records from children (448 females and 282 males) with an initial mean age of 8.3 years (SD=1.36). The dental anomaly group (DA) included 263 records of patients with at least one dental anomaly identified in the initial or middle mixed dentition. The non-dental anomaly group (NDA) was composed of 467 records of patients with no dental anomalies. The occurrence of PDC in both groups was diagnosed using panoramic and periapical radiographs taken in the late mixed dentition or early permanent dentition. The prevalence of PDC in patients with and without early diagnosed dental anomalies was compared using the chi-square test (p<0.01), relative risk assessments (RR), and positive and negative predictive values (PPV and NPV). Results PDC frequency was 16.35% and 6.2% in DA and NDA groups, respectively. A statistically significant difference was observed between groups (p<0.01), with greater risk of PDC development in the DA group (RR=2.63). The PPV and NPV was 16% and 93%, respectively. Small maxillary lateral incisors, deciduous molar infraocclusion, and mandibular second premolar distoangulation were associated with PDC. Conclusion Children with dental anomalies diagnosed during early mixed dentition have an approximately two and a half fold increased risk of developing PDC during late mixed dentition compared with children without dental anomalies. PMID:28076458

  6. Comparison of the dental anomalies found in maxillary canine-first premolar transposition cases with those in palatally displaced canine cases.

    PubMed

    Scerri, Erica Sultana; McDonald, Fraser; Camilleri, Simon

    2016-02-01

    To compare the developmental dental anomalies associated with maxillary canine-first premolar (MxCP1) transposition and those of palatally displaced canine (PDC) with each other and with the background prevalence in the Maltese population in order to elucidate whether the two conditions have similar or differing genetic backgrounds. Dental records of 477 subjects with PDC, 57 subjects with MxCP1, and a control group of 500 subjects with no history of a PDC or tooth transposition were compared for canine eruption anomalies and hypodontia. A high frequency of bilateral occurrence was present for both canine malpositions and when unilateral, a trend to right-sided occurrence was evident. The occurrence of transpositions in the PDC group and of PDC in the MxCP1 group was higher than expected. The prevalence of incisor hypodontia was significantly higher in subjects with PDC and MxCP1, as compared to the control group. The size of the MxCP1 group is relatively small. The study population is a small isolated Caucasian population and the results may not be applicable to other populations. There is no significant difference between the MxCP1 and PDC groups in the prevalence or distribution of hypodontia and each of these groups exhibits a higher prevalence of the other canine anomaly. These findings support the theory that PDC and MxCP1 form part of a group of interrelated dental anomalies that share a common genetic basis. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.

    PubMed

    Kannuchamy, Saranyah; Mukund, Nisha; Saleena, Lilly M

    2016-05-11

    The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis. The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain. Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.

  8. Effect of polysaccharide of dendrobium candidum on proliferation and apoptosis of human corneal epithelial cells in high glucose

    PubMed Central

    Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua

    2017-01-01

    Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073

  9. Special Pyrheliometer Shroud Development

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.

    1984-01-01

    To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator.

  10. A Process Evaluation of Project Developmental Continuity, Interim Report VII, Volume 1: Findings from the PDC Implementation Study.

    ERIC Educational Resources Information Center

    Smith, Allen G.; And Others

    This third year interim report, one of a series of documents on the evaluation of Project Developmental Continuity (PDC), presents findings from three major analyses of program implementation; measurement of the extent each program has implemented the basic PDC Guidelines; a description of patterns of that implementation; and analysis of some…

  11. A Process Evaluation of Project Developmental Continuity: Final Report of the PDC Feasibility Study, 1974-1977.

    ERIC Educational Resources Information Center

    Love, John M.; And Others

    This is the final report of the 3-year feasibility phase of a projected 7-year longitudinal evaluation of Project Developmental Continuity (PDC), a Head Start demonstration program aimed at providing educational and developmental continuity between children's Head Start and primary school experiences. Chapter I gives an overview of the PDC program…

  12. Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement

    PubMed Central

    Smith, Nikaïa; Pietrancosta, Nicolas; Davidson, Sophia; Dutrieux, Jacques; Chauveau, Lise; Cutolo, Pasquale; Dy, Michel; Scott-Algara, Daniel; Manoury, Bénédicte; Zirafi, Onofrio; McCort-Tranchepain, Isabelle; Durroux, Thierry; Bachelerie, Françoise; Schwartz, Olivier; Münch, Jan; Wack, Andreas; Nisole, Sébastien; Herbeuval, Jean-Philippe

    2017-01-01

    Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. PMID:28181493

  13. Antiwhirl PDC bits increased penetration rates in Alberta drilling. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrosky, D.; Osmak, G.

    1993-07-05

    The antiwhirl PDC bits and an inhibitive mud system contributed to the quicker drilling of the time-sensitive shales. The hole washouts in the intermediate section were dramatically reduced, resulting in better intermediate casing cement jobs. Also, the use of antirotation PDC-drillable cementing plugs eliminated the need to drill out plugs and float equipment with a steel tooth bit and then trip for the PDC bit. By using an antiwhirl PDC bit, at least one trip was eliminated in the intermediate section. Offset data indicated that two to six conventional bits would have been required to drill the intermediate hole interval.more » The PDC bit was rebuildable and therefore rerunnable even after being used on five wells. In each instance, the cost of replacing chipped cutters was less than the cost of a new insert roller cone bit. The paper describes the antiwhirl bits; the development of the bits; and their application in a clastic sequence, a carbonate sequence, and the Shekilie oil field; the improvement in the rate of penetration; the selection of bottom hole assemblies; washout problems; and drill-out characteristics.« less

  14. Induction of tolerance to poison ivy urushiol in the guinea pig by epicutaneous application of the structural analog 5-methyl-3-n-pentadecylcatechol.

    PubMed

    Stampf, J L; Benezra, C; Byers, V; Castagnoli, N

    1986-05-01

    Previous studies have established that epicutaneous application of 5-methyl-3-n-pentadecylcatechol (5-Me-PDC), a synthetic analog of a poison ivy urushiol component, leads to immune tolerance to 3-n-pentadecylcatechol (PDC) in mice. The induction of tolerance by 5-Me-PDC may be mediated by a protein conjugate formed via selective reaction of thiol nucleophiles present on the carrier macromolecule with the corresponding o-quinone derived from the parent catechol. In order to examine further the tolerogenic properties of 5-Me-PDC, we have extended our studies to the guinea pig, the generally accepted experimental species for the study of contact allergy. The results have established that specific immune tolerance to poison ivy urushiol is induced following 2 epicutaneous applications of the PDC analog. Furthermore, we were able to show that the treated animals remained tolerant for at least 6 weeks, a period of time comparable to that observed following the intravenous administration of the O,O-bis-acetyl derivative of PDC. The data point to the possibility of developing a therapeutically effective topical tolerogen for poison ivy contact dermatitis.

  15. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.

    PubMed

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-02-26

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA.

    PubMed

    Julian, Mark W; Shao, Guohong; Bao, Shengying; Knoell, Daren L; Papenfuss, Tracey L; VanGundy, Zachary C; Crouser, Elliott D

    2012-07-01

    Plasmacytoid dendritic cells (pDC) are potent APCs known to regulate immune responses to self-Ags, particularly DNA. The mitochondrial fraction of necrotic cells was found to most potently promote human pDC activation, as reflected by type I IFN release, which was dependent upon the presence of mitochondrial DNA and involved TLR9 and receptors for advanced glycation end products. Mitochondrial transcription factor A (TFAM), a highly abundant mitochondrial protein that is functionally and structurally homologous to high mobility group box protein 1, was observed to synergize with CpG-containing oligonucleotide, type A, DNA to promote human pDC activation. pDC type I IFN responses to TFAM and CpG-containing oligonucleotide, type A, DNA indicated their engagement with receptors for advanced glycation end products and TLR9, respectively, and were dependent upon endosomal processing and PI3K, ERK, and NF-κB signaling. Taken together, these results indicate that pDC contribute to sterile immune responses by recognizing the mitochondrial component of necrotic cells and further incriminate TFAM and mitochondrial DNA as likely mediators of pDC activation under these circumstances.

  17. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response

    PubMed Central

    Hemann, Emily A.; Sjaastad, Louisa E.; Langlois, Ryan A.

    2015-01-01

    ABSTRACT Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α+ DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IMPORTANCE IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. PMID:26719269

  18. Single dose parenteral hyposensitization to poison ivy urushiol in guinea pigs.

    PubMed

    Walker, L A; Watson, E S; elSohly, M A

    1995-08-01

    Studies were carried out in guinea pigs to evaluate the potential for single dose hyposensitization to poison ivy urushiol dermatitis. Sensitization was induced by topical application of 1 mg of poison ivy urushiol to the back of the neck. In the first series of studies, three different analogs of poison ivy urushiol were studied: 1) a mixture of pentadecyl and heptadecyl catechols (PDC/HDC), the saturated side chain analog of the natural urushiol mixture; 2) a mixture of the diacetate esters of PDC and HDC (PDC/HDC Ac), the esterified form of the saturated sidechain analogs; 3) 2-n-pentadecyl hydroquinone diacetate (HQ Ac). Each of these compounds was administered as 5 mg of the free catechol i.m. each week for three weeks. A vehicle group received only corn oil injections. Reactivity to poison ivy urushiol (PIU) challenge was evaluated in skin tests at 1 and 5 weeks post-treatment. PDC/HDC Ac induced a marked reduction in both the incidence and the severity of lesions induced by PIU at both 1 and at 5 weeks post-treatment. Other analogs were ineffective at 5 weeks post-treatment, and were less effective than PDC/HDC Ac at 1 week post-treatment. In a second series of experiments, the efficacy of PDC/HDC Ac was evaluated in both single and multiple dose regiments. One treatment group received 5 mg of PDC/HDC Ac intramuscularly each week for 4 weeks, while another treatment group received a single dose of 20 mg PDC/HDC Ac i.m. Corresponding vehicle control groups were also included. At 1 week post-treatment in the single dose group, the PDC/HDC Ac was only modestly effective, with some reduction of severity of lesions at the higher challenge doses of PIU. However, at 4 and 7 weeks post-treatment, both the incidence and the severity of the lesions at all challenge doses were reduced. In the multiple dose group, the incidence and severity of lesions are reduced at 1 week and 4 weeks post-treatment (4 weeks and 7 weeks after the initial dose) but were not significantly different from the single dose group. These findings indicate that the diacetate ester of PDC/HDC is an effective hyposensitizer to poison ivy urushiol, and that this hyposensitization can be reasonably accomplished in a single dose treatment regimen.

  19. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  20. Identification of nonclassical properties of light with multiplexing layouts

    NASA Astrophysics Data System (ADS)

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2017-07-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017), 10.1103/PhysRevLett.118.163602], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.

  1. Experimental entanglement distillation and 'hidden' non-locality.

    PubMed

    Kwiat, P G; Barraza-Lopez, S; Stefanov, A; Gisin, N

    2001-02-22

    Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.

  2. Measurement of infrared optical constants with visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  3. Experimental demonstration of Klyshko's advanced-wave picture using a coincidence-count based, camera-enabled imaging system

    NASA Astrophysics Data System (ADS)

    Aspden, Reuben S.; Tasca, Daniel S.; Forbes, Andrew; Boyd, Robert W.; Padgett, Miles J.

    2014-04-01

    The Klyshko advanced-wave picture is a well-known tool useful in the conceptualisation of parametric down-conversion (SPDC) experiments. Despite being well-known and understood, there have been few experimental demonstrations illustrating its validity. Here, we present an experimental demonstration of this picture using a time-gated camera in an image-based coincidence measurement. We show an excellent agreement between the spatial distributions as predicted by the Klyshko picture and those obtained using the SPDC photon pairs. An interesting speckle feature is present in the Klyshko predictive images due to the spatial coherence of the back-propagated beam in the multi-mode fibre. This effect can be removed by mechanically twisting the fibre, thus degrading the spatial coherence of the beam and time-averaging the speckle pattern, giving an accurate correspondence between the predictive and SPDC images.

  4. Experimental scattershot boson sampling

    PubMed Central

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-01-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy. PMID:26601164

  5. Experimental scattershot boson sampling.

    PubMed

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J; Galvão, Ernesto F; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-04-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

  6. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  7. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength

    PubMed Central

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-01-01

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology. PMID:24694515

  8. Inherent polarization entanglement generated from a monolithic semiconductor chip

    PubMed Central

    Horn, Rolf T.; Kolenderski, Piotr; Kang, Dongpeng; Abolghasem, Payam; Scarcella, Carmelo; Frera, Adriano Della; Tosi, Alberto; Helt, Lukas G.; Zhukovsky, Sergei V.; Sipe, J. E.; Weihs, Gregor; Helmy, Amr S.; Jennewein, Thomas

    2013-01-01

    Creating miniature chip scale implementations of optical quantum information protocols is a dream for many in the quantum optics community. This is largely because of the promise of stability and scalability. Here we present a monolithically integratable chip architecture upon which is built a photonic device primitive called a Bragg reflection waveguide (BRW). Implemented in gallium arsenide, we show that, via the process of spontaneous parametric down conversion, the BRW is capable of directly producing polarization entangled photons without additional path difference compensation, spectral filtering or post-selection. After splitting the twin-photons immediately after they emerge from the chip, we perform a variety of correlation tests on the photon pairs and show non-classical behaviour in their polarization. Combined with the BRW's versatile architecture our results signify the BRW design as a serious contender on which to build large scale implementations of optical quantum processing devices. PMID:23896982

  9. Applications of the trilinear Hamiltonian with three trapped ions

    NASA Astrophysics Data System (ADS)

    Hablutzel Marrero, Roland Esteban; Ding, Shiqian; Maslennikov, Gleb; Gan, Jaren; Nimmrichter, Stefan; Roulet, Alexandre; Dai, Jibo; Scarani, Valerio; Matsukevich, Dzmitry

    2017-04-01

    The trilinear Hamiltonian a† bc + ab†c† , which describes a nonlinear interaction between harmonic oscillators, can be implemented to study different phenomena ranging from simple quantum models to quantum thermodynamics. We engineer this coupling between three modes of motion of three trapped 171Yb+ ions, where the interaction arises naturally from their mutual (anharmonic) Coulomb repulsion. By tuning our trapping parameters we are able to turn on / off resonant exchange of energy between the modes on demand. We present applications of this Hamiltonian for simulations of the parametric down conversion process in the regime of depleted pump, a simple model of Hawking radiation, and the Tavis-Cummings model. We also discuss the implementation of the quantum absorption refrigerator in such system and experimentally study effects of quantum coherence on its performance. This research is supported by the National Research Foundation, Prime Minister's Office, Singapore and the Ministry of Education, Singapore under the Research Centres of Excellence programme.

  10. Direct measurement of the biphoton Wigner function through two-photon interference

    PubMed Central

    Douce, T.; Eckstein, A.; Walborn, S. P.; Khoury, A. Z.; Ducci, S.; Keller, A.; Coudreau, T.; Milman, P.

    2013-01-01

    The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups. PMID:24346262

  11. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength.

    PubMed

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-04-03

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  12. High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.

    PubMed

    Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki

    2018-01-23

    We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.

  13. Identification of nonclassical properties of light with multiplexing layouts

    PubMed Central

    Sperling, J.; Eckstein, A.; Clements, W. R.; Moore, M.; Renema, J. J.; Kolthammer, W. S.; Nam, S. W.; Lita, A.; Gerrits, T.; Walmsley, I. A.; Agarwal, G. S.; Vogel, W.

    2018-01-01

    In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data. PMID:29670949

  14. Annual-ring-type quasi-phase-matching crystal for generation of narrowband high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Hua, Yi-Lin; Zhou, Zong-Quan; Liu, Xiao; Yang, Tian-Shu; Li, Zong-Feng; Li, Pei-Yun; Chen, Geng; Xu, Xiao-Ye; Tang, Jian-Shun; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2018-01-01

    A photon pair can be entangled in many degrees of freedom such as polarization, time bins, and orbital angular momentum (OAM). Among them, the OAM of photons can be entangled in an infinite-dimensional Hilbert space which enhances the channel capacity of sharing information in a network. Twisted photons generated by spontaneous parametric down-conversion offer an opportunity to create this high-dimensional entanglement, but a photon pair generated by this process is typically wideband, which makes it difficult to interface with the quantum memories in a network. Here we propose an annual-ring-type quasi-phase-matching (QPM) crystal for generation of the narrowband high-dimensional entanglement. The structure of the QPM crystal is designed by tracking the geometric divergences of the OAM modes that comprise the entangled state. The dimensionality and the quality of the entanglement can be greatly enhanced with the annual-ring-type QPM crystal.

  15. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  16. Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.

    PubMed

    Zhang, Chao; Huang, Yun-Feng; Zhang, Cheng-Jie; Wang, Jian; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2016-11-28

    High-quality entangled photon pairs generated via spontaneous parametric down-conversion have made great contributions to the modern quantum information science and the fundamental tests of quantum mechanics. However, the quality of the entangled states decreases sharply when moving from biphoton to multiphoton experiments, mainly due to the lack of interactions between photons. Here, for the first time, we generate a four-photon Greenberger-Horne-Zeilinger state with a fidelity of 98%, which is even comparable to the best fidelity of biphoton entangled states. Thus, it enables us to demonstrate an ultrahigh-fidelity entanglement swapping-the key ingredient in various quantum information tasks. Our results push the fidelity of multiphoton entanglement generation to a new level and would be useful in some demanding tasks, e.g., we successfully demonstrate the genuine multipartite nonlocality of the observed state in the nonsignaling scenario by violating a novel Hardy-like inequality, which requires very high state-fidelity.

  17. Entangled quantum key distribution over two free-space optical links.

    PubMed

    Erven, C; Couteau, C; Laflamme, R; Weihs, G

    2008-10-13

    We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.

  18. High-performance semiconductor quantum-dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Senellart, Pascale; Solomon, Glenn; White, Andrew

    2017-11-01

    Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

  19. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials.

    PubMed

    Clausen, Christoph; Bussières, Félix; Afzelius, Mikael; Gisin, Nicolas

    2012-05-11

    Storage of quantum information encoded into heralded single photons is an essential constituent of long-distance quantum communication based on quantum repeaters and of optical quantum information processing. The storage of photonic polarization qubits is, however, difficult because many materials are birefringent and have polarization-dependent absorption. Here we present a simple scheme that eliminates these polarization effects, and we demonstrate it by storing heralded polarization qubits into a solid-state quantum memory. The quantum memory is implemented with a biaxial yttrium orthosilicate (Y2SiO5) crystal doped with rare-earth ions. Heralded single photons generated from a filtered spontaneous parametric down-conversion source are stored, and quantum state tomography of the retrieved polarization state reveals an average fidelity of 97.5±0.4%, which is significantly higher than what is achievable with a measure-and-prepare strategy.

  20. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.

    PubMed

    Haakestad, Magnus W; Fonnum, Helge; Lippert, Espen

    2014-04-07

    Mid-infrared (3-5 μm) pulses with high energy are produced using nonlinear conversion in a ZnGeP(2)-based master oscillator-power amplifier, pumped by a Q-switched cryogenic Ho:YLF oscillator. The master oscillator is based on an optical parametric oscillator with a V-shaped 3-mirror ring resonator, and the power amplifier is based on optical parametric amplification in large-aperture ZnGeP(2) crystals. Pulses with up to 212 mJ energy at 1 Hz repetition rate are obtained, with FWHM duration 15 ns and beam quality M(2) = 3.

  1. Estrogen Receptor α Deficiency Modulates TLR Ligand-Mediated PDC-TREM Expression in Plasmacytoid Dendritic Cells in Lupus-Prone Mice.

    PubMed

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; Eudaly, Jackie G; Gilkeson, Gary S

    2015-12-15

    Female lupus-prone NZM2410 estrogen receptor α (ERα)-deficient mice are protected from renal disease and have prolonged survival compared with wild-type littermates; however, the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I IFN drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in predisease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus-prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHC class II(+) pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα-deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of TLR-mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in predisease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupuslike disease. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Estrogen receptor alpha deficiency modulates TLR ligand mediated PDC-TREM expression in plasmacytoid dendritic cells in lupus prone mice

    PubMed Central

    Scott, Jennifer L; Cunningham, Melissa A; Naga, Osama S; Wirth, Jena R; EuDaly, Jackie G; Gilkeson, Gary S

    2016-01-01

    Female lupus prone NZM2410 estrogen receptor alpha (ERα) deficient mice are protected from renal disease and have prolonged survival compared to wild type (WT) littermates, however the mechanism of protection is unknown. Plasmacytoid dendritic cells (pDCs) and type I interferon (IFN) drive lupus pathogenesis. Estrogen acting via ERα enhances both pDC development and IFN production. The objectives for this study were to determine if ERα modulates pDC function and IFN activity in pre-disease NZM2410 mice as a possible protective mechanism of ERα deficiency in lupus prone mice. We measured the effect of ERα deficiency on spleen pDC frequency, number, maturation, and activation state. ERα deficiency reduced type I IFN activity and the frequency of MHCII+ pDCs in the spleen without altering overall pDC frequency, number, or maturation state. Additionally, ERα deficient NZM2410 mice had a significantly decreased frequency of pDCs expressing PDC-TREM, a modulator of toll-like receptor (TLR) mediated IFN production. After in vitro TLR9 stimulation, ERα deficiency significantly reduced the expression of PDC-TREM on pDCs from both NZM2410 and C57BL/6 mice. Thus, we have identified a significant effect of ERα deficiency on pDCs in pre-disease NZM2410 mice, which may represent a mechanism by which ERα deficiency protects NZM2410 mice from lupus like disease. PMID:26553076

  3. Epstein-Barr Virus Promotes Interferon-α Production by Plasmacytoid Dendritic Cells

    PubMed Central

    Quan, Timothy E.; Roman, Robert M.; Rudenga, Benjamin J.; Holers, V. Michael; Craft, Joe

    2010-01-01

    Objective Epstein-Barr virus (EBV) infection has been linked to systemic lupus erythematosus (SLE) as demonstrated by the presence of increased seroprevalence and elevated viral loads, but the mechanism of this linkage has not been elucidated. Increased IFN-α levels and signatures, associated with innate immune responses, have been found in patients with SLE. Plasmacytoid dendritic cells (pDC) are innate immune cells that mediate viral immunity by producing large quantities of interferon alpha (IFN-α), but the role they play during infection with EBV remains unclear. To address this issue, we investigated the ability of EBV to promote IFN-α production by pDC in healthy subjects. Methods Human pDC were sorted and cultured in the presence of EBV, EBV small RNA (EBER), and EBV double-stranded DNA (dsDNA). IFN-α production by pDC was measured by enzyme-linked immunosorbent assay (ELISA), with activation of these cells measured by flow cytometry. Results We demonstrate that EBV DNA and RNA promote IFN-α production by human pDC through engagement of Toll-like receptor (TLR) 9 and TLR7, respectively, with initial viral recognition by pDC mediated by binding to major histocompatibility (MHC) class II molecules. Conclusion These data demonstrate that MHC class II-specific engagement by virus and subsequent viral nucleic acid recognition mediates IFN-α production by pDC. Our results suggest that elevated levels of IFN-α found in lupus patients may be a result of aberrantly controlled chronic viral infection. PMID:20178121

  4. Risk of developing palatally displaced canines in patients with early detectable dental anomalies: a retrospective cohort study.

    PubMed

    Garib, Daniela Gamba; Lancia, Melissa; Kato, Renata Mayumi; Oliveira, Thais Marchini; Neves, Lucimara Teixeira das

    2016-01-01

    To estimate the risk of PDC occurrence in children with dental anomalies identified early during mixed dentition. The sample comprised 730 longitudinal orthodontic records from children (448 females and 282 males) with an initial mean age of 8.3 years (SD=1.36). The dental anomaly group (DA) included 263 records of patients with at least one dental anomaly identified in the initial or middle mixed dentition. The non-dental anomaly group (NDA) was composed of 467 records of patients with no dental anomalies. The occurrence of PDC in both groups was diagnosed using panoramic and periapical radiographs taken in the late mixed dentition or early permanent dentition. The prevalence of PDC in patients with and without early diagnosed dental anomalies was compared using the chi-square test (p<0.01), relative risk assessments (RR), and positive and negative predictive values (PPV and NPV). PDC frequency was 16.35% and 6.2% in DA and NDA groups, respectively. A statistically significant difference was observed between groups (p<0.01), with greater risk of PDC development in the DA group (RR=2.63). The PPV and NPV was 16% and 93%, respectively. Small maxillary lateral incisors, deciduous molar infraocclusion, and mandibular second premolar distoangulation were associated with PDC. Children with dental anomalies diagnosed during early mixed dentition have an approximately two and a half fold increased risk of developing PDC during late mixed dentition compared with children without dental anomalies.

  5. Intranasal Chromium Induces Acute Brain and Lung Injuries in Rats: Assessment of Different Potential Hazardous Effects of Environmental and Occupational Exposure to Chromium and Introduction of a Novel Pharmacological and Toxicological Animal Model.

    PubMed

    Salama, Abeer; Hegazy, Rehab; Hassan, Azza

    2016-01-01

    Chromium (Cr) is used in many industries and it is widely distributed in the environment. Exposure to Cr dust has been reported among workers at these industries. Beside its hazardous effects on the lungs, brain injury could be induced, as the absorption of substances through the nasal membrane has been found to provide them a direct delivery to the brain. We investigated the distribution and the effects of Cr in both brain and lung following the intranasal instillation of potassium dichromate (inPDC) in rats. Simultaneously, we used the common intraperitoneal (ipPDC) rat model of acute Cr-toxicity for comparison. Thirty male Wistar rats were randomly allocated into five groups (n = 6); each received a single dose of saline, ipPDC (15 mg/kg), or inPDC in three dose levels: 0.5, 1, or 2 mg/kg. Locomotor activity was assessed before and 24 h after PDC administration, then, the lungs and brain were collected for biochemical, histopathological, and immunohistochemical investigations. Treatment of rats with ipPDC resulted in a recognition of 36% and 31% of the injected dose of Cr in the brain and lung tissues, respectively. In inPDC-treated rats, targeting the brain by Cr was increased in a dose-dependent manner to reach 46% of the instilled dose in the group treated with the highest dose. Moreover, only this high dose of inPDC resulted in a delivery of a significant concentration of Cr, which represented 42% of the instilled dose, to the lungs. The uppermost alteration in the rats locomotor activity as well as in the brain and lung histopathological features and contents of oxidative stress biomarkers, interleukin-1β (IL-1β), phosphorylated protein kinase B (PKB), and cyclooxygenase 2 (COX-2) were observed in the rats treated with inPDC (2 mg/kg). The findings revealed that these toxic manifestations were directly proportional to the delivered concentration of Cr to the tissue. In conclusion, the study showed that a comparably higher concentrations of Cr and more elevated levels of oxidative stress and inflammatory markers were observed in brain and lung tissues of rats subjected to inPDC in a dose that is just 0.13 that of ipPDC dose commonly used in Cr-induced toxicity studies. Therefore, the study suggests a high risk of brain-targeting injury among individuals environmentally or occupationally exposed to Cr dust, even in low doses, and an additional risk of lung injury with higher Cr concentrations. Moreover, the study introduces inPDC (2 mg/kg)-instillation as a new experimental animal model suitable to study the acute brain and lung toxicities induced by intranasal exposure to Cr compounds.

  6. Intranasal Chromium Induces Acute Brain and Lung Injuries in Rats: Assessment of Different Potential Hazardous Effects of Environmental and Occupational Exposure to Chromium and Introduction of a Novel Pharmacological and Toxicological Animal Model

    PubMed Central

    Salama, Abeer; Hassan, Azza

    2016-01-01

    Chromium (Cr) is used in many industries and it is widely distributed in the environment. Exposure to Cr dust has been reported among workers at these industries. Beside its hazardous effects on the lungs, brain injury could be induced, as the absorption of substances through the nasal membrane has been found to provide them a direct delivery to the brain. We investigated the distribution and the effects of Cr in both brain and lung following the intranasal instillation of potassium dichromate (inPDC) in rats. Simultaneously, we used the common intraperitoneal (ipPDC) rat model of acute Cr-toxicity for comparison. Thirty male Wistar rats were randomly allocated into five groups (n = 6); each received a single dose of saline, ipPDC (15 mg/kg), or inPDC in three dose levels: 0.5, 1, or 2 mg/kg. Locomotor activity was assessed before and 24 h after PDC administration, then, the lungs and brain were collected for biochemical, histopathological, and immunohistochemical investigations. Treatment of rats with ipPDC resulted in a recognition of 36% and 31% of the injected dose of Cr in the brain and lung tissues, respectively. In inPDC-treated rats, targeting the brain by Cr was increased in a dose-dependent manner to reach 46% of the instilled dose in the group treated with the highest dose. Moreover, only this high dose of inPDC resulted in a delivery of a significant concentration of Cr, which represented 42% of the instilled dose, to the lungs. The uppermost alteration in the rats locomotor activity as well as in the brain and lung histopathological features and contents of oxidative stress biomarkers, interleukin-1β (IL-1β), phosphorylated protein kinase B (PKB), and cyclooxygenase 2 (COX-2) were observed in the rats treated with inPDC (2 mg/kg). The findings revealed that these toxic manifestations were directly proportional to the delivered concentration of Cr to the tissue. In conclusion, the study showed that a comparably higher concentrations of Cr and more elevated levels of oxidative stress and inflammatory markers were observed in brain and lung tissues of rats subjected to inPDC in a dose that is just 0.13 that of ipPDC dose commonly used in Cr-induced toxicity studies. Therefore, the study suggests a high risk of brain-targeting injury among individuals environmentally or occupationally exposed to Cr dust, even in low doses, and an additional risk of lung injury with higher Cr concentrations. Moreover, the study introduces inPDC (2 mg/kg)-instillation as a new experimental animal model suitable to study the acute brain and lung toxicities induced by intranasal exposure to Cr compounds. PMID:27997619

  7. Top-emitting white organic light-emitting devices with down-conversion phosphors: theory and experiment.

    PubMed

    Ji, Wenyu; Zhang, Letian; Gao, Ruixue; Zhang, Liming; Xie, Wenfa; Zhang, Hanzhuang; Li, Bin

    2008-09-29

    White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en-1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed.

  8. A Process Evaluation of Project Developmental Continuity, Interim Report VII, Volume 3: Assessment of Program Impact Through the Head Start Year.

    ERIC Educational Resources Information Center

    Granville, Arthur C.; And Others

    This interim report, part of a series of documents examining the feasibility of the longitudinal evaluation of Project Developmental Continuity (PDC), presents the results of an analysis of PDC impact at the Head Start level, using Spring 1977 data. PDC is a Head Start Demonstration Program aimed at providing educational and developmental…

  9. The impact of time-window bias on the assessment of the long-term effect of medication adherence: the case of secondary prevention after myocardial infarction.

    PubMed

    Di Martino, Mirko; Kirchmayer, Ursula; Agabiti, Nera; Bauleo, Lisa; Fusco, Danilo; Perucci, Carlo Alberto; Davoli, Marina

    2015-06-10

    Time-window bias was described in case-control studies and led to a biased estimate of drug effect. No studies have measured the impact of this bias on the assessment of the effect of medication adherence on health outcomes. Our goals were to estimate the association between adherence to drug therapies after myocardial infarction (MI) and the incidence of a new MI, and to quantify the error that would have been produced by a time-window bias. This is a population-based study. Data were obtained from the Regional Health Information Systems of the Lazio Region in Central Italy (around 5 million inhabitants). Patients discharged after MI in 2006-2007 were enrolled in the cohort and followed through 2009. The study outcome was reinfarction: either mortality, or hospital admission for MI, whichever occurred first. A nested case-control study was performed. Controls were selected using both time-dependent and time-independent sampling. Adherence to antiplatelets, β-blockers, ACE inhibitors/angiotensin receptor blockers (ACEI/ARBs) and statins was calculated using the proportion of days covered (PDC). A total of 6880 patients were enrolled in the cohort. Using time-dependent sampling, a protective effect was detected for all study drugs. Conversely, using time-independent sampling, the beneficial effect was attenuated, as in the case of antiplatelet agents and statins, or completely masked, as in the case of ACEI/ARBs and β-blockers. For ACEI/ARBs, the time-dependent approach produced ORs of 0.83 (95% CI 0.57 to 1.21) and 0.72 (0.55 to 0.95), respectively, for '0.5 < PDC ≤ 0.75' and 'PDC>0.75' versus '0 ≤ PDC ≤ 0.5'. Using the time-independent approach, the ORs were 0.96 (0.65 to 1.43) and 1.00 (0.76 to 1.33), respectively. A time-independent definition of a time-dependent exposure introduces a bias when the length of follow-up varies with the outcome. The persistence of time-related biases in peer-reviewed papers strongly suggests the need for increased awareness of this methodological pitfall. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells

    PubMed Central

    Lamote, Jochen A. S.; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert

    2017-01-01

    ABSTRACT Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. PMID:28122975

  11. The Pseudorabies Virus Glycoprotein gE/gI Complex Suppresses Type I Interferon Production by Plasmacytoid Dendritic Cells.

    PubMed

    Lamote, Jochen A S; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert; Favoreel, Herman W

    2017-04-01

    Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. Copyright © 2017 American Society for Microbiology.

  12. Classification and clinical behavior of blastic plasmacytoid dendritic cell neoplasms according to their maturation-associated immunophenotypic profile

    PubMed Central

    Martín-Martín, Lourdes; López, Antonio; Vidriales, Belén; Caballero, María Dolores; Rodrigues, António Silva; Ferreira, Silvia Inês; Lima, Margarida; Almeida, Sérgio; Valverde, Berta; Martínez, Pilar; Ferrer, Ana; Candeias, Jorge; Ruíz-Cabello, Francisco; Buadesa, Josefa Marco; Sempere, Amparo; Villamor, Neus

    2015-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of leukemia/lymphoma, whose diagnosis can be difficult to achieve due to its clinical and biological heterogeneity, as well as its overlapping features with other hematologic malignancies. In this study we investigated whether the association between the maturational stage of tumor cells and the clinico-biological and prognostic features of the disease, based on the analysis of 46 BPDCN cases classified into three maturation-associated subgroups on immunophenotypic grounds. Our results show that blasts from cases with an immature plasmacytoid dendritic cell (pDC) phenotype exhibit an uncommon CD56− phenotype, coexisting with CD34+ non-pDC tumor cells, typically in the absence of extramedullary (e.g. skin) disease at presentation. Conversely, patients with a more mature blast cell phenotype more frequently displayed skin/extramedullary involvement and spread into secondary lymphoid tissues. Despite the dismal outcome, acute lymphoblastic leukemia-type therapy (with central nervous system prophylaxis) and/or allogeneic stem cell transplantation appeared to be the only effective therapies. Overall, our findings indicate that the maturational profile of pDC blasts in BPDCN is highly heterogeneous and translates into a wide clinical spectrum -from acute leukemia to mature lymphoma-like behavior-, which may also lead to variable diagnosis and treatment. PMID:26056082

  13. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC

    PubMed Central

    Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.

    2008-01-01

    Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287

  14. The application of advanced PDC concepts proves effective in south Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlem, J.S.; Baxter, R.L.; Dunn, K.E.

    1996-12-01

    Over the years, a variety of problems with polycrystalline diamond compact (PDC) bit design and application has been documented, with bit whirl being identified as the cause of many inherent problems. The goal of most PDC manufacturers, and the subject of this paper, is development of a better-performing, whirl-resistant PDC bit design. Similarly, the goal for most operators is the lower cost resulting from effective application of such bits. Toward those ends, a cooperative development effort between operators and a manufacturer was undertaken to apply advanced concepts effectively to the design, manufacture, and application of a new series of PDCmore » bits in south Texas. Adoption of design concepts, such as force-balanced cutting structures, asymmetric blade layouts, spiral blade designs, and tracking cutter arrangements, proved effective in countering the destructive effects of bit whirl, and allowed PDC bits to be used in harder formations. Summaries of both operational and economic performance confirm the success of the undertaking.« less

  15. A Survey on Personal Data Cloud

    PubMed Central

    Wang, Jiaqiu; Wang, Zhongjie

    2014-01-01

    Personal data represent the e-history of a person and are of great significance to the person, but they are essentially produced and governed by various distributed services and there lacks a global and centralized view. In recent years, researchers pay attention to Personal Data Cloud (PDC) which aggregates the heterogeneous personal data scattered in different clouds into one cloud, so that a person could effectively store, acquire, and share their data. This paper makes a short survey on PDC research by summarizing related papers published in recent years. The concept, classification, and significance of personal data are elaborately introduced and then the semantics correlation and semantics representation of personal data are discussed. A multilayer reference architecture of PDC, including its core components and a real-world operational scenario showing how the reference architecture works, is introduced in detail. Existing commercial PDC products/prototypes are listed and compared from several perspectives. Five open issues to improve the shortcomings of current PDC research are put forward. PMID:25165753

  16. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    PubMed

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  17. Hydrogen Compressor Reliability Investigation and Improvement. Cooperative Research and Development Final Report, CRADA Number CRD-13-514

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terlip, Danny

    2016-03-28

    Diaphragm compressors have become the primary source of on-site hydrogen compression for hydrogen fueling stations around the world. NREL and PDC have undertaken two studies aimed at improving hydrogen compressor operation and reducing the cost contribution to dispensed fuel. The first study identified the failure mechanisms associated with mechanical compression to reduce the maintenance and down-time. The second study will investigate novel station configurations to maximize hydrogen usage and compressor lifetime. This partnership will allow for the simulation of operations in the field and a thorough analysis of the component failure to improve the reliability of diaphragm compression.

  18. Development and testing of a Mudjet-augmented PDC bit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Alan; Chahine, Georges; Raymond, David Wayne

    2006-01-01

    This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.

  19. Methods and materials for the production of L-lactic acid in yeast

    DOEpatents

    Hause, Ben [Jordan, MN; Rajgarhia, Vineet [Minnetonka, MN; Suominen, Pirkko [Maple Grove, MN

    2009-05-19

    Recombinant yeast are provided having, in one aspect, multiple exogenous LDH genes integrated into the genome, while leaving native PDC genes intact. In a second aspect, recombinant yeast are provided having an exogenous LDH gene integrated into its genome at the locus of a native PDC gene, with deletion of the native PDC gene. The recombinant yeast are useful in fermentation process for producing lactic acid.

  20. Comparison of pulsating DC and DC power air-water plasma jet: A method to decrease plume temperature and increase ROS

    NASA Astrophysics Data System (ADS)

    Liu, K.; Hu, H.; Lei, J.; Hu, Y.; Zheng, Z.

    2016-12-01

    Most air-water plasma jets are rich in hydroxyl radicals (•OH), but the plasma has higher temperatures, compared to that of pure gas, especially when using air as working gas. In this paper, pulsating direct current (PDC) power was used to excite the air-water plasma jet to reduce plume temperature. In addition to the temperature, other differences between PDC and DC plasma jets are not yet clear. Thus, comparative studies of those plasmas are performed to evaluate characteristics, such as breakdown voltage, temperature, and reactive oxygen species. The results show that the plume temperature of PDC plasma is roughly 5-10 °C lower than that of DC plasma in the same conditions. The •OH content of PDC is lower than that of DC plasma, whereas the O content of PDC plasma is higher. The addition of water leads in an increase in the plume temperature and in the production of •OH with two types of power supplies. The production of O inversely shows a declining tendency with higher water ratio. The most important finding is that the PDC plasma with 100% water ratio achieves lower temperature and more abundant production of •OH and O, compared with DC plasma with 0% water ratio.

  1. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    PubMed

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  2. Plasmacytoid dendritic cells (PDC) are the major DC subset innately producing cytokines in human lymph nodes.

    PubMed

    Cox, Karina; North, Margaret; Burke, Michael; Singhal, Hemant; Renton, Sophie; Aqel, Nayef; Islam, Sabita; Knight, Stella C

    2005-11-01

    Plasmacytoid dendritic cells (PDC) constitute a distinct subset of DC found in human peripheral lymph nodes (LN), but little is known about their function. Cell suspensions were prepared from tumor draining LN (n=20) and control LN (n=11) of women undergoing surgical resection for primary breast cancer and elective surgery for benign conditions, respectively. Using four-color flow cytometry, human leukocyte antigen-DR+ DC subsets were identified phenotypically. The proportions and numbers of cells innately producing interleukin (IL)-4, IL-10, IL-12, and interferon-gamma (IFN-gamma) were also measured from intracellular accumulation of cytokine after blocking with monensin. All flow cytometry data were collected without compensation and were compensated off-line using the Winlist algorithm (Verity software). This package also provided the subtraction program to calculate percentage positive cells and intensity of staining. PDC (CD11c-, CD123+) expressed more cytokines than did myeloid DC (CD11c+) or CD1a+ putative "migratory" DC (P<0.001). LN PDC from patients with a good prognosis (px; n=11) demonstrated a relative increase in IL-12 and IFN-gamma expression (median IL-10:IL-12 ratio=0.78 and median IL-4:IFN-gamma ratio=0.7), and PDC from LN draining poor px cancer (n=9) showed a relative increase in IL-10 and IL-4 expression (median IL-10:IL-12 ratio=1.31 and median IL-4:IFN-gamma ratio=2.6). The difference in IL-4:IFN-gamma expression between good and poor px cancer groups was significant (P<0.05). Thus, PDC innately producing cytokines were identified in cell suspensions from human LN, and the character of PDC cytokine secretion may differ between two breast cancer prognostic groups. We speculate that a shift towards PDC IL-10 and IL-4 expression could promote tumor tolerance in LN draining poor px breast cancer.

  3. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C-NMR of the adult mouse brain

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.

    2013-01-01

    The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585

  4. Plasmacytoid Dendritic Cells Require Direct Infection To Sustain the Pulmonary Influenza A Virus-Specific CD8 T Cell Response.

    PubMed

    Hemann, Emily A; Sjaastad, Louisa E; Langlois, Ryan A; Legge, Kevin L

    2015-12-30

    Following influenza A virus (IAV) infection, development of a robust IAV-specific CD8 T cell response is required for clearance of primary infection and enhances memory protection. Following IAV infection, plasmacytoid dendritic cells (pDC) or CD8α(+) DC regulate pulmonary effector CD8 T cell responses within the lung. Without this DC-T cell interaction, insufficient effector CD8 T cells are maintained in the lungs, leading to enhanced morbidity and mortality. Previous studies have demonstrated that pDC are capable of classical presentation or cross-presentation of IAV antigens and could potentially regulate IAV-specific CD8 T cell responses through either mechanism. Our results demonstrate that pDC from the lungs of donor mice infected with an IAV that is not able to replicate in hematopoietic cells (142t-IAV), unlike donor pDC isolated from the lungs of control infected mice, are not able to rescue the host IAV-specific CD8 T cell response from apoptosis. This indicates that pDC must utilize the direct presentation pathway for this rescue. This inability of pDC from 142t-IAV donors to rescue the IAV-specific CD8 T cell response is not due to differences in the overall ability of 142t-IAV to replicate within the lungs or generate defective viral genomes or to differences in levels of costimulatory molecules required for this interaction. We further demonstrate that bypassing the antigen presentation pathway by coating the 142t-IAV pDC with IAV peptide epitopes restores their ability to rescue the IAV-specific CD8 T cell response. IAV continues to be a global health burden, infecting 5 to 20% of the global population annually. Continued investigation into the mechanisms that mediate protective immune responses against IAV is important to improving current vaccination and antiviral strategies antagonistic toward IAV. Our findings presented herein demonstrate a key requirement for pDC promotion of effector CD8 T cell survival: that rather than utilizing cross-presentation, pDC must be infected and utilize the endogenous pathway for presentation of antigens to CD8 T cells during in vivo IAV infections. This suggests that targeting presentation via the endogenous pathway in pDC could be important for the development of unique antiviral cellular therapies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Fiber-coupled three-micron pulsed laser source for CFRP laser treatment

    NASA Astrophysics Data System (ADS)

    Nyga, Sebastian; Blass, David; Katzy, Veronika; Westphalen, Thomas; Jungbluth, Bernd; Hoffmann, Hans-Dieter

    2018-02-01

    We present a laser source providing up to 18 W and 1.5 mJ at a wavelength of 3 μm. The output is generated by frequency conversion of randomly polarized multimode radiation at 1064 nm of an Nd:YAG laser in a two-stage conversion setup. The frequency converter comprises an optical parametric oscillator and a subsequent optical parametric amplifier using PPLN as nonlinear medium in both stages. To implement fiber-based beam delivery for materials processing, we coupled the output at 3 μm to a multimode ZrF4-fiber. This source was then used to remove epoxy resin from the surface of CFRP samples.

  6. What Does Distractibility in ADHD Reveal about Mechanisms for Top-Down Attentional Control?

    ERIC Educational Resources Information Center

    Friedman-Hill, Stacia R.; Wagman, Meryl R.; Gex, Saskia E.; Pine, Daniel S.; Leibenluft, Ellen; Ungerleider, Leslie G.

    2010-01-01

    In this study, we attempted to clarify whether distractibility in ADHD might arise from increased sensory-driven interference or from inefficient top-down control. We employed an attentional filtering paradigm in which discrimination difficulty and distractor salience (amount of image "graying") were parametrically manipulated. Increased…

  7. Terahertz generation by difference frequency generation from a compact optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Wang, Silei; Wang, Mengtao; Wang, Weishu

    2017-11-01

    Terahertz (THz) generation by difference frequency generation (DFG) processes with dual idler waves is theoretically analyzed. The dual idler waves are generated by a compact optical parametric oscillator (OPO) with periodically poled lithium niobate (PPLN). The phase-matching conditions in a same PPLN for the optical parametric oscillation generating signal and idler waves and for the DFG generating THz waves can be simultaneously satisfied by selecting the poling period of PPLN. Moreover, 3-order cascaded DFG processes generating THz waves can be realized in the same PPLN. To take an example of 8.341 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 8.341 THz in 3-order cascaded DFG processes increase to 2.57 times. When the pump intensity equals to 20 MW/mm2, the quantum conversion efficiency of 106% in 3-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.

  8. Membrane reactor for water detritiation: a parametric study on operating parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarade, J.; Liger, K.; Troulay, M.

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependencemore » of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P.; Howard, S.; Maxwell, D.

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process couldmore » be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements for the actual can welding process, however, did not result in an improved weld geometry. Several possibilities for the lack of positive response exist, some of which are that (1) an insufficient number of test articles were welded under prototypic conditions, (2) the process was not optimized so that significant improvements were observable over the 'noise', and (3) the in-situ arc anneal closed the gap down too much so the can was unable to exhaust pressure ahead of the weld. Several operational and mechanical improvements were identified. The weld clamps were changed to a design consistent with those used in the legacy operations. A helium puff operation was eliminated; it is believed that this operation was the cause of the original weld defect. Also, timing of plug mast movement was found to correspond with weld irregularities. The timing of the movement was changed to occur during weld head travel between tacks. In the end a three sequential tack weld process followed by a pulse weld at the same current and travel speed as was used for the legacy processes was suggested for use during the IC qualification effort. Relative to legacy welds, the PDC IC weld demonstrates greater fluctuation in the region of the weld located between tack welds. However, canister weld response (canister to canister) is consistent and with the aid of the optical mapping system (for targeting the cut position) is considered adequate. DR measurements and METs show the PDC IC welds to have sufficient ligament length to ensure adequate canister pressure/impact capacity and to ensure adequate stub function. The PDC welding process has not been optimized as a result of this effort. Differences remain between the legacy BTC welds and the PDC IC weld, but these differences are not sufficient to prevent resumption of the current PDC IC qualification effort. During the PDC IC qualification effort, a total of 17 cans will be welded and a variety of tests/inspections will be performed. The extensive data collected during that qualification effort should be of a sufficient population to determine if additional weld process optimization is necessary prior to production release.« less

  10. Syntheses, structures and properties of 3D inorganic-organic hybrid frameworks constructed from lanthanide polymer and Keggin-type tungstosilicate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yuanzhe; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050016; Xu Yanqing, E-mail: xyq@bit.edu.c

    2010-05-15

    Inorganic-organic hybrid frameworks, namely [Ce(H{sub 2}O){sub 3}(pdc)]{sub 4}[SiW{sub 12}O{sub 40}].6H{sub 2}O 1, [M(H{sub 2}O){sub 4}(pdc)]{sub 4}[SiW{sub 12}O{sub 40}].2H{sub 2}O (M=Ce for 2a, La for 2b, Nd for 2c; H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) were assembled through incorporation of Keggin-type heteropolyanion [SiW{sub 12}O{sub 40}]{sup 4-} within the voids of lanthanides-pdc network as pillars or guests under hydrothermal condition. Single-crystal X-ray analyses of these crystals reveal that compound 1 presents 3D pillar-layered framework with the [SiW{sub 12}O{sub 40}]{sup 4-} anions located on the square voids of the two-dimensional Ce-pdc bilayer. Compounds 2a-c are isostructural and constructed from 3D Ln-pdc-based metal-organic framework (MOF) incorporating noncoordinatingmore » guests Keggin structure [SiW{sub 12}O{sub 40}]{sup 4-}. Solid-state properties of compounds 1 and 2a-c such as thermal stability and photoluminescence have been further investigated. - Graphical abstract: Two types of new inorganic-organic hybrid frameworks through incorporation of Keggin-type heteropolyanion [SiW{sub 12}O{sub 40}]{sup 4-} within the voids of lanthanides-pdc network as pillars or guests under hydrothermal condition were successfully assembled. Solid-state properties of compounds 1 and 2a such as thermal stability and photoluminescence have been further investigated.« less

  11. Supraspinal and spinal effects of L-trans-PDC, an inhibitor of glutamate transporter, on the micturition reflex in rats.

    PubMed

    Honda, Masashi; Yoshimura, Naoki; Hikita, Katsuya; Hinata, Nobuyuki; Muraoka, Kuniyasu; Saito, Motoaki; Chancellor, Michael B; Takenaka, Atsushi

    2013-09-01

    Glutamate is a major excitatory transmitter in the central nervous system, controlling lower urinary tract function. Five types of glutamate transporters such as GLAST (EAAT1), GLT-1 (EAAT2), EAAC-1 (EAAT3), EAAT4, and EAAT5 have been cloned so far. In the current study we tested whether L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC), a non-selective inhibitor of glutamate transporters that increases endogenous glutamate concentration, can affect the micturition reflex in urethane anesthetized rats. Continuous cystometrograms (CMG, 0.04 ml/min infusion rate) were performed in two groups of urethane-anesthetized rats. A group of 18 rats was used for intrathecal administration of 1-10 µg of L-trans-PDC via an intrathecal catheter. In the second group of 18 rats, 1-10 µg of L-trans-PDC were administered intracerebroventricularly via a catheter inserted into the lateral ventricle. Micturition parameters were recorded and compared before and after drug administration. Intrathecal administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. Intracerebroventricular administration of L-trans-PDC at 1, 3, and 10 µg (n = 6 per dose) also increased intercontraction intervals in dose dependent fashion, but did not affect postvoid residual or basal pressure at any doses tested. The current results show that, in urethane-anesthetized rats, suppression of glutamate transporters by L-trans-PDC has an inhibitory effect on the micturition reflex at supraspinal and spinal sites, possibly via activation of glutamate-mediated inhibitory pathways. Copyright © 2012 Wiley Periodicals, Inc.

  12. Haloacetic Acid Water Disinfection Byproducts Affect Pyruvate Dehydrogenase Activity and Disrupt Cellular Metabolism.

    PubMed

    Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J

    2018-02-06

    The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.

  13. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Nobuhiro; Department of Biochemistry, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602; Yamazaki, Yasuo

    2008-10-01

    The structures of pseudechetoxin and pseudecin suggest that both proteins bind to cyclic nucleotide-gated ion channels in a manner in which the concave surface occludes the pore entrance. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinitiesmore » on CNG channels are different: PsTx blocks both the olfactory and retinal channels with ∼15–30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn{sup 2+}-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn{sup 2+} ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn{sup 2+} binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.« less

  14. Site-specific tumor grading system in colorectal cancer: multicenter pathologic review of the value of quantifying poorly differentiated clusters.

    PubMed

    Ueno, Hideki; Hase, Kazuo; Hashiguchi, Yojiro; Shimazaki, Hideyuki; Tanaka, Masafumi; Miyake, Ohki; Masaki, Tadahiko; Shimada, Yoshifumi; Kinugasa, Yusuke; Mori, Yoshiyuki; Kishimoto, Mitsuo; Kameoka, Shingo; Sato, Yu; Matsuda, Keiji; Nakadoi, Koichi; Shinto, Eiji; Nakamura, Takahiro; Sugihara, Kenichi

    2014-02-01

    The study aimed to determine the value of a novel site-specific grading system based on quantifying poorly differentiated clusters (PDC; Grade(PDC)) in colorectal cancer (CRC). A multicenter pathologic review involving 12 institutions was performed on 3243 CRC cases (stage I, 583; II, 1331; III, 1329). Cancer clusters of ≥5 cancer cells and lacking a gland-like structure (PDCs) were counted under a ×20 objective lens in a field containing the maximum clusters. Tumors with <5, 5 to 9, and ≥10 PDCs were classified as grades G1, G2, and G3, respectively. According to Grade(PDC), 1594, 1005, and 644 tumors were classified as G1, G2, and G3 and had 5-year recurrence-free survival rates of 91.6%, 75.4%, and 59.6%, respectively (P<0.0001). Multivariate analysis showed that Grade exerted an influence on prognostic outcome independently of TNM staging; approximately 20% and 46% of stage I and II patients, respectively, were selected by Grade(PDC) as a population whose survival estimate was comparable to or even worse than that of stage III patients. Grade(PDC) surpassed TNM staging in the ability to stratify patients by recurrence-free survival (Akaike information criterion, 2915.6 vs. 2994.0) and had a higher prognostic value than American Joint Committee on Cancer (AJCC) grading (Grade(AJCC)) at all stages. Regarding judgment reproducibility of grading tumors, weighted κ among the 12 institutions was 0.40 for Grade(AJCC) and 0.52 for Grade(PDC). Grade(PDC) has a robust prognostic power and promises to be of sufficient clinical value to merit implementation as a site-specific grading system in CRC.

  15. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii

    PubMed Central

    Shtaida, Nastassia; Khozin-Goldberg, Inna; Solovchenko, Alexei; Chekanov, Konstantin; Didi-Cohen, Shoshana; Leu, Stefan; Cohen, Zvi; Boussiba, Sammy

    2014-01-01

    The chloroplast pyruvate dehydrogenase complex (cpPDC) catalyses the oxidative decarboxylation of pyruvate forming acetyl-CoA, an immediate primer for the initial reactions of de novo fatty acid (FA) synthesis. Little is known about the source of acetyl-CoA in the chloroplasts of photosynthetic microalgae, which are capable of producing high amounts of the storage lipid triacylglycerol (TAG) under conditions of nutrient stresses. We generated Chlamydomonas reinhardtii CC-1618 mutants with decreased expression of the PDC2_E1α gene, encoding the putative chloroplast pyruvate dehydrogenase subunit E1α, using artificial microRNA. A comparative study on the effects of PDC2_E1α silencing on FAs and TAG production in C. reinhardtii, grown photoautotrophically and mixotrophically, with and without a nitrogen source in the nutrient medium, was carried out. Reduced expression of PDC2 _E1α led to a severely hampered photoautotrophic growth phenotype with drastic impairment in TAG accumulation under nitrogen deprivation. In the presence of acetate, downregulation of PDC2_E1α exerted little to no effect on TAG production and photosynthetic activity. In contrast, under photoautotrophic conditions, especially in the absence of a nitrogen source, a dramatic decline in photosynthetic oxygen evolution and photosystem II quantum yield against a background of the apparent over-reduction of the photosynthetic electron chain was recorded. Our results suggest an essential role of cpPDC in the supply of carbon precursors for de novo FA synthesis in microalgae under conditions of photoautotrophy. A shortage of this supply is detrimental to the nitrogen-starvation-induced synthesis of storage TAG, an important carbon and energy sink in stressed Chlamydomonas cells, thereby impairing the acclimation ability of the microalga. PMID:25210079

  16. A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene.

    PubMed

    Yang, Tao; Zhang, Wei; Du, Meng; Jiao, Kui

    2008-05-30

    2,6-Pyridinedicarboxylic acid (PDC) was electropolymerized on the glassy carbon electrode (GCE) surface combined with carboxylic group-functionalized single-walled carbon nanotubes (SWNTs) by cyclic voltammetry (CV) to form PDC-SWNTs composite film, which was rich in negatively charged carboxylic group. Then, poly(diallyldimethyl ammonium chloride) (PDDA), a linear cationic polyelectrolyte, was electrostatically adsorbed on the PDC-SWNTs/GCE surface. DNA probes with negatively charged phosphate group at the 5' end were immobilized on the PDDA/PDC-SWNTs/GCE due to the strong electrostatic attraction between PDDA and phosphate group of DNA. It has been found that modification of the electrode with PDC-SWNTs film has enhanced the effective electrode surface area and electron-transfer ability, in addition to providing negatively charged groups for the electrostatic assembly of cationic polyelectrolyte. PDDA plays a key role in the attachment of DNA probes to the PDC-SWNTs composite film and acts as a bridge to connect DNA with PDC-SWNTs film. The cathodic peak current of methylene blue (MB), an electroactive label, decreased obviously after the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA). This peak current change was used to monitor the recognition of the specific sequences related to PAT gene in the transgenic corn and the polymerase chain reaction (PCR) amplification of NOS gene from the sample of transgenic soybean with satisfactory results. Under optimal conditions, the dynamic detection range of the sensor to PAT gene target sequence was from 1.0x10(-11) to 1.0x10(-6) mol/L with the detection limit of 2.6x10(-12) mol/L.

  17. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans

    USGS Publications Warehouse

    Chernoff, Neil; Hill, D. J.; Diggs, D. L.; Faison, B. D.; Francis, B. M.; Lang, J. R.; Larue, M. M.; Le, T.-T.; Loftin, Keith A.; Lugo, J. N.; Schmid, J. E.; Winnik, W. W.

    2017-01-01

    The compound BMAA (β-N-methylamino-L-alanine) has been postulated to play a significant role in four serious neurological human diseases: Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) found on Guam, and ALS, Parkinsonism, and dementia that occur globally. ALS/PDC with symptoms of all three diseases first came to the attention of the scientific community during and after World War II. It was initially associated with cycad flour used for food because BMAA is a product of symbiotic cycad root-dwelling cyanobacteria. Human consumption of flying foxes that fed on cycad seeds was later suggested as a source of BMAA on Guam and a cause of ALS/PDC. Subsequently, the hypothesis was expanded to include a causative role for BMAA in other neurodegenerative diseases including Alzheimer’s disease (AD) through exposures attributed to proximity to freshwaters and/or consumption of seafood due to its purported production by most species of cyanobacteria. The hypothesis that BMAA is the critical factor in the genesis of these neurodegenerative diseases received considerable attention in the medical, scientific, and public arenas. This review examines the history of ALS/PDC and the BMAA-human disease hypotheses; similarities and differences between ALS/PDC and the other diseases with similar symptomologies; the relationship of ALS/PDC to other similar diseases, studies of BMAA-mediated effects in lab animals, inconsistencies and data gaps in the hypothesis; and other compounds and agents that were suggested as the cause of ALS/PDC on Guam. The review concludes that the hypothesis of a causal BMAA neurodegenerative disease relationship is not supported by existing data.

  18. Generation of tunable high-repetition rate middle infrared transform-limited picosecond pulses

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav V.; Ballmann, Charles W.; Petrov, Georgi I.

    2018-03-01

    Tunable middle infrared generation is now affordable through optical parametric generation and amplification in a number of infrared nonlinear crystals. However, maintaining narrow bandwidth, while achieving high conversion efficiency, remains a challenge. In this report, we propose and experimentally demonstrate a relatively simple setup, which utilizes a single-wavelength diode laser as a seed laser for an optical parametric amplifier.

  19. Hydrogenolysis of α-methylbenzyl alcohol to ethylbenzene over Pd/C catalyst

    NASA Astrophysics Data System (ADS)

    Feng, J.; Zhong, Y. H.; Dai, S. H.

    2018-01-01

    The hydrogenolysis of α-methylbenzyl alcohol (MBA) to ethylbenzene (EB) over Pd/C catalyst was studied. The XRD and TEM results show that Pd nanoparticles are well dispersed on the carbon support with good crystallinity. There is no 1-cyclohexylethanol or ethylcyclohexane in the products, indicating that Pd/C is excellent for inhibiting the hydrogenation of the aromatic ring. Alcohol solvents are beneficial to increase the catalytic activity because of their strong polarity and good solubility.

  20. Fluorescent Zn-PDC/Tb3+ Coordination Polymer Nanostructure: A Candidate for Highly Selective Detections of Cefixime Antibiotic and Acetone in Aqueous System.

    PubMed

    Pan, Hong; Wang, Sufan; Dao, Xiaoyao; Ni, Yonghong

    2018-02-05

    Tb 3+ -doped zinc-based coordination polymer nanospindle bundles (Zn-PDC/Tb 3+ , or [Zn(2,5-PDC)(H 2 O) 2 ]·H 2 O/Tb 3+ ) were synthesized by a simple solution precipitation route at room temperature, employing Zn(NO 3 ) 2 , Tb(NO 3 ) 3 , and 2,5-Na 2 PDC as the initial reactants, and a mixture of water and ethanol with the volume ratio of 10:10 as the solvent. The as-obtained nanostructures presented strong fluorescent emission under the excitation of 298 nm light, which was attributed to the characteristic emission of the Tb 3+ ion. It was found that the above-mentioned strong fluorescence of the nanostructures could be selectively quenched by cefixime (CFX) in aqueous solution. The other common antibiotics hardly interfered. Thus, as-obtained Zn-PDC/Tb 3+ nanostructures could be prepared as a highly sensitive fluorescence probe for selective detection of CFX in an aqueous system. The corresponding detection limit reached 72 ppb. The theoretic calculation and UV-vis absorption experiments confirmed that the fluorescence quenching of Zn-PDC/Tb 3+ nanostructures toward CFX should be attributed to the electron transfer and the fluorescence inner filter effect between the fluorescent matter and the analyte. In addition, the strong fluorescence of the nanostructures could also be selectively quenched by acetone in the water system.

  1. Comparative study on catalytic hydrodehalogenation of halogenated aromatic compounds over Pd/C and Raney Ni catalysts

    NASA Astrophysics Data System (ADS)

    Ma, Xuanxuan; Liu, Sujing; Liu, Ying; Gu, Guodong; Xia, Chuanhai

    2016-04-01

    Catalytic hydrodehalogenation (HDH) has proved to be an efficient approach to dispose halogenated aromatic compounds (HACs). Liquid-phase HDH of single and mixed halobenzenes/4-halophenols with H2 over 5% Pd/C and Raney Ni catalyst are investigated and compared. For liquid-phase HDH of single HACs, hydrogenolytic scission reactivity of C-X bonds decreases in order of C-Br > C-Cl > C-I > C-F over Pd/C catalyst, and in order of C-I > C-Br > C-Cl > C-F over Raney Ni catalyst. To clarify the reason why hydrogenolytic scission reactivity of C-X bonds over Pd/C and Raney Ni catalysts exhibits different trends, liquid-phase HDH of mixed HACs over Pd/C and Raney Ni catalysts were studied, and catalysts are characterized by SEM, EDX, and XRD techniques. It was found that the high adsorption of iodoarenes on Pd/C catalyst caused the HDH reactivity of iodoarenes to be lower than that of chloroarenes and bromoarenes in the HDH of single HACs. Moreover, the adsorption of in situ produced iodine ion (I-) to catalyst surface would result in the decline of catalytic activity, which might be the main reason why the HDH reactivity of HACs in the presence of NaI is rather low.

  2. Does the cycad genotoxin MAM implicated in Guam ALS-PDC induce disease-relevant changes in mouse brain that includes olfaction?

    PubMed

    Kisby, Glen; Palmer, Valerie; Lasarev, Mike; Fry, Rebecca; Iordanov, Mihail; Magun, Eli; Samson, Leona; Spencer, Peter

    2011-11-01

    Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?

  3. Fat tissue after lipolysis of lipomas: a histopathological and immunohistochemical study.

    PubMed

    Bechara, Falk G; Sand, Michael; Hoffmann, Klaus; Sand, Daniel; Altmeyer, Peter; Stücker, Markus

    2007-07-01

    Injections with Lipostabil, a phosphatidylcholine (PDC) containing substance, have become a popular technique to treat localized fat accumulation and lipomas for aesthetic reasons. Despite its frequent use, the mechanism of action of PDC and histological changes of treated fat tissue still remain unclear. To investigate the histological changes of lipomas after treatment with PDC. In all, fourteen lipomas (n = 14) in five patients presenting with multiple lipomas were treated with intralesional injections of PDC (Lipostabil, Nettermann, Germany). Histological changes with immunohistochemical analysis of the inflammatory process were evaluated 4, 10, 24, 48 h, 10 days, 30 days and 60 days after lipolysis. Between 4 and 48 h after injection, histology shows a lobular neutrophilic infiltrate with partially destroyed fat cells. At day 10 the inflammatory process is accompanied by an infiltration of T-lymphocytes. After 60 days formation of macrophages with foam cells are visible, accompanied by thickened septa and capsula. Lipolysis with PDC results in a distinct inflammatory reaction of affected fat tissue, similar to factitial panniculitis. Early destruction of fat cells may suggest the involvement of detergent or osmotic mechanisms in the process.

  4. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p

  5. Turbodrills and innovative PDC bits economically drilled hard formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, R.C.; Massey, K.

    1994-03-28

    The use of turbodrills and polycrystalline diamond compact (PDC) bits with an innovative, tracking cutting structure has improved drilling economics in medium and hard formations in the Gulf of Mexico. Field results have confirmed that turbodrilling with trackset PDC bits reduced drilling costs, compared to offset wells. The combination of turbodrills and trackset bits has been used successfully in a broad range of applications and with various drilling parameters. Formations ranging from medium shales to hard, abrasive sands have been successfully and economically drilled. The tools have been used in both water-based and oil-based muds. Additionally, the turbo-drill and tracksetmore » PDC bit combination has been stable on directional drilling applications. The locking effect of the cutting structure helps keep the bit on course.« less

  6. Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent**

    PubMed Central

    Volkov, Alexey; Gustafson, Karl P J; Tai, Cheuk-Wai; Verho, Oscar; Bäckvall, Jan-E; Adolfsson, Hans

    2015-01-01

    Herein, a practical and mild method for the deoxygenation of a wide range of benzylic aldehydes and ketones is described, which utilizes heterogeneous Pd/C as the catalyst together with the green hydride source, polymethylhydrosiloxane. The developed catalytic protocol is scalable and robust, as exemplified by the deoxygenation of ethyl vanillin, which was performed on a 30 mmol scale in an open-to-air setup using only 0.085 mol % Pd/C catalyst to furnish the corresponding deoxygenated product in 93 % yield within 3 hours at room temperature. Furthermore, the Pd/C catalyst was shown to be recyclable up to 6 times without any observable decrease in efficiency and it exhibited low metal leaching under the reaction conditions. PMID:25728614

  7. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  8. A new product for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Gonsiorowski, Thomas

    1986-01-01

    A new commercial low-light imaging detector, the Photon Digitizing Camera (PDC), is based on the PAPA detector developed at Harvard University. The PDC generates (x, y, t)-coordinate data of each detected photoevent. Because the positional address computation is performed optically, very high counting rates are achieved even at full spatial resolution. Careful optomechanical and electronic design results in a compact, rugged detector with superb performance. The PDC will be used for speckle imaging of astronomical sources and other astronomical and low-light applications.

  9. Damping of spin-dipole mode and generation of quadrupole mode excitations in a spin-orbit coupled Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Hsun; Blasing, David; Chen, Yong

    2017-04-01

    In cold atom systems, spin excitations have been shown to be a sensitive probe of interactions and quantum statistical effects, and can be used to study spin transport in both Fermi and Bose gases. In particular, spin-dipole mode (SDM) is a type of excitation that can generate a spin current without a net mass current. We present recent measurements and analysis of SDM in a disorder-free, interacting three-dimensional (3D) 87Rb Bose-Einstein condensate (BEC) by applying spin-dependent synthetic electric fields to actuate head-on collisions between two BECs of different spin states. We experimentally study and compare the behaviors of the system following SDM excitations in the presence as well as absence of synthetic 1D spin-orbit coupling (SOC). We find that in the absence of SOC, SDM is relatively weakly damped, accompanied with collision-induced thermalization which heats up the atomic cloud. However, in the presence of SOC, we find that SDM is more strongly damped with reduced thermalization, and observe excitation of a quadrupole mode that exhibits BEC shape oscillation even after SDM is damped out. Such a mode conversion bears analogies with the Beliaev coupling process or the parametric frequency down conversion of light in nonlinear optics.

  10. 78 FR 69408 - Combined Notice of Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ....m. ET 11/18/13. Docket Numbers: RP14-154-000. Applicants: PDC Energy, Inc., Alliance Petroleum Corporation. Description: Joint Petition of PDC Energy, Inc. and Alliance Petroleum Corporation for Limited...

  11. Cartesian and polar Schmidt bases for down-converted photons. How high dimensional entanglement protects the shared information from non-ideal measurements

    NASA Astrophysics Data System (ADS)

    Miatto, F. M.; Brougham, T.; Yao, A. M.

    2012-07-01

    We derive an analytical form of the Schmidt modes of spontaneous parametric down-conversion (SPDC) biphotons in both Cartesian and polar coordinates. We show that these correspond to Hermite-Gauss (HG) or Laguerre-Gauss (LG) modes only for a specific value of their width, and we show how such value depends on the experimental parameters. The Schmidt modes that we explicitly derive allow one to set up an optimised projection basis that maximises the mutual information gained from a joint measurement. The possibility of doing so with LG modes makes it possible to take advantage of the properties of orbital angular momentum eigenmodes. We derive a general entropic entanglement measure using the Rényi entropy as a function of the Schmidt number, K, and then retrieve the von Neumann entropy, S. Using the relation between S and K we show that, for highly entangled states, a non-ideal measurement basis does not degrade the number of shared bits by a large extent. More specifically, given a non-ideal measurement which corresponds to the loss of a fraction of the total number of modes, we can quantify the experimental parameters needed to generate an entangled SPDC state with a sufficiently high dimensionality to retain any given fraction of shared bits.

  12. Voltage Drop Compensation Method for Active Matrix Organic Light Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Choi, Sang-moo; Ryu, Do-hyung; Kim, Keum-nam; Choi, Jae-beom; Kim, Byung-hee; Berkeley, Brian

    2011-03-01

    In this paper, the conventional voltage drop compensation methods are reviewed and the novel design and driving scheme, the advanced power de-coupled (aPDC) driving method, is proposed to effectively compensate the voltage IR drop of active matrix light emitting diode (AMOLED) displays. The advanced PDC driving scheme can be applied to general AMOLED pixel circuits that have been developed with only minor modification or without requiring modification in pixel circuit. A 14-in. AMOLED panel with the aPDC driving scheme was fabricated. Long range uniformity (LRU) of the 14-in. AMOLED panel was improved from 43% without the aPDC driving scheme, to over 87% at the same brightness by using the scheme and the layout complexity of the panel with new design scheme is less than that of the panel with the conventional design scheme.

  13. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jian, E-mail: Jian.Zhou@tudelft.n; Ye Guang, E-mail: g.ye@tudelft.n; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent

    2010-07-15

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuousmore » depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.« less

  14. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; York, S.W.; Yomano, L.P.

    1999-10-01

    Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopymore » plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.« less

  15. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes.

    PubMed

    Anbazhagan, V; Sankhala, Rajeshwer S; Singh, Bhanu Pratap; Swamy, Musti J

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process.

  16. Isothermal Titration Calorimetric Studies on the Interaction of the Major Bovine Seminal Plasma Protein, PDC-109 with Phospholipid Membranes

    PubMed Central

    Anbazhagan, V.; Sankhala, Rajeshwer S.; Singh, Bhanu Pratap; Swamy, Musti J.

    2011-01-01

    The interaction of the major bovine seminal plasma protein, PDC-109 with lipid membranes was investigated by isothermal titration calorimetry. Binding of the protein to model membranes made up of diacyl phospholipids was found to be endothermic, with positive values of binding enthalpy and entropy, and could be analyzed in terms of a single type of binding sites on the protein. Enthalpies and entropies for binding to diacylphosphatidylcholine membranes increased with increase in temperature, although a clear-cut linear dependence was not observed. The entropically driven binding process indicates that hydrophobic interactions play a major role in the overall binding process. Binding of PDC-109 with dimyristoylphosphatidylcholine membranes containing 25 mol% cholesterol showed an initial increase in the association constant as well as enthalpy and entropy of binding with increase in temperature, whereas the values decreased with further increase in temperature. The affinity of PDC-109 for phosphatidylcholine increased at higher pH, which is physiologically relevant in view of the basic nature of the seminal plasma. Binding of PDC-109 to Lyso-PC could be best analysed in terms of two types of binding interactions, a high affinity interaction with Lyso-PC micelles and a low-affinity interaction with the monomeric lipid. Enthalpy-entropy compensation was observed for the interaction of PDC-109 with phospholipid membranes, suggesting that water structure plays an important role in the binding process. PMID:22022488

  17. Sensing of Porcine Reproductive and Respiratory Syndrome Virus-Infected Macrophages by Plasmacytoid Dendritic Cells

    PubMed Central

    García-Nicolás, Obdulio; Auray, Gaël; Sautter, Carmen A.; Rappe, Julie C. F.; McCullough, Kenneth C.; Ruggli, Nicolas; Summerfield, Artur

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs. PMID:27458429

  18. Co-C and Pd-C Eutectic Fixed Points for Radiation Thermometry and Thermocouple Thermometry

    NASA Astrophysics Data System (ADS)

    Wang, L.

    2017-12-01

    Two Co-C and Pd-C eutectic fixed point cells for both radiation thermometry and thermocouple thermometry were constructed at NMC. This paper describes details of the cell design, materials used, and fabrication of the cells. The melting curves of the Co-C and Pd-C cells were measured with a reference radiation thermometer realized in both a single-zone furnace and a three-zone furnace in order to investigate furnace effect. The transition temperatures in terms of ITS-90 were determined to be 1324.18 {°}C and 1491.61 {°}C with the corresponding combined standard uncertainty of 0.44 {°}C and 0.31 {°}C for Co-C and Pd-C, respectively, taking into account of the differences of two different types of furnaces used. The determined ITS-90 temperatures are also compared with that of INRIM cells obtained using the same reference radiation thermometer and the same furnaces with the same settings during a previous bilateral comparison exercise (Battuello et al. in Int J Thermophys 35:535-546, 2014). The agreements are within k=1 uncertainty for Co-C cell and k = 2 uncertainty for Pd-C cell. Shapes of the plateaus of NMC cells and INRIM cells are compared too and furnace effects are analyzed as well. The melting curves of the Co-C and Pd-C cells realized in the single-zone furnace are also measured by a Pt/Pd thermocouple, and the preliminary results are presented as well.

  19. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  20. Lectin-Binding Specificity of the Fertilization-Relevant Protein PDC-109 by Means of Surface Plasmon Resonance and Carbohydrate REcognition Domain EXcision-Mass Spectrometry.

    PubMed

    Defaus, Sira; Avilés, Manuel; Andreu, David; Gutiérrez-Gallego, Ricardo

    2018-04-04

    Seminal plasma proteins are relevant for sperm functionality and some appear responsible for establishing sperm interactions with the various environments along the female genital tract towards the oocyte. In recent years, research has focused on characterizing the role of these proteins in the context of reproductive biology, fertility diagnostics and treatment of related problems. Herein, we focus on the main protein of bovine seminal plasma, PDC-109 (BSP-A1/-A2), which by virtue of its lectin properties is involved in fertilization. By means of surface plasmon resonance, the interaction of PDC-109 with a panel of the most relevant glycosidic epitopes of mammals has been qualitatively and quantitatively characterized, and a higher affinity for carbohydrates containing fucose has been observed, in line with previous studies. Additionally, using the orthogonal technique of Carbohydrate REcognition Domain EXcision-Mass Spectrometry (CREDEX-MS), the recognition domain of the interaction complexes between PDC-109 and all fucosylated disaccharides [(Fuc-α1,(3,4,6)-GlcNAc)] has been defined, revealing the specific glycotope and the peptide domain likely to act as the PDC-109 carbohydrate binding site.

  1. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.

    PubMed

    Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu

    2016-10-01

    Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease. © 2016 by the American Diabetes Association.

  2. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.

    PubMed

    David, Lamuel; Asok, Deepu; Singh, Gurpreet

    2014-09-24

    Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.

  3. Measurement and analysis of chatter in a compliant model of a drillstring equipped with a PDC bit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.A.; Raymond, D.W.

    1999-11-09

    Typical laboratory testing of Polycrystalline Diamond Compact (PDC) bits is performed on relatively rigid setups. Even in hard rock, PDC bits exhibit reasonable life using such testing schemes. Unfortunately, field experience indicates otherwise. In this paper, the authors show that introducing compliance in testing setups provides better simulation of actual field conditions. Using such a scheme, they show that chatter can be severe even in softer rock, such as sandstone, and very destructive to the cutters in hard rock, such as sierra white granite.

  4. NOK mediates glycolysis and nuclear PDC associated histone acetylation.

    PubMed

    Shi, Wei-Ye; Yang, Xiao; Huang, Bo; Shen, Wen H; Liu, Li

    2017-06-01

    NOK is a potent oncogene that can transform normal cells to cancer cells. We hypothesized that NOK might impact cancer cell metabolism and histone acetylation. We show that NOK localizes in the mitochondria, and while it minimally impacts tricarboxylic acid (TCA) cycle, it markedly inhibits the process of electron transport and oxidative phosphorylation processes and dramatically enhances aerobic glycolysis in cancer cells. NOK promotes the mitochondrial-nuclear translocation of pyruvate dehydrogenase complex (PDC), and enhances histone acetylation in the nucleus. Together, these findings show that NOK mediates glycolysis and nuclear PDC associated histone acetylation.

  5. Wave-particle dualism and complementarity unraveled by a different mode

    PubMed Central

    Menzel, Ralf; Puhlmann, Dirk; Heuer, Axel; Schleich, Wolfgang P.

    2012-01-01

    The precise knowledge of one of two complementary experimental outcomes prevents us from obtaining complete information about the other one. This formulation of Niels Bohr’s principle of complementarity when applied to the paradigm of wave-particle dualism—that is, to Young’s double-slit experiment—implies that the information about the slit through which a quantum particle has passed erases interference. In the present paper we report a double-slit experiment using two photons created by spontaneous parametric down-conversion where we observe interference in the signal photon despite the fact that we have located it in one of the slits due to its entanglement with the idler photon. This surprising aspect of complementarity comes to light by our special choice of the TEM01 pump mode. According to quantum field theory the signal photon is then in a coherent superposition of two distinct wave vectors giving rise to interference fringes analogous to two mechanical slits. PMID:22628561

  6. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.

    PubMed

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G

    2017-03-31

    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  7. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  8. Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater

    NASA Astrophysics Data System (ADS)

    Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei

    2017-10-01

    Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j -hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.

  9. Nonlocal effects on the polarization state of a photon, induced by distant absorbers

    NASA Technical Reports Server (NTRS)

    Ryff, Luis Carlos B.

    1994-01-01

    A variant of a Franson's two-photon correlation experiment is discussed, in which the linear polarization state of one of the photons depends on the path followed in the interferometer. It is shown that although the path difference is greater than the coherence length, the photon can be found in a polarization state represented by the superposition of the polarization states associated to the paths when there is coincident detection. Since the photons, produced via parametric down-conversion, are fairly well localized in space and time, the situation in which one of the photons is detected before the other can reach the interferometer raises an intriguing point: it seems that in some cases the second photon would have to be described by two wave packets simultaneously. Unlike previous experiments, in which nonlocal effects were induced by means of polarizers of phase shifters, in the proposed experiment nonlocal effects can be induced by means of variable absorbers.

  10. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  11. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  12. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  13. Quantum nonlinear optics without photons

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  14. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  15. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  16. Quantum-Dot Single-Photon Sources for Entanglement Enhanced Interferometry.

    PubMed

    Müller, M; Vural, H; Schneider, C; Rastelli, A; Schmidt, O G; Höfling, S; Michler, P

    2017-06-23

    Multiphoton entangled states such as "N00N states" have attracted a lot of attention because of their possible application in high-precision, quantum enhanced phase determination. So far, N00N states have been generated in spontaneous parametric down-conversion processes and by mixing quantum and classical light on a beam splitter. Here, in contrast, we demonstrate superresolving phase measurements based on two-photon N00N states generated by quantum dot single-photon sources making use of the Hong-Ou-Mandel effect on a beam splitter. By means of pulsed resonance fluorescence of a charged exciton state, we achieve, in postselection, a quantum enhanced improvement of the precision in phase uncertainty, higher than prescribed by the standard quantum limit. An analytical description of the measurement scheme is provided, reflecting requirements, capability, and restraints of single-photon emitters in optical quantum metrology. Our results point toward the realization of a real-world quantum sensor in the near future.

  17. Projective filtering of the fundamental eigenmode from spatially multimode radiation

    NASA Astrophysics Data System (ADS)

    Pérez, A. M.; Sharapova, P. R.; Straupe, S. S.; Miatto, F. M.; Tikhonova, O. V.; Leuchs, G.; Chekhova, M. V.

    2015-11-01

    Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.

  18. Two-Hierarchy Entanglement Swapping for a Linear Optical Quantum Repeater.

    PubMed

    Xu, Ping; Yong, Hai-Lin; Chen, Luo-Kan; Liu, Chang; Xiang, Tong; Yao, Xing-Can; Lu, He; Li, Zheng-Da; Liu, Nai-Le; Li, Li; Yang, Tao; Peng, Cheng-Zhi; Zhao, Bo; Chen, Yu-Ao; Pan, Jian-Wei

    2017-10-27

    Quantum repeaters play a significant role in achieving long-distance quantum communication. In the past decades, tremendous effort has been devoted towards constructing a quantum repeater. As one of the crucial elements, entanglement has been created in different memory systems via entanglement swapping. The realization of j-hierarchy entanglement swapping, i.e., connecting quantum memory and further extending the communication distance, is important for implementing a practical quantum repeater. Here, we report the first demonstration of a fault-tolerant two-hierarchy entanglement swapping with linear optics using parametric down-conversion sources. In the experiment, the dominant or most probable noise terms in the one-hierarchy entanglement swapping, which is on the same order of magnitude as the desired state and prevents further entanglement connections, are automatically washed out by a proper design of the detection setting, and the communication distance can be extended. Given suitable quantum memory, our techniques can be directly applied to implementing an atomic ensemble based quantum repeater, and are of significant importance in the scalable quantum information processing.

  19. Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.

    2003-02-01

    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less

  20. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells

    PubMed Central

    Thomann, Sabrina; Boscheinen, Jan B; Vogel, Karin; Knipe, David M; DeLuca, Neal; Gross, Stefanie; Schuler-Thurner, Beatrice; Schuster, Philipp; Schmidt, Barbara

    2015-01-01

    Malignant melanoma is an aggressive tumour of the skin with increasing incidence, frequent metastasis and poor prognosis. At the same time, it is an immunogenic type of cancer with spontaneous regressions. Most recently, the tumoricidal effect of plasmacytoid dendritic cells (pDC) and their capacity to overcome the immunosuppressive tumour microenvironment are being investigated. In this respect, we studied the effect of the infectious, but replication-deficient, herpes simplex virus 1 (HSV-1) d106S vaccine strain, which lacks essential immediate early genes, in pDC co-cultures with 11 melanoma cell lines. We observed a strong cytotoxic activity, inducing apoptotic and necrotic cell death in most melanoma cell lines. The cytotoxic activity of HSV-1 d106S plus pDC was comparable to the levels of cytotoxicity induced by natural killer cells, but required only a fraction of cells with effector : target ratios of 1 : 20 (P < 0·05). The suppressive activity of cell-free supernatants derived from virus-stimulated pDC was significantly neutralized using antibodies against the interferon-α receptor (P < 0·05). In addition to type I interferons, TRAIL and granzyme B contributed to the inhibitory effect of HSV-1 d106S plus pDC to a minor extent. UV-irradiated viral stocks were significantly less active than infectious particles, both in the absence and presence of pDC (P < 0·05), indicating that residual activity of HSV-1 d106S is a major component and sensitizes the tumour cells to interferon-producing pDC. Three leukaemic cell lines were also susceptible to this treatment, suggesting a general anti-tumour effect. In conclusion, the potential of HSV-1 d106S for therapeutic vaccination should be further evaluated in patients suffering from different malignancies. PMID:26194553

  1. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency.

    PubMed

    Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A

    2017-04-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. PDC Bit Testing at Sandia Reveals Influence of Chatter in Hard-Rock Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAYMOND,DAVID W.

    1999-10-14

    Polycrystalline diamond compact (PDC) bits have yet to be routinely applied to drilling the hard-rock formations characteristic of geothermal reservoirs. Most geothermal production wells are currently drilled with tungsten-carbide-insert roller-cone bits. PDC bits have significantly improved penetration rates and bit life beyond roller-cone bits in the oil and gas industry where soft to medium-hard rock types are encountered. If PDC bits could be used to double current penetration rates in hard rock geothermal well-drilling costs could be reduced by 15 percent or more. PDC bits exhibit reasonable life in hard-rock wear testing using the relatively rigid setups typical of laboratorymore » testing. Unfortunately, field experience indicates otherwise. The prevailing mode of failure encountered by PDC bits returning from hard-rock formations in the field is catastrophic, presumably due to impact loading. These failures usually occur in advance of any appreciable wear that might dictate cutter replacement. Self-induced bit vibration, or ''chatter'', is one of the mechanisms that may be responsible for impact damage to PDC cutters in hard-rock drilling. Chatter is more severe in hard-rock formations since they induce significant dynamic loading on the cutter elements. Chatter is a phenomenon whereby the drillstring becomes dynamically unstable and excessive sustained vibrations occur. Unlike forced vibration, the force (i.e., weight on bit) that drives self-induced vibration is coupled with the response it produces. Many of the chatter principles derived in the machine tool industry are applicable to drilling. It is a simple matter to make changes to a machine tool to study the chatter phenomenon. This is not the case with drilling. Chatter occurs in field drilling due to the flexibility of the drillstring. Hence, laboratory setups must be made compliant to observe chatter.« less

  3. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii.

    PubMed

    Shtaida, Nastassia; Khozin-Goldberg, Inna; Solovchenko, Alexei; Chekanov, Konstantin; Didi-Cohen, Shoshana; Leu, Stefan; Cohen, Zvi; Boussiba, Sammy

    2014-12-01

    The chloroplast pyruvate dehydrogenase complex (cpPDC) catalyses the oxidative decarboxylation of pyruvate forming acetyl-CoA, an immediate primer for the initial reactions of de novo fatty acid (FA) synthesis. Little is known about the source of acetyl-CoA in the chloroplasts of photosynthetic microalgae, which are capable of producing high amounts of the storage lipid triacylglycerol (TAG) under conditions of nutrient stresses. We generated Chlamydomonas reinhardtii CC-1618 mutants with decreased expression of the PDC2_E1α gene, encoding the putative chloroplast pyruvate dehydrogenase subunit E1α, using artificial microRNA. A comparative study on the effects of PDC2_E1α silencing on FAs and TAG production in C. reinhardtii, grown photoautotrophically and mixotrophically, with and without a nitrogen source in the nutrient medium, was carried out. Reduced expression of PDC2 _E1α led to a severely hampered photoautotrophic growth phenotype with drastic impairment in TAG accumulation under nitrogen deprivation. In the presence of acetate, downregulation of PDC2_E1α exerted little to no effect on TAG production and photosynthetic activity. In contrast, under photoautotrophic conditions, especially in the absence of a nitrogen source, a dramatic decline in photosynthetic oxygen evolution and photosystem II quantum yield against a background of the apparent over-reduction of the photosynthetic electron chain was recorded. Our results suggest an essential role of cpPDC in the supply of carbon precursors for de novo FA synthesis in microalgae under conditions of photoautotrophy. A shortage of this supply is detrimental to the nitrogen-starvation-induced synthesis of storage TAG, an important carbon and energy sink in stressed Chlamydomonas cells, thereby impairing the acclimation ability of the microalga. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. C9orf72 hexanucleotide repeat expansion and Guam amyotrophic lateral sclerosis-Parkinsonism-dementia complex.

    PubMed

    Dombroski, Beth A; Galasko, Douglas R; Mata, Ignacio F; Zabetian, Cyrus P; Craig, Ulla-Katrina; Garruto, Ralph M; Oyanagi, Kiyomitsu; Schellenberg, Gerard D

    2013-06-01

    High-prevalence foci of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) exist in Japanese on the Kii Peninsula of Japan and in the Chamorros of Guam. Clinical and neuropathologic similarities suggest that the disease in these 2 populations may be related. Recent findings showed that some of the Kii Peninsula ALS cases had pathogenic C9orf72 repeat expansions, a genotype that causes ALS in Western populations. To perform genotyping among Guam residents to determine if the C9orf72 expanded repeat allele contributes to ALS-PDC in this population and to evaluate LRRK2 for mutations in the same population. Case-control series from neurodegenerative disease research programs on Guam that screened residents for ALS, PDC, and dementia. Study participants included 24 with ALS and 22 with PDC and 43 older control subjects with normal cognition ascertained between 1956 and 2006. All but one participant were Chamorro, the indigenous people of Guam. A single individual of white race/ethnicity with ALS was ascertained on Guam during the study. Participants were screened for C9orf72 hexanucleotide repeat length. Participants with repeat numbers in great excess of 30 were considered to have pathogenic repeat expansions. LRRK2 was screened for point mutations by DNA sequencing. We found a single individual with an expanded pathogenic hexanucleotide repeat. This individual of white race/ethnicity with ALS was living on Guam at the time of ascertainment but had been born in the United States. All Chamorro participants with ALS and PDC and control subjects had normal repeats, ranging from 2 to 17 copies. No pathogenic LRRK2 mutations were found. Unlike participants with ALS from the Kii Peninsula, C9orf72 expansions do not cause ALS-PDC in Chamorros. Likewise, LRRK2 mutations do not cause Guam ALS-PDC.

  5. Results of NanTroSEIZE Expeditions Stages 1 & 2: Deep-sea Coring Operations on-board the Deep-sea Drilling Vessel Chikyu and Development of Coring Equipment for Stage 3

    NASA Astrophysics Data System (ADS)

    Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.

    2010-12-01

    The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.

  6. Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.

    2016-04-01

    Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash deposits likely requires a combination of sufficient humidity and a pre-existing soluble salt load on aggregating ash particles. We suggest that steam pluming from the dammed Chambo river, coupled with soluble salts emplaced by gas-ash interactions between ejection and deposition, provided a unique opportunity for the formation of accretionary lapilli with sufficient mechanical strength to survive deposition, accounting for their presence in a deposit otherwise absent of such aggregates. This possibility provides an important reminder of the role played by external environmental triggers in shaping the properties volcanic ash deposits.

  7. Two and Three Beam Pumped Optical Parametric Amplifier of Chirped Pulses

    NASA Astrophysics Data System (ADS)

    Ališauskas, S.; Butkus, R.; Pyragaitė, V.; Smilgevičius, V.; Stabinis, A.; Piskarskas, A.

    2010-04-01

    We present two and three beam pumped optical parametric amplifier of broadband chirped pulses. The seed pulses from Ti:sapphire oscillator were stretched and amplified in a non-collinear geometry pumping with up to three beams derived from independent laser amplifiers. The signal with ˜90 nm bandwidth was amplified up to 0.72 mJ. The conversion efficiency dependence on intersection angles of pump beams is also revealed.

  8. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  9. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties.

    PubMed

    Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2012-08-07

    Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.

  10. Detection of periodicity based on independence tests - III. Phase distance correlation periodogram

    NASA Astrophysics Data System (ADS)

    Zucker, Shay

    2018-02-01

    I present the Phase Distance Correlation (PDC) periodogram - a new periodicity metric, based on the Distance Correlation concept of Gábor Székely. For each trial period, PDC calculates the distance correlation between the data samples and their phases. PDC requires adaptation of the Székely's distance correlation to circular variables (phases). The resulting periodicity metric is best suited to sparse data sets, and it performs better than other methods for sawtooth-like periodicities. These include Cepheid and RR-Lyrae light curves, as well as radial velocity curves of eccentric spectroscopic binaries. The performance of the PDC periodogram in other contexts is almost as good as that of the Generalized Lomb-Scargle periodogram. The concept of phase distance correlation can be adapted also to astrometric data, and it has the potential to be suitable also for large evenly spaced data sets, after some algorithmic perfection.

  11. PDC bit hydraulics design, profile are key to reducing balling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-12-09

    Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less

  12. Probabilistic Asteroid Impact Risk Assessment for the Hypothetical PDC17 Impact Exercise

    NASA Technical Reports Server (NTRS)

    Wheeler, Lorien; Mathias, Donovan

    2017-01-01

    Performing impact risk assessment for the 2017 Planetary Defense Conference (PDC17) hypothetical impact exercise, to take place at the PDC17 conference, May 15-20, 2017. Impact scenarios and trajectories are developed and provided by NASA's Near Earth Objects Office at JPL (Paul Chodas). These results represent purely hypothetical impact scenarios, and do not reflect any known asteroid threat. Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center. This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercisecenter dot Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference. Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.

  13. Non-linear wave interaction in a magnetoplasma column. I - Theory. II Experiment

    NASA Technical Reports Server (NTRS)

    Larsen, J.-M.; Crawford, F. W.

    1979-01-01

    The paper presents an analysis of non-linear three-wave interaction for propagation along a cylindrical plasma column surrounded either by a metallic boundary, or by an infinite dielectric, and immersed in an infinite, static, axial magnetic field. An averaged Lagrangian method is used and the results are specialized to parametric amplification and mode conversion, assuming an undepleted pump wave. Computations are presented for a magneto-plasma column surrounded by free space, indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma parameters. In addition, experiments on non-linear mode conversion in a cylindrical magnetoplasma column are described. The results are compared with the theoretical predictions and good qualitative agreement is demonstrated.

  14. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  15. Numerical investigation of output beam quality in efficient broadband optical parametric chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Di; Xu, Lu; Liang, Xiao-Yan

    2017-01-01

    We theoretically analyzed output beam quality of broad bandwidth non-collinear optical parametric chirped pulse amplification (NOPCPA) in LiB3O5 (LBO) centered at 800 nm. With a three-dimensional numerical model, the influence of the pump intensity, pump and signal spatial modulations, and the walk-off effect on the OPCPA output beam quality are presented, together with conversion efficiency and the gain spectrum. The pump modulation is a dominant factor that affects the output beam quality. Comparatively, the influence of signal modulation is insignificant. For a low-energy system with small beam sizes, walk-off effect has to be considered. Pump modulation and walk-off effect lead to asymmetric output beam profile with increased modulation. A special pump modulation type is found to optimize output beam quality and efficiency. For a high-energy system with large beam sizes, the walk-off effect can be neglected, certain back conversion is beneficial to reduce the output modulation. A trade-off must be made between the output beam quality and the conversion efficiency, especially when the pump modulation is large since. A relatively high conversion efficiency and a low output modulation are both achievable by controlling the pump modulation and intensity.

  16. Quantitative and functional analysis of PDC-E2–specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis

    PubMed Central

    Kita, Hiroto; Matsumura, Shuji; He, Xiao-Song; Ansari, Aftab A.; Lian, Zhe-Xiong; Van de Water, Judy; Coppel, Ross L.; Kaplan, Marshall M.; Gershwin, M. Eric

    2002-01-01

    While the pathologic mechanisms responsible for organ-specific tissue damage in primary biliary cirrhosis (PBC) remain an enigma, it has been suggested that the pathology is mediated by autoreactive T cells infiltrating the intrahepatic bile ducts. Previously, we have documented that there is 100-fold enrichment in the frequency of CD4+ autoreactive T cells in the liver that are specific for peptides encoded by the E2 components of the pyruvate dehydrogenase complexes (PDC-E2). We have also recently characterized the first MHC class I–restricted epitope for PDC-E2, namely amino acid 159–167, a region very similar to the epitope recognized by MHC class II–restricted CD4+ cells and by autoantibodies. The effector functions of these PDC-E2159-167–specific CD8+ cytotoxic T lymphocytes (CTLs) are not well understood. We have taken advantage of tetramer technology and report herein that there is tenfold increase in the frequency of PDC-E2159-167–specific CTLs in the liver as compared with the blood in PBC. In addition, the precursor frequency of the CTLs in blood was significantly higher in early-stage PBC. Of interest was the fact that, upon stimulation with the peptide, the response of PDC-E2159-167 tetramer-positive cells is heterogeneous with respect to IFN-γ synthesis. These data, we believe for the first time, document the enrichment of autoantigen-specific CD8+ T cells in the PBC liver, suggesting that CD8+ T cells play a significant role in the immunopathogenesis of PBC. PMID:11994412

  17. A predictive risk model for electroshock-induced mortality of the endangered Cape Fear shiner

    USGS Publications Warehouse

    Holliman, F.M.; Reynolds, J.B.; Kwak, T.J.

    2003-01-01

    We evaluated the effects of a single electroshock on injury and mortality of hatchery-reared Cape Fear shiners Notropis mekistocholas (N = 517), an endangered cyprinid. Groups of 18-22 Cape Fear shiners were exposed to DC, 120-Hz pulsed DC (PDC), or 60-Hz PDC at voltage gradients of 1.1, 1.9, or 2.7 V/cm for 3 s. Mortality occurred only among fish exposed to 120-Hz PDC (25%) and DC (38%) applied at 2.7 V/cm. Because no mortality occurred in Cape Fear shiners exposed to 60-Hz PDC, this waveform was selected for further study of electroshock duration (3, 6, 12, 24, or 48 s) and voltage gradient (0.9, 1.6, or 2.3 V/cm). Most fish electroshocked in the experiments were immobilized (ceased swimming motion). No physical injury was detected by necropsy or radiography in any fish. Electroshock-induced mortality of Cape Fear shiners showed a strong multivariable relationship to voltage gradient, electroshock duration, and fish length. Fish subjected to 60-Hz PDC at 0.9 or 1.6 V/cm for 6 s experienced low mortality (<10%). Our results demonstrate that Cape Fear shiners can be immobilized by 60-Hz PDC electroshock without injury or significant risk of mortality. We propose that electrofishing may be safely used to sample similar small cyprinids, imperiled or otherwise, when electrofishers select an appropriate waveform (DC pulsed at 60-Hz or less) and use it judiciously (minimal exposure at, or below, the immobilization threshold).

  18. Quantum information processing with trapped electrons and superconducting electronics (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2013-07-05

    This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between

  19. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llano-Tomé, Francisco, E-mail: francisco.llano@ehu.eus; Bazán, Begoña, E-mail: bego.bazan@ehu.eus; BCMaterials Parque Tecnológico de Zamudio, Ibaizabal Bidea, Edificio 500–Planta 1, 48160 Derio

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel Cu{sup II}-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu{sub 2}[(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·3H{sub 2}O·DMF (1), and [Cu{sub 2}(PDC){sub 2}(bpa)(H{sub 2}O){sub 2}]·7H{sub 2}O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis,more » differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays. - Graphical abstract: Cu-PDC-bpa 3-c herringbone arrays. - Highlights: • The most ideal herringbone array reported so far is a Cu-PDC-bpa SCF. • Conformational freedom of bpa results in 2D and 3D flexibility of the SCFs. • The flexibility of the SCFs is related to a phase transformation. • Dielectric measurements confirm the mobility of guest solvent molecules.« less

  20. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    PubMed

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  1. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  2. International Workshop on Condensed Matter Theories (13th) Held in Campos do Jordao, Brazil on August 1989

    DTIC Science & Technology

    1990-01-01

    Pdc(rlr 2 r)][Pc-(r’) + Pdco (rr.rl)] (2) The two- and three-point irreducible exchange functions Paf, and Pa.- are clas- sified according to the...r, r2r’) l(ri rI )PdCI(rI r~r’) + Perde(r r2r’ ) + PVdc(r r’ ) grter,) - VPd(rl r2 r’ ) Pdco (r’ r 2 ri) - vPCC(r)Pdc.(r’r2r,) - vPc(r’)Pdc(r~r2r’)I

  3. [Methodology of determination of the time of death and outlooks for the further development].

    PubMed

    Novikov, P I; Vlasov, A Iu; Shved, E F; Natsentov, E O; Korshunov, N V; Belykh, S A

    2004-01-01

    A methodological analysis of diagnosing the prescription of death coming (PDC) is described in the paper. Key philosophic fundamentals for further novel and more effective methods of PDC determination are elucidated. Main requirement applicable to postmortem diagnosis are defined. Different methods of modeling the postmortem process are demonstrated by the example of cadaver cooling, i.e. in real time, by analogue computer systems and by mathematic modeling. The traditional empiric and the adaptive approaches are comparatively analyzed in modeling the postmortem processes for the PDC diagnosis. A variety of promising trends for further related research is outlined.

  4. Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes.

    PubMed

    Moss, Nicholas J; Magaret, Amalia; Laing, Kerry J; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E; Schiffer, Joshua T; Wald, Anna; Koelle, David M

    2012-09-01

    Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.

  5. Confined compressive strength analysis can improve PDC bit selection. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabain, R.T.

    1994-05-16

    A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less

  6. Utilizing a Pediatric Disaster Coalition Model to Increase Pediatric Critical Care Surge Capacity in New York City.

    PubMed

    Frogel, Michael; Flamm, Avram; Sagy, Mayer; Uraneck, Katharine; Conway, Edward; Ushay, Michael; Greenwald, Bruce M; Pierre, Louisdon; Shah, Vikas; Gaffoor, Mohamed; Cooper, Arthur; Foltin, George

    2017-08-01

    A mass casualty event can result in an overwhelming number of critically injured pediatric victims that exceeds the available capacity of pediatric critical care (PCC) units, both locally and regionally. To address these gaps, the New York City (NYC) Pediatric Disaster Coalition (PDC) was established. The PDC includes experts in emergency preparedness, critical care, surgery, and emergency medicine from 18 of 25 major NYC PCC-capable hospitals. A PCC surge committee created recommendations for making additional PCC beds available with an emphasis on space, staff, stuff (equipment), and systems. The PDC assisted 15 hospitals in creating PCC surge plans by utilizing template plans and site visits. These plans created an additional 153 potential PCC surge beds. Seven hospitals tested their plans through drills. The purpose of this article was to demonstrate the need for planning for disasters involving children and to provide a stepwise, replicable model for establishing a PDC, with one of its primary goals focused on facilitating PCC surge planning. The process we describe for developing a PDC can be replicated to communities of any size, setting, or location. We offer our model as an example for other cities. (Disaster Med Public Health Preparedness. 2017;11:473-478).

  7. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes

    NASA Astrophysics Data System (ADS)

    Kannan, Rohit; Tangirala, Arun K.

    2014-06-01

    Identification of directional influences in multivariate systems is of prime importance in several applications of engineering and sciences such as plant topology reconstruction, fault detection and diagnosis, and neurosciences. A spectrum of related directionality measures, ranging from linear measures such as partial directed coherence (PDC) to nonlinear measures such as transfer entropy, have emerged over the past two decades. The PDC-based technique is simple and effective, but being a linear directionality measure has limited applicability. On the other hand, transfer entropy, despite being a robust nonlinear measure, is computationally intensive and practically implementable only for bivariate processes. The objective of this work is to develop a nonlinear directionality measure, termed as KPDC, that possesses the simplicity of PDC but is still applicable to nonlinear processes. The technique is founded on a nonlinear measure called correntropy, a recently proposed generalized correlation measure. The proposed method is equivalent to constructing PDC in a kernel space where the PDC is estimated using a vector autoregressive model built on correntropy. A consistent estimator of the KPDC is developed and important theoretical results are established. A permutation scheme combined with the sequential Bonferroni procedure is proposed for testing hypothesis on absence of causality. It is demonstrated through several case studies that the proposed methodology effectively detects Granger causality in nonlinear processes.

  8. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    PubMed

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Liang; He, Hui; Hsu, Andrew; Chen, Rongrong

    2013-11-01

    Carbon supported PdRu catalysts with various Pd:Ru atomic ratios were synthesized by impregnation method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electrochemical half-cell tests, and the anion-exchange membrane direct ethanol fuel cell (AEM-DEFC) tests. XRD results suggest that the PdRu metal exists on carbon support in an alloy form. TEM study shows that the bimetallic PdRu/C catalysts have slightly smaller average particle size than the single metal Pd/C catalyst. Lower onset potential and peak potential and much higher steady state current for ethanol oxidation in alkaline media were observed on the bimetallic catalysts (PdxRuy/C) than on the Pd/C, while the activity for ethanol oxidation on the pure Ru/C was not noticeable. By using Pd/C anode catalysts and MnO2 cathode catalysts, AEM-DEFCs free from the expensive Pt catalyst were assembled. The AEM DEFC using the bimetallic Pd3Ru/C anode catalyst showed a peak power density as high as 176 mW cm-2 at 80 °C, about 1.8 times higher than that using the single metal Pd/C catalyst. The role of Ru for enhancing the EOR activity of Pd/C catalysts is discussed.

  10. Peripheral Blood CD4 T-Cell and Plasmacytoid Dendritic Cell (pDC) Reactivity to Herpes Simplex Virus 2 and pDC Number Do Not Correlate with the Clinical or Virologic Severity of Recurrent Genital Herpes

    PubMed Central

    Moss, Nicholas J.; Magaret, Amalia; Laing, Kerry J.; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E.; Schiffer, Joshua T.; Wald, Anna

    2012-01-01

    Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals. PMID:22761381

  11. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    PubMed

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  12. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  13. Mode Engineering of Single Photons from Cavity Spontaneous Parametric Down-Conversion Source and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Paudel, Uttam

    Over the past decade, much effort has been made in identifying and characterizing systems that can form a building block of quantum networks, among which semiconductor quantum dots (QD) and spontaneous parametric down-conversion (SPDC) source are two of the most promising candidates. The work presented in this thesis will be centered on investigating and engineering the mentioned systems for generating customizable single photons. A type-II SPDC source can generate a highly flexible pair of entangled photons that can be used to interface disparate quantum systems. In this thesis, we have successfully implemented a cavity-SPDC source that emits polarization correlated photons at 942 nm with a lifetime of 950-1050ps that mode matches closely with InAs/GaAs QD photons. The source emits 80 photon pairs per second per mW pump power within the 150MHz bandwidth. Though the detection of idler photons, the source is capable of emitting heralded photons with g2?0.5 for up to 40 mW pump power. For a low pump power of 5 mW, the heralded g2 is 0.06, indicating that the system is an excellent heralded single photon source. By directly exciting a single QD with cavity-SPDC photons, we have demonstrated a heralded-absorption of SPDC photons by QD, resulting in the coupling of the two systems. Due to the large pump bandwidth, the emitted source is highly multimode in nature, requiring us to post-filter the downconverted field, resulting in a lower photon pair emission rate. We propose placing an intra-cavity etalon to suppress the multi-mode emissions and increase the photon count rate. Understanding and experimentally implementing two-photon interference (HOM) measurements will be crucial for building a scalable quantum network. A detailed theoretical description of HOM measurements is given and is experimentally demonstrated using photons emitted by QD. Through HOM measurements we demonstrated that the QD sample in the study is capable of emitting indistinguishable photons, with the visibility exceeding 95%. As an alternative approach to modifying the spectral mode of single photons, we performed phase modulation of photons emitted by a QD to generate additional sidebands that are separated by several GHz. By performing HOM measurements, we have shown that the central component and the sidebands are in the superposition states and the spectrally modified photons have a well-preserved indistinguishability. Such spectrally engineered photons can be used for phase-encoded cryptography applications. These experimental results should lay the foundations towards building a scalable hybrid quantum network.

  14. Ultrabright, narrow-band photon-pair source for atomic quantum memories

    NASA Astrophysics Data System (ADS)

    Tsai, Pin-Ju; Chen, Ying-Cheng

    2018-06-01

    We demonstrate an ultrabright, narrow-band and frequency-tunable photon-pair source based on cavity-enhanced spontaneous parametric down conversion (SPDC) which is compatible with atomic transition of rubidium D 2-line (780 nm) or cesium D 2-line (852 nm). With the pump beam alternating between a high and a low power phase, the output is switching between the optical parametric oscillator (OPO) and photon-pair generation mode. We utilize the OPO output light to lock the cavity length to maintain the double resonances of signal and idler, as well as to lock the signal frequency to cesium atomic transition. With a type-II phase matching and a double-passed pump scheme such that the cluster frequency spacing is larger than the SPDC bandwidth, the photon-pair output is in a nearly single-mode operation as confirmed by a scanning Fabry–Perot interferometer with its output detected by a photomultiplier. The achieved generation and detection rates are 7.24× {10}5 and 6142 s‑1 mW‑1, respectively. The correlation time of the photon pair is 21.6(2.2) ns, corresponding to a bandwidth of 2π × 6.6(6) MHz. The spectral brightness is 1.06× {10}5 s‑1 mW‑1 MHz‑1. This is a relatively high value under a single-mode operation with the cavity-SPDC scheme. The generated single photons can be readily used in experiments related to atomic quantum memories.

  15. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  16. Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation

    NASA Astrophysics Data System (ADS)

    Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem

    2004-10-01

    Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.

  17. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  18. Conformational dynamics and ligand binding in the multi-domain protein PDC109.

    PubMed

    Kim, Hyun Jin; Choi, Moo Young; Kim, Hyung J; Llinás, Miguel

    2010-02-18

    PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2) repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs), a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD) simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1), estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.

  19. Interaction of the major protein from bovine seminal plasma, PDC-109 with phospholipid membranes and soluble ligands investigated by fluorescence approaches.

    PubMed

    Anbazhagan, V; Damai, Rajani S; Paul, Aniruddha; Swamy, Musti J

    2008-06-01

    The major protein from bovine seminal plasma, PDC-109 binds selectively to choline phospholipids on the sperm plasma membrane and plays a crucial role in priming spermatozoa for fertilization. The microenvironment and accessibility of tryptophans of PDC-109 in the native state, in the presence of phosphorylcholine (PrC) and phospholipid membranes as well as upon denaturation have been investigated by fluorescence approaches. Quenching of the protein intrinsic fluorescence by different quenchers decreased in the order: acrylamide>succinimide>Cs(+)>I(-). Ligand binding afforded considerable protection from quenching, with shielding efficiencies following the order: dimyristoylphosphatidylcholine (DMPC)>lysophosphatidylcholine (Lyso-PC)>PrC. This has been attributed to a partial penetration of the protein into the DMPC membranes and Lyso-PC micelles, as well as a further stabilization of the binding due to the interaction of PDC-109 with lipid acyl chains and the resulting tightening of the protein structure, leading to a decreased accessibility of the tryptophan residues. Red-edge excitation shift (REES) studies yielded REES values of 4 nm for both native and denatured PDC-109, whereas reduced and denatured protein gave a REES of only 0.5 nm, clearly indicating that the structural and dynamic features of the microenvironment around the tryptophan residues are retained even after denaturation, presumably due to the constraints imposed on the protein structure by disulfide bonds. Upon binding of PDC-109 to DMPC membranes and Lyso-PC micelles the REES values were reduced to 2.5 and 1.0 nm, respectively, which could be due to the penetration of some parts of the protein, especially the segment containing Trp-90 into the membrane interior, where the red-edge effects are considerably reduced.

  20. Sequestration of PDC-109 protein by specific antibodies and egg yolk cryoprotects bull spermatozoa.

    PubMed

    Srivastava, N; Srivastava, S K; Ghosh, S K; Jerome, A; Das, G K; Mehrotra, S

    2013-10-01

    PDC-109, one of the most abundant proteins in bovine seminal plasma, has detrimental effect on spermatozoa in a time- and concentration-dependent manner. Therefore, we hypothesized that sequestration of detrimental protein from ejaculates would be beneficial following cryopreservation of sperm cells. To this aim, we evaluated the effect of sequestration of PDC-109 either by anti-PDC-109 antibodies (Ab) or egg yolk (EY) alone or by the synergistic action of EY + Ab in minimizing cryoinjury to bull spermatozoa. PDC-109 protein was purified by applying two-step chromatography procedures. The purified protein was injected in rabbits to raise antibodies which were isolated using ion-exchange chromatography. After checking the Ab cross-reactivity, they were quantitated and added to ejaculates, either alone or in addition to EY in Tris-glycerol (TG) extender. Thus, ejaculates were processed in extender containing EY + TG (group I), Ab + TG (group II) or EY + Ab + TG (group III). Semen quality parameters (SQPs) viz. viability and acrosome integrity (FITC-PSA), cryoinjury to spermatozoa (chlortetracycline, CTC assay) and in vitro fertility of protein-sequestered-semen (zona-penetration assay) were evaluated. A significant (p < 0.05) improvement in post-thaw SQPs as well as in non-capacitated spermatozoa observed at pre-freeze and post-thaw stages of cryopreservation in group III compared with other groups indicated reduction in protein-mediated cryoinjury. From this study, it can be concluded that sequestration of PDC-109 by synergistic action of EY+Ab as compared to either of them alone significantly improve sperm quality and minimize cryoinjury to bull spermatozoa upon storage at ultra-low temperatures. © 2013 Blackwell Verlag GmbH.

  1. The effects of vent location, event scale and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy)

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Bisson, Marina; Esposti Ongaro, Tomaso; Flandoli, Franco; Isaia, Roberto; Rosi, Mauro; Vitale, Stefano

    2017-09-01

    This study presents a new method for producing long-term hazard maps for pyroclastic density currents (PDC) originating at Campi Flegrei caldera. Such method is based on a doubly stochastic approach and is able to combine the uncertainty assessments on the spatial location of the volcanic vent, the size of the flow and the expected time of such an event. The results are obtained by using a Monte Carlo approach and adopting a simplified invasion model based on the box model integral approximation. Temporal assessments are modelled through a Cox-type process including self-excitement effects, based on the eruptive record of the last 15 kyr. Mean and percentile maps of PDC invasion probability are produced, exploring their sensitivity to some sources of uncertainty and to the effects of the dependence between PDC scales and the caldera sector where they originated. Conditional maps representative of PDC originating inside limited zones of the caldera, or of PDC with a limited range of scales are also produced. Finally, the effect of assuming different time windows for the hazard estimates is explored, also including the potential occurrence of a sequence of multiple events. Assuming that the last eruption of Monte Nuovo (A.D. 1538) marked the beginning of a new epoch of activity similar to the previous ones, results of the statistical analysis indicate a mean probability of PDC invasion above 5% in the next 50 years on almost the entire caldera (with a probability peak of 25% in the central part of the caldera). In contrast, probability values reduce by a factor of about 3 if the entire eruptive record is considered over the last 15 kyr, i.e. including both eruptive epochs and quiescent periods.

  2. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.

    PubMed

    Benoit, Bérengère; Plaisancié, Pascale; Géloën, Alain; Estienne, Monique; Debard, Cyrille; Meugnier, Emmanuelle; Loizon, Emmanuelle; Daira, Patricia; Bodennec, Jacques; Cousin, Olivier; Vidal, Hubert; Laugerette, Fabienne; Michalski, Marie-Caroline

    2014-08-28

    Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.

  3. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa.

    PubMed

    Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap

    2017-10-01

    Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cu-PDC-bpa solid coordination frameworks (PDC=2,5-pyrindinedicarboxylate; bpa=1,2-DI(4-pyridil)ethane)): 2D and 3D structural flexibility producing a 3-c herringbone array next to ideal

    NASA Astrophysics Data System (ADS)

    Llano-Tomé, Francisco; Bazán, Begoña; Urtiaga, Miren-Karmele; Barandika, Gotzone; Antonia Señarís-Rodríguez, M.; Sánchez-Andújar, Manuel; Arriortua, María-Isabel

    2015-10-01

    Combination of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce solid coordination frameworks (SCF) which are crystalline materials based on connections between metal ions through organic ligands. In this context, this work is focused on two novel CuII-based SCFs exhibiting PDC (2,5-pyridinedicarboxylate) and bpa (1,2-di(4-pyridyl)ethane), being the first structures reported in literature containing both ligands. Chemical formula are [Cu2[(PDC)2(bpa)(H2O)2]·3H2O·DMF (1), and [Cu2(PDC)2(bpa)(H2O)2]·7H2O (2), where DMF is dimethylformamide. Compounds 1 and 2 have been characterized by means of X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric (TG) analysis, differential thermal analysis (DTA) and dielectric measurements. The crystallographic analysis revealed that compounds 1 and 2 can be described as herringbone-type layers formed by helicoidal Cu-PDC-Cu chains connected through bpa ligands. Solvent molecules are crystallized between the layers, providing the inter-layer connections through hydrogen bonds. Differences between both compounds are attributable to the flexibility of bpa (in 2D) as well as to the 3D packing of the layers which is solvent dependent. This fact results in the fact that compound 2 is the most regular 3-c herringbone array reported so far. The structural dynamism of these networks is responsible for the crystalline to-amorphous to-crystalline (CAC) transformation from compound 1 to compound 2. Crystallochemical features for both compounds have also been studied and compared to similar 3-connected herringbone-arrays.

  5. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase.

    PubMed

    Drawz, Sarah M; Taracila, Magdalena; Caselli, Emilia; Prati, Fabio; Bonomo, Robert A

    2011-06-01

    In Pseudomonas aeruginosa, the chromosomally encoded class C cephalosporinase (AmpC β-lactamase) is often responsible for high-level resistance to β-lactam antibiotics. Despite years of study of these important β-lactamases, knowledge regarding how amino acid sequence dictates function of the AmpC Pseudomonas-derived cephalosporinase (PDC) remains scarce. Insights into structure-function relationships are crucial to the design of both β-lactams and high-affinity inhibitors. In order to understand how PDC recognizes the C₃/C₄ carboxylate of β-lactams, we first examined a molecular model of a P. aeruginosa AmpC β-lactamase, PDC-3, in complex with a boronate inhibitor that possesses a side chain that mimics the thiazolidine/dihydrothiazine ring and the C₃/C₄ carboxylate characteristic of β-lactam substrates. We next tested the hypothesis generated by our model, i.e. that more than one amino acid residue is involved in recognition of the C₃/C₄ β-lactam carboxylate, and engineered alanine variants at three putative carboxylate binding amino acids. Antimicrobial susceptibility testing showed that the PDC-3 β-lactamase maintains a high level of activity despite the substitution of C₃/C₄ β-lactam carboxylate recognition residues. Enzyme kinetics were determined for a panel of nine penicillin and cephalosporin analog boronates synthesized as active site probes of the PDC-3 enzyme and the Arg349Ala variant. Our examination of the PDC-3 active site revealed that more than one residue could serve to interact with the C₃/C₄ carboxylate of the β-lactam. This functional versatility has implications for novel drug design, protein evolution, and resistance profile of this enzyme. Copyright © 2011 The Protein Society.

  6. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  7. 78 FR 20665 - Pediatric Device Consortia Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... population (neonates, infants, children, and adolescents) includes patients who are 21 years of age or... of the Office of Orphan Products Development (OOPD) Pediatric Device Consortia (PDC) Grant Program. The goal of the PDC Grant Program is to facilitate the development, production, and distribution of...

  8. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation

    PubMed Central

    Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385

  9. Microbiota induces tonic CCL2 systemic levels that control pDC trafficking in steady state.

    PubMed

    Swiecki, M; Miller, H L; Sesti-Costa, R; Cella, M; Gilfillan, S; Colonna, M

    2017-07-01

    Plasmacytoid dendritic cells (pDCs) detect viruses initiating antiviral type I interferon responses. The microbiota is known to shape immune responses, but whether it influences pDC homeostasis and/or function is poorly understood. By comparing pDCs in germ-free and specific pathogen-free mice, we found that the microbiota supports homeostatic trafficking by eliciting constitutive levels of the chemokine CCL2 that engages CCR2. Mononuclear phagocytes were required for tonic CCL2 levels. CCL2 was particularly important for trafficking of a CCR2 hi subset of pDCs that produced proinflammatory cytokines and was prone to apoptosis. We further demonstrated that CCR2 was also essential for pDC migration during inflammation. Wild-type (WT):Ccr2 -/- mixed bone marrow chimeras revealed that CCR2 promotes pDC migration in a cell-intrinsic manner. Overall, we identify a novel role for the microbiota in shaping immunity, which includes induction of CCL2 levels that control homeostatic trafficking of pDCs.

  10. The Regulation of Pyruvate Dehydrogenase Activity in Pea Leaf Mitochondria (The Effect of Respiration and Oxidative Phosphorylation).

    PubMed

    Moore, A. L.; Gemel, J.; Randall, D. D.

    1993-12-01

    The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.

  11. Pyruvate Decarboxylase, the Target for Omeprazole in Metronidazole-Resistant and Iron-Restricted Tritrichomonas foetus

    PubMed Central

    Sutak, Róbert; Tachezy, Jan; Kulda, Jaroslav; Hrdý, Ivan

    2004-01-01

    The substituted benzimidazole omeprazole, used for the treatment of human peptic ulcer disease, inhibits the growth of the metronidazole-resistant bovine pathogen Tritrichomonas foetus in vitro (MIC at which the growth of parasite cultures is inhibited by 50%, 22 μg/ml [63 μM]). The antitrichomonad activity appears to be due to the inhibition of pyruvate decarboxylase (PDC), which is the key enzyme responsible for ethanol production and which is strongly upregulated in metronidazole-resistant trichomonads. PDC was purified to homogeneity from the cytosol of metronidazole-resistant strain. The tetrameric enzyme of 60-kDa subunits is inhibited by omeprazole (50% inhibitory concentration, 16 μg/ml). Metronidazole-susceptible T. foetus, which expresses very little PDC, is only slightly affected. Omeprazole has the same inhibitory effect on T. foetus cells grown under iron-limited conditions. Similarly to metronidazole-resistant cells, T. foetus cells grown under iron-limited conditions have nonfunctional hydrogenosomal metabolism and rely on cytosolic PDC-mediated ethanol fermentation. PMID:15155220

  12. Tumor Budding and PDC Grade Are Stage Independent Predictors of Clinical Outcome in Mismatch Repair Deficient Colorectal Cancer.

    PubMed

    Ryan, Éanna; Khaw, Yi Ling; Creavin, Ben; Geraghty, Robert; Ryan, Elizabeth J; Gibbons, David; Hanly, Ann; Martin, Sean T; O'Connell, P Ronan; Winter, Desmond C; Sheahan, Kieran

    2018-01-01

    Mismatch repair deficient (dMMR) colorectal cancer (CRC) despite its association with poor histologic grade often has improved prognosis compared with MMR proficient CRC. Tumor budding and poorly differentiated clusters (PDCs) may predict metastatic potential of colorectal adenocarcinoma (CRC). In addition, their assessment may be more reproducible than the evaluation of other histopathologic parameters. Therefore, we wished to determine their potential as prognostic indicators in a cohort of dMMR CRC patients relative to histologic grade. We investigated the predictive value of conventional WHO grade, budding, PDC grade and other histopathologic parameters on the presence of lymph node metastasis (LNM) and clinical outcome in 238 dMMR CRCs. MMR status was determined by immunohistochemistry for the mismatch repair proteins hMLH1, hMSH2, hMSH6, and hPMS2. Tumor budding and PDCs were highly correlated (r=0.701; P<0.000). Both budding and PDC grade were associated with WHO grade, perineural invasion, lympho-vascular invasion, and extramural vascular invasion, and the presence of LNM in dMMR CRC (P<0.009). Independent predictors of LNM were PDC grade (odds ratio, 4.12; 95% confidence interval [CI], 1.69-10.04; P=0.011) and EMVI (odds ratio, 3.81; 95% CI, 1.56-9.19; P<0.000). Only pTstage (hazard ratio [HR], 4.11; 95% CI, 1.48-11.36; P=0.007) and tumor budding (HR, 2.99; 95% CI, 1.72-5.19; P<0.000) were independently associated with worse disease-free survival (DFS). If tumor budding was excluded from the model, PDC grade became significant for DFS (HR, 2.34; 95% CI, 1.34-4.09; P=0.003). WHO Grade does not independently correlate with clinical outcome in dMMR CRC. PDC grade and extramural vascular invasion are independent predictors of LNM. Tumor budding and pTstage are the best predictors of DFS. If tumor budding cannot be assessed, PDC grade may be used as a prognostic surrogate.

  13. A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months

    PubMed Central

    2014-01-01

    Introduction “Partners in Dementia Care” (PDC) tested the effectiveness of a care-coordination program integrating healthcare and community services and supporting veterans with dementia and their caregivers. Delivered via partnerships between Veterans Affairs medical centers and Alzheimer’s Association chapters, PDC targeted both patients and caregivers, distinguishing it from many non-pharmacological interventions. Hypotheses posited PDC would improve five veteran self-reported outcomes: 1) unmet need, 2) embarrassment about memory problems, 3) isolation, 4) relationship strain and 5) depression. Greater impact was expected for more impaired veterans. A unique feature was self-reported research data collected from veterans with dementia. Methods and Findings Five matched communities were study sites. Two randomly selected sites received PDC for 12 months; comparison sites received usual care. Three structured telephone interviews were completed every 6 months with veterans who could participate. Results Of 508 consenting veterans, 333 (65.6%) completed baseline interviews. Among those who completed baseline interviews, 263 (79.0%) completed 6-month follow-ups and 194 (58.3%) completed 12-month follow-ups. Regression analyses showed PDC veterans had significantly less adverse outcomes than those receiving usual care, particularly for more impaired veterans after 6 months, including reduced relationship strain (B = −0.09; p = 0.05), depression (B = −0.10; p = 0.03), and unmet need (B = −0.28; p = 0.02; and B = −0.52; p = 0.08). PDC veterans also had less embarrassment about memory problems (B = −0.24; p = 0.08). At 12 months, more impaired veterans had further reductions in unmet need (B = −0.96; p < 0.01) and embarrassment (B = −0.05; p = 0.02). Limitations included use of matched comparison sites rather than within-site randomization and lack of consideration for variation within the PDC group in amounts and types of assistance provided. Conclusions Partnerships between community and health organizations have the potential to meet the dementia-related needs and improve the psychosocial functioning of persons with dementia. Trial Registry NCT00291161 PMID:24764496

  14. A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months.

    PubMed

    Bass, David M; Judge, Katherine S; Snow, A Lynn; Wilson, Nancy L; Morgan, Robert O; Maslow, Katie; Randazzo, Ronda; Moye, Jennifer A; Odenheimer, Germaine L; Archambault, Elizabeth; Elbein, Richard; Pirraglia, Paul; Teasdale, Thomas A; McCarthy, Catherine A; Looman, Wendy J; Kunik, Mark E

    2014-01-01

    "Partners in Dementia Care" (PDC) tested the effectiveness of a care-coordination program integrating healthcare and community services and supporting veterans with dementia and their caregivers. Delivered via partnerships between Veterans Affairs medical centers and Alzheimer's Association chapters, PDC targeted both patients and caregivers, distinguishing it from many non-pharmacological interventions. Hypotheses posited PDC would improve five veteran self-reported outcomes: 1) unmet need, 2) embarrassment about memory problems, 3) isolation, 4) relationship strain and 5) depression. Greater impact was expected for more impaired veterans. A unique feature was self-reported research data collected from veterans with dementia. Five matched communities were study sites. Two randomly selected sites received PDC for 12 months; comparison sites received usual care. Three structured telephone interviews were completed every 6 months with veterans who could participate. Of 508 consenting veterans, 333 (65.6%) completed baseline interviews. Among those who completed baseline interviews, 263 (79.0%) completed 6-month follow-ups and 194 (58.3%) completed 12-month follow-ups. Regression analyses showed PDC veterans had significantly less adverse outcomes than those receiving usual care, particularly for more impaired veterans after 6 months, including reduced relationship strain (B = -0.09; p = 0.05), depression (B = -0.10; p = 0.03), and unmet need (B = -0.28; p = 0.02; and B = -0.52; p = 0.08). PDC veterans also had less embarrassment about memory problems (B = -0.24; p = 0.08). At 12 months, more impaired veterans had further reductions in unmet need (B = -0.96; p < 0.01) and embarrassment (B = -0.05; p = 0.02). Limitations included use of matched comparison sites rather than within-site randomization and lack of consideration for variation within the PDC group in amounts and types of assistance provided. Partnerships between community and health organizations have the potential to meet the dementia-related needs and improve the psychosocial functioning of persons with dementia. NCT00291161.

  15. The incidence and prognosis of true duodenal carcinomas.

    PubMed

    Buchbjerg, T; Fristrup, C; Mortensen, M B

    2015-06-01

    Primary duodenal carcinoma (PDC) is a rare gastrointestinal tumor. The difficult distinction between PDC and other types of carcinoma (e.g. within the periampullary region) is reflected in the scarce literature on true duodenal carcinomas. However, this distinction may be important in relation to the overall prognosis as well as in the choice of adjuvant or palliative treatment strategies. The aim of this study was to evaluate the incidence, management and prognosis of patients with true PDC within a well-defined geographical area. Retrospective analysis of all patients diagnosed with true PDC from 1997 to 2012 within the Region of Southern Denmark. Only patients where the surgeon and the pathologist agreed on the tumor being classified as originating from the duodenum were included. Seventy-one patients (43 M, 28 F) with a mean age of 67 years (range 35-87) met the criteria for true PDC. The incidence was 5.4 per 1,000,000, and the pathological classification was: Adenocarcinoma 87%, mucinous adenocarcinoma 7%, carcinoma 4% and signet ring cell carcinoma 1%. Intended curative resection was performed in 28 patients (39%) (22 Whipple procedures and 6 local resections), and all but one patient had negative resection margins. Thirteen patients (46%) had lymph node metastasis. Twenty-nine (67%) of the palliative treated patients had a single (n = 24) or double by-pass procedure (n = 5). The median and 5-year survival for the resected patients were 23 months (CI 7-44) and 27% (CI 10-44). The median survival in the palliative group was 5 months (CI 2-11), and none of the patients were alive after three years. The incidence of true PDC within a geographical and histopathologically completely monitored area was 5.4 per 1,000,000. Less than 40% of the patients could be resected and they had a median survival of 23 month and an estimated 5-year survival of 27%. The prognosis of true PDC seemed lower than expected according to previously published data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Parametric amplification in quasi-PT symmetric coupled waveguide structures

    NASA Astrophysics Data System (ADS)

    Zhong, Q.; Ahmed, A.; Dadap, J. I.; Osgood, R. M., Jr.; El-Ganainy, R.

    2016-12-01

    The concept of non-Hermitian parametric amplification was recently proposed as a means to achieve an efficient energy conversion throughout the process of nonlinear three wave mixing in the absence of phase matching. Here we investigate this effect in a waveguide coupler arrangement whose characteristics are tailored to introduce passive PT symmetry only for the idler component. By means of analytical solutions and numerical analysis, we demonstrate the utility of these novel schemes and obtain the optimal design conditions for these devices.

  17. 1.5-μm band polarization entangled photon-pair source with variable Bell states.

    PubMed

    Arahira, Shin; Kishimoto, Tadashi; Murai, Hitoshi

    2012-04-23

    In this paper we report a polarization-entangled photon-pair source in a 1.5-μm band which can generate arbitrary entangled states including four maximum entangled states (Bell states) by using cascaded optical second nonlinearities (second-harmonic generation and the following spontaneous parametric down conversion) in a periodically poled LiNbO(3) (PPLN) ridge-waveguide device. Exchange among the Bell states was achieved by using an optical phase bias compensator (OPBC) in a Sagnac loop interferometer and a half-wave plate outside the loop for polarization conversion. Quantitative evaluation was made on the performance of the photon-pair source through the experiments of two-photon interferences, quantum state tomography, and test of violation of Bell inequality. We observed high visibilities of 96%, fidelities of 97%, and 2.71 of the S parameter in inequality of Clauser, Horne, Shimony, and Holt (CHSH). The experimental values, including peak coincidence counts in the two-photon interference (approximately 170 counts per second), remained almost unchanged in despite of the exchange among the Bell states. They were also in good agreement with the theoretical assumption from the mean number of the photon-pairs under the test (0.04 per pulse). More detailed experimental studies on the dependence of the mean number of the photon-pairs revealed that the quantum states were well understood as the Werner state. © 2012 Optical Society of America

  18. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band

    PubMed Central

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881

  19. Experimental Demonstration of a Hybrid-Quantum-Emitter Producing Individual Entangled Photon Pairs in the Telecom Band.

    PubMed

    Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-05-26

    Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems.

  20. Sit Down with Sabin: Henrik Scheller: Customizing plants for biofuels. (LBNL Summer Lecture Series)

    ScienceCinema

    Sabin, Russell; Scheller, Henrik

    2018-04-25

    Henrik Scheller from the JBEI appeared on August 3rd, 2011 for this installment of "Sit Down with Sabin," a conversation in which former reporter Sabin Russell chats with Lab staff about innovative science. They will discuss "Customizing plants for biofuels." During this series of conversations, Russell and Lab staff will explore the ups and downs of pioneering science, all without the aid of PowerPoints.

Top