Definition of NASTRAN sets by use of parametric geometry
NASA Technical Reports Server (NTRS)
Baughn, Terry V.; Tiv, Mehran
1989-01-01
Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
Stable finite element approximations of two-phase flow with soluble surfactant
NASA Astrophysics Data System (ADS)
Barrett, John W.; Garcke, Harald; Nürnberg, Robert
2015-09-01
A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.
Bredbenner, Todd L.; Eliason, Travis D.; Francis, W. Loren; McFarland, John M.; Merkle, Andrew C.; Nicolella, Daniel P.
2014-01-01
Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3–T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures. PMID:25506051
Self Diagnostic Adhesive for Bonded Joints in Aircraft Structures
2016-10-04
validated under the fatigue/dynamic loading condition. 3) Both SEM (Spectral Element Modeling) and FEM ( Finite Element Modeling) simulation of the...Sensors ..................................................................... 22 Parametric Study of Sensor Performance via Finite Element Simulation...The frequency range that we are interested is around 800 kHz. Conventional linear finite element method (FEM) requires a very fine spatial
Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope
2016-10-19
1 2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON TIME-DOMAIN SWITCHING ........ 2 3. FINITE ELEMENT MODELING OF RESONATOR...8 3. FINITE ELEMENT MODELING OF RESONATOR This section details basic finite element modeling of the resonator used with the TDSMG. While it...Based on finite element simulations of the employed resonator, it is found that the effects of thermomechanical noise is on par with 10 ps of timing
A survey of parametrized variational principles and applications to computational mechanics
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.
1993-01-01
This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.
Determination of ankle external fixation stiffness by expedited interactive finite element analysis.
Nielsen, Jonathan K; Saltzman, Charles L; Brown, Thomas D
2005-11-01
Interactive finite element analysis holds the potential to quickly and accurately determine the mechanical stiffness of alternative external fixator frame configurations. Using as an example Ilizarov distraction of the ankle, a finite element model and graphical user interface were developed that provided rapid, construct-specific information on fixation rigidity. After input of specific construct variables, the finite element software determined the resulting tibial displacement for a given configuration in typically 15s. The formulation was employed to investigate constructs used to treat end-stage arthritis, both in a parametric series and for five specific clinical distraction cases. Parametric testing of 15 individual variables revealed that tibial half-pins were much more effective than transfixion wires in limiting axial tibial displacement. Factors most strongly contributing to stiffening the construct included placing the tibia closer to the fixator rings, and mounting the pins to the rings at the nearest circumferential location to the bone. Benchtop mechanical validation results differed inappreciably from the finite element computations.
Parametric study of extended end-plate connection using finite element modeling
NASA Astrophysics Data System (ADS)
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
Computation of noise radiation from turbofans: A parametric study
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1995-01-01
This report presents the results of a parametric study of the turbofan far-field noise radiation using a finite element technique. Several turbofan noise radiation characteristics of both the inlet and the aft ducts have been examined through the finite element solutions. The predicted far-field principal lobe angle variations with duct Mach number and cut-off ratio compare very well with the available analytical results. The solutions also show that the far-field lobe angle is only a function of cut-off ratio, and nearly independent of the mode number. These results indicate that the finite element codes are well suited for the prediction of noise radiation characteristics of a turbofan. The effects of variations in the aft duct geometry are examined. The ability of the codes to handle ducts with acoustic treatments is also demonstrated.
Parametric Instability of Static Shafts-Disk System Using Finite Element Method
NASA Astrophysics Data System (ADS)
Wahab, A. M.; Rasid, Z. A.; Abu, A.
2017-10-01
Parametric instability condition is an important consideration in design process as it can cause failure in machine elements. In this study, parametric instability behaviour was studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned boundary condition. The shaft was modelled based on the Nelson’s beam model, which considered translational and rotary inertias, transverse shear deformation and torsional effect. The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element codes were developed using MATLAB to establish the instability chart. The effect of additional disk mass on the stability chart was investigated for pinned-pinned boundary conditions. Numerical results and illustrative examples are given. It is found that the additional disk mass decreases the instability region during static condition. The location of the disk as well has significant effect on the instability region of the shaft.
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Parametric instability of shaft with discs
NASA Astrophysics Data System (ADS)
Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor
2017-12-01
The occurrence of resonance is a major criterion to be considered in the design of shaft. While force resonance occurs merely when the natural frequency of the rotor system equals speed of the shaft, parametric resonance or parametric instability can occur at excitation speed that is integral or sub-multiple of the frequency of the rotor. This makes the study on parametric resonance crucial. Parametric instability of a shaft system consisting of a shaft and disks has been investigated in this study. The finite element formulation of the Mathieu-Hill equation that represents the parametric instability problem of the shaft is developed based on Timoshenko’s beam theory and Nelson’s finite element method (FEM) model that considers the effect of torsional motion on such problem. The Bolotin’s method is used to determine the regions of instability and the Strut-Ince diagram. The validation works show that the results of this study are in close agreement to past results. It is found that a larger radius of disk will cause the shaft to become more unstable compared to smaller radius although both weights are similar. Furthermore, the effect of torsional motion on the parametric instability of the shaft is significant at higher rotating speed.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2016-10-01
This paper introduces mixed fuzzy and interval parametric uncertainties into the FE components of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model for mid-frequency analysis of built-up systems, thus an uncertain ensemble combining non-parametric with mixed fuzzy and interval parametric uncertainties comes into being. A fuzzy interval Finite Element/Statistical Energy Analysis (FIFE/SEA) framework is proposed to obtain the uncertain responses of built-up systems, which are described as intervals with fuzzy bounds, termed as fuzzy-bounded intervals (FBIs) in this paper. Based on the level-cut technique, a first-order fuzzy interval perturbation FE/SEA (FFIPFE/SEA) and a second-order fuzzy interval perturbation FE/SEA method (SFIPFE/SEA) are developed to handle the mixed parametric uncertainties efficiently. FFIPFE/SEA approximates the response functions by the first-order Taylor series, while SFIPFE/SEA improves the accuracy by considering the second-order items of Taylor series, in which all the mixed second-order items are neglected. To further improve the accuracy, a Chebyshev fuzzy interval method (CFIM) is proposed, in which the Chebyshev polynomials is used to approximate the response functions. The FBIs are eventually reconstructed by assembling the extrema solutions at all cut levels. Numerical results on two built-up systems verify the effectiveness of the proposed methods.
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors
2010-09-01
actuator geometry, and rib-to-facesheet intersection geometry are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A...are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A parametric finite element model is used to explore the trade space...MOST) finite element model. The move to lightweight actively-controlled silicon carbide ( SiC ) mirrors is traced back to previous generations of space
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
Arregui-Dalmases, Carlos; Del Pozo, Eduardo; Duprey, Sonia; Lopez-Valdes, Francisco J; Lau, Anthony; Subit, Damien; Kent, Richard
2010-06-01
The objectives of this study were to examine the axial response of the clavicle under quasistatic compressions replicating the body boundary conditions and to quantify the sensitivity of finite element-predicted fracture in the clavicle to several parameters. Clavicles were harvested from 14 donors (age range 14-56 years). Quasistatic axial compression tests were performed using a custom rig designed to replicate in situ boundary conditions. Prior to testing, high-resolution computed tomography (CT) scans were taken of each clavicle. From those images, finite element models were constructed. Factors varied parametrically included the density used to threshold cortical bone in the CT scans, the presence of trabecular bone, the mesh density, Young's modulus, the maximum stress, and the element type (shell vs. solid, triangular vs. quadrilateral surface elements). The experiments revealed significant variability in the peak force (2.41 +/- 0.72 kN) and displacement to peak force (4.9 +/- 1.1 mm), with age (p < .05) and with some geometrical traits of the specimens. In the finite element models, the failure force and location were moderately dependent upon the Young's modulus. The fracture force was highly sensitive to the yield stress (80-110 MPa). Neither fracture location nor force was strongly dependent on mesh density as long as the element size was less than 5 x 5 mm(2). Both the fracture location and force were strongly dependent upon the threshold density used to define the thickness of the cortical shell.
NASA Astrophysics Data System (ADS)
Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.
2017-10-01
In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.
A parametric model order reduction technique for poroelastic finite element models.
Lappano, Ettore; Polanz, Markus; Desmet, Wim; Mundo, Domenico
2017-10-01
This research presents a parametric model order reduction approach for vibro-acoustic problems in the frequency domain of systems containing poroelastic materials (PEM). The method is applied to the Finite Element (FE) discretization of the weak u-p integral formulation based on the Biot-Allard theory and makes use of reduced basis (RB) methods typically employed for parametric problems. The parametric reduction is obtained rewriting the Biot-Allard FE equations for poroelastic materials using an affine representation of the frequency (therefore allowing for RB methods) and projecting the frequency-dependent PEM system on a global reduced order basis generated with the proper orthogonal decomposition instead of standard modal approaches. This has proven to be better suited to describe the nonlinear frequency dependence and the strong coupling introduced by damping. The methodology presented is tested on two three-dimensional systems: in the first experiment, the surface impedance of a PEM layer sample is calculated and compared with results of the literature; in the second, the reduced order model of a multilayer system coupled to an air cavity is assessed and the results are compared to those of the reference FE model.
A critical examination of stresses in an elastic single lap joint
NASA Technical Reports Server (NTRS)
Cooper, P. A.; Sawyer, J. W.
1979-01-01
The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.
Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Parametric study in weld mismatch of longitudinally welded SSME HPFTP inlet
NASA Technical Reports Server (NTRS)
Min, J. B.; Spanyer, K. L.; Brunair, R. M.
1991-01-01
Welded joints are an essential part of pressure vessels such as the Space Shuttle Main Engine (SSME) Turbopumps. Defects produced in the welding process can be detrimental to weld performance. Recently, review of the SSME high pressure fuel turbopump (HPFTP) titanium inlet x rays revealed several weld discrepancies such as penetrameter density issues, film processing discrepancies, weld width discrepancies, porosity, lack of fusion, and weld offsets. Currently, the sensitivity of welded structures to defects is of concern. From a fatigue standpoint, weld offset may have a serious effect since local yielding, in general, aggravates cyclic stress effects. Therefore, the weld offset issue is considered. Using the finite element method and mathematical formulations, parametric studies were conducted to determine the influence of weld offsets and a variation of weld widths in longitudinally welded cylindrical structures with equal wall thickness on both sides of the joint. From the study, the finite element results and theoretical solutions are presented.
Construction of optimal 3-node plate bending triangles by templates
NASA Astrophysics Data System (ADS)
Felippa, C. A.; Militello, C.
A finite element template is a parametrized algebraic form that reduces to specific finite elements by setting numerical values to the free parameters. The present study concerns Kirchhoff Plate-Bending Triangles (KPT) with 3 nodes and 9 degrees of freedom. A 37-parameter template is constructed using the Assumed Natural Deviatoric Strain (ANDES). Specialization of this template includes well known elements such as DKT and HCT. The question addressed here is: can these parameters be selected to produce high performance elements? The study is carried out by staged application of constraints on the free parameters. The first stage produces element families satisfying invariance and aspect ratio insensitivity conditions. Application of energy balance constraints produces specific elements. The performance of such elements in benchmark tests is presently under study.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.
1993-01-01
Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less
Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness
NASA Technical Reports Server (NTRS)
Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.
1986-01-01
The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.
Coupled Structural, Thermal, Phase-Change and Electromagnetic Analysis for Superconductors. Volume 1
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermal and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. This volume, Volume 1, describes mostly formulations for specific problems. Volume 2 describes generalization of those formulations.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Frangi, Attilio; Guerrieri, Andrea; Boni, Nicoló
2017-01-01
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches of the mirror response, we implement a simplified continuation method with arc-length control and propose an innovative technique based on Finite Elements and the concepts of material derivative in order to compute the electrostatic stiffness; i.e., the derivative of the torque with respect to the torsional angle, as required by the continuation approach. PMID:28383483
Frangi, Attilio; Guerrieri, Andrea; Boni, Nicoló
2017-04-06
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches of the mirror response, we implement a simplified continuation method with arc-length control and propose an innovative technique based on Finite Elements and the concepts of material derivative in order to compute the electrostatic stiffness; i.e., the derivative of the torque with respect to the torsional angle, as required by the continuation approach.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing
2017-12-01
The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.
Stability analysis and backward whirl investigation of cracked rotors with time-varying stiffness
NASA Astrophysics Data System (ADS)
AL-Shudeifat, Mohammad A.
2015-07-01
The dynamic stability of dynamical systems with time-periodic stiffness is addressed here. Cracked rotor systems with time-periodic stiffness are well-known examples of such systems. Time-varying area moments of inertia at the cracked element cross-section of a cracked rotor have been used to formulate the time-periodic finite element stiffness matrix. The semi-infinite coefficient matrix obtained by applying the harmonic balance (HB) solution to the finite element (FE) equations of motion is employed here to study the dynamic stability of the system. Consequently, the sign of the determinant of a scaled version of a sub-matrix of this semi-infinite coefficient matrix at a finite number of harmonics in the HB solution is found to be sufficient for identifying the major unstable zones of the system in the parameter plane. Specifically, it is found that the negative determinant always corresponds to unstable zones in all of the systems considered. This approach is applied to a parametrically excited Mathieu's equation, a two degree-of-freedom linear time-periodic dynamical system, a cracked Jeffcott rotor and a finite element model of the cracked rotor system. Compared to the corresponding results obtained by Floquet's theory, the sign of the determinant of the scaled sub-matrix is found to be an efficient tool for identifying the major unstable zones of the linear time-periodic parametrically excited systems, especially large-scale FE systems. Moreover, it is found that the unstable zones for a FE cracked rotor with an open transverse crack model only appear at the backward whirl. The theoretical and experimental results have been found to agree well for verifying that the open crack model excites the backward whirl amplitudes at the critical backward whirling rotational speeds.
A preliminary investigation of finite-element modeling for composite rotor blades
NASA Technical Reports Server (NTRS)
Lake, Renee C.; Nixon, Mark W.
1988-01-01
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.
Generation of segmental chips in metal cutting modeled with the PFEM
NASA Astrophysics Data System (ADS)
Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.
2018-06-01
The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.
Generation of segmental chips in metal cutting modeled with the PFEM
NASA Astrophysics Data System (ADS)
Rodriguez Prieto, J. M.; Carbonell, J. M.; Cante, J. C.; Oliver, J.; Jonsén, P.
2017-09-01
The Particle Finite Element Method, a lagrangian finite element method based on a continuous Delaunay re-triangulation of the domain, is used to study machining of Ti6Al4V. In this work the method is revised and applied to study the influence of the cutting speed on the cutting force and the chip formation process. A parametric methodology for the detection and treatment of the rigid tool contact is presented. The adaptive insertion and removal of particles are developed and employed in order to sidestep the difficulties associated with mesh distortion, shear localization as well as for resolving the fine-scale features of the solution. The performance of PFEM is studied with a set of different two-dimensional orthogonal cutting tests. It is shown that, despite its Lagrangian nature, the proposed combined finite element-particle method is well suited for large deformation metal cutting problems with continuous chip and serrated chip formation.
Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.
Computational design and engineering of polymeric orthodontic aligners.
Barone, S; Paoli, A; Razionale, A V; Savignano, R
2016-10-05
Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.
Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.
Application of NASTRAN to TFTR toroidal field coil structures
NASA Technical Reports Server (NTRS)
Chen, S. J.; Lee, E.
1978-01-01
The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.
Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method
NASA Astrophysics Data System (ADS)
Kim, Jin Bong; Kim, Man Geun
This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.
Finite Element Analysis for the Web Offset of Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Zhou, Bo; Wang, Xin; Zheng, Changwei; Cao, Jinxiang; Zou, Pingguo
2017-05-01
The web is an important part of wind turbine blade, which improves bending properties. Much of blade process is handmade, so web offset of wind turbine blade is one of common quality defects. In this paper, a 3D parametric finite element model of a blade for 2MW turbine was established by ANSYS. Stress distributions in different web offset values were studied. There were three kinds of web offset. The systematic study of web offset was done by orthogonal experiment. The most important factor of stress distributions was found. The analysis results have certain instructive significance to design and manufacture of wind turbine blade.
Bim Automation: Advanced Modeling Generative Process for Complex Structures
NASA Astrophysics Data System (ADS)
Banfi, F.; Fai, S.; Brumana, R.
2017-08-01
The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.
Stress Recovery and Error Estimation for Shell Structures
NASA Technical Reports Server (NTRS)
Yazdani, A. A.; Riggs, H. R.; Tessler, A.
2000-01-01
The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.
NASA Astrophysics Data System (ADS)
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
Finite element modelling for mode-I fracture behaviour of CFRP
NASA Astrophysics Data System (ADS)
Chetan, H. C.; Kattimani, Subhaschandra; Murigendrappa, S. M.
2018-04-01
Debonding is a major failure mechanism in Carbon Fiber Reinforced Polymer (CFRP) due to presence of many adhesion joins, in between many layers. In the current study a finite element simulation is carried out using Virtual Crack Closure Technique (VCCT) and Cohesive Zone Modelling (CZM) using Abaqus as analysis tool. A comparative study is performed in to order analyze convergence of results from CZM and VCCT. It was noted that CZM results matched well with published literature. The results from VCCT were also in good comparison with experimental data of published literature, but were seen to be overestimated. Parametric study is performed to evaluate the variation of input parameters like initial stiffness, element size, peak stress and energy release rate `G'. From the numerical evaluation, it was noted that CZM simulation relies largely on element size and peak stress.
Influence of Finite Element Size in Residual Strength Prediction of Composite Structures
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid
2012-01-01
The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.
NASA Astrophysics Data System (ADS)
Rangarajan, Ramsharan; Gao, Huajian
2015-09-01
We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.
Experimental and numerical investigation of slabs on ground subjected to concentrated loads
NASA Astrophysics Data System (ADS)
Øverli, Jan
2014-09-01
An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.
Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study
NASA Astrophysics Data System (ADS)
Rosly, N. A.; Harmin, M. Y.
2017-12-01
Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.
User-Defined Material Model for Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)
2006-01-01
An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894
Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.
Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H; Tahir, M M
2016-01-01
This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto
2018-04-01
Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.
Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements
2011-05-01
Computational Mechanics, 43:3– 37, 2008. [6] Y Bazilevs, L Beirao da Veiga , J A Cottrell, T J R Hughes, and G Sangalli. Isoge- ometric analysis... Veiga , A Buffa, J Rivas, and G Sangalli. Some estimates for h − p − k refinement in isogeometric analysis. Numerische Mathematik, 118:271–305, 2011
NASA Astrophysics Data System (ADS)
Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh
2018-02-01
The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.
Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 1
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.
1993-01-01
This research program has dealt with the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromagnetic subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase-change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements; (2) finite element modeling of the electromagnetic problem; (3) coupling of thermal and mechanical effects; and (4) computer implementation and solution of the superconductivity transition problem. The research was carried out over the period September 1988 through March 1993. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles; (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements; and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects; and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The grant has fully supported the thesis work of one doctoral student (James Schuler, who started on January 1989 and completed on January 1993), and partly supported another thesis (Carmelo Militello, who started graduate work on January 1988 completing on August 1991). Twenty-three publications have acknowledged full or part support from this grant, with 16 having appeared in archival journals and 3 in edited books or proceedings.
NASA Astrophysics Data System (ADS)
Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.
2017-06-01
This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.
Parametric study on laminar flow for finite wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Garcia, Joseph Avila
1994-01-01
Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.
Blasim: A computational tool to assess ice impact damage on engine blades
NASA Astrophysics Data System (ADS)
Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.
1993-04-01
A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.
[Finite Element Modelling of the Eye for the Investigation of Accommodation].
Martin, H; Stachs, O; Guthoff, R; Grabow, N
2016-12-01
Background: Accommodation research increasingly uses engineering methods. This article presents the use of the finite element method in accommodation research. Material and Methods: Geometry, material data and boundary conditions are prerequisites for the application of the finite element method. Published data on geometry and materials are reviewed. It is shown how boundary conditions are important and how they influence the results. Results: Two dimensional and three dimensional models of the anterior chamber of the eye are presented. With simple two dimensional models, it is shown that realistic results for the accommodation amplitude can always be achieved. More complex three dimensional models of the accommodation mechanism - including the ciliary muscle - require further investigations of the material data and of the morphology of the ciliary muscle, if they are to achieve realistic results for accommodation. Discussion and Conclusion: The efficiency and the limitations of the finite element method are especially clear for accommodation. Application of the method requires extensive preparation, including acquisition of geometric and material data and experimental validation. However, a validated model can be used as a basis for parametric studies, by systematically varying material data and geometric dimensions. This allows systematic investigation of how essential input parameters influence the results. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Xin, L.; Markine, V. L.; Shevtsov, I. Y.
2016-03-01
A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.
Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2014-01-01
Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology
Analytical and finite element simulation of a three-bar torsion spring
NASA Astrophysics Data System (ADS)
Rădoi, M.; Cicone, T.
2016-08-01
The present study is dedicated to the innovative 3-bar torsion spring used as suspension solution for the first time at Lunokhod-1, the first autonomous vehicle sent for the exploration of the Moon in the early 70-ies by the former USSR. The paper describes a simple analytical model for calculation of spring static characteristics, taking into account both torsion and bending effects. Closed form solutions of this model allows quick and elegant parametric analysis. A comparison with a single torsion bar with the same stiffness reveal an increase of the maximum stress with more than 50%. A 3D finite element (FE) simulation is proposed to evaluate the accuracy of the analytical model. The model was meshed in an automated pattern (sweep for hubs and tetrahedrons for bars) with mesh morphing. Very close results between analytical and numerical solutions have been found, concluding that the analytical model is accurate. The 3-D finite element simulation was used to evaluate the effects of design details like fillet radius of the bars or contact stresses in the hex hub.
A probabilistic model of a porous heat exchanger
NASA Technical Reports Server (NTRS)
Agrawal, O. P.; Lin, X. A.
1995-01-01
This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
Simulating Progressive Damage of Notched Composite Laminates with Various Lamination Schemes
NASA Astrophysics Data System (ADS)
Mandal, B.; Chakrabarti, A.
2017-05-01
A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.
Radiated Sound Power from a Curved Honeycomb Panel
NASA Technical Reports Server (NTRS)
Robinson, Jay H.; Buehrle, Ralph D.; Klos, Jacob; Grosveld, Ferdinand W.
2003-01-01
The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.
A parametric ribcage geometry model accounting for variations among the adult population.
Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen
2016-09-06
The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Development, Validation and Parametric study of a 3-Year-Old Child Head Finite Element Model
NASA Astrophysics Data System (ADS)
Cui, Shihai; Chen, Yue; Li, Haiyan; Ruan, ShiJie
2015-12-01
Traumatic brain injury caused by drop and traffic accidents is an important reason for children's death and disability. Recently, the computer finite element (FE) head model has been developed to investigate brain injury mechanism and biomechanical responses. Based on CT data of a healthy 3-year-old child head, the FE head model with detailed anatomical structure was developed. The deep brain structures such as white matter, gray matter, cerebral ventricle, hippocampus, were firstly created in this FE model. The FE model was validated by comparing the simulation results with that of cadaver experiments based on reconstructing the child and adult cadaver experiments. In addition, the effects of skull stiffness on the child head dynamic responses were further investigated. All the simulation results confirmed the good biofidelity of the FE model.
Coupled Finite Element ? Potts Model Simulations of Grain Growth in Copper Interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Gorti, Sarma B
The paper addresses grain growth in copper interconnects in the presence of thermal expansion mismatch stresses. The evolution of grain structure and texture in copper in the simultaneous presence of two driving forces, curvature and elastic stored energy difference, is modeled by using a hybrid Potts model simulation approach. The elastic stored energy is calculated by using the commercial finite element code ABAQUS, where the effect of elastic anisotropy on the thermal mismatch stress and strain distribution within a polycrystalline grain structure is modeled through a user material (UMAT) interface. Parametric studies on the effect of trench width and themore » height of the overburden were carried out. The results show that the grain structure and texture evolution are significantly altered by the presence of elastic strain energy.« less
Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines
NASA Astrophysics Data System (ADS)
Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert
2018-06-01
This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.
Parametric design of pressure-relieving foot orthosis using statistics-based finite element method.
Cheung, Jason Tak-Man; Zhang, Ming
2008-04-01
Custom-molded foot orthoses are frequently prescribed in routine clinical practice to prevent or treat plantar ulcers in diabetes by reducing the peak plantar pressure. However, the design and fabrication of foot orthosis vary among clinical practitioners and manufacturers. Moreover, little information about the parametric effect of different combinations of design factors is available. As an alternative to the experimental approach, therefore, computational models of the foot and footwear can provide efficient evaluations of different combinations of structural and material design factors on plantar pressure distribution. In this study, a combined finite element and Taguchi method was used to identify the sensitivity of five design factors (arch type, insole and midsole thickness, insole and midsole stiffness) of foot orthosis on peak plantar pressure relief. From the FE predictions, the custom-molded shape was found to be the most important design factor in reducing peak plantar pressure. Besides the use of an arch-conforming foot orthosis, the insole stiffness was found to be the second most important factor for peak pressure reduction. Other design factors, such as insole thickness, midsole stiffness and midsole thickness, contributed to less important roles in peak pressure reduction in the given order. The statistics-based FE method was found to be an effective approach in evaluating and optimizing the design of foot orthosis.
NASA Astrophysics Data System (ADS)
Hemmatian, M.; Sedaghati, R.
2017-04-01
This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.
NASA Astrophysics Data System (ADS)
Alves, J. L.; Oliveira, M. C.; Menezes, L. F.
2004-06-01
Two constitutive models used to describe the plastic behavior of sheet metals in the numerical simulation of sheet metal forming process are studied: a recently proposed advanced constitutive model based on the Teodosiu microstructural model and the Cazacu Barlat yield criterion is compared with a more classical one, based on the Swift law and the Hill 1948 yield criterion. These constitutive models are implemented into DD3IMP, a finite element home code specifically developed to simulate sheet metal forming processes, which generically is a 3-D elastoplastic finite element code with an updated Lagrangian formulation, following a fully implicit time integration scheme, large elastoplastic strains and rotations. Solid finite elements and parametric surfaces are used to model the blank sheet and tool surfaces, respectively. Some details of the numerical implementation of the constitutive models are given. Finally, the theory is illustrated with the numerical simulation of the deep drawing of a cylindrical cup. The results show that the proposed advanced constitutive model predicts with more exactness the final shape (medium height and ears profile) of the formed part, as one can conclude from the comparison with the experimental results.
Structural Configuration Analysis of Crew Exploration Vehicle Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
2006-01-01
Structural configuration modeling and finite element analysis of crew exploration vehicle (CEV) concepts are presented. In the structural configuration design approach, parametric solid models of the pressurized shell and tanks are developed. The CEV internal cabin pressure is same as in the International Space Station (ISS) to enable docking with the ISS without an intermediate airlock. Effects of this internal pressure load on the stress distribution, factor of safety, mass and deflections are investigated. Uniform 7 mm thick skin shell, 5 mm thick shell with ribs and frames, and isogrid skin construction options are investigated. From this limited study, the isogrid construction appears to provide most strength/mass ratio. Initial finite element analysis results on the service module tanks are also presented. These rapid finite element analyses, stress and factor of safety distribution results are presented as a part of lessons learned and to build up a structural mass estimation and sizing database for future technology support. This rapid structural analysis process may also facilitate better definition of the vehicles and components for rapid prototyping. However, these structural analysis results are highly conceptual and exploratory in nature and do not reflect current configuration designs being conducted at the program level by NASA and industry.
Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.
2010-01-01
Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432
NASA Astrophysics Data System (ADS)
Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.
2009-08-01
A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program calculates also potential matrix elements - integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685-693]. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic field and a hydrogen atom on a three-dimensional sphere. Program summaryProgram title: ODPEVP Catalogue identifier: AEDV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 24 195 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on the number and order of finite elements; the number of points; and the number of eigenfunctions required. Test run requires 4 MB Classification: 2.1, 2.4 External routines: GAULEG [3] Nature of problem: The three-dimensional boundary problem for the elliptic partial differential equation with an axial symmetry similar to the Schrödinger equation with the Coulomb and transverse oscillator potentials is reduced to the two-dimensional one. The latter finds wide applications in modeling of photoionization and recombination of oppositively charged particles (positrons, antiprotons) in the magnet-optical trap [4], optical absorption in quantum wells [5], and channeling of likely charged particles in thin doped films [6,7] or neutral atoms and molecules in artificial waveguides or surfaces [8,9]. In the adiabatic approach [10] known in mathematics as Kantorovich method [11] the solution of the two-dimensional elliptic partial differential equation is expanded over basis functions with respect to the fast variable (for example, angular variable) and depended on the slow variable (for example, radial coordinate ) as a parameter. An averaging of the problem by such a basis leads to a system of the second-order ordinary differential equations which contain potential matrix elements and the first-derivative coupling terms (see, e.g., [12,13,14]). The purpose of this paper is to present the finite element method procedure based on the use of high-order accuracy approximations for calculating eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program developed calculates potential matrix elements - integrals of the eigenfunctions multiplied by their derivatives with respect to the parameter. These matrix elements can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [1,2]. Solution method: The parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions is solved by the finite element method using high-order accuracy approximations [15]. The generalized algebraic eigenvalue problem AF=EBF with respect to a pair of unknown ( E,F) arising after the replacement of the differential problem by the finite-element approximation is solved by the subspace iteration method using the SSPACE program [16]. First derivatives of the eigenfunctions with respect to the parameter which contained in potential matrix elements of the coupled system equations are obtained by solving the inhomogeneous algebraic equations. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials described in [1,17,18], a 3D-model of a hydrogen atom in a homogeneous magnetic field described in [14,19] and a hydrogen atom on a three-dimensional sphere [20]. Restrictions: The computer memory requirements depend on: the number and order of finite elements; the number of points; and the number of eigenfunctions required. Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see sections below and listing for details). The user must also supply DOUBLE PRECISION functions POTCCL and POTCC1 for evaluating potential function U(ρ,z) of Eq. (1) and its first derivative with respect to parameter ρ. The user should supply DOUBLE PRECISION functions F1FUNC and F2FUNC that evaluate functions f(z) and f(z) of Eq. (1). The user must also supply subroutine BOUNCF for evaluating the parametric third type boundary conditions. Running time: The running time depends critically upon: the number and order of finite elements; the number of points on interval [z,z]; and the number of eigenfunctions required. The test run which accompanies this paper took 2 s with calculation of matrix potentials on the Intel Pentium IV 2.4 GHz. References:O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Comm. 177 (2007) 649-675 O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Comm. 179 (2008) 685-693. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986. O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, V.L. Derbov, L.A. Melnikov, V.V. Serov, Phys. Rev. A 77 (2008) 034702-1-4. E.M. Kazaryan, A.A. Kostanyan, H.A. Sarkisyan, Physica E 28 (2005) 423-430. Yu.N. Demkov, J.D. Meyer, Eur. Phys. J. B 42 (2004) 361-365. P.M. Krassovitskiy, N.Zh. Takibaev, Bull. Russian Acad. Sci. Phys. 70 (2006) 815-818. V.S. Melezhik, J.I. Kim, P. Schmelcher, Phys. Rev. A 76 (2007) 053611-1-15. F.M. Pen'kov, Phys. Rev. A 62 (2000) 044701-1-4. M. Born, X. Huang, Dynamical Theory of Crystal Lattices, The Clarendon Press, Oxford, England, 1954. L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Wiley, New York, 1964. U. Fano, Colloq. Int. C.N.R.S. 273 (1977) 127;A.F. Starace, G.L. Webster, Phys. Rev. A 19 (1979) 1629-1640. C.V. Clark, K.T. Lu, A.F. Starace, in: H.G. Beyer, H. Kleinpoppen (eds.), Progress in Atomic Spectroscopy, Part C, Plenum, New York, 1984, pp. 247-320. O. Chuluunbaatar, A.A. Gusev, V.L. Derbov, M.S. Kaschiev, L.A. Melnikov, V.V. Serov, S.I. Vinitsky, J. Phys. A 40 (2007) 11485-11524. A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40-64. K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice-Hall, New York, 1982. O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006) 243-269. Yu.A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330-361. O. Chuluunbaatar, A.A. Gusev, V.P. Gerdt, V.A. Rostovtsev, S.I. Vinitsky, A.G. Abrashkevich, M.S. Kaschiev, V.V. Serov, Comput. Phys. Comm. 178 (2008) 301-330. A.G. Abrashkevich, M.S. Kaschiev, S.I. Vinitsky, J. Comp. Phys. 163 (2000) 328-348.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arthur T.
2001-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment
NASA Technical Reports Server (NTRS)
Page, Arhur T.
1999-01-01
This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.
Design of optical mirror structures
NASA Technical Reports Server (NTRS)
Soosaar, K.
1971-01-01
The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin
2017-08-31
This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.
NASA Astrophysics Data System (ADS)
Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan
2017-09-01
Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Abuzaid, A.; Hrairi, M.; Shaik Dawood, M. S. I.
2017-03-01
In this paper, the effect of piezoelectric actuators placed above a circular hole of a rectangular plate subjected to uniform uniaxial tension is studied. The core idea is to investigate the stress (compression/tension) produced by the piezoelectric actuators on the stress distribution around the hole and along the width of the host plate. For this purpose, Finite Element Analysis (FEA) was carried out through parametric study in ANSYS software. The results demonstrated that the positive electric field would decrease and change the state of the stress distribution along the width of the host plate in contrast to the negative applied electric filed which increases the stress distribution smoothly without affecting its behaviour. The results also indicated that the reduction of the stress concentration factor increases with the decrease of the ratio (D/W) for the same applied positive electric field.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
NASA Technical Reports Server (NTRS)
Sullivan, R. M.; Salamon, N. J.
1992-01-01
A previously developed formulation for modeling the thermomechanical behavior of chemically decomposing, polymeric materials is verified by simulating the response of carbon phenolic specimens during two high temperature tests: restrained thermal growth and free thermal expansion. Plane strain and plane stress models are used to simulate the specimen response, respectively. In addition, the influence of the poroelasticity constants upon the specimen response is examined through a series of parametric studies.
Finite parametrization of solutions of equations in a free monoid. II
NASA Astrophysics Data System (ADS)
Makanin, G. S.
2004-04-01
In the preceding paper of the author parametrizing functions Fi, Th, Ro were introduced depending on word variables, positive-integer variables, and variables whose values are finite sequences of positive-integer variables. With the help of the parametrizing functions Fi, Th, Ro finite formulae are written out for the family of solutions of every equation of the form \\varphi(x_1,x_2,x_3) x_4=\\psi(x_1,x_2,x_3) x_5, where \\varphi(x_1,x_2,x_3) and \\psi(x_1,x_2,x_3) are arbitrary words in the alphabet x_1, x_2, x_3 in a free monoid.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin
1999-01-01
Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.
Mofid, Omid; Mobayen, Saleh
2018-01-01
Adaptive control methods are developed for stability and tracking control of flight systems in the presence of parametric uncertainties. This paper offers a design technique of adaptive sliding mode control (ASMC) for finite-time stabilization of unmanned aerial vehicle (UAV) systems with parametric uncertainties. Applying the Lyapunov stability concept and finite-time convergence idea, the recommended control method guarantees that the states of the quad-rotor UAV are converged to the origin with a finite-time convergence rate. Furthermore, an adaptive-tuning scheme is advised to guesstimate the unknown parameters of the quad-rotor UAV at any moment. Finally, simulation results are presented to exhibit the helpfulness of the offered technique compared to the previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Guided wave propagation and spectral element method for debonding damage assessment in RC structures
NASA Astrophysics Data System (ADS)
Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping
2009-07-01
A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.
2015-06-15
Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum alloy plate-type fuel for high-performance research reactors in the United States. This work supports the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization Reactor Conversion Program. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll-separating forces for various rolling mill geometries for PNNL, Babcock & Wilcox Co., Y-12 National Security Complex, Los Alamos National Laboratory, and Idaho National Laboratory. The model developed and presented in a previous report has been subjected to further validationmore » study using new sets of experimental data generated from a rolling mill at PNNL. Simulation results of both hot rolling and cold rolling of uranium-10% molybdenum coupons have been compared with experimental results. The model was used to predict roll-separating forces at different temperatures and reductions for five rolling mills within the National Nuclear Security Administration Fuel Fabrication Capability project. This report also presents initial results of a finite-element model microstructure-based approach to study the surface roughness at the interface between zirconium and uranium-10% molybdenum.« less
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
Analytic Regularity and Polynomial Approximation of Parametric and Stochastic Elliptic PDEs
2010-05-31
Todor : Finite elements for elliptic problems with stochastic coefficients Comp. Meth. Appl. Mech. Engg. 194 (2005) 205-228. [14] R. Ghanem and P. Spanos...for elliptic partial differential equations with random input data SIAM J. Num. Anal. 46(2008), 2411–2442. [20] R. Todor , Robust eigenvalue computation...for smoothing operators, SIAM J. Num. Anal. 44(2006), 865– 878. [21] Ch. Schwab and R.A. Todor , Karhúnen-Loève Approximation of Random Fields by
Large deformation frictional contact analysis with immersed boundary method
NASA Astrophysics Data System (ADS)
Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José
2018-01-01
This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.
One-dimensional statistical parametric mapping in Python.
Pataky, Todd C
2012-01-01
Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.
Parametric Shape Optimization of Lens-Focused Piezoelectric Ultrasound Transducers.
Thomas, Gilles P L; Chapelon, Jean-Yves; Bera, Jean-Christophe; Lafon, Cyril
2018-05-01
Focused transducers composed of flat piezoelectric ceramic coupled with an acoustic lens present an economical alternative to curved piezoelectric ceramics and are already in use in a variety of fields. Using a displacement/pressure (u/p) mixed finite element formulation combined with parametric level-set functions to implicitly define the boundaries between the materials and the fluid-structure interface, a method to optimize the shape of acoustic lens made of either one or multiple materials is presented. From that method, two 400 kHz focused transducers using acoustic lens were designed and built with different rapid prototyping methods, one of them made with a combination of two materials, and experimental measurements of the pressure field around the focal point are in good agreement with the presented model.
NASA Astrophysics Data System (ADS)
Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao
2018-04-01
To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.
NASA Astrophysics Data System (ADS)
Guoqing, Zhang; Junxin, Li; Jin, Li; Chengguang, Zhang; Zefeng, Xiao
2018-05-01
To fabricate porous implants with improved biocompatibility and mechanical properties that are matched to their application using selective laser melting (SLM), flow within the mold and compressive properties and performance of the porous structures must be comprehensively studied. Parametric modeling was used to build 3D models of octahedron and hexahedron structures. Finite element analysis was used to evaluate the mold flow and compressive properties of the parametric porous structures. A DiMetal-100 SLM molding apparatus was used to manufacture the porous structures and the results evaluated by light microscopy. The results showed that parametric modeling can produce robust models. Square structures caused higher blood cell adhesion than cylindrical structures. "Vortex" flow in square structures resulted in chaotic distribution of blood elements, whereas they were mostly distributed around the connecting parts in the cylindrical structures. No significant difference in elastic moduli or compressive strength was observed in square and cylindrical porous structures of identical characteristics. Hexahedron, square and cylindrical porous structures had the same stress-strain properties. For octahedron porous structures, cylindrical structures had higher stress-strain properties. Using these modeling and molding results, an important basis for designing and the direct manufacture of fixed biological implants is provided.
Efficient calculation of higher-order optical waveguide dispersion.
Mores, J A; Malheiros-Silveira, G N; Fragnito, H L; Hernández-Figueroa, H E
2010-09-13
An efficient numerical strategy to compute the higher-order dispersion parameters of optical waveguides is presented. For the first time to our knowledge, a systematic study of the errors involved in the higher-order dispersions' numerical calculation process is made, showing that the present strategy can accurately model those parameters. Such strategy combines a full-vectorial finite element modal solver and a proper finite difference differentiation algorithm. Its performance has been carefully assessed through the analysis of several key geometries. In addition, the optimization of those higher-order dispersion parameters can also be carried out by coupling to the present scheme a genetic algorithm, as shown here through the design of a photonic crystal fiber suitable for parametric amplification applications.
NASA Astrophysics Data System (ADS)
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Ayturk, Ugur M; Puttlitz, Christian M
2011-08-01
The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.
Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris
2001-01-01
Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.
Strength analysis and lightweight research of a fertilizing and soil covering vehicle
NASA Astrophysics Data System (ADS)
Sun, Heng-Hui; Zhang, Zheng-Yong; Liu, Yang; Xu, Hai-Ming; Chen, En-Wei
2018-03-01
In this paper, parametric modeling is carried out for the frame part of a kind of fertilizing and soil covering vehicle to define boundary conditions such as load, constraint, etc. when the frame is under the working condition of normal full load. ANSYS software is used to produce finite element model of frame, and to analyze and solve the model, so as to obtain stress and stain variation diagram of each part of frame under working condition of normal full load. The calculation result shows that: the structure of frame is able to meet the strength requirement, and the maximum value of stress is located at joint between frame and external hinge, which should be appropriately improved in thickening way. According to the result of finite element, the scheme with size optimization is employed to design the frame in lightweight way. The research result of this paper provides the theoretical basis for the design of frame of fertilizing and soil covering vehicle, which has deep theoretical significance and application value.
Hwang, Eunjoo; Hu, Jingwen; Chen, Cong; Klein, Katelyn F; Miller, Carl S; Reed, Matthew P; Rupp, Jonathan D; Hallman, Jason J
2016-11-01
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs. For each PMHS test, three HBMs were simulated to compare with the test results: the original Total Human Model for Safety (THUMS) v4.01 (O-THUMS), a parametric THUMS (P-THUMS), and a subject-specific THUMS (S-THUMS). The P-THUMS geometry was predicted from only age, sex, stature, and BMI using our statistical geometry models of skeleton and body shape, while the S-THUMS geometry was based on each PMHS's CT data. The simulation results showed a preliminary trend that the correlations between the PTHUMS- predicted impact responses and the four PMHS tests (mean-CORA: 0.84, 0.78, 0.69, 0.70) were better than those between the O-THUMS and the normalized PMHS responses (mean-CORA: 0.74, 0.72, 0.55, 0.63), while they are similar to the correlations between S-THUMS and the PMHS tests (mean-CORA: 0.85, 0.85, 0.67, 0.72). The sensitivity analysis using the PTHUMS showed that, in side impact conditions, the HBM skeleton and body shape geometries as well as the body posture were more important in modeling the occupant impact responses than the bone and soft tissue material properties and the padding stiffness with the given parameter ranges. More investigations are needed to further support these findings.
Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R
2018-02-28
The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.
Parametric Thermal Soak Model for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Samareh, Jamshid; Doan, Quy D.
2013-01-01
The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. An integrated tool called Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE is being developed as part of Entry Vehicle Technology project under In-Space Technology program. Integration of a multidisciplinary problem is a challenging task. Automation of the execution process and data transfer among disciplines can be accomplished to provide significant benefits. Thermal soak analysis and temperature predictions of various interior components of entry vehicle, including the impact foam and payload container are part of the solution that M-SAPE will offer to spacecraft designers. The present paper focuses on the thermal soak analysis of an entry vehicle design based on the Mars Sample Return entry vehicle geometry and discusses a technical approach to develop parametric models for thermal soak analysis that will be integrated into M-SAPE. One of the main objectives is to be able to identify the important parameters and to develop correlation coefficients so that, for a given trajectory, can estimate the peak payload temperature based on relevant trajectory parameters and vehicle geometry. The models are being developed for two primary thermal protection (TPS) materials: 1) carbon phenolic that was used for Galileo and Pioneer Venus probes and, 2) Phenolic Impregnated Carbon Ablator (PICA), TPS material for Mars Science Lab mission. Several representative trajectories were selected from a very large trade space to include in the thermal analysis in order to develop an effective parametric thermal soak model. The selected trajectories covered a wide range of heatload and heatflux combinations. Non-linear, fully transient, thermal finite element simulations were performed for the selected trajectories to generate the temperature histories at the interior of the vehicle. Figure 1 shows the finite element model that was used for the simulations. The results indicate that it takes several hours for the thermal energy to soak into the interior of the vehicle and achieve maximum payload temperatures. In addition, a strong correlation between the heatload and peak payload container temperature is observed that will help establishing the parametric thermal soak model.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Naghieh, S; Karamooz Ravari, M R; Badrossamay, M; Foroozmehr, E; Kadkhodaei, M
2016-06-01
In recent years, thanks to additive manufacturing technology, researchers have gone towards the optimization of bone scaffolds for the bone reconstruction. Bone scaffolds should have appropriate biological as well as mechanical properties in order to play a decisive role in bone healing. Since the fabrication of scaffolds is time consuming and expensive, numerical methods are often utilized to simulate their mechanical properties in order to find a nearly optimum one. Finite element analysis is one of the most common numerical methods that is used in this regard. In this paper, a parametric finite element model is developed to assess the effects of layers penetration׳s effect on inter-layer adhesion, which is reflected on the mechanical properties of bone scaffolds. To be able to validate this model, some compression test specimens as well as bone scaffolds are fabricated with biocompatible and biodegradable poly lactic acid using fused deposition modeling. All these specimens are tested in compression and their elastic modulus is obtained. Using the material parameters of the compression test specimens, the finite element analysis of the bone scaffold is performed. The obtained elastic modulus is compared with experiment indicating a good agreement. Accordingly, the proposed finite element model is able to predict the mechanical behavior of fabricated bone scaffolds accurately. In addition, the effect of post-heating of bone scaffolds on their elastic modulus is investigated. The results demonstrate that the numerically predicted elastic modulus of scaffold is closer to experimental outcomes in comparison with as-built samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas
2017-10-01
In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.
Free vibration Analysis of Sandwich Plates with cutout
NASA Astrophysics Data System (ADS)
Mishra, N.; Basa, B.; Sarangi, S. K.
2016-09-01
This paper presents the free vibration analysis of sandwich plates with cutouts. Cutouts are inevitable in structural applications and the presence of these cutouts in the structures greatly influences their dynamic characteristics. A finite element model has been developed here using the ANSYS 15.0 software to study the free vibration characteristics of sandwich plates in the presence of cutouts. Shell 281 element, an 8-noded element with six degrees of freedom suited for analyzing thin to moderately thick structures is considered in the development of the model. Block Lanczose method is adopted to extract the mode shapes to obtain the natural frequency corresponding to free vibration of the plate. The effects of parametric variation on the natural frequency of the sandwich plates with cutout are studied and results are presented.
NASA Astrophysics Data System (ADS)
Sahoo, Sushree S.; Singh, Vijay K.; Panda, Subrata K.
2015-02-01
Flexural behaviour of cross ply laminated woven Glass/Epoxy composite plate has been investigated in this article. Flexural responses are examined by a three point bend test and tensile test carried out on INSTRON 5967 and Universal Testing Machine INSTRON 1195 respectively. The finite element model is developed in ANSYS parametric design language code and discretised using an eight nodded structural shell element. Convergence behaviour of the simulation result has been performed and validated by comparing the results with experimental values. The effects of various parameters such as side-to-thickness ratio, modular ratio on flexural behaviour of woven Glass/Epoxy laminated composite plate are discussed in details.
Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran
2017-01-01
This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Hayhurst, D. R.
1994-07-01
The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.
Mechanical properties of multifunctional structure with viscoelastic components based on FVE model
NASA Astrophysics Data System (ADS)
Hao, Dong; Zhang, Lin; Yu, Jing; Mao, Daiyong
2018-02-01
Based on the models of Lion and Kardelky (2004) and Hofer and Lion (2009), a finite viscoelastic (FVE) constitutive model, considering the predeformation-, frequency- and amplitude-dependent properties, has been proposed in our earlier paper [1]. FVE model is applied to investigating the dynamic characteristics of the multifunctional structure with the viscoelastic components. Combing FVE model with the finite element theory, the dynamic model of the multifunctional structure could be obtained. Additionally, the parametric identification and the experimental verification are also given via the frequency-sweep tests. The results show that the computational data agree well with the experimental data. FVE model has made a success of expressing the dynamic characteristics of the viscoelastic materials utilized in the multifunctional structure. The multifunctional structure technology has been verified by in-orbit experiments.
Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading
NASA Astrophysics Data System (ADS)
Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.
2017-05-01
The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed
Civil tiltrotor transport point design: Model 940A
NASA Technical Reports Server (NTRS)
Rogers, Charles; Reisdorfer, Dale
1993-01-01
The objective of this effort is to produce a vehicle layout for the civil tiltrotor wing and center fuselage in sufficient detail to obtain aerodynamic and inertia loads for determining member sizing. This report addresses the parametric configuration and loads definition for a 40 passenger civil tilt rotor transport. A preliminary (point) design is developed for the tiltrotor wing box and center fuselage. This summary report provides all design details used in the pre-design; provides adequate detail to allow a preliminary design finite element model to be developed; and contains guidelines for dynamic constraints.
Origami-inspired building block and parametric design for mechanical metamaterials
NASA Astrophysics Data System (ADS)
Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo
2016-08-01
An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.
Nonlinear vibration of an axially loaded beam carrying rigid bodies
NASA Astrophysics Data System (ADS)
Barry, O.
2016-12-01
This paper investigates the nonlinear vibration due to mid-plane stretching of an axially loaded simply supported beam carrying multiple rigid masses. Explicit expressions and closed form solutions of both linear and nonlinear analysis of the present vibration problem are presented for the first time. The validity of the analytical model is demonstrated using finite element analysis and via comparison with the result in the literature. Parametric studies are conducted to examine how the nonlinear frequency and frequency response curve are affected by tension, rotational inertia, and number of intermediate rigid bodies.
NASA Astrophysics Data System (ADS)
Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton
2005-09-01
The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.
A Generic Microdisturbanace Transmissibility Model For Reaction Wheels
NASA Astrophysics Data System (ADS)
Penate Castro, Jose; Seiler, Rene
2012-07-01
The increasing demand for space missions with high- precision pointing requirements for their payload instruments is underlining the importance of studying the impact of micro-level disturbances on the overall performance of spacecraft. For example, a satellite with an optical telescope taking high-resolution images might be very sensitive to perturbations, generated by moving equipment and amplified by the structure of the equipment itself as well as that of the host spacecraft that is accommodating both, the sources of mechanical disturbances and sensitive payload instruments. One of the major sources of mechanical disturbances inside a satellite may be found with reaction wheels. For investigation of their disturbance generation and propagation characteristics, a finite element model with parametric geometry definition has been developed. The model covers the main structural features of typical reaction wheel assemblies and can be used for a transmissibility representation of the equipment. With the parametric geometry definition approach, a wide range of different reaction wheel types and sizes can be analysed, without the need for (re-)defining an individual reaction wheel configuration from scratch. The reaction wheel model can be combined with a finite element model of the spacecraft structure and the payload for an end-to-end modelling and simulation of the microdisturbance generation and propagation. The finite element model has been generated in Patran® Command Language (PCL), which provides a powerful and time-efficient way to change parameters in the model, for creating a new or modifying an existing geometry, without requiring comprehensive manual interactions in the modelling pre-processor. As part of the overall modelling approach, a tailored structural model of the mechanical ball bearings has been implemented, which is one of the more complex problems to deal with, among others, due to the anisotropic stiffness and damping characteristics. Together, with the time and frequency domain representations of the local sources of the disturbance forces and moments (e.g. due to rotor unbalance), the new model enables adequate estimation of the disturbances at the mechanical interface of a reaction wheel with a transmissibility representation, furthermore the analysis of their propagation in a host structure and their effects on a payload item.
Packaging Technology for SiC High Temperature Circuits Operable up to 500 Degrees Centigrade
NASA Technical Reports Server (NTRS)
Chen, Lian-Yu
2002-01-01
New high temperature low power 8-pin packages have been fabricated using commercial fabrication service. These packages are made of aluminum nitride and 96 percent alumina with Au metallization. The new design of these packages provides the chips inside with EM shielding. Wirebond geometry control has been achieved for precise mechanical tests. Au wirebond samples with 45 degree heel-angle have been tested using wireloop test module. The geometry control improves the consistency of measurement of the wireloop breaking point.Also reported on is a parametric study of the thermomechanical reliability of a Au thick-film based SiC die-attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 degrees Centigrade. This parametric study centered on material selection, structure design and process control.
A Parametric Computational Analysis into Galvanic Coupling Intrabody Communication.
Callejon, M Amparo; Del Campo, P; Reina-Tosina, Javier; Roa, Laura M
2017-08-02
Intrabody Communication (IBC) uses the human body tissues as transmission media for electrical signals to interconnect personal health devices in wireless body area networks. The main goal of this work is to conduct a computational analysis covering some bioelectric issues that still have not been fully explained, such as the modeling of the skin-electrode impedance, the differences associated to the use of constant voltage or current excitation modes, or the influence on attenuation of the subject's anthropometrical and bioelectric properties. With this aim, a computational finite element model has been developed, allowing the IBC channel attenuation as well as the electric field and current density through arm tissues to be computed as a function of these parameters. As a conclusion, this parametric analysis has in turn permitted us to disclose some knowledge about the causes and effects of the above-mentioned issues, thus explaining and complementing previous results reported in the literature.
Parametric study using modal analysis of a bi-material plate with defects
NASA Astrophysics Data System (ADS)
Esola, S.; Bartoli, I.; Horner, S. E.; Zheng, J. Q.; Kontsos, A.
2015-03-01
Global vibrational method feasibility as a non-destructive inspection tool for multi-layered composites is evaluated using a simulated parametric study approach. A finite element model of a composite consisting of two, isotropic layers of dissimilar materials and a third, thin isotropic layer of adhesive is constructed as the representative test subject. Next, artificial damage is inserted according to systematic variations of the defect morphology parameters. A free-vibrational modal analysis simulation is executed for pristine and damaged plate conditions. Finally, resultant mode shapes and natural frequencies are extracted, compared and analyzed for trends. Though other defect types may be explored, the focus of this research is on interfacial delamination and its effects on the global, free-vibrational behavior of a composite plate. This study is part of a multi-year research effort conducted for the U.S. Army Program Executive Office - Soldier.
Experiments and Dynamic Finite Element Analysis of a Wire-Rope Rockfall Protective Fence
NASA Astrophysics Data System (ADS)
Tran, Phuc Van; Maegawa, Koji; Fukada, Saiji
2013-09-01
The imperative need to protect structures in mountainous areas against rockfall has led to the development of various protection methods. This study introduces a new type of rockfall protection fence made of posts, wire ropes, wire netting and energy absorbers. The performance of this rock fence was verified in both experiments and dynamic finite element analysis. In collision tests, a reinforced-concrete block rolled down a natural slope and struck the rock fence at the end of the slope. A specialized system of measuring instruments was employed to accurately measure the acceleration of the block without cable connection. In particular, the performance of two energy absorbers, which contribute also to preventing wire ropes from breaking, was investigated to determine the best energy absorber. In numerical simulation, a commercial finite element code having explicit dynamic capabilities was employed to create models of the two full-scale tests. To facilitate simulation, certain simplifying assumptions for mechanical data of each individual component of the rock fence and geometrical data of the model were adopted. Good agreement between numerical simulation and experimental data validated the numerical simulation. Furthermore, the results of numerical simulation helped highlight limitations of the testing method. The results of numerical simulation thus provide a deeper understanding of the structural behavior of individual components of the rock fence during rockfall impact. More importantly, numerical simulations can be used not only as supplements to or substitutes for full-scale tests but also in parametric study and design.
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Nonlinear finite-element analysis of nanoindentation of viral capsids
NASA Astrophysics Data System (ADS)
Gibbons, Melissa M.; Klug, William S.
2007-03-01
Recent atomic force microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick-shell models are proposed for two capsids: the spherical cowpea chlorotic mottle virus (CCMV), and the ellipsocylindrical bacteriophage ϕ29 . As analyzed by the finite-element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive particulars, and greatly influenced by geometric and kinematic details. Nonlinear stiffening and softening of the force response is dependent on the AFM tip dimensions and shell thickness. Fits of the models capture the roughly linear behavior observed in experimental measurements and result in estimates of Young’s moduli of ≈280-360MPa for CCMV and ≈4.5GPa for ϕ29 .
NASA Astrophysics Data System (ADS)
Zhao, W.; Sun, Z.; Tang, Z.; Liaw, P. K.; Li, J.; Liu, R. P.; Li, Gong
2014-05-01
2D finite element analysis was conducted on the temperature field to create an amorphous ingot by vacuum water quenching. An optimized analysis document was then written by ANSYS parametric design language, and the optimal design modules of ANSYS were used to study the inside diameter and wall thickness of the quartz tube, as well as the water temperature. The microstructure and the phase structure of the amorphous ingot were evaluated by scanning electron microscopy and X-ray diffraction, respectively. Results show that during the cooling process, the thinner wall thickness, smaller diameter of the ingot, or lower temperature of the water environment can result in higher cooling rate at a given temperature. Besides, the gap between the different cooling rates induced by wall thickness or diameter of the ingot narrows down as the temperature decreases, and the gap between the different cooling rates induced by temperature of the water environment remains constant. The process parameters in creating an amorphous ingot, which is optimized by the finite element analysis on the temperature field, are reliable.
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Zhao, Xudong; Jin, Yi; Chen, Xiao; Ji, Jie; Shittu, Samson
2018-06-01
Geometrical optimisation is a valuable way to improve the efficiency of a thermoelectric element (TE). In a hybrid photovoltaic-thermoelectric (PV-TE) system, the photovoltaic (PV) and thermoelectric (TE) components have a relatively complex relationship; their individual effects mean that geometrical optimisation of the TE element alone may not be sufficient to optimize the entire PV-TE hybrid system. In this paper, we introduce a parametric optimisation of the geometry of the thermoelectric element footprint for a PV-TE system. A uni-couple TE model was built for the PV-TE using the finite element method and temperature-dependent thermoelectric material properties. Two types of PV cells were investigated in this paper and the performance of PV-TE with different lengths of TE elements and different footprint areas was analysed. The outcome showed that no matter the TE element's length and the footprint areas, the maximum power output occurs when A n /A p = 1. This finding is useful, as it provides a reference whenever PV-TE optimisation is investigated.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
Stress analysis of ribbon parachutes
NASA Technical Reports Server (NTRS)
Reynolds, D. T.; Mullins, W. M.
1975-01-01
An analytical method has been developed for determining the internal load distribution for ribbon parachutes subjected to known riser and aerodynamic forces. Finite elements with non-linear elastic properties represent the parachute structure. This method is an extension of the analysis previously developed by the authors and implemented in the digital computer program CANO. The present analysis accounts for the effect of vertical ribbons in the solution for canopy shape and stress distribution. Parametric results are presented which relate the canopy stress distribution to such factors as vertical ribbon strength, number of gores, and gore shape in a ribbon parachute.
Parametric investigation of scalable tactile sensors
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Yang, Zhong; Baptist, Joshua R.; Sahasrabuddhe, Ritvij R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
In the near future, robots and humans will share the same environment and perform tasks cooperatively. For intuitive, safe, and reliable physical human-robot interaction (pHRI), sensorized robot skins for tactile measurements of contact are necessary. In a previous study, we presented skins consisting of strain gauge arrays encased in silicone encapsulants. Although these structures could measure normal forces applied directly onto the sensing elements, they also exhibited blind spots and response asymmetry to certain loading patterns. This study presents a parametric investigation of piezoresistive polymeric strain gauge that exhibits a symmetric omniaxial response thanks to its novel star-shaped structure. This strain gauge relies on the use of gold micro-patterned star-shaped structures with a thin layer of PEDOT:PSS which is a flexible polymer with piezoresistive properties. In this paper, the sensor is first modeled and comprehensively analyzed in the finite-element simulation environment COMSOL. Simulations include stress-strain loading for a variety of structure parameters such as gauge lengths, widths, and spacing, as well as multiple load locations relative to the gauge. Subsequently, sensors with optimized configurations obtained through simulations were fabricated using cleanroom photolithographic and spin-coating processes, and then experimentally tested. Results show a trend-wise agreement between experiments and simulations.
Finite element analysis of constrained total Condylar Knee Prosthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-13
Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designsmore » for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design could be selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.« less
Modeling and Analysis of Wrinkled Membranes: An Overview
NASA Technical Reports Server (NTRS)
Yang, B.; Ding, H.; Lou, M.; Fang, H.; Broduer, Steve (Technical Monitor)
2001-01-01
Thin-film membranes are basic elements of a variety of space inflatable/deployable structures. Wrinkling degrades the performance and reliability of these membrane structures, and hence has been a topic of continued interest. Wrinkling analysis of membranes for general geometry and arbitrary boundary conditions is quite challenging. The objective of this presentation is two-fold. Firstly, the existing models of wrinkled membranes and related numerical solution methods are reviewed. The important issues to be discussed are the capability of a membrane model to characterize taut, wrinkled and slack states of membranes in a consistent and physically reasonable manner; the ability of a wrinkling analysis method to predict the formation and growth of wrinkled regions, and to determine out-of-plane deformation and wrinkled waves; the convergence of a numerical solution method for wrinkling analysis; and the compatibility of a wrinkling analysis with general-purpose finite element codes. According to this review, several opening issues in modeling and analysis of wrinkled membranes that are to be addressed in future research are summarized, The second objective of this presentation is to discuss a newly developed membrane model of two viable parameters (2-VP model) and associated parametric finite element method (PFEM) for wrinkling analysis are introduced. The innovations and advantages of the proposed membrane model and PFEM-based wrinkling analysis are: (1) Via a unified stress-strain relation; the 2-VP model treat the taut, wrinkled, and slack states of membranes consistently; (2) The PFEM-based wrinkling analysis has guaranteed convergence; (3) The 2-VP model along with PFEM is capable of predicting membrane out-of-plane deformations; and (4) The PFEM can be integrated into any existing finite element code. Preliminary numerical examples are also included in this presentation to demonstrate the 2-VP model and PFEM-based wrinkling analysis approach.
NASA Astrophysics Data System (ADS)
Abd El Baky, Hussien
This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond--slip relation is developed considering the interaction between the interfacial normal and shear stress components along the bonded length. A new approach is proposed to describe the entire tau-s relationship based on three separate models. The first model captures the shear response of an orthotropic FRP laminate. The second model simulates the shear characteristics of an adhesive layer, while the third model represents the shear nonlinearity of a thin layer inside the concrete, referred to as the interfacial layer. The proposed bond--slip model reflects the geometrical and material characteristics of the FRP, concrete, and adhesive layers. Two-dimensional and three-dimensional nonlinear displacement-controlled finite element (FE) models are then developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. The three-dimensional finite element model is created to accommodate cases of beams having FRP anchorage systems. Discrete interface elements are proposed and used to simulate the FRP/concrete interfacial behaviour before and after cracking. The FE models are capable of simulating the various failure modes, including debonding of the FRP either at the plate end or at intermediate cracks. Particular attention is focused on the effect of crack initiation and propagation on the interfacial behaviour. This study leads to an accurate and refined interpretation of the plate-end and intermediate crack debonding failure mechanisms for FRP-strengthened beams with and without FRP anchorage systems. Finally, the FE models are used to conduct a parametric study to generalize the findings of the FE analysis. The variables under investigation include two material characteristics; namely, the concrete compressive strength and axial stiffness of the FRP laminates as well as three geometric properties; namely, the steel reinforcement ratio, the beam span length and the beam depth. The parametric study is followed by a statistical analysis for 43 strengthened beams involving the five aforementioned variables. The response surface methodology (RSM) technique is employed to optimize the accuracy of the statistical models while minimizing the numbers of finite element runs. In particular, a face-centred design (FCD) is applied to evaluate the influence of the critical variables on the debonding load and debonding strain limits in the FRP laminates. Based on these statistical models, a nonlinear statistical regression analysis is used to propose design guidelines for the FRP flexural strengthening of reinforced concrete beams. (Abstract shortened by UMI.)
Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen
2015-09-01
Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.
Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach
NASA Astrophysics Data System (ADS)
Chowdhury, R.; Adhikari, S.
2012-10-01
Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.
Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun
2018-02-01
Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.
Robustness against parametric noise of nonideal holonomic gates
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe
2007-07-01
Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature.
NASA Astrophysics Data System (ADS)
Han, Qinkai; Chu, Fulei
2012-12-01
It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Yang, Zhengbao; Zu, Jean
2018-01-01
This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.
NASA Technical Reports Server (NTRS)
Myers, David E.; Martin, Carl J.; Blosser, Max L.
2000-01-01
A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.
pySecDec: A toolbox for the numerical evaluation of multi-scale integrals
NASA Astrophysics Data System (ADS)
Borowka, S.; Heinrich, G.; Jahn, S.; Jones, S. P.; Kerner, M.; Schlenk, J.; Zirke, T.
2018-01-01
We present pySECDEC, a new version of the program SECDEC, which performs the factorization of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Enabling Rapid and Robust Structural Analysis During Conceptual Design
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
NASA Technical Reports Server (NTRS)
Sensmeier, Mark D.; Samareh, Jamshid A.
2005-01-01
An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.
Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.
Park, Jiyoung; Kang, Doo-Eui; Paulson, Bjorn; Nazari, Tavakol; Oh, Kyunghwan
2014-07-14
A defectless hexagonal air-silica photonic crystal fiber (PCF) structure with its central hole selectively filled by a low-refractive-index liquid is numerically analyzed. Despite the fact that the refractive index of the liquid is significantly lower than that of silica, we found an optimal range of waveguide parameters to ensure light guidance through the liquid core in the fundamental mode, maximizing the light-liquid interaction over a desired wavelength range. Using the vectorial finite element method (FEM), we report detailed parametric studies in terms of the effective index, chromatic dispersion, optical loss, and modal intensity distribution of the liquid core PCFs.
Finite element analysis of damped vibrations of laminated composite plates
NASA Astrophysics Data System (ADS)
Hu, Baogang
1992-11-01
Damped free vibrations of composite laminates are subjected to macromechanical analysis. Two models are developed: a viscoelastic damping model and a specific damping capacity model. The important symmetry property of the damping matrix is retained in both models. A modified modal strain energy method is proposed for evaluating modal damping in the viscoelastic model using a real (instead of a complex) eigenvalue problem solution. Numerical studies of multidegree of freedom systems are conducted to illustrate the improved accuracy of the method compared to the modal strain energy method. The experimental data reported in the literature for damped free vibrations in both polymer matrix and metal matrix composites were used in finite element analysis to test and compare the damping models. The natural frequencies and modal damping were obtained using both the viscoelastic and specific models. Results from both models are in satisfactory agreement with experimental data. Both models were found to be reasonably accurate for systems with low damping. Parametric studies were conducted to examine the effects on damping of the side to thickness ratio, the principal moduli ratio, the total number of layers, the ply angle, and the boundary conditions.
Glass microneedles for force measurements: a finite-element analysis model
Ayittey, Peter N.; Walker, John S.; Rice, Jeremy J.; de Tombe, Pieter P.
2010-01-01
Changes in developed force (0.1–3.0 μN) observed during contraction of single myofibrils in response to rapidly changing calcium concentrations can be measured using glass microneedles. These microneedles are calibrated for stiffness and deflect on response to developed myofibril force. The precision and accuracy of kinetic measurements are highly dependent on the structural and mechanical characteristics of the microneedles, which are generally assumed to have a linear force–deflection relationship. We present a finite-element analysis (FEA) model used to simulate the effects of measurable geometry on stiffness as a function of applied force and validate our model with actual measured needle properties. In addition, we developed a simple heuristic constitutive equation that best describes the stiffness of our range of microneedles used and define limits of geometry parameters within which our predictions hold true. Our model also maps a relation between the geometry parameters and natural frequencies in air, enabling optimum parametric combinations for microneedle fabrication that would reflect more reliable force measurement in fluids and physiological environments. We propose a use for this model to aid in the design of microneedles to improve calibration time, reproducibility, and precision for measuring myofibrillar, cellular, and supramolecular kinetic forces. PMID:19104827
Conceptual design of a Bitter-magnet toroidal-field system for the ZEPHYR Ignition Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, J.E.C.; Becker, H.D.; Bobrov, E.S.
1981-05-01
The following problems are described and discussed: (1) parametric studies - these studies examine among other things the interdependence of throat stresses, plasma parameters (margins of ignition) and stored energy. The latter is a measure of cost and is minimized in the present design; (2) magnet configuration - the shape of the plates are considered in detail including standard turns, turns located at beam ports, diagnostic and closure flanges; (3) ripple computation - this section describes the codes by which ripple is computed; (4) field diffusion and nuclear heating - the effect of magnetic field diffusion on heating is consideredmore » along with neutron heating. Current, field and temperature profiles are computed; (5) finite element analysis - the two and three dimensional finite element codes are described and the results discussed in detail; (6) structures engineering - this considers the calculation of critical stresses due to toroidal and overturning forces and discusses the method of constraint of these forces. The Materials Testing Program is also discussed; (7) fabrication - the methods available for the manufacture of the constituent parts of the Bitter plates, the method of assembly and remote maintenance are summarized.« less
Behavior of Industrial Steel Rack Connections
NASA Astrophysics Data System (ADS)
Shah, S. N. R.; Ramli Sulong, N. H.; Khan, R.; Jumaat, M. Z.; Shariati, M.
2016-03-01
Beam-to-column connections (BCCs) used in steel pallet racks (SPRs) play a significant role to maintain the stability of rack structures in the down-aisle direction. The variety in the geometry of commercially available beam end connectors hampers the development of a generalized analytic design approach for SPR BCCs. The experimental prediction of flexibility in SPR BCCs is prohibitively expensive and difficult for all types of commercially available beam end connectors. A suitable solution to derive a particular uniform M-θ relationship for each connection type in terms of geometric parameters may be achieved through finite element (FE) modeling. This study first presents a comprehensive description of the experimental investigations that were performed and used as the calibration bases for the numerical study that constituted its main contribution. A three dimensioned (3D) non-linear finite element (FE) model was developed and calibrated against the experimental results. The FE model took into account material nonlinearities, geometrical properties and large displacements. Comparisons between numerical and experimental data for observed failure modes and M-θ relationship showed close agreement. The validated FE model was further extended to perform parametric analysis to identify the effects of various parameters which may affect the overall performance of the connection.
Ultrasonic guided wave inspection of Inconel 625 brazed lap joints
NASA Astrophysics Data System (ADS)
Comot, Pierre; Bocher, Philippe; Belanger, Pierre
2016-04-01
The aerospace industry has been investigating the use of brazing for structural joints, as a mean of reducing cost and weight. There therefore is a need for a rapid, robust, and cost-effective non-destructive testing method for evaluating the structural integrity of the joints. The mechanical strength of brazed joints depends mainly on the amount of brittle phases in their microstructure. Ultrasonic guided waves offer the possibility of detecting brittle phases in joints using spatio-temporal measurements. Moreover, they offer the opportunity to inspect complex shape joints. This study focused on the development of a technique based on ultrasonic guided waves for the inspection of Inconel 625 lap joints brazed with BNi-2 filler metal. A finite element model of a lap joint was used to optimize the inspection parameters and assess the feasibility of detecting the amount of brittle phases in the joint. A finite element parametric study simulating the input signal shape, the center frequency, and the excitation direction was performed. The simulations showed that the ultrasonic guided wave energy transmitted through, and reflected from, the joints was proportional to the amount of brittle phases in the joint.
NASA Astrophysics Data System (ADS)
Nagpal, Shubhrata; Jain, Nitin Kumar; Sanyal, Shubhashis
2016-01-01
The problem of finding the stress concentration factor of a loaded rectangular plate has offered considerably analytical difficulty. The present work focused on understanding of behavior of isotropic and orthotropic plate subjected to static in-plane loading using finite element method. The complete plate model configuration has been analyzed using finite element method based software ANSYS. In the present work two parameters: thickness to width of plate (T/A) and diameter of hole to width of plate (D/A) have been varied for analysis of stress concentration factor (SCF) and its mitigation. Plates of five different materials have been considered for complete analysis to find out the sensitivity of stress concentration factor. The D/A ratio varied from 0.1 to 0.7 for analysis of SCF and varied from 0.1 to 0.5 for analyzing the mitigation of SCF. 0.01, 0.05 and 0.1 are considered as T/A ratio for all the cases. The results are presented in graphical form and discussed. The mitigation in SCF reported is very encouraging. The SCF is more sensitive to D/A ratio as compared to T/A.
NASA Astrophysics Data System (ADS)
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
Prevalence Incidence Mixture Models
The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centini, M.; Sciscione, L.; Sibilia, C.
A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.
Using Plate Finite Elements for Modeling Fillets in Design, Optimization, and Dynamic Analysis
NASA Technical Reports Server (NTRS)
Brown, A. M.; Seugling, R. M.
2003-01-01
A methodology has been developed that allows the use of plate elements instead of numerically inefficient solid elements for modeling structures with 90 degree fillets. The technique uses plate bridges with pseudo Young's modulus (Eb) and thickness (tb) values placed between the tangent points of the fillets. These parameters are obtained by solving two nonlinear simultaneous equations in terms of the independent variables rlt and twallt. These equations are generated by equating the rotation at the tangent point of a bridge system with that of a fillet, where both rotations are derived using beam theory. Accurate surface fits of the solutions are also presented to provide the user with closed-form equations for the parameters. The methodology was verified on the subcomponent level and with a representative filleted structure, where the technique yielded a plate model exhibiting a level of accuracy better than or equal to a high-fidelity solid model and with a 90-percent reduction in the number of DOFs. The application of this method for parametric design studies, optimization, and dynamic analysis should prove extremely beneficial for the finite element practitioner. Although the method does not attempt to produce accurate stresses in the filleted region, it can also be used to obtain stresses elsewhere in the structure for preliminary analysis. A future avenue of study is to extend the theory developed here to other fillet geometries, including fillet angles other than 90 and multifaceted intersections.
Yao, Yifei; Lacroix, Damien; Mak, Arthur F T
2016-12-01
Muscle cells are frequently subjected to both mechanical and oxidative stresses in various physiological and pathological situations. To explore the mechanical mechanism of muscle cell damage under loading and oxidative stresses, we experimentally studied the effects of extrinsic hydrogen peroxides on the actin cytoskeletal structure in C2C12 myoblasts and presented a finite element (FE) analysis of how such changes in the actin cytoskeletal structure affected a myoblast's capability to resist damage under compression. A confocal-based cell-specific FE model was built to parametrically study the effects of stress fiber density, fiber cross-sectional area, fiber tensile prestrain, as well as the elastic moduli of the stress fibers, actin cortex, nucleus and cytoplasm. The results showed that a decrease in the elastic moduli of both the stress fibers and actin cortex could increase the average tensile strain on the actin cortex-membrane structure and reduce the apparent cell elastic modulus. Assuming the cell would die when a certain percentage of membrane elements were strained beyond a threshold, a lower elastic modulus of actin cytoskeleton would compromise the compressive resistance of a myoblast and lead to cell death more readily. This model was used with a Weibull distribution function to successfully describe the extent of myoblasts damaged in a monolayer under compression.
Single-trabecula building block for large-scale finite element models of cancellous bone.
Dagan, D; Be'ery, M; Gefen, A
2004-07-01
Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.
Numerical solution of acoustic scattering by finite perforated elastic plates
2016-01-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685
Numerical solution of acoustic scattering by finite perforated elastic plates.
Cavalieri, A V G; Wolf, W R; Jaworski, J W
2016-04-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.
NASA Astrophysics Data System (ADS)
Wu, Zhijing; Li, Fengming; Zhang, Chuanzeng
2018-05-01
Inspired by the hierarchical structures of butterfly wing surfaces, a new kind of lattice structures with a two-order hierarchical periodicity is proposed and designed, and the band-gap properties are investigated by the spectral element method (SEM). The equations of motion of the whole structure are established considering the macro and micro periodicities of the system. The efficiency of the SEM is exploited in the modeling process and validated by comparing the results with that of the finite element method (FEM). Based on the highly accurate results in the frequency domain, the dynamic behaviors of the proposed two-order hierarchical structures are analyzed. An original and interesting finding is the existence of the distinct macro and micro stop-bands in the given frequency domain. The mechanisms for these two types of band-gaps are also explored. Finally, the relations between the hierarchical periodicities and the different types of the stop-bands are investigated by analyzing the parametrical influences.
The first ANDES elements: 9-DOF plate bending triangles
NASA Technical Reports Server (NTRS)
Militello, Carmelo; Felippa, Carlos A.
1991-01-01
New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.
Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel
NASA Astrophysics Data System (ADS)
Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong
2013-10-01
The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.
Nitinol Embolic Protection Filters: Design Investigation by Finite Element Analysis
NASA Astrophysics Data System (ADS)
Conti, Michele; de Beule, Matthieu; Mortier, Peter; van Loo, Denis; Verdonck, Pascal; Vermassen, Frank; Segers, Patrick; Auricchio, Ferdinando; Verhegghe, Benedict
2009-08-01
The widespread acceptance of carotid artery stenting (CAS) to treat carotid artery stenosis and its effectiveness compared with surgical counterpart, carotid endarterectomy (CEA), is still a matter of debate. Transient or permanent neurological deficits may develop in patients undergoing CAS due to distal embolization or hemodynamic changes. Design, development, and usage of embolic protection devices (EPDs), such as embolic protection filters, appear to have a significant impact on the success of CAS. Unfortunately, some drawbacks, such as filtering failure, inability to cross tortuous high-grade stenoses, malpositioning and vessel injury, still remain and require design improvement. Currently, many different designs of such devices are available on the rapidly growing dedicated market. In spite of such a growing commercial interest, there is a significant need for design tools as well as for careful engineering investigations and design analyses of such nitinol devices. The present study aims to investigate the embolic protection filter design by finite element analysis. We first developed a parametrical computer-aided design model of an embolic filter based on micro-CT scans of the Angioguard™ XP (Cordis Endovascular, FL) EPD by means of the open source pyFormex software. Subsequently, we used the finite element method to simulate the deployment of the nitinol filter as it exits the delivery sheath. Comparison of the simulations with micro-CT images of the real device exiting the catheter showed excellent correspondence with our simulations. Finally, we evaluated circumferential basket-vessel wall apposition of a 4 mm size filter in a straight vessel of different sizes and shape. We conclude that the proposed methodology offers a useful tool to evaluate and to compare current or new designs of EPDs. Further simulations will investigate vessel wall apposition in a realistic tortuous anatomy.
Finite-element model to predict roll-separation force and defects during rolling of U-10Mo alloys
NASA Astrophysics Data System (ADS)
Soulami, Ayoub; Burkes, Douglas E.; Joshi, Vineet V.; Lavender, Curt A.; Paxton, Dean
2017-10-01
A major goal of the Convert Program of the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) is to enable high-performance research reactors to operate with low-enriched uranium rather than the high-enriched uranium currently used. To this end, uranium alloyed with 10 wt% molybdenum (U-10Mo) represents an ideal candidate because of its stable gamma phase, low neutron caption cross section, acceptable swelling response, and predictable irradiation behavior. However, because of the complexities of the fuel design and the need for rolled monolithic U-10Mo foils, new developments in processing and fabrication are necessary. This study used a finite-element code, LS-DYNA, as a predictive tool to optimize the rolling process. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel were conducted following two different schedules. Model predictions of the roll-separation force and roll pack thicknesses at different stages of the rolling process were compared with experimental measurements. The study reported here discussed various attributes of the rolled coupons revealed by the model (e.g., waviness and thickness non-uniformity like dog-boning). To investigate the influence of the cladding material on these rolling defects, other cases were simulated: hot rolling with alternative can materials, namely, 304 stainless steel and Zircaloy-2, and bare-rolling. Simulation results demonstrated that reducing the mismatch in strength between the coupon and can material improves the quality of the rolled sheet. Bare-rolling simulation results showed a defect-free rolled coupon. The finite-element model developed and presented in this study can be used to conduct parametric studies of several process parameters (e.g., rolling speed, roll diameter, can material, and reduction).
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Tizzani, Pietro
2016-04-01
Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally, the performed multi-parametric finite element models allow us to verify the effect of the crustal structures on the ground deformation and evaluate the stress-drop associated to the studied earthquakes on the surrounding structures.
Parametric Weight Study of Cryogenic Metallic Tanks for the ``Bimodal'' NTR Mars Vehicle Concept
NASA Astrophysics Data System (ADS)
Kosareo, Daniel N.; Roche, Joseph M.
2006-01-01
A parametric weight assessment of large cryogenic metallic tanks was conducted using the design optimization capabilities in the ANSYS ® finite element analysis code. This analysis was performed to support the sizing of a ``bimodal'' nuclear thermal rocket (NTR) Mars vehicle concept developed at the NASA Glenn Research Center. The tank design study was driven by two load conditions: an in-line, ``Shuttle-derived'' heavy-lift launch with the tanks filled and pressurized, and a burst-test pressure. The main tank structural arrangement is a state-of-the art metallic construction which uses an aluminum-lithium alloy stiffened internally with a ring and stringer framework. The tanks must carry liquid hydrogen in separate launches to orbit where all vehicle components will dock and mate. All tank designs stayed within the available mass and payload volume limits of both the in-line heavy lift and Shuttle derived launch vehicles. Weight trends were developed over a range of tank lengths with varying stiffener cross-sections and tank wall thicknesses. The object of this parametric study was to verify that the proper mass was allocated for the tanks in the overall vehicle sizing model. This paper summarizes the tank weights over a range of tank lengths.
Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen
2017-10-01
Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.
Parametric Structural Model for a Mars Entry Concept
NASA Technical Reports Server (NTRS)
Lane, Brittney M.; Ahmed, Samee W.
2017-01-01
This paper outlines the process of developing a parametric model for a vehicle that can withstand Earth launch and Mars entry conditions. This model allows the user to change a variety of parameters ranging from dimensions and meshing to materials and atmospheric entry angles to perform finite element analysis on the model for the specified load cases. While this work focuses on an aeroshell for Earth launch aboard the Space Launch System (SLS) and Mars entry, the model can be applied to different vehicles and destinations. This specific project derived from the need to deliver large payloads to Mars efficiently, safely, and cheaply. Doing so requires minimizing the structural mass of the body as much as possible. The code developed for this project allows for dozens of cases to be run with the single click of a button. The end result of the parametric model gives the user a sense of how the body reacts under different loading cases so that it can be optimized for its purpose. The data are reported in this paper and can provide engineers with a good understanding of the model and valuable information for improving the design of the vehicle. In addition, conclusions show that the frequency analysis drives the design and suggestions are made to reduce the significance of normal modes in the design.
Coherent white light amplification
Jovanovic, Igor; Barty, Christopher P.
2004-05-25
A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.
Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao
2015-12-01
Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.
Miniaci, Marco; Marzani, Alessandro; Testoni, Nicola; De Marchi, Luca
2015-02-01
In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps. Copyright © 2014 Elsevier B.V. All rights reserved.
Machining fixture layout optimization using particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Dou, Jianping; Wang, Xingsong; Wang, Lei
2011-05-01
Optimization of fixture layout (locator and clamp locations) is critical to reduce geometric error of the workpiece during machining process. In this paper, the application of particle swarm optimization (PSO) algorithm is presented to minimize the workpiece deformation in the machining region. A PSO based approach is developed to optimize fixture layout through integrating ANSYS parametric design language (APDL) of finite element analysis to compute the objective function for a given fixture layout. Particle library approach is used to decrease the total computation time. The computational experiment of 2D case shows that the numbers of function evaluations are decreased about 96%. Case study illustrates the effectiveness and efficiency of the PSO based optimization approach.
Schenberg microwave cabling seismic isolation.
NASA Astrophysics Data System (ADS)
Bortoli, F. S.; Frajuca, C.; Aguiar, O. D.
2018-02-01
SCHENBERG is a resonant-mass gravitational wave detector with a frequency about 3.2 kHz. Its spherical antenna, weighing 1.15 metric ton, is connected to the external world by a system which must attenuate seismic noise. When a gravitational wave passes the antenna vibrates, its motion is monitored by transducers. These parametric transducers uses microwaves carried by coaxial cables that are also connected to the external world, they also carry seismic noise. In this analysis the system was modeled using finite element method. This work shows that the addition of masses along these cables can decrease this noise, so that this noise is below the thermal noise of the detector when operating at 50 mK.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a 'Gutin' propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.
1986-01-01
Finite element theory is used to calculate the acoustic field of a propeller in a soft walled circular wind tunnel and to compare the radiation patterns to the same propeller in free space. Parametric solutions are present for a "Gutin" propeller for a variety of flow Mach numbers, admittance values at the wall, microphone position locations, and propeller to duct radius ratios. Wind tunnel boundary layer is not included in this analysis. For wall admittance nearly equal to the characteristic value of free space, the free field and ducted propeller models agree in pressure level and directionality. In addition, the need for experimentally mapping the acoustic field is discussed.
Elbow stress indices using finite element analysis
NASA Astrophysics Data System (ADS)
Yu, Lixin
Section III of the ASME Boiler and Pressure Vessel Code (the Code) specifies rules for the design of nuclear power plant components. NB-3600 of the Code presents a simplified design method using stress indices---Scalar Coefficients used the modify straight pipe stress equations so that they can be applied to elbows, tees and other piping components. The stress indices of piping components are allowed to be determined both analytically and experimentally. This study concentrates on the determination of B2 stress indices for elbow components using finite element analysis (FEA). First, the previous theoretical, numerical and experimental investigations on elbow behavior were comprehensively reviewed, as was the philosophy behind the use of stress indices. The areas of further research was defined. Then, a comprehensive investigation was carried out to determine how the finite element method should be used to correctly simulate an elbow's structural behavior. This investigation included choice of element type, convergence of mesh density, use of boundary restraint and a reconciliation study between FEA and laboratory experiments or other theoretical formulations in both elastic and elasto-plastic domain. Results from different computer programs were also compared. Reasonably good reconciliation was obtained. Appendix II of the Code describes the experimental method to determine B2 stress indices based on load-deflection curves. This procedure was used to compute the B2 stress indices for various loading modes on one particular elbow configuration. The B2 stress indices thus determined were found to be about half of the value calculated from the Code equation. Then the effect on B2 stress indices of those factors such as internal pressure and flange attachments were studied. Finally, the investigation was extended to other configurations of elbow components. A parametric study was conducted on different elbow sizes and schedules. Regression analysis was then used to obtain a modified coefficient and exponent for the Code equation used to calculate B2 index for elbows.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
NASA Technical Reports Server (NTRS)
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
Jebaseelan, D Davidson; Jebaraj, C; Yoganandan, Narayan; Rajasekaran, S; Kanna, Rishi M
2012-05-01
The objective of the study was to determine the sensitivity of material properties of the juvenile spine to its external and internal responses using a finite element model under compression, and flexion-extension bending moments. The methodology included exercising the 8-year-old juvenile lumbar spine using parametric procedures. The model included the vertebral centrum, growth plates, laminae, pedicles, transverse processes and spinous processes; disc annulus and nucleus; and various ligaments. The sensitivity analysis was conducted by varying the modulus of elasticity for various components. The first simulation was done using mean material properties. Additional simulations were done for each component corresponding to low and high material property variations. External displacement/rotation and internal stress-strain responses were determined under compression and flexion-extension bending. Results indicated that, under compression, disc properties were more sensitive than bone properties, implying an elevated role of the disc under this mode. Under flexion-extension moments, ligament properties were more dominant than the other components, suggesting that various ligaments of the juvenile spine play a key role in modulating bending behaviors. Changes in the growth plate stress associated with ligament properties explained the importance of the growth plate in the pediatric spine with potential implications in progressive deformities.
Bubble Dynamics on a Heated Surface
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Rashidnia, Nasser
1996-01-01
In this work, we study the combined thermocapillary and natural convective flow generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. On earth, the volumetric forces are dominant, especially, in apparatuses with large volume to surface ratio. But in the reduced gravity environment of orbiting spacecraft, surface forces become more important and the effects of Marangoni convection are easily unmasked. In order to delineate the roles of the various interacting phenomena, a combined numerical-experimental approach is adopted. The temperature field is visualized using Mach-Zehnder interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the two-dimensional momentum and energy equations and includes the effects of bubble surface deformation. Steady state temperature and velocity fields predicted by the finite element model are in excellent qualitative agreement with the experimental results. A parametric study of the interaction between Marangoni and natural convective flows including conditions pertinent to microgravity space experiments is presented. Numerical simulations clearly indicate that there is a considerable difference between 1-g and low-g temperature and flow fields induced by the bubble.
Development of thermal models of footwear using finite element analysis.
Covill, D; Guan, Z W; Bailey, M; Raval, H
2011-03-01
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
A design study for the addition of higher order parametric discrete elements to NASTRAN
NASA Technical Reports Server (NTRS)
Stanton, E. L.
1972-01-01
The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Numerical modeling and model updating for smart laminated structures with viscoelastic damping
NASA Astrophysics Data System (ADS)
Lu, Jun; Zhan, Zhenfei; Liu, Xu; Wang, Pan
2018-07-01
This paper presents a numerical modeling method combined with model updating techniques for the analysis of smart laminated structures with viscoelastic damping. Starting with finite element formulation, the dynamics model with piezoelectric actuators is derived based on the constitutive law of the multilayer plate structure. The frequency-dependent characteristics of the viscoelastic core are represented utilizing the anelastic displacement fields (ADF) parametric model in the time domain. The analytical model is validated experimentally and used to analyze the influencing factors of kinetic parameters under parametric variations. Emphasis is placed upon model updating for smart laminated structures to improve the accuracy of the numerical model. Key design variables are selected through the smoothing spline ANOVA statistical technique to mitigate the computational cost. This updating strategy not only corrects the natural frequencies but also improves the accuracy of damping prediction. The effectiveness of the approach is examined through an application problem of a smart laminated plate. It is shown that a good consistency can be achieved between updated results and measurements. The proposed method is computationally efficient.
Simulation of Aircraft Engine Blade-Out Structural Dynamics
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
Simulation of Aircraft Engine Blade-Out Structural Dynamics. Revised
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2001-01-01
A primary concern of aircraft structure designers is the accurate simulation of the blade-out event and the subsequent windmilling of the engine. Reliable simulations of the blade-out event are required to insure structural integrity during flight as well as to guarantee successful blade-out certification testing. The system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes such as MSC NASTRAN are typically used and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine's turbomachinery. The present study provides the equations of motion for rotordynamic response including the effect of spooldown speed and rotor unbalance and examines the effects of these terms on a cantilevered rotor. The effect of spooldown speed is found to be greater with increasing spooldown rate. The parametric term resulting from the mass unbalance has a more significant effect on the rotordynamic response than does the spooldown term. The parametric term affects both the peak amplitudes as well as the resonant frequencies of the rotor.
Parametric Weight Comparison of Current and Proposed Thermal Protection System (TPS) Concepts
NASA Technical Reports Server (NTRS)
Myers, David E.; Martin, Carl J.; Blosser, Max L.
1999-01-01
A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (1 -D) thermal finite element sizing code. This sizing code contained models to ac- count for coatings, fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) rocket-powered single-stage-to-orbit (SSTO) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a particular trajectory. Eight TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile systems and approaches blanket TPS weights for higher integrated heat loads.
Effect of Impact Location on the Response of Shuttle Wing Leading Edge Panel 9
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Spellman, Regina L.; Hardy, Robin C.; Fasanella, Edwin L.; Jackson, Karen E.
2005-01-01
The objective of this paper is to compare the results of several simulations performed to determine the worst-case location for a foam impact on the Space Shuttle wing leading edge. The simulations were performed using the commercial non-linear transient dynamic finite element code, LS-DYNA. These simulations represent the first in a series of parametric studies performed to support the selection of the worst-case impact scenario. Panel 9 was selected for this study to enable comparisons with previous simulations performed during the Columbia Accident Investigation. The projectile for this study is a 5.5-in cube of typical external tank foam weighing 0.23 lb. Seven locations spanning the panel surface were impacted with the foam cube. For each of these cases, the foam was traveling at 1000 ft/s directly aft, along the orbiter X-axis. Results compared from the parametric studies included strains, contact forces, and material energies for various simulations. The results show that the worst case impact location was on the top surface, near the apex.
Injection-seeded optical parametric oscillator and system
Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.
2007-10-09
Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less
Parametric Modelling of As-Built Beam Framed Structure in Bim Environment
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.
2017-02-01
A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Parametric Studies of Square Solar Sails Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Sleight, David W.; Muheim, Danniella M.
2004-01-01
Parametric studies are performed on two generic square solar sail designs to identify parameters of interest. The studies are performed on systems-level models of full-scale solar sails, and include geometric nonlinearity and inertia relief, and use a Newton-Raphson scheme to apply sail pre-tensioning and solar pressure. Computational strategies and difficulties encountered during the analyses are also addressed. The purpose of this paper is not to compare the benefits of one sail design over the other. Instead, the results of the parametric studies may be used to identify general response trends, and areas of potential nonlinear structural interactions for future studies. The effects of sail size, sail membrane pre-stress, sail membrane thickness, and boom stiffness on the sail membrane and boom deformations, boom loads, and vibration frequencies are studied. Over the range of parameters studied, the maximum sail deflection and boom deformations are a nonlinear function of the sail properties. In general, the vibration frequencies and modes are closely spaced. For some vibration mode shapes, local deformation patterns that dominate the response are identified. These localized patterns are attributed to the presence of negative stresses in the sail membrane that are artifacts of the assumption of ignoring the effects of wrinkling in the modeling process, and are not believed to be physically meaningful. Over the range of parameters studied, several regions of potential nonlinear modal interaction are identified.
NASA Astrophysics Data System (ADS)
Namani, Ravi
Mechanical properties are essential for understanding diseases that afflict various soft tissues, such as osteoarthritic cartilage and hypertension which alters cardiovascular arteries. Although the linear elastic modulus is routinely measured for hard materials, standard methods are not available for extracting the nonlinear elastic, linear elastic and time-dependent properties of soft tissues. Consequently, the focus of this work is to develop indentation methods for soft biological tissues; since analytical solutions are not available for the general context, finite element simulations are used. First, parametric studies of finite indentation of hyperelastic layers are performed to examine if indentation has the potential to identify nonlinear elastic behavior. To answer this, spherical, flat-ended conical and cylindrical tips are examined and the influence of thickness is exploited. Also the influence of the specimen/substrate boundary condition (slip or non-slip) is clarified. Second, a new inverse method---the hyperelastic extraction algorithm (HPE)---was developed to extract two nonlinear elastic parameters from the indentation force-depth data, which is the basic measurement in an indentation test. The accuracy of the extracted parameters and the influence of noise in measurements on this accuracy were obtained. This showed that the standard Berkovitch tip could only extract one parameter with sufficient accuracy, since the indentation force-depth curve has limited sensitivity to both nonlinear elastic parameters. Third, indentation methods for testing tissues from small animals were explored. New methods for flat-ended conical tips are derived. These account for practical test issues like the difficulty in locating the surface or soft specimens. Also, finite element simulations are explored to elucidate the influence of specimen curvature on the indentation force-depth curve. Fourth, the influence of inhomogeneity and material anisotropy on the extracted "average" linear elastic modulus was studied. The focus here is on murine tibial cartilage, since recent experiments have shown that the modulus measured by a 15 mum tip is considerably larger than that obtained from a 90 mum tip. It is shown that a depth-dependent modulus could give rise to such a size effect. Lastly, parametric studies were performed within the small strain setting to understand the influence of permeability and viscoelastic properties on the indentation stress-relaxation response. The focus here is on cartilage, and specific test protocols (single-step vs. multi-step stress relaxation) are explored. An inverse algorithm was developed to extract the poroviscoelastic parameters. A sensitivity study using this algorithm shows that the instantaneous elastic modulus (which is a measure of the viscous relaxation) can be extracted with very good accuracy, but the permeability and long-time relaxation constant cannot be extracted with good accuracy. The thesis concludes with implications of these studies. The potential and limitations of indentation tests for studying cartilage and other soft tissues is discussed.
z -classes of isometries of the hyperbolic space
NASA Astrophysics Data System (ADS)
Gongopadhyay, Krishnendu; Kulkarni, Ravi S.
Let G be a group. Two elements x, y are said to be z -equivalent if their centralizers are conjugate in G . The class equation of G is the partition of G into conjugacy classes. Further decomposition of conjugacy classes into z -classes provides important information about the internal structure of the group; cf. J. Ramanujan Math. Soc. 22 (2007), 35-56, for the elaboration of this theme. Let I(H^n) denote the group of isometries of the hyperbolic n -space, and let I_o(H^n) be the identity component of I(H^n) . We show that the number of z -classes in I(H^n) is finite. We actually compute their number; cf. theorem 1.3. We interpret the finiteness of z -classes as accounting for the finiteness of ``dynamical types'' in I(H^n) . Along the way we also parametrize conjugacy classes. We mainly use the linear model of the hyperbolic space for this purpose. This description of parametrizing conjugacy classes appears to be new; cf. Academic Press, New York, 1974, 49-87 and Conformal geometry (Bonn, 1985/1986), 41-64, Aspects Math., E12, Vieweg, Braunschweig, 1988, for previous attempts. Ahlfors (Differential Geometry and Complex Analysis (Springer, 1985), 65-73) suggested the use of Clifford algebras to deal with higher dimensional hyperbolic geometry; cf. Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27, Quasiconformal Mappings and Analysis (Springer, 1998), 109-139, Complex Variables Theory Appl. 15 (1990), 125-133, and Adv. Math. 101 (1993), 87-113. These works may be compared to the approach suggested in this paper. In dimensions 2 and 3 , by remarkable Lie-theoretic isomorphisms, I_o(H2) and I_o(H3) can be lifted to GL_o(2, R) , and GL(2, C) respectively. For orientation-reversing isometries there are some modifications of these liftings. Using these liftings, in the appendix A, we have introduced a single numerical invariant c(A) , to classify the elements of I(H2) and I(H3) , and explained the classical terminology. Using the ``Iwasawa decomposition'' of I_o(H^n) , it is possible to equip H^n with a group structure. In the appendix B, we visualize the stratification of the group H^n into its conjugacy and z -classes.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.
2017-01-01
Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Bhatt, Ramakrishna T.; Girgis, Morris
2002-01-01
To complement the effectiveness of ceramic materials and the applicability to turbine engine applications, a parametric study using the finite element method was carried out. This study conducted thorough analyses of a thermal-barrier-coated silicon nitride (Si3N4) plate specimen with cooling channels, where its thermal conductivity was verified in an attempt to minimize the thermal stresses and reach an optimal rate of stress. The thermal stress profile was generated for specimens with circular and square cooling channels. Lower stresses were reported for a higher magnitude of thermal conductivity and in particular for the circular cooling channel arrangement. Contour plots for the stresses and the temperature are presented and discussed.
Buffer thermal energy storage for an air Brayton solar engine
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Barr, K. P.
1981-01-01
The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.
NASA Astrophysics Data System (ADS)
Bulut, Gökhan
2014-08-01
Stability of parametrically excited torsional vibrations of a shaft system composed of two torsionally elastic shafts interconnected through a Hooke's joint is studied. The shafts are considered to be continuous (distributed-parameter) systems and an approximate discrete model for the torsional vibrations of the shaft system is derived via a finite element scheme. The stability of the solutions of the linearized equations of motion, consisting of a set of Mathieu-Hill type equations, is examined by means of a monodromy matrix method and the results are presented in the form of a Strutt-Ince diagram visualizing the effects of the system parameters on the stability of the shaft system.
Study on the influence of parameters of medical drill on bone drilling temperature
NASA Astrophysics Data System (ADS)
XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao
2018-03-01
During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.
Low Velocity Earth-Penetration Test and Analysis
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris
2001-01-01
Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.
Temperature Field Simulation of Powder Sintering Process with ANSYS
NASA Astrophysics Data System (ADS)
He, Hongxiu; Wang, Jun; Li, Shuting; Chen, Zhilong; Sun, Jinfeng; You, Ying
2018-03-01
Aiming at the “spheroidization phenomenon” in the laser sintering of metal powder and other quality problems of the forming parts due to the thermal effect, the finite element model of the three-dimensional transient metal powder was established by using the atomized iron powder as the research object. The simulation of the mobile heat source was realized by means of parametric design. The distribution of the temperature field during the sintering process under different laser power and different spot sizes was simulated by ANSYS software under the condition of fully considering the influence of heat conduction, thermal convection, thermal radiation and thermophysical parameters. The influence of these factors on the actual sintering process was also analyzed, which provides an effective way for forming quality control.
Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Bielak, J.
2008-12-01
I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.
Precast self-compacting concrete (PSCC) panel with added coir fiber: An overview
NASA Astrophysics Data System (ADS)
Afif Iman, Muhamad; Mohamad, Noridah; Samad, Abdul Aziz Abdul; Goh, W. I.; Othuman Mydin, M. A.; Afiq Tambichik, Muhamad; Bosro, Mohamad Zulhairi Mohd; Wirdawati, A.; Jamaluddin, N.
2018-04-01
Self-compacting concrete (SCC) is the alternative way to reduce construction time and improve the quality and strength of concrete. The panel system fabricated from SCC contribute to the IBS system that is sustainable and environmental friendly. The precast self-compacting concrete (PSCC) panel with added coir fiber will be overview in this paper. The properties of SCC and coir fiber are studied and reviewed from the previous researches. Finite element analysis is used to support the experimental results by conduction parametric simulation study on PSCC under flexure load. In general, it was found that coir fiber has a significant influence on the flexural load and crack propagation. Higher fiber incorporated in SCC resulted with higher ultimate load of PSCC.
Simulation and optimization of silicon-on-sapphire pressure sensor
NASA Astrophysics Data System (ADS)
Kulesh, N. A.; Kudyukov, E. V.; Balymov, K. G.; Beloyshov, A. A.
2017-09-01
In this paper, finite element analysis software COMSOL Multiphysics was used to simulate the performance of silicon-on-sapphire piezoresistive pressure sensor, aiming to elaborate a flexible model suitable for further optimization and customization of the currently produced pressure sensors. The base model was built around the cylindrical pressure cell made of titanium alloy having a circular diaphragm with monocrystalline sapphire layer attached. The monocrystalline piezoresistive elements were placed on top of the double-layer diaphragm and electrically connected to form the Wheatstone bridge. Verification of the model and parametric study included three main areas: geometrical parameters of the cell, position of the elements on the diaphragm, and operation at elevated temperature. Optimization of the cell geometry included variation of bossed titanium diaphragm parameters as well as rounding-off radiuses near the edges of the diaphragm. Influence of the temperature was considered separately for thermal expansion of the mechanical components and for the changes of electrical and piezoresistive properties of the piezoresistive elements. In conclusion, the simulation results were compared to the experimental data obtained for three different constructions of the commercial pressure sensors produced by SPA of Automatics named after Academician N.A. Semikhatov.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Z/sub n/ Baxter model: symmetries and the Belavin parametrization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richey, M.P.; Tracy, C.A.
1986-02-01
The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
NASA Astrophysics Data System (ADS)
Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj
2018-03-01
In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.
NASA Technical Reports Server (NTRS)
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling
NASA Astrophysics Data System (ADS)
Ronchin, Erika; Geyer, Adelina; Martí, Joan
2015-07-01
Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth's surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).
Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E
2000-01-01
The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.
Stability Study on Steel Structural Columns with Initial Blast Damage under High Temperatures
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Li, Peng
2018-03-01
Blast may bring light-weight steel columns with initial damages, resulting in lowering its critical fire-resistance temperature whose reduced amplitude is relevant to the form and degree of the damages. Finite element analysis software ANSYS was used in the paper to analyze the issue of the fire-resistance temperature of the column with the blast damages, and the coupling method for heat and structure was applied during the simulation. The emphasis was laid on parametric factors of axial compression ratio, the form and the degree of the initial damages, as well as the confined condition at the ends of the columns. The numerical results showed that the fire-resistance temperature will lower as increasing of the axial compression ratio, the form and the degree of the initial damages and it will be also affected by the restraint conditions at the ends of the columns. The critical stress formula with initial bending damage under elevated temperature was set up under flexural small deformation condition, then the stability coefficient was determined and the method for evaluating the limit temperature of the column was put forward. The theoretical result was also compared with that of the finite element method (FEM). The results both showed that the stability capacity for the damaged columns was dramatically reduced as increasing the temperature and the initial damage level.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Faisst, Markus; Joppich, Tobias; Poppe, Christian; Henning, Frank; Kärger, Luise
2018-05-01
Finite Element (FE) forming simulation offers the possibility of a detailed analysis of thermoforming processes by means of constitutive modelling of intra- and inter-ply deformation mechanisms, which makes manufacturing defects predictable. Inter-ply slippage is a deformation mechanism, which influences the forming behaviour and which is usually assumed to be isotropic in FE forming simulation so far. Thus, the relative (fibre) orientation between the slipping plies is neglected for modelling of frictional behaviour. Characterization results, however, reveal a dependency of frictional behaviour on the relative orientation of the slipping plies. In this work, an anisotropic model for inter-ply slippage is presented, which is based on an FE forming simulation approach implemented within several user subroutines of the commercially available FE solver Abaqus. This approach accounts for the relative orientation between the slipping plies for modelling frictional behaviour. For this purpose, relative orientation of the slipping plies is consecutively evaluated, since it changes during forming due to inter-ply slipping and intra-ply shearing. The presented approach is parametrized based on characterization results with and without relative orientation for a thermoplastic UD-tape (PA6-CF) and applied to forming simulation of a generic geometry. Forming simulation results reveal an influence of the consideration of relative fibre orientation on the simulation results. This influence, however, is small for the considered geometry.
NASA Astrophysics Data System (ADS)
Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus
2018-05-01
In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.
NASA Astrophysics Data System (ADS)
Wu, Zhangming; Li, Hao
2017-11-01
This paper proposes a novel adaptive sun tracker which is constructed by hybrid unsymmetric composite laminates. The adaptive sun tracker could be applied on spacecraft solar panels to increase their energy efficiency through decreasing the inclined angle between the sunlight and the solar panel normal. The sun tracker possesses a large rotation freedom and its rotation angle depends on the laminate temperature, which is affected by the light condition in the orbit. Both analytical model and finite element model (FEM) are developed for the sun tracker to predict its rotation angle in different light conditions. In this work, the light condition of the geosynchronous orbit on winter solstice is considered in the numerical prediction of the temperatures of the hybrid laminates. The final inclined angle between the sunlight and the solar panel normal during a solar day is computed using the finite element model. Parametric study of the adaptive sun tracker is conducted to improve its capacity and effectiveness of sun tracking. The improved adaptive sun tracker is lightweight and has a state-of-the-art design. In addition, the adaptive sun tracker does not consume any power of the solar panel, since it has no electrical driving devices. The proposed adaptive sun tracker provides a potential alternative to replace the traditional sophisticated electrical driving mechanisms for spacecraft solar panels.
NASA Technical Reports Server (NTRS)
Shkarayev, S.; Krashantisa, R.; Tessler, A.
2004-01-01
An important and challenging technology aimed at the next generation of aerospace vehicles is that of structural health monitoring. The key problem is to determine accurately, reliably, and in real time the applied loads, stresses, and displacements experienced in flight, with such data establishing an information database for structural health monitoring. The present effort is aimed at developing a finite element-based methodology involving an inverse formulation that employs measured surface strains to recover the applied loads, stresses, and displacements in an aerospace vehicle in real time. The computational procedure uses a standard finite element model (i.e., "direct analysis") of a given airframe, with the subsequent application of the inverse interpolation approach. The inverse interpolation formulation is based on a parametric approximation of the loading and is further constructed through a least-squares minimization of calculated and measured strains. This procedure results in the governing system of linear algebraic equations, providing the unknown coefficients that accurately define the load approximation. Numerical simulations are carried out for problems involving various levels of structural approximation. These include plate-loading examples and an aircraft wing box. Accuracy and computational efficiency of the proposed method are discussed in detail. The experimental validation of the methodology by way of structural testing of an aircraft wing is also discussed.
Design-Optimization and Material Selection for a Proximal Radius Fracture-Fixation Implant
NASA Astrophysics Data System (ADS)
Grujicic, M.; Xie, X.; Arakere, G.; Grujicic, A.; Wagner, D. W.; Vallejo, A.
2010-11-01
The problem of optimal size, shape, and placement of a proximal radius-fracture fixation-plate is addressed computationally using a combined finite-element/design-optimization procedure. To expand the set of physiological loading conditions experienced by the implant during normal everyday activities of the patient, beyond those typically covered by the pre-clinical implant-evaluation testing procedures, the case of a wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results obtained are used as input to a finite-element structural analysis for evaluation of the maximum stress and fatigue life of the parametrically defined implant design. While optimizing the design of the radius-fracture fixation-plate, realistic functional requirements pertaining to the attainment of the required level of the devise safety factor and longevity/lifecycle were considered. It is argued that the type of analyses employed in the present work should be: (a) used to complement the standard experimental pre-clinical implant-evaluation tests (the tests which normally include a limited number of daily-living physiological loading conditions and which rely on single pass/fail outcomes/decisions with respect to a set of lower-bound implant-performance criteria) and (b) integrated early in the implant design and material/manufacturing-route selection process.
Design and simulation of the surface shape control system for membrane mirror
NASA Astrophysics Data System (ADS)
Zhang, Gengsheng; Tang, Minxue
2009-11-01
The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.
Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin
2013-01-01
It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element
NASA Technical Reports Server (NTRS)
Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.
2010-01-01
Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
Structural Effects of Reinforced Concrete Beam Due to Corrosion
NASA Astrophysics Data System (ADS)
Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah
2018-03-01
Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight
NASA Technical Reports Server (NTRS)
Chiu, Y. Danny; Peters, David A.
1991-01-01
The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.
NASA Technical Reports Server (NTRS)
Arya, V. K.; Kaufman, A.
1989-01-01
A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.
NASA Technical Reports Server (NTRS)
Arya, V. K.; Kaufman, A.
1987-01-01
A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model.
Safaei, Mohsen; Meneghini, R Michael; Anton, Steven R
2017-09-01
Total knee arthroplasty (TKA) is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.
NASA Astrophysics Data System (ADS)
Safaei, Mohsen; Meneghini, R. Michael; Anton, Steven R.
2017-09-01
Total knee arthroplasty is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.
Scott, Serena J.; Salgaonkar, Vasant; Prakash, Punit; Burdette, E. Clif; Diederich, Chris J.
2015-01-01
Purpose Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. Methods 3D patient-specific finite element models (n=11) of interstitial ultrasound ablation of tumours associated with spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43°C (EM43°C)) and safety margins (<45°C & <6 EM43°C), and to determine performance and required delivery parameters. Results Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm2, 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. Conclusions Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours. PMID:25017322
High-intensity interstitial ultrasound for thermal ablation of focal cancer targets in prostate
NASA Astrophysics Data System (ADS)
Salgaonkar, Vasant A.; Scott, Serena; Kurhanewicz, John; Diederich, Chris J.
2017-03-01
Recent advances in image based techniques such as multi-parametric MRI (MP-MRI) can provide precise targeting of focal disease in the prostate. Thermal ablation of such cancer targets while avoiding rectum, urethra, neurovascular bundles (NVB) and sphincter is clinically challenging. The approach described here employs multi-element ultrasound linear arrays designed for transperineal placement within prostate. They consist of independently powered sectored tubular transducers (6.5 - 8.0 MHz) that provide spatial control of energy deposition in angle and length. Volumetric ablation strategies were investigated through patient-specific biothermal models based on Pennes bioheat transfer equation. The acoustic and heat transfer models used here have been validated in several previous simulation and experimental studies. Focal disease sites in prostate were identified through multi-parametric MR images of representative patient cases (n=3). Focal cancer lesions and critical anatomy (prostate, urethra, rectum, bladder, seminal vesicles) were manually segmented (Mimics, Materialise) and converted to 3D finite element meshes (3-Matic, Materialise). The chosen test cases consisted of patients with medium and large sized glands and models of bulk tissue ablation covered volumes in a single quadrant in posterior prostate, hemi-gland targets and "hockey-stick" targets (lesions in three quadrants). Ultrasound applicator placement was determined such that devices were positioned along the prostate periphery while avoiding surrounding anatomy. Transducer sector angles were chosen based on applicator location within limits of fabrication practicability. Thermal models were numerically solved using finite element methods (FEM) in COMSOL Multiphysics. Temperature and thermal dose distributions were calculated to determine treated volumes (> 240 CEM43C, >52 °C) and safety profiles (<10 CEM43C, <45 °C) for nerve, rectal and urethral sparing. Modeling studies indicated that focal targets could be ablated with single or multiple interstitial applicators placed along the prostate periphery. In the representative cases explored during this study, thermal targets could be ablated with acoustic intensity values between 11 - 19 W/cm2 within 6 - 15 min of sonication time. Unifocal ablation could be performed by a single directional applicator (210° sectors). Hemi-gland targets were ablated by two directional applicators (210° sectors). Hockey-stick ablations were performed using 3 directional applicators (2 - 210° and 1 - 150°).
Stress-intensity factors for small surface and corner cracks in plates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.
1988-01-01
Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.
Characterization of mixing in an electroosmotically stirred continuous micro mixer
NASA Astrophysics Data System (ADS)
Beskok, Ali
2005-11-01
We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T
2017-11-01
The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.
An interactive graphics system to facilitate finite element structural analysis
NASA Technical Reports Server (NTRS)
Burk, R. C.; Held, F. H.
1973-01-01
The characteristics of an interactive graphics systems to facilitate the finite element method of structural analysis are described. The finite element model analysis consists of three phases: (1) preprocessing (model generation), (2) problem solution, and (3) postprocessing (interpretation of results). The advantages of interactive graphics to finite element structural analysis are defined.
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.
1981-01-01
An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
Nonlinear vibration of viscoelastic beams described using fractional order derivatives
NASA Astrophysics Data System (ADS)
Lewandowski, Roman; Wielentejczyk, Przemysław
2017-07-01
The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Parsons, T.; King, R.
This report summarizes the theory, verification, and validation of a new sizing tool for wind turbine drivetrain components, the Drivetrain Systems Engineering (DriveSE) tool. DriveSE calculates the dimensions and mass properties of the hub, main shaft, main bearing(s), gearbox, bedplate, transformer if up-tower, and yaw system. The level of fi¬ delity for each component varies depending on whether semiempirical parametric or physics-based models are used. The physics-based models have internal iteration schemes based on system constraints and design criteria. Every model is validated against available industry data or finite-element analysis. The verification and validation results show that the models reasonablymore » capture primary drivers for the sizing and design of major drivetrain components.« less
Interpreting the handling qualities of aircraft with stability and control augmentation
NASA Technical Reports Server (NTRS)
Hodgkinson, J.; Potsdam, E. H.; Smith, R. E.
1990-01-01
The general process of designing an aircraft for good flying qualities is first discussed. Lessons learned are pointed out, with piloted evaluation emerging as a crucial element. Two sources of rating variability in performing these evaluations are then discussed. First, the finite endpoints of the Cooper-Harper scale do not bias parametric statistical analyses unduly. Second, the wording of the scale does introduce some scatter. Phase lags generated by augmentation systems, as represented by equivalent time delays, often cause poor flying qualities. An analysis is introduced which allows a designer to relate any level of time delay to a probability of loss of aircraft control. This view of time delays should, it is hoped, allow better visibility of the time delays in the design process.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.
2006-01-01
Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
Simulating the Structural Response of a Preloaded Bolted Joint
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.
NASA Technical Reports Server (NTRS)
Guynn, E. G.; Ochoa, Ozden O.; Bradley, Walter L.
1992-01-01
The effects of the stacking sequence (orientation of plies adjacent to the 0-deg plies), free surfaces, fiber/matrix interfacial bond strength, initial fiber waviness, resin-rich regions, and nonlinear shear constitutive behavior of the resin on the initiation of fiber microbuckling in thermoplastic composites were investigated using nonlinear geometric and nonlinear 2D finite-element analyses. Results show that reductions in the resin shear tangent modulus, large amplitudes of the initial fiber waviness, and debonds each cause increases in the localized matrix shear strains; these increases lead in turn to premature initiation of fiber microbuckling. The numerical results are compared to experimental data obtained using three thermoplastic composite material systems: (1) commercial APC-2, (2) QUADRAX Unidirectional Interlaced Tape, and AU4U/PEEK.
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples ofmore » the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.« less
NASA Astrophysics Data System (ADS)
Yu, Miao; Huang, Deqing; Yang, Wanqiu
2018-06-01
In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.
Fission barriers at the end of the chart of the nuclides
NASA Astrophysics Data System (ADS)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew
2015-02-01
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤A ≤330 . The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than 5 000 000 different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ɛ ) and the spherical-harmonic (β ) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ɛ ,γ ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about 1 MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β -delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. These studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.
Robust simulation of buckled structures using reduced order modeling
NASA Astrophysics Data System (ADS)
Wiebe, R.; Perez, R. A.; Spottswood, S. M.
2016-09-01
Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.
Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data
NASA Astrophysics Data System (ADS)
De Hoop, M. V.
2015-12-01
We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
Problems of the design of low-noise input devices. [parametric amplifiers
NASA Technical Reports Server (NTRS)
Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.
1974-01-01
An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.
Traction free finite elements with the assumed stress hybrid model. M.S. Thesis, 1981
NASA Technical Reports Server (NTRS)
Kafie, Kurosh
1991-01-01
An effective approach in the finite element analysis of the stress field at the traction free boundary of a solid continuum was studied. Conventional displacement and assumed stress finite elements were used in the determination of stress concentrations around circular and elliptical holes. Specialized hybrid elements were then developed to improve the satisfaction of prescribed traction boundary conditions. Results of the stress analysis indicated that finite elements which exactly satisfy the free stress boundary conditions are the most accurate and efficient in such problems. A general approach for hybrid finite elements which incorporate traction free boundaries of arbitrary geometry was formulated.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.A.
1980-12-01
This comparison study involves a preliminary verification of finite element calculations. The methodology of the comparison study consists of solving four example problems with both the SPECTROM finite element program and the MARC-CDC general purpose finite element program. The results show close agreement for all example problems.
Finite Element Analysis of Particle Ionization within Carbon Nanotube Ion Micro Thruster
2017-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. FINITE ELEMENT ...AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE FINITE ELEMENT ANALYSIS OF PARTICLE IONIZATION WITHIN CARBON NANOTUBE ION MICRO THRUSTER 5...simulation, carbon nanotube simulation, microsatellite, finite element analysis, electric field, particle tracing 15. NUMBER OF PAGES 55 16. PRICE
The aggregated unfitted finite element method for elliptic problems
NASA Astrophysics Data System (ADS)
Badia, Santiago; Verdugo, Francesc; Martín, Alberto F.
2018-07-01
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterative Krylov methods and, in consequence, hinders the practical usage of unfitted methods for realistic large scale applications. In this work, we present a technique that addresses such conditioning problems by constructing enhanced finite element spaces based on a cell aggregation technique. The presented method, called aggregated unfitted finite element method, is easy to implement, and can be used, in contrast to previous works, in Galerkin approximations of coercive problems with conforming Lagrangian finite element spaces. The mathematical analysis of the new method states that the condition number of the resulting linear system matrix scales as in standard finite elements for body-fitted meshes, without being affected by small cut cells, and that the method leads to the optimal finite element convergence order. These theoretical results are confirmed with 2D and 3D numerical experiments.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Progressive Damage Analysis of Bonded Composite Joints
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.
2012-01-01
The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).
Use of edge-based finite elements for solving three dimensional scattering problems
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1991-01-01
Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.
A Finite Element Analysis of a Class of Problems in Elasto-Plasticity with Hidden Variables.
1985-09-01
RD-R761 642 A FINITE ELEMENT ANALYSIS OF A CLASS OF PROBLEMS IN 1/2 ELASTO-PLASTICITY MIlT (U) TEXAS INST FOR COMPUTATIONAL MECHANICS AUSTIN J T ODEN...end Subtitle) S. TYPE OF REPORT & PERIOD COVERED A FINITE ELEMENT ANALYSIS OF A CLASS OF PROBLEMS Final Report IN ELASTO-PLASTICITY WITH HIDDEN...aieeoc ede It neceeeary nd Identify by block number) ;"Elastoplasticity, finite deformations; non-convex analysis ; finite element methods, metal forming
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Patient-specific Distraction Regimen to Avoid Growth-rod Failure.
Agarwal, Aakash; Jayaswal, Arvind; Goel, Vijay K; Agarwal, Anand K
2018-02-15
A finite element study to establish the relationship between patient's curve flexibility (determined using curve correction under gravity) in juvenile idiopathic scoliosis and the required distraction frequency to avoid growth rod fracture, as a function of time. To perform a parametric analysis using a juvenile scoliotic spine model (single mid-thoracic curve with the apex at the eighth thoracic vertebra) and establish the relationship between curve flexibility (determined using curve correction under gravity) and the distraction interval that allows a higher factor of safety for the growth rods. Previous studies have shown that frequent distraction with smaller magnitude of distractions are less likely to result in rod failure. However there has not been any methodology or a chart provided to apply this knowledge on to the individual patients that undergo the treatment. This study aims to fill in that gap. The parametric study was performed by varying the material properties of the disc, hence altering the axial stiffness of the scoliotic spine model. The stresses on the rod were found to increase with increased axial stiffness of the spine, and this resulted in the increase of required optimal frequency to achieve a factor of safety of two for growth rods. A relationship between the percentage correction in Cobb's angle due to gravity alone, and the required distraction interval for limiting the maximum von Mises stress to 255 MPa on the growth rods was established. The distraction interval required to limit the stresses to the selected nominal value reduces with increase in stiffness of the spine. Furthermore, the appropriate distraction interval reduces for each model as the spine becomes stiffer with time (autofusion). This points to the fact the optimal distraction frequency is a time-dependent variable that must be achieved to keep the maximum von Mises stress under the specified factor of safety. The current study demonstrates the possibility of translating fundamental information from finite element modeling to the clinical arena, for mitigating the occurrence of growth rod fracture, that is, establishing a relationship between optimal distraction interval and curve flexibility (determined using curve correction under gravity). N/A.
Aerostructural analysis and design optimization of composite aircraft
NASA Astrophysics Data System (ADS)
Kennedy, Graeme James
High-performance composite materials exhibit both anisotropic strength and stiffness properties. These anisotropic properties can be used to produce highly-tailored aircraft structures that meet stringent performance requirements, but these properties also present unique challenges for analysis and design. New tools and techniques are developed to address some of these important challenges. A homogenization-based theory for beams is developed to accurately predict the through-thickness stress and strain distribution in thick composite beams. Numerical comparisons demonstrate that the proposed beam theory can be used to obtain highly accurate results in up to three orders of magnitude less computational time than three-dimensional calculations. Due to the large finite-element model requirements for thin composite structures used in aerospace applications, parallel solution methods are explored. A parallel direct Schur factorization method is developed. The parallel scalability of the direct Schur approach is demonstrated for a large finite-element problem with over 5 million unknowns. In order to address manufacturing design requirements, a novel laminate parametrization technique is presented that takes into account the discrete nature of the ply-angle variables, and ply-contiguity constraints. This parametrization technique is demonstrated on a series of structural optimization problems including compliance minimization of a plate, buckling design of a stiffened panel and layup design of a full aircraft wing. The design and analysis of composite structures for aircraft is not a stand-alone problem and cannot be performed without multidisciplinary considerations. A gradient-based aerostructural design optimization framework is presented that partitions the disciplines into distinct process groups. An approximate Newton-Krylov method is shown to be an efficient aerostructural solution algorithm and excellent parallel scalability of the algorithm is demonstrated. An induced drag optimization study is performed to compare the trade-off between wing weight and induced drag for wing tip extensions, raked wing tips and winglets. The results demonstrate that it is possible to achieve a 43% induced drag reduction with no weight penalty, a 28% induced drag reduction with a 10% wing weight reduction, or a 20% wing weight reduction with a 5% induced drag penalty from a baseline wing obtained from a structural mass-minimization problem with fixed aerodynamic loads.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions
2017-02-28
FINAL REPORT Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions SERDP Project MR-2408 JULY 2017...solution and the red dash-dot line repre- sents the coupled finite -boundary element solution. . . . . . . . . . . . . . . . . . 11 3 The scattering...dot line represents the coupled finite -boundary element solution. . . . . . . . 11 i 4 The scattering amplitude as a function of the receiver angle for
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
NASA Astrophysics Data System (ADS)
Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.
2016-10-01
Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.
1982-01-01
Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.
NASA Astrophysics Data System (ADS)
Sumihara, K.
Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.
Enabling Quantitative Optical Imaging for In-die-capable Critical Dimension Targets
Barnes, B.M.; Henn, M.-A.; Sohn, M. Y.; Zhou, H.; Silver, R. M.
2017-01-01
Dimensional scaling trends will eventually bring semiconductor critical dimensions (CDs) down to only a few atoms in width. New optical techniques are required to address the measurement and variability for these CDs using sufficiently small in-die metrology targets. Recently, Qin et al. [Light Sci Appl, 5, e16038 (2016)] demonstrated quantitative model-based measurements of finite sets of lines with features as small as 16 nm using 450 nm wavelength light. This paper uses simulation studies, augmented with experiments at 193 nm wavelength, to adapt and optimize the finite sets of features that work as in-die-capable metrology targets with minimal increases in parametric uncertainty. A finite element based solver for time-harmonic Maxwell's equations yields two- and three-dimensional simulations of the electromagnetic scattering for optimizing the design of such targets as functions of reduced line lengths, fewer number of lines, fewer focal positions, smaller critical dimensions, and shorter illumination wavelength. Metrology targets that exceeded performance requirements are as short as 3 μm for 193 nm light, feature as few as eight lines, and are extensible to sub-10 nm CDs. Target areas measured at 193 nm can be fifteen times smaller in area than current state-of-the-art scatterometry targets described in the literature. This new methodology is demonstrated to be a promising alternative for optical model-based in-die CD metrology. PMID:28757674
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
WALSH, TIMOTHY F.; JONES, ANDREA; BHARDWAJ, MANOJ; ...
2013-04-01
Finite element analysis of transient acoustic phenomena on unbounded exterior domains is very common in engineering analysis. In these problems there is a common need to compute the acoustic pressure at points outside of the acoustic mesh, since meshing to points of interest is impractical in many scenarios. In aeroacoustic calculations, for example, the acoustic pressure may be required at tens or hundreds of meters from the structure. In these cases, a method is needed for post-processing the acoustic results to compute the response at far-field points. In this paper, we compare two methods for computing far-field acoustic pressures, onemore » derived directly from the infinite element solution, and the other from the transient version of the Kirchhoff integral. Here, we show that the infinite element approach alleviates the large storage requirements that are typical of Kirchhoff integral and related procedures, and also does not suffer from loss of accuracy that is an inherent part of computing numerical derivatives in the Kirchhoff integral. In order to further speed up and streamline the process of computing the acoustic response at points outside of the mesh, we also address the nonlinear iterative procedure needed for locating parametric coordinates within the host infinite element of far-field points, the parallelization of the overall process, linear solver requirements, and system stability considerations.« less
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
Wave Scattering in Heterogeneous Media using the Finite Element Method
2016-10-21
AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-12-1-4026 5c. PROGRAM ELEMENT NUMBER 61102F 6...14. ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
2016-09-01
UNCLASSIFIED UNCLASSIFIED Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis...significant effect on the collapse strength and must be accurately represented in finite element analysis to obtain accurate results. Often it is necessary...to interpolate measurements from a relatively coarse grid to a refined finite element model and methods that have wide general acceptance are
Using Finite Element Method to Estimate the Material Properties of a Bearing Cage
2018-02-01
UNCLASSIFIED UNCLASSIFIED AD-E403 988 Technical Report ARMET-TR-17035 USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL...TITLE AND SUBTITLE USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL PROPERTIES OF A BEARING CAGE 5a. CONTRACT NUMBER 5b. GRANT...specifications of non-metallic bearing cages are typically not supplied by the manufacturer. In order to setup a finite element analysis of a
Artificial Boundary Conditions for Finite Element Model Update and Damage Detection
2017-03-01
BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION by Emmanouil Damanakis March 2017 Thesis Advisor: Joshua H. Gordis...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ARTIFICIAL BOUNDARY CONDITIONS FOR FINITE ELEMENT MODEL UPDATE AND DAMAGE DETECTION...release. Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In structural engineering, a finite element model is often
Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui
2016-01-01
The purpose of the study was to verify the finite element analysis model of three-unite fixed partial denture with in vitro electronic strain analysis and analyze clinical situation with the verified model. First, strain gauges were attached to the critical areas of a three-unit fixed partial denture. Strain values were measured under 300 N load perpendicular to the occlusal plane. Secondly, a three-dimensional finite element model in accordance with the electronic strain analysis experiment was constructed from the scanning data. And the strain values obtained by finite element analysis and in vitro measurements were compared. Finally, the clinical destruction of the fixed partial denture was evaluated with the verified finite element analysis model. There was a mutual agreement and consistency between the finite element analysis results and experimental data. The finite element analysis revealed that failure will occur in the veneer layer on buccal surface of the connector under occlusal force of 570 N. The results indicate that the electronic strain analysis is an appropriate and cost saving method to verify the finite element model. The veneer layer on buccal surface of the connector is the weakest area in the fixed partial denture. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
2016-08-23
SECURITY CLASSIFICATION OF: Hybrid finite element / finite volume based CaMEL shallow water flow solvers have been successfully extended to study wave...effects on ice floes in a simplified 10 sq-km ocean domain. Our solver combines the merits of both the finite element and finite volume methods and...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 sea ice dynamics, shallow water, finite element , finite volume
Assessing astronaut injury potential from suit connectors using a human body finite element model.
Danelson, Kerry A; Bolte, John H; Stitzel, Joel D
2011-02-01
The new Orion space capsule requires additional consideration of possible injury during landing due to the dynamic nature of the impact. The purpose of this parametric study was to determine changes in the injury response of a human body finite element model with a suit connector (SC). The possibility of thoracic bony injury, thoracic soft tissue injury, and femur injury were assessed in 24 different model configurations. These simulations had two SC placements and two SC types, a 2.27-kg rectangular and a 3.17-kg circular SC. A baseline model was tested with the same acceleration pulses and no SC for comparison. Further simulations were conducted to determine the protective effect of SC location changes and adding small and large rigid chest plates. The possibilities of rib, chest soft tissue, and femur injury were evaluated using sternal deflection, chest deflection, viscous criterion, and strain values. The results indicated a higher likelihood of chest injury than femur injury. The mean first principal strain in the femur was 0.136 +/- 0.007%, which is well below the failure limit for cortical bone. The placement of chest plates had a protective effect and reduced the sternal deflection, chest deflection, and viscous criterion values. If possible, the SC should be placed on the thigh to minimize injury risk metrics. Chest plates appear to offer some protective value; therefore, a large rigid chest plate or similar countermeasure should be considered for chest SC placement.
On the Relationship Between Tooth Shape and Masticatory Efficiency: A Finite Element Study.
Berthaume, Michael A
2016-05-01
Dental topography has successfully linked disparate tooth shapes to distinct dietary categories, but not to masticatory efficiency. Here, the relationship between four dental topographic metrics and brittle food item breakdown efficiency during compressive biting was investigated using a parametric finite element model of a bunodont molar. Food item breakdown efficiency was chosen to represent masticatory efficiency as it isolated tooth-food item interactions, where most other categories of masticatory efficiency include several aspects of the masticatory process. As relative food item size may affect the presence/absence of any relationship, four isometrically scaled, hemispherical, proxy food items were considered. Topographic metrics were uncorrelated to food item breakdown efficiency irrespective of relative food item size, and dental topographic metrics were largely uncorrelated to one another. The lack of a correlation between topographic metrics and food item breakdown efficiency is not unexpected as not all food items break down in the same manner (e.g., nuts are crushed, leaves are sheared), and only one food item shape was considered. In addition, food item breakdown efficiency describes tooth-food item interactions and requires location and shape specific information, which are absent from dental topographic metrics. This makes it unlikely any one efficiency metric will be correlated to all topographic metrics. These results emphasize the need to take into account how food items break down during biting, ingestion, and mastication when investigating the mechanical relationship between food item shape, size, mechanical properties, and breakdown, and tooth shape. © 2016 Wiley Periodicals, Inc.
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
A hot-cracking mitigation technique for welding high-strength aluminum alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y.P.; Dong, P.; Zhang, J.
2000-01-01
A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weldmore » pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).« less
Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh
2018-01-01
The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.
NASA Astrophysics Data System (ADS)
Sukrawa, Made
2017-11-01
Experimental and analytical researches on the effect of web opening in steel beams have been repeatedly reported in literature because of the advantages gain from the many function of the opening. Most of the research on this area, however, did not consider deformation and stress in the beam due to axial force. In seismic design of steel structure, the axial force in the beam could be significantly high and therefore worth considering. In this study a beam extracted from a braced frame structure was analyzed using finite element models to investigate the effect of combined bending and axial forces on the deformation and stresses in the vicinity of the opening. Large size of square, rectangular, and circular openings of the same depth were reinforced and placed in pair, symmetrical to the concentrated load at mid span of the beam. Four types of reinforcement were used, all around (AA), short horizontal (SH), long horizontal (LH), and doubler plate (DP). The effect of axial load was also investigated using rigid frame model loaded vertically and laterally. Validation of the modelling technique was done prior to the parametric study. It was revealed that the axial force significantly contributes to the stress concentration near the hole. Stiffener of circular shape was effective to improve the stress distribution around the circular opening. For square and rectangular openings, however, the horizontal stiffener, extended beyond the edge of opening, performed better than the other type of stiffeners.
Integrated modeling: a look back
NASA Astrophysics Data System (ADS)
Briggs, Clark
2015-09-01
This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
Vectorial finite elements for solving the radiative transfer equation
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.
2018-06-01
The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.
Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour
2017-12-01
Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
NASA Technical Reports Server (NTRS)
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
NASA Technical Reports Server (NTRS)
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
NASA Astrophysics Data System (ADS)
Dhakal, S.; Bhandary, N. P.; Yatabe, R.; Kinoshita, N.
2012-04-01
In a previous companion paper, we presented a three-tier modelling of a particular type of rockfall protective cable-net structure (barrier), developed newly in Japan. Therein, we developed a three-dimensional, Finite Element based, nonlinear numerical model having been calibrated/back-calculated and verified with the element- and structure-level physical tests. Moreover, using a very simple, lumped-mass, single-degree-of-freedom, equivalently linear analytical model, a global-displacement-predictive correlation was devised by modifying the basic equation - obtained by combining the principles of conservation of linear momentum and energy - based on the back-analysis of the tests on the numerical model. In this paper, we use the developed models to explore the performance enhancement potential of the structure in terms of (a) the control of global displacement - possibly the major performance criterion for the proposed structure owing to a narrow space available in the targeted site, and (b) the increase in energy dissipation by the existing U-bolt-type Friction-brake Devices - which are identified to have performed weakly when integrated into the structure. A set of parametric investigations have revealed correlations to achieve the first objective in terms of the structure's mass, particularly by manipulating the wire-net's characteristics, and has additionally disclosed the effects of the impacting-block's parameters. Towards achieving the second objective, another set of parametric investigations have led to a proposal of a few innovative improvements in the constitutive behaviour (model) of the studied brake device (dissipator), in addition to an important recommendation of careful handling of the device based on the identified potential flaw.
A progress report on estuary modeling by the finite-element method
Gray, William G.
1978-01-01
Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
Stochastic Inversion of 2D Magnetotelluric Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Stein, Peter A.; Bush, Harold G.
1988-01-01
The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.
Model of dissolution in the framework of tissue engineering and drug delivery.
Sanz-Herrera, J A; Soria, L; Reina-Romo, E; Torres, Y; Boccaccini, A R
2018-05-22
Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
Parametric study of electromagnetic waves propagating in absorbing curved S ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1989-01-01
A finite-element Galerkin formulation has been developed to study attenuation of transverse magnetic (TM) waves propagating in two-dimensional S-curved ducts with absorbing walls. In the frequency range where the duct diameter and electromagnetic wave length are nearly equal, the effect of duct length, curvature (duct offset), and absorber wall thickness was examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. For a straight and a curved duct with perfect electric conductor terminations, power attenuation contours were examined to determine electromagnetic wall properties associated with maximum input signal absorption. Offset of the S-duct was found to significantly affect the value of the wall permittivity associated with the optimal attenuation of the incident electromagnetic wave.
Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses
Li, Weidong; Bei, Hongbin; Gao, Yanfei
2016-09-21
Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less
ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror
NASA Astrophysics Data System (ADS)
Yang, De-Hua; Shao, Liang
2008-09-01
The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.
Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Weidong; Bei, Hongbin; Gao, Yanfei
Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less
Damage percolation during stretch flange forming of aluminum alloy sheet
NASA Astrophysics Data System (ADS)
Chen, Zengtao; Worswick, Michael J.; Keith Pilkey, A.; Lloyd, David J.
2005-12-01
A multi-scale finite element (FE)-damage percolation model was employed to simulate stretch flange forming of aluminum alloys AA5182 and AA5754. Material softening and strain gradients were captured using a Gurson-based FE model. FE results were then fed into the so-called damage percolation code, from which the damage development was modelled within measured microstructures. The formability of the stretch flange samples was predicted based upon the onset of catastrophic failure triggered by profuse void coalescence within the measured second-phase particle field. Damage development is quantified in terms of crack and void areal fractions, and compared to metallographic results obtained from interrupted stretch flange specimens. Parametric study is conducted on the effect of void nucleation strain in the prediction of formability of stretch flanges to "calibrate" proper nucleation strains for both alloys.
IFEMS, an Interactive Finite Element Modeling System Using a CAD/CAM System
NASA Technical Reports Server (NTRS)
Mckellip, S.; Schuman, T.; Lauer, S.
1980-01-01
A method of coupling a CAD/CAM system with a general purpose finite element mesh generator is described. The three computer programs which make up the interactive finite element graphics system are discussed.
NASA Technical Reports Server (NTRS)
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
2017-02-01
ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
2018-01-11
From - To) 01/11/2018 Final Technical Report June 01 2016 - Dec 30 2017 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Finite - Element Barotropic Model...grid finite - element barotropic fully hydrodynamic model in order to understand the shallow-water dynamics of the Indian Ocean and Western Pacific Ocean...dissipative dissipative processes are explored. 15. SUBJECTTERMS finite - element , unstructured grid, barotropic tides, bathymetry, internal tide
MSC products for the simulation of tire behavior
NASA Technical Reports Server (NTRS)
Muskivitch, John C.
1995-01-01
The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.
Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang
2016-12-01
Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motamarri, P.; Nowak, M.R.; Leiter, K.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes
NASA Technical Reports Server (NTRS)
Evans, P. F.; Hackett, J. E.
1976-01-01
Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Vermeulen, Karel; Vansteelandt, Stijn
2016-05-01
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations
NASA Astrophysics Data System (ADS)
Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran
2018-06-01
This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.
A Computational Approach for Automated Posturing of a Human Finite Element Model
2016-07-01
Std. Z39.18 July 2016 Memorandum Report A Computational Approach for Automated Posturing of a Human Finite Element Model Justin McKee and Adam...protection by influencing the path that loading will be transferred into the body and is a major source of variability. The development of a finite element ...posture, human body, finite element , leg, spine 42 Adam Sokolow 410-306-2985Unclassified Unclassified Unclassified UU ii Approved for public release
Evaluation of Acoustic Propagation Paths into the Human Head
2005-07-25
paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid
Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes
NASA Astrophysics Data System (ADS)
Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John
2012-05-01
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...
Fission barriers at the end of the chart of the nuclides
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; ...
2015-02-12
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
NASA Astrophysics Data System (ADS)
Ahmadi, Hamid; Lotfollahi-Yaghin, Mohammad Ali; Aminfar, Mohammad H.
2012-03-01
A set of parametric stress analyses was carried out for two-planar tubular DKT-joints under different axial loading conditions. The analysis results were used to present general remarks on the effects of the geometrical parameters on stress concentration factors (SCFs) at the inner saddle, outer saddle, and crown positions on the central brace. Based on results of finite element (FE) analysis and through nonlinear regression analysis, a new set of SCF parametric equations was established for fatigue design purposes. An assessment study of equations was conducted against the experimental data and original SCF database. The satisfaction of acceptance criteria proposed by the UK Department of Energy (UK DoE) was also checked. Results of parametric study showed that highly remarkable differences exist between the SCF values in a multi-planar DKT-joint and the corresponding SCFs in an equivalent uni-planar KT-joint having the same geometrical properties. It can be clearly concluded from this observation that using the equations proposed for uni-planar KT-connections to compute the SCFs in multi-planar DKT-joints will lead to either considerably under-predicting or over-predicting results. Hence, it is necessary to develop SCF formulae specially designed for multi-planar DKT-joints. Good results of equation assessment according to UK DoE acceptance criteria, high values of correlation coefficients, and the satisfactory agreement between the predictions of the proposed equations and the experimental data guarantee the accuracy of the equations. Therefore, the developed equations can be reliably used for fatigue design of offshore structures.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
Campbell, Graeme Michael; Glüer, Claus-C
2017-07-01
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
Misra, Anil; Spencer, Paulette; Marangos, Orestes; Wang, Yong; Katz, J. Lawrence
2005-01-01
A finite element (FE) model has been developed based upon the recently measured micro-scale morphological, chemical and mechanical properties of dentin–adhesive (d–a) interfaces using confocal Raman microspectroscopy and scanning acoustic microscopy (SAM). The results computed from this FE model indicated that the stress distributions and concentrations are affected by the micro-scale elastic properties of various phases composing the d–a interface. However, these computations were performed assuming isotropic material properties for the d–a interface. The d–a interface components, such as the peritubular and intertubular dentin, the partially demineralized dentin and the so-called ‘hybrid layer’ adhesive-collagen composite, are probably anisotropic. In this paper, the FE model is extended to account for the probable anisotropic properties of these d–a interface phases. A parametric study is performed to study the effect of anisotropy on the micromechanical stress distributions in the hybrid layer and the peritubular dentin phases of the d–a interface. It is found that the anisotropy of the phases affects the region and extent of stress concentration as well as the location of the maximum stress concentrations. Thus, the anisotropy of the phases could effect the probable location of failure initiation, whether in the peritubular region or in the hybrid layer. PMID:16849175
Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling
Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro
2016-01-01
This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator. PMID:26978370
NASA Technical Reports Server (NTRS)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope
NASA Astrophysics Data System (ADS)
Zheng, Guang; Nie, Hong; Luo, Min; Chen, Jinbao; Man, Jianfeng; Chen, Chuanzhi; Lee, Heow Pueh
2018-07-01
The purpose of this paper is to obtain the design parameter-landing response relation for designing the configuration of the landing gear in a planet lander quickly. To achieve this, parametric studies on the landing gear are carried out using the response surface method (RSM), based on a single landing gear landing model validated by experimental results. According to the design of experiment (DOE) results of the landing model, the RS (response surface)-functions of the three crucial landing responses are obtained, and the sensitivity analysis (SA) of the corresponding parameters is performed. Also, two multi-objective optimizations designs on the landing gear are carried out. The analysis results show that the RS (response surface)-model performs well for the landing response design process, with a minimum fitting accuracy of 98.99%. The most sensitive parameters for the three landing response are the design size of the buffers, struts friction and the diameter of the bending beam. Moreover, the good agreement between the simulated model and RS-model results are obtained in two optimized designs, which show that the RS-model coupled with the FE (finite element)-method is an efficient method to obtain the design configuration of the landing gear.
Numerical modeling of ultrasonic cavitation in ionic liquids
NASA Astrophysics Data System (ADS)
Calvisi, Michael L.; Elder, Ross M.
2017-11-01
Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.
NASA Astrophysics Data System (ADS)
He, G.; Zhu, H.; Xu, J.; Gao, K.; Zhu, D.
2017-09-01
The bionic research of shape is an important aspect of the research on bionic robot, and its implementation cannot be separated from the shape modeling and numerical simulation of the bionic object, which is tedious and time-consuming. In order to improve the efficiency of shape bionic design, the feet of animals living in soft soil and swamp environment are taken as bionic objects, and characteristic skeleton curve, section curve, joint rotation variable, position and other parameters are used to describe the shape and position information of bionic object’s sole, toes and flipper. The geometry modeling of the bionic object is established by using the parameterization of characteristic curves and variables. Based on this, the integration framework of parametric modeling and finite element modeling, dynamic analysis and post-processing of sinking process in soil is proposed in this paper. The examples of bionic ostrich foot and bionic duck foot are also given. The parametric modeling and integration technique can achieve rapid improved design based on bionic object, and it can also greatly improve the efficiency and quality of robot foot bionic design, and has important practical significance to improve the level of bionic design of robot foot’s shape and structure.
Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.
Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro
2016-03-11
This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.
Application of variational and Galerkin equations to linear and nonlinear finite element analysis
NASA Technical Reports Server (NTRS)
Yu, Y.-Y.
1974-01-01
The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.
NASA Technical Reports Server (NTRS)
Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.
1989-01-01
Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.
Development and Application of the p-version of the Finite Element Method.
1985-11-21
this property hierarchic families of finite elements. The h-version of the finite element method has been the subject of inten- sive study since the...early 1950’s and perhaps even earlier. Study of the p-version of the finite element method, on the other hand, began at Washington University in St...Louis in the early 1970’s and led to a more recent study of * .the h-p version. Research in the p-version (formerly called The Constraint Method) has
Cooley, Richard L.
1992-01-01
MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.
Error analysis and correction of discrete solutions from finite element codes
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.
1984-01-01
Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Knowles, Nikolas K; Reeves, Jacob M; Ferreira, Louis M
2016-12-01
Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K 2 HPO 4 ) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K 2 HPO 4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.
Saha, Sourabh K.
2017-01-11
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R
1999-04-01
More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
Marginally specified priors for non-parametric Bayesian estimation
Kessler, David C.; Hoff, Peter D.; Dunson, David B.
2014-01-01
Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813
NASA Technical Reports Server (NTRS)
Marr, W. A., Jr.
1972-01-01
The behavior of finite element models employing different constitutive relations to describe the stress-strain behavior of soils is investigated. Three models, which assume small strain theory is applicable, include a nondilatant, a dilatant and a strain hardening constitutive relation. Two models are formulated using large strain theory and include a hyperbolic and a Tresca elastic perfectly plastic constitutive relation. These finite element models are used to analyze retaining walls and footings. Methods of improving the finite element solutions are investigated. For nonlinear problems better solutions can be obtained by using smaller load increment sizes and more iterations per load increment than by increasing the number of elements. Suitable methods of treating tension stresses and stresses which exceed the yield criteria are discussed.
Using a multifrontal sparse solver in a high performance, finite element code
NASA Technical Reports Server (NTRS)
King, Scott D.; Lucas, Robert; Raefsky, Arthur
1990-01-01
We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION
Finite element analysis of thrust angle contact ball slewing bearing
NASA Astrophysics Data System (ADS)
Deng, Biao; Guo, Yuan; Zhang, An; Tang, Shengjin
2017-12-01
In view of the large heavy slewing bearing no longer follows the rigid ring hupothesis under the load condition, the entity finite element model of thrust angular contact ball bearing was established by using finite element analysis software ANSYS. The boundary conditions of the model were set according to the actual condition of slewing bearing, the internal stress state of the slewing bearing was obtained by solving and calculation, and the calculated results were compared with the numerical results based on the rigid ring assumption. The results show that more balls are loaded in the result of finite element method, and the maximum contact stresses between the ball and raceway have some reductions. This is because the finite element method considers the ferrule as an elastic body. The ring will produce structure deformation in the radial plane when the heavy load slewing bearings are subjected to external loads. The results of the finite element method are more in line with the actual situation of the slewing bearing in the engineering.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-08-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
NASA Technical Reports Server (NTRS)
Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.
1985-01-01
The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.
NASA Technical Reports Server (NTRS)
Raju, I. S.
1992-01-01
A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
A double expansion method for the frequency response of finite-length beams with periodic parameters
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.
CFD Analysis of the SBXC Glider Airframe
2016-06-01
mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.
Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit
2018-07-01
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)
2006-01-01
Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.
Application of finite element approach to transonic flow problems
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C., Jr.
1976-01-01
A variational finite element model for transonic small disturbance calculations is described. Different strategy is adopted in subsonic and supersonic regions, and blending elements are introduced between different regions. In the supersonic region, no upstream effect is allowed. If rectangular elements with linear shape functions are used, the model is similar to Murman's finite difference operators. Higher order shape functions, nonrectangular elements, and discontinuous approximation of shock waves are also discussed.
Parametrization of local CR automorphisms by finite jets and applications
NASA Astrophysics Data System (ADS)
Lamel, Bernhard; Mir, Nordine
2007-04-01
For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
1982-03-01
POSTGRADUATE SCHOOL fMonterey, California THESIS A VERSION OF THE GRAPHICS-ORIENTED INTERACTIVE FINITE ELEMENT TIME-SHARING SYSTEM ( GIFTS ) FOR AN IBM...Master’s & Engineer’s active Finite Element Time-sharing System Thesis - March 1982 ( GIFTS ) for an IBM with CP/CMS 6. penromm.oOn. REPoRT MUlmiR 1. AUTHOIee...ss0in D dinuf 5W M memisi) ’A version of the Graphics-oriented, Interactive, Finite element, Time-sharing System ( GIFTS ) has been developed for, and
An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.
1981-03-01
D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1991-01-01
A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Sprague, M. A.; Jonkman, J.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less
[Progression on finite element modeling method in scoliosis].
Fan, Ning; Zang, Lei; Hai, Yong; Du, Peng; Yuan, Shuo
2018-04-25
Scoliosis is a complex spinal three-dimensional malformation with complicated pathogenesis, often associated with complications as thoracic deformity and shoulder imbalance. Because the acquisition of specimen or animal models are difficult, the biomechanical study of scoliosis is limited. In recent years, along with the development of the computer technology, software and image, the technology of establishing a finite element model of human spine is maturing and it has been providing strong support for the research of pathogenesis of scoliosis, the design and application of brace, and the selection of surgical methods. The finite element model method is gradually becoming an important tool in the biomechanical study of scoliosis. Establishing a high quality finite element model is the basis of analysis and future study. However, the finite element modeling process can be complex and modeling methods are greatly varied. Choosing the appropriate modeling method according to research objectives has become researchers' primary task. In this paper, the author reviews the national and international literature in recent years and concludes the finite element modeling methods in scoliosis, including data acquisition, establishment of the geometric model, the material properties, parameters setting, the validity of the finite element model validation and so on. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
Periodic trim solutions with hp-version finite elements in time
NASA Technical Reports Server (NTRS)
Peters, David A.; Hou, Lin-Jun
1990-01-01
Finite elements in time as an alternative strategy for rotorcraft trim problems are studied. The research treats linear flap and linearized flap-lag response both for quasi-trim and trim cases. The connection between Fourier series analysis and hp-finite elements for periodic a problem is also examined. It is proved that Fourier series is a special case of space-time finite elements in which one element is used with a strong displacement formulation. Comparisons are made with respect to accuracy among Fourier analysis, displacement methods, and mixed methods over a variety parameters. The hp trade-off is studied for the periodic trim problem to provide an optimum step size and order of polynomial for a given error criteria. It is found that finite elements in time can outperform Fourier analysis for periodic problems, and for some given error criteria. The mixed method provides better results than does the displacement method.
Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Kumar, A; Reddy, S.; Handschuh, R.
1995-01-01
A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.
Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers
NASA Astrophysics Data System (ADS)
Prot, V.; Skallerud, B.
2009-02-01
An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.
Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.
1993-01-01
Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.
Heating of foods in space-vehicle environments. [by conductive heat transfer
NASA Technical Reports Server (NTRS)
Bannerot, R. B.; Cox, J. E.; Chen, C. K.; Heidelbaugh, N. D.
1973-01-01
In extended space missions, foods will be heated to enhance the psychological as well as the physiological well-being of the crew. In the low-gravity space environment natural convection is essentially absent so that the heat transfer within the food is by conduction alone. To prevent boiling in reduced pressure environments the maximum temperature of the heating system is severely limited. The Skylab food-heating system utilizes a tray with receptables for the food containers. The walls of the receptacles are lined with thermally controlled, electrical-resistance, blanket-type heating elements. A finite difference model is employed to perform parametric studies on the food-heating system. The effects on heating time of the (1) thermophysical properties of the food, (2) heater power level, (3) initial food temperatures, (4) container geometry, and (5) heater control temperature are presented graphically. The optimal heater power level and container geometry are determined.
Genetic algorithms for multicriteria shape optimization of induction furnace
NASA Astrophysics Data System (ADS)
Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo
2012-09-01
In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.
Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-01-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121
NASA Astrophysics Data System (ADS)
Alobaidi, Wissam M.; Nima, Zeid A.; Sandgren, Eric
2018-01-01
Localised surface plasmon (LSP)-like resonance phenomena were simulated in COMSOL Multiphysics™, and the electric field enhancement was evaluated in eight pipe defects using the microwave band from 1.80 to 3.00 GHz and analysed by finite element analysis (FEA). The simulation was carried out, in each defect case, on a pipe that has 762 mm length and 152.4 mm inner diameter, and 12.7 mm pipe wall thickness. Defects were positioned in the middle of the pipe and were named as follows; SD: Square Defect, FCD: fillet corner defect, FD: fillet defect, HCD: half circle defect, TCD: triangle corner defect, TD: triangle defect, ZD: zigzag defect, GD: gear defect. The LSP electric field, and scattering parametric (S21, and S11) waves were evaluated in all cases and found to be strongly dependent on the size and the shape of the defect rather than the pipe and or the medium materials.
Identification of Defects in Piles Through Dynamic Testing
NASA Astrophysics Data System (ADS)
Liao, Shutao T.; Roesset, Jose M.
1997-04-01
The objective of this work was to evaluate the theoretical capabilities of the non-destructive impact-response method in detecting the existence of a single defect in a pile, its location and its length. The cross-section of the pile is assumed to be circular and the defects are assumed to be axisymmetric in geometry. As mentioned in the companion paper, special codes utilizing one-dimensional (1-D) and three-dimensional (3-D) axisymmetric finite element models were developed to simulate the responses of defective piles to an impact load. Extensive parametric studies were then performed. In each study, the results from the direct use of time histories of displacements or velocities and the mechanical admittance (or mobility) function were compared in order to assess their capabilities. The effects of the length and the width of a defect were also investigated using these methods. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 277-291 (1997)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L
As wind turbine blade diameters and tower height increase to capture more energy in the wind, higher structural loads results in more structural support material increasing the cost of scaling. Weight reductions in the generator transfer to overall cost savings of the system. Additive manufacturing facilitates a design-for-functionality approach, thereby removing traditional manufacturing constraints and labor costs. The most feasible additive manufacturing technology identified for large, direct-drive generators in this study is powder-binder jetting of a sand cast mold. A parametric finite element analysis optimization study is performed, optimizing for mass and deformation. Also, topology optimization is employed for eachmore » parameter-optimized design.The optimized U-beam spoked web design results in a 24 percent reduction in structural mass of the rotor and 60 percent reduction in radial deflection.« less
Dynamic stability of spinning pretwisted beams subjected to axial random forces
NASA Astrophysics Data System (ADS)
Young, T. H.; Gau, C. Y.
2003-11-01
This paper studies the dynamic stability of a pretwisted cantilever beam spinning along its longitudinal axis and subjected to an axial random force at the free end. The axial force is assumed as the sum of a constant force and a random process with a zero mean. Due to this axial force, the beam may experience parametric random instability. In this work, the finite element method is first applied to yield discretized system equations. The stochastic averaging method is then adopted to obtain Ito's equations for the response amplitudes of the system. Finally the mean-square stability criterion is utilized to determine the stability condition of the system. Numerical results show that the stability boundary of the system converges as the first three modes are taken into calculation. Before the convergence is reached, the stability condition predicted is not conservative enough.
Controllable outrigger damping system for high rise building with MR dampers
NASA Astrophysics Data System (ADS)
Wang, Zhihao; Chang, Chia-Ming; Spencer, Billie F., Jr.; Chen, Zhengqing
2010-04-01
A novel energy dissipation system that can achieve the amplified damping ratio for a frame-core tube structures is explored, where vertical dampers are equipped between the outrigger and perimeter columns. The modal characteristics of the structural system with linear viscous dampers are theoretically analyzed from the simplified finite element model by parametric analysis. The result shows that modal damping ratios of the first several modes can increase a lot with this novel damping system. To improve the control performance of system, the semi-active control devices, magnetorheological (MR) dampers, are adopted to develop a controllable outrigger damping system. The clipped optimal control with the linear-quadratic Gaussian (LQG) acceleration feedback is adopted in this paper. The effectiveness of both passive and semi-active control outrigger damping systems is evaluated through the numerical simulation of a representative tall building subjected to two typical earthquake records.
NASA Astrophysics Data System (ADS)
Kraynik, Andrew M.; Romero, Louis; Torczynski, John R.; Brooks, Carlton F.; O'Hern, Timothy J.; Jepson, Richard A.; Benavides, Gilbert L.
2009-11-01
The stability of an interface in a container partially filled with silicone oil and subjected to gravity and vertical oscillations has been examined theoretically and computationally. An exact theory for the onset of a parametric instability producing Faraday-like waves was developed for arbitrary liquid viscosity, stress-free walls, and deep two-dimensional or axisymmetric containers. Finite-element simulations for stress-free walls are in excellent agreement with the theory, which predicts instability in discrete frequency bands. These simpler calculations are a departure point for examining the more realistic problem, which involves no-slip at the walls and dynamic wetting modeled with a Blake condition. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Srivathsa, B.; Das, D. K.
2015-12-01
Thermal barrier coatings (TBCs) are widely used on different hot components of gas turbine engines such as blades and vanes. Although, several mechanisms for the failure of the TBCs have been suggested, it is largely accepted that the durability of these coatings is primarily determined by the residual stresses that are developed during the thermal cycling. In the present study, the residual stress build-up in an electron beam physical vapour deposition (EB-PVD) based TBCs on a coupon during thermal cycling has been studied by varying three parameters such as the cooling rate, TBC thickness and substrate thickness. A two-dimensional thermomechanical generalized plane strain finite element simulations have been performed for thousand cycles. It was observed that these variations change the stress profile significantly and the stress severity factor increases non-linearly. Overall, the predictions of the model agree with reported experimental results and help in predicting the failure mechanisms.
Parametric study of guided ultrasonic wave propagation in carbon-fiber composite plates
NASA Astrophysics Data System (ADS)
Ibrahim, N. A.; Kamarudin, M. A.; Jurimi, M. H. F. M.; Murat, B. I. S.
2018-03-01
The aim of this work is to study the guided ultrasonic wave (GUW) behaviour in composite plates using 3D Finite Element Analysis (FEA). Two types of composite models are chosen: plates with and without damage. The damage is modelled as a circular-shaped delamination inside the plate, representing one kind of low-velocity impact damage. Parameters such as excitation frequency, monitoring directivity, plate thickness, delamination size and shape were used to investigate the influence of these parameters on the GUW propagation and scattering behaviour. The models were constructed and coded in Matlab platform, while the simulations were performed in ABAQUS Explicit. From the results, the received signals have shown a strong dependency on the parameters. Significant scattering from the models with delamination were also observed, which indicates the possibility of using GUW for rapid non-destructive monitoring of composite panels and structures.
Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load
NASA Astrophysics Data System (ADS)
Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.
2017-03-01
The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.
NASA Astrophysics Data System (ADS)
Li, Chen; Yin, Xiaokang; Li, Zhen; Li, Wei; Chen, Guoming
2018-04-01
Capacitive imaging (CI) technique is a novel electromagnetic NDE technique. The Quasi-static electromagnetic field from the carefully designed electrode pair will vary when the electrical properties of the sample change, leading to the possibility of imaging. It is observed that for a given specimen, the targeted features appear as different variations in capacitive images under different experimental conditions. In some cases, even opposite variations occur, which brings confusion to indication interpretation. It is thus thought interesting to embark on investigations into the cause and effects of the negative variation phenomenon. In this work, the positive and negative variations were first explained from the measurement sensitivity distribution perspective. This was then followed by a detailed analysis using finite element models in COMSOL. A parametric experimental study on a glass fiber composite plate with artificial defects was then carried out to investigate how the experimental conditions affect the variation.
Buckling behavior of compression-loaded symmetrically-laminated angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Nemeth, M. P.
1986-01-01
An approximate analysis for buckling of a rectangular specially-orthotropic plate with a central circular hole is applied to symmetrically-laminated angle-ply plates. Results obtained from finite element analyses and experiments indicate that the approximate analysis predicts accurately the buckling loads of (+/-theta sub m)s plates with integer values of m not below 6 and with hole diameters up to 50 percent of the plate width. Moreover, the results indicate that the approximate analysis can be used to predict the buckling trends of plates with hole diameters up to 70 percent of the plate width. Results of a parametric study indicate the influence of hole size, plate aspect ratio, loading conditions, boundary conditions, and orthotropy on the buckling load. Results are also presented that indicate the relationship of the bending stiffness and the prebuckling load distribution to the buckling load of a plate with a hole.
Magnetically Induced Vibration in an 8-Pole, 9-Slot Brushless DC Motor
NASA Astrophysics Data System (ADS)
Chuang, Thomas Y.; Lieu, Dennis K.
A parametric study was conducted to determine the effect of motor geometry on the force imbalance in an 8-pole/9-slot motor. The study is based on a quasi-static finite element analysis in which the force calculations were made by integrating the Maxwell stresses along the center of the airgap. For small variations from the base motor geometry, the study revealed the following trends. The magnitude of the force imbalance decreases as the slot width decreases. The imbalance also decreases as the airgap length increases. A rotor/stator eccentricity introduces a constant force imbalance which increases proportionally to, and in the direction of, the eccentricity. As the size of the motor is scaled up uniformly, the mass increases faster than the imbalance. The results suggest that the force imbalance is caused predominantly by the stress concentrations at the corners of the stator teeth.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
Electromagnetic finite elements based on a four-potential variational principle
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.
Application of the control volume mixed finite element method to a triangular discretization
Naff, R.L.
2012-01-01
A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
N%-Superconvergence of Finite Element Approximations in the Interior of General Meshes of Triangles
1993-12-01
RODiGuEz, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math., 59 (1991), pp. 107-127. 27. R. DURAN ...WAHLDIN, Interior maxmum norma estimates for finite element methods, Part H, unpublished manuscript. 38. I. BABUfKA, T. STROUBOULIS, A. MATHU. AND C.S
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... measurements as well as finite element modelling and fatigue analyses to better understand the stress... include strain measurements as well as finite element modeling and fatigue analyses to better understand... finite element modelling and fatigue analyses to better understand the stress distribution onto the frame...
Evaluation of an improved finite-element thermal stress calculation technique
NASA Technical Reports Server (NTRS)
Camarda, C. J.
1982-01-01
A procedure for generating accurate thermal stresses with coarse finite element grids (Ojalvo's method) is described. The procedure is based on the observation that for linear thermoelastic problems, the thermal stresses may be envisioned as being composed of two contributions; the first due to the strains in the structure which depend on the integral of the temperature distribution over the finite element and the second due to the local variation of the temperature in the element. The first contribution can be accurately predicted with a coarse finite-element mesh. The resulting strain distribution can then be combined via the constitutive relations with detailed temperatures from a separate thermal analysis. The result is accurate thermal stresses from coarse finite element structural models even where the temperature distributions have sharp variations. The range of applicability of the method for various classes of thermostructural problems such as in-plane or bending type problems and the effect of the nature of the temperature distribution and edge constraints are addressed. Ojalvo's method is used in conjunction with the SPAR finite element program. Results are obtained for rods, membranes, a box beam and a stiffened panel.
Deformation analysis of rotary combustion engine housings
NASA Technical Reports Server (NTRS)
Vilmann, Carl
1991-01-01
This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading
NASA Astrophysics Data System (ADS)
Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.
2017-12-01
Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.
Transport Modeling of Hydrogen in Metals for Application to Hydrogen Assisted Cracking of Metals.
1995-04-04
34 consists of a Fortran "user element" subroutine for use with the ABAQUS 2 finite element program. Documentation of the 1-D user element subroutine is...trapping theory. The use of the ABAQUS finite element "User Element" subroutines for solving 1-D problems is then outlined in full detail. This is followed...reflect the new ordering given by Eq. (57). ABAOUS User Element Subroutines ABAQUS executes a Fortran subroutine named UEL for each "user defined" finite
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
Rüdiger, Hannes A; Parvex, Valérie; Terrier, Alexandre
2016-03-01
Although the importance of accurate femoral reconstruction to achieve a good functional outcome is well documented, quantitative data on the effects of a displacement of the femoral center of rotation on moment arms are scarce. The purpose of this study was to calculate moment arms after nonanatomical femoral reconstruction. Finite element models of 15 patients including the pelvis, the femur, and the gluteal muscles were developed. Moment arms were calculated within the native anatomy and compared to distinct displacement of the femoral center of rotation (leg lengthening of 10 mm, loss of femoral offset of 20%, anteversion ±10°, and fixed anteversion at 15°). Calculations were performed within the range of motion observed during a normal gait cycle. Although with all evaluated displacements of the femoral center of rotation, the abductor moment arm remained positive, some fibers initially contributing to extension became antagonists (flexors) and vice versa. A loss of 20% of femoral offset led to an average decrease of 15% of abductor moment. Femoral lengthening and changes in femoral anteversion (±10°, fixed at 15°) led to minimal changes in abductor moment arms (maximum change of 5%). Native femoral anteversion correlated with the changes in moment arms induced by the 5 variations of reconstruction. Accurate reconstruction of offset is important to maintaining abductor moment arms, while changes of femoral rotation had minimal effects. Patients with larger native femoral anteversion appear to be more susceptible to femoral head displacements. Copyright © 2016 Elsevier Inc. All rights reserved.
Abbasi, Mostafa; Azadani, Ali N
2017-07-01
In order to accommodate transcatheter valves to miniaturized catheters, the leaflet thickness must be reduced to a value which is typically less than that of surgical bioprostheses. The study aim was to use finite-element simulations to determine the impact of the thickness reduction on stress and strain distribution. A 23 mm transcatheter aortic valve (TAV) was modelled based on the Edwards SAPIEN XT (Edwards Lifesciences, Irvine, CA, USA). Finite-element (FE) analysis was performed using the ABAQUS/Explicit solver. An ensemble-averaged transvalvular pressure waveform measured from in-vitro tests conducted in a pulse duplicator was applied to the leaflets. Through a parametric study, uniform TAV leaflet thickness was reduced from 0.5 to 0.18 mm. By reducing leaflet thickness, significantly higher stress values were found in the leaflet's fixed edge during systole, and in the commissures during diastole. Through dynamic FE simulations, the highest stress values were found during systole in the leaflet fixed edge. In contrast, at the peak of diastole high-stress regions were mainly observed in the commissures. The peak stress was increased by 178% and 507% within the leaflets after reducing the thickness of 0.5 mm to 0.18 mm at the peak of systole and diastole, respectively. The study results indicated that, the smaller the leaflet thickness, the higher the maximum principal stress. Increased mechanical stress on TAV leaflets may lead to accelerated tissue degeneration. By using a thinner leaflet, TAV durability may not atch with that of surgical bioprostheses.
NASA Technical Reports Server (NTRS)
Perino, Scott; Bayandor, Javid; Siddens, Aaron
2012-01-01
The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Use of system identification techniques for improving airframe finite element models using test data
NASA Technical Reports Server (NTRS)
Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.
1993-01-01
A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
2008-02-01
combined thermal g effect and initial current field. The model is implemented using Abaqus user element subroutine and verified against the experimental...Finite Element Formulation The proposed model is implemented with ABAQUS general purpose finite element program using thermal -displacement analysis...option. ABAQUS and other commercially available finite element codes do not have the capability to solve general electromigration problem directly. Thermal
Frustration of resonant preheating by exotic kinetic terms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmati, Shohreh; Seahra, Sanjeev S., E-mail: srahmati@unb.ca, E-mail: sseahra@unb.ca
2014-10-01
We study the effects of exotic kinetic terms on parametric resonance during the preheating epoch of the early universe. Specifically, we consider modifications to the action of ordinary matter fields motivated by generalized uncertainty principles, polymer quantization, as well as Dirac-Born-Infeld and k-essence models. To leading order in an ''exotic physics'' scale, the equations of motion derived from each of these models have the same algebraic form involving a nonlinear self-interaction in the matter sector. Neglecting spatial dependence, we show that the nonlinearity effectively shuts down the parametric resonance after a finite time period. We find numeric evidence that themore » frustration of parametric resonance persists to spatially inhomogenous matter in (1+1)-dimensions.« less
Influence of tunnel and soil parameters on vibrations from underground railways
NASA Astrophysics Data System (ADS)
Gupta, S.; Stanus, Y.; Lombaert, G.; Degrande, G.
2009-10-01
A parametric study is performed to identify the key parameters which have an important influence on the generation and propagation of vibrations from underground railways. In this paper, the parameters related to the tunnel and the soil are considered and their influence on the free field response is studied. The coupled periodic finite element-boundary element model and the pipe-in-pipe model have been used for this study. Both models account for the dynamic interaction between the train, the track, the tunnel and the soil. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The response to moving loads is written in terms of the axle loads and the transfer functions. The parametric study can be carried out by separately analyzing the variations in the axle loads and the transfer functions. The axle loads are mainly influenced by the parameters related to the vehicle and the track, while the transfer functions are influenced by the properties of the track, the tunnel and the soil. In the present paper, the parameters related to the tunnel and soil are investigated. It is observed that the material damping and the shear modulus of the soil have an important influence on the propagation of vibrations. The influence of structural changes to the tunnel as well as geometrical properties such as the size and shape of the tunnel is investigated. It is observed that a larger tunnel results in a smaller response above the tunnel as more energy is radiated downwards. Moreover, it is demonstrated that the tunnel geometry has a considerable influence on the response closer to the tunnel.
Contact stress analysis of spiral bevel gears using nonlinear finite element static analysis
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Kumar, A.; Reddy, S.; Handschuh, R.
1993-01-01
A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.
Error analysis of finite element method for Poisson–Nernst–Planck equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou; Sun, Pengtao; Zheng, Bin
A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.
Finite element analysis on the bending condition of truck frame before and after opening
NASA Astrophysics Data System (ADS)
Cai, Kaiwu; Cheng, Wei; Lu, Jifu
2018-05-01
Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis.
Huempfner-Hierl, Heike; Schaller, Andreas; Hemprich, Alexander; Hierl, Thomas
2014-11-01
Naso-orbitoethmoid fractures account for 5% of all facial fractures. We used data derived from a white 34-year-old man to make a transient dynamic finite element model, which consisted of about 740 000 elements, to simulate fist-like impacts to this anatomically complex area. Finite element analysis showed a pattern of von Mises stresses beyond the yield criterion of bone that corresponded with fractures commonly seen clinically. Finite element models can be used to simulate injuries to the human skull, and provide information about the pathogenesis of different types of fracture. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-10-16
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
NASA Technical Reports Server (NTRS)
Rismantab-Sany, J.; Chang, B.; Shabana, A. A.
1989-01-01
A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
Analytical study of nozzle performance for nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1991-01-01
A parametric study has been conducted by the NASA-Lewis Rocket Engine Design Expert System for the convergent-divergent nozzle of the Nuclear Thermal Rocket system, which uses a nuclear reactor to heat hydrogen to high temperature and then expands it through the nozzle. It is established by the study that finite-rate chemical reactions lower performance levels from theoretical levels. Major parametric roles are played by chamber temperature and chamber pressure. A maximum performance of 930 sec is projected at 2700 K, and of 1030 at 3100 K.
Empirical velocity profiles for galactic rotation curves
NASA Astrophysics Data System (ADS)
López Fune, E.
2018-04-01
A unified parametrization of the circular velocity, which accurately fits 850 galaxy rotation curves without needing in advance the knowledge of the luminous matter components, nor a fixed dark matter halo model, is proposed. A notable feature is that the associated gravitational potential increases with the distance from the galaxy centre, giving rise to a length-scale indicating a finite size of a galaxy, and after, the Keplerian fall-off of the parametrized circular velocity is recovered according to Newtonian gravity, making possible the estimation of the total mass enclosed by the galaxy.
Beer-Lambert-Law Parametric Model of Reflectance Spectra for Dyed Fabrics
2016-06-06
optical constants), phenomenological quantities and combinations of both [27,28,29]. For reflection from a dyed fabric of finite and nonuniform ...fabrics are characterized, inherently, by rough surfaces (thus diffuse reflectance), heterogeneous compositions, and nonuniform thicknesses. It follows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afeyan, Bedros; Charbonneau-Lefort, Mathieu; Fejer, Martin
With a finite lateral width pump, non-collinear interactions result in metastable or stable laterally localized bound states. The physical processes involved are group velocity walk-off, diffraction, chirped QPM gratings and different pump shapes.
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
2016-06-01
7 Development of Cohesive Finite Element Method (CFEM) Capability ................................7 3D...Cohesive Finite Element Method (CFEM) framework A new scientific framework and technical capability is developed for the computational analyses of...this section should shift from reporting activities to reporting accomplishments. Development of Cohesive Finite Element Method (CFEM) Capability
Plane stress analysis of wood members using isoparametric finite elements, a computer program
Gary D. Gerhardt
1983-01-01
A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Fan, Jiang
2018-03-01
Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis
This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.
Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds
2012-02-29
element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D
2015-08-01
Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa
2014-11-01
Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.
Schmitter, M; Lotze, G; Bömicke, W; Rues, S
2015-12-01
The purpose of this study was to assess the effect of surface treatment on the fracture resistance of zirconia-based all-ceramic anterior crowns. Sixty-four zirconia-based all-ceramic anterior crowns, veneered by use of a press-on technique, were produced. For 48 crowns intraoral adjustment was simulated (A-group), 16 crowns remained unadjusted (WA-group). The adjusted area was then treated in three ways: 1. no further surface treatment; 2. polishing, with irrigation, using polishers interspersed with diamond grit for ceramics; and 3. polishing and glaze firing. Half of the specimens were loaded until fracture in an universal testing device without artificial ageing; the other crowns underwent thermocycling and chewing simulation before ultimate-load testing. Explorative statistical analysis was performed by use of non-parametric and parametric tests. In addition, fracture-strength tests according to ISO 6872 were performed for veneer ceramic subjected to the different surface treatments. Finite element analysis was also conducted for the crowns, and surface roughness was measured. Crowns in the A-group were more sensitive to aging than crowns in the WA-group (p=0.038). Although both polishing and glaze firing slightly improved the fracture resistance of the specimens, the fracture resistance in the WA-group (initial fracture resistance (IFR): 652.0 ± 107.7N, remaining fracture resistance after aging (RFR): 560.6 ± 233.3N) was higher than the fracture resistance in the A-group (polished: IFR: 477.9 ± 108.8N, RFR: 386.0 ± 218.5N; glaze firing: IFR: 535.5 ± 128.0N, RFR: 388.6 ± 202.2N). Surface roughness without adjustment was Ra=0.1 μm; for adjustment but without further treatment it was Ra=1.4 μm; for adjustment and polishing it was Ra=0.3 μm; and for adjustment, polishing, and glazing it was Ra=0.6 μm. Stress distributions obtained by finite element analysis in combination with fracture strength tests showed that fractures most probably originated from the occlusal surface. To improve fracture resistance and reduce the incidence of failure, extensive occlusal adjustment of veneered anterior zirconia restorations should be avoided. Neither polishing nor glazing could restore the fracture resistance to the level maintained with unadjusted crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
NASA Astrophysics Data System (ADS)
Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin
2018-06-01
Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.
ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5
NASA Astrophysics Data System (ADS)
Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent
2016-07-01
It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.
Evaluation of the finite element fuel rod analysis code (FRANCO)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Feltus, M.A.
1994-12-31
Knowledge of temperature distribution in a nuclear fuel rod is required to predict the behavior of fuel elements during operating conditions. The thermal and mechanical properties and performance characteristics are strongly dependent on the temperature, which can vary greatly inside the fuel rod. A detailed model of fuel rod behavior can be described by various numerical methods, including the finite element approach. The finite element method has been successfully used in many engineering applications, including nuclear piping and reactor component analysis. However, fuel pin analysis has traditionally been carried out with finite difference codes, with the exception of Electric Powermore » Research Institute`s FREY code, which was developed for mainframe execution. This report describes FRANCO, a finite element fuel rod analysis code capable of computing temperature disrtibution and mechanical deformation of a single light water reactor fuel rod.« less
Dynamic responses of graphite/epoxy laminated beam to impact of elastic spheres
NASA Technical Reports Server (NTRS)
Sun, C. T.; Wang, T.
1982-01-01
Wave propagation in 90/45/90/-45/902s and 0/45/0/-45/02s laminates of a graphite/epoxy composite due to impact of a steel ball was investigated experimentally and also by using a high order beam finite element. Dynamic strain responses at several locations were obtained using strain gages. The finite element program which incorporated statically determined contact laws was employed to calculate the contact force history as well as the target beam dynamic deformation. The comparison of the finite element solutions with the experimental data indicated that the static contact laws for loading and unloading (developed under this grant) are adequate for the dynamic impact analysis. It was found that for the 0/45/0/-45/02s laminate which has a much larger longitudinal bending rigidity, the use of beam finite elements is not suitable and plate finite element should be used instead.
A new parallel-vector finite element analysis software on distributed-memory computers
NASA Technical Reports Server (NTRS)
Qin, Jiangning; Nguyen, Duc T.
1993-01-01
A new parallel-vector finite element analysis software package MPFEA (Massively Parallel-vector Finite Element Analysis) is developed for large-scale structural analysis on massively parallel computers with distributed-memory. MPFEA is designed for parallel generation and assembly of the global finite element stiffness matrices as well as parallel solution of the simultaneous linear equations, since these are often the major time-consuming parts of a finite element analysis. Block-skyline storage scheme along with vector-unrolling techniques are used to enhance the vector performance. Communications among processors are carried out concurrently with arithmetic operations to reduce the total execution time. Numerical results on the Intel iPSC/860 computers (such as the Intel Gamma with 128 processors and the Intel Touchstone Delta with 512 processors) are presented, including an aircraft structure and some very large truss structures, to demonstrate the efficiency and accuracy of MPFEA.
Finite element analysis (FEA) analysis of the preflex beam
NASA Astrophysics Data System (ADS)
Wan, Lijuan; Gao, Qilang
2017-10-01
The development of finite element analysis (FEA) has been relatively mature, and is one of the important means of structural analysis. This method changes the problem that the research of complex structure in the past needs to be done by a large number of experiments. Through the finite element method, the numerical simulation of the structure can be used to achieve a variety of static and dynamic simulation analysis of the mechanical problems, it is also convenient to study the parameters of the structural parameters. Combined with a certain number of experiments to verify the simulation model can be completed in the past all the needs of experimental research. The nonlinear finite element method is used to simulate the flexural behavior of the prestressed composite beams with corrugated steel webs. The finite element analysis is used to understand the mechanical properties of the structure under the action of bending load.
Heat transfer model and finite element formulation for simulation of selective laser melting
NASA Astrophysics Data System (ADS)
Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.
2017-10-01
A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.
NASA Astrophysics Data System (ADS)
Zhao, Bin
2015-02-01
Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
NASA Astrophysics Data System (ADS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
The use of Galerkin finite-element methods to solve mass-transport equations
Grove, David B.
1977-01-01
The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)
1981-01-08
95 Limits of Applicability of Weak-Finite- Amplitude Theory ... ............ 100 Near- Field Calibration of Parametric Sources...concerning the amount of energy that may be trans- mitted to the far field by various types of signals. CPOIi eslu er 06]i C) 3O d SIM aC NOI.LjZI’IS...ducers at finite amplitudes, conclusions are presented concerning the amount of energy that may be transmitted to the far field by various types of
Finite element, modal co-ordinate analysis of structures subjected to moving loads
NASA Astrophysics Data System (ADS)
Olsson, M.
1985-03-01
Some of the possibilities of the finite element method in the moving load problem are demonstrated. The bridge-vehicle interaction phenomenon is considered by deriving a general bridge-vehicle element which is believed to be novel. This element may be regarded as a finite element with time-dependent and unsymmetric element matrices. The bridge response is formulated in modal co-ordinates thereby reducing the number of equations to be solved within each time step. Illustrative examples are shown for the special case of a beam bridge model and a one-axle vehicle model.
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
Development of an hp-version finite element method for computational optimal control
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Warner, Michael S.
1993-01-01
The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.
A mixed shear flexible finite element for the analysis of laminated plates
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1984-01-01
A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
A listing of the source deck of each finite element FORMA subroutine is given to remove the 'black-box' aura of the subroutines so that the analyst may better understand the detailed operations of each subroutine. The FORTRAN 4 programming language is used in all finite element FORMA subroutines.
Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)
2016-09-17
test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Numerical Analysis of Solids at Failure
2011-08-20
failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiley, J.C.
The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.