Zilverstand, Anna; Sorger, Bettina; Kaemingk, Anita; Goebel, Rainer
2017-06-01
We employed a novel parametric spider picture set in the context of a parametric fMRI anxiety provocation study, designed to tease apart brain regions involved in threat monitoring from regions representing an exaggerated anxiety response in spider phobics. For the stimulus set, we systematically manipulated perceived proximity of threat by varying a depicted spider's context, size, and posture. All stimuli were validated in a behavioral rating study (phobics n = 20; controls n = 20; all female). An independent group participated in a subsequent fMRI anxiety provocation study (phobics n = 7; controls n = 7; all female), in which we compared a whole-brain categorical to a whole-brain parametric analysis. Results demonstrated that the parametric analysis provided a richer characterization of the functional role of the involved brain networks. In three brain regions-the mid insula, the dorsal anterior cingulate, and the ventrolateral prefrontal cortex-activation was linearly modulated by perceived proximity specifically in the spider phobia group, indicating a quantitative representation of an exaggerated anxiety response. In other regions (e.g., the amygdala), activation was linearly modulated in both groups, suggesting a functional role in threat monitoring. Prefrontal regions, such as dorsolateral prefrontal cortex, were activated during anxiety provocation but did not show a stimulus-dependent linear modulation in either group. The results confirm that brain regions involved in anxiety processing hold a quantitative representation of a pathological anxiety response and more generally suggest that parametric fMRI designs may be a very powerful tool for clinical research in the future, particularly when developing novel brain-based interventions (e.g., neurofeedback training). Hum Brain Mapp 38:3025-3038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Application of artificial neural network to fMRI regression analysis.
Misaki, Masaya; Miyauchi, Satoru
2006-01-15
We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K
2018-02-01
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Parametric fMRI analysis of visual encoding in the human medial temporal lobe.
Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P
1999-01-01
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.
Horovitz, Silvina G; Rossion, Bruno; Skudlarski, Pawel; Gore, John C
2004-08-01
Face perception is typically associated with activation in the inferior occipital, superior temporal (STG), and fusiform gyri (FG) and with an occipitotemporal electrophysiological component peaking around 170 ms on the scalp, the N170. However, the relationship between the N170 and the multiple face-sensitive activations observed in neuroimaging is unclear. It has been recently shown that the amplitude of the N170 component monotonically decreases as gaussian noise is added to a picture of a face [Jemel et al., 2003]. To help clarify the sources of the N170 without a priori assumptions regarding their number and locations, ERPs and fMRI were recorded in five subjects in the same experiment, in separate sessions. We used a parametric paradigm in which the amplitude of the N170 was modulated by varying the level of noise in a picture, and identified regions where the percent signal change in fMRI correlated with the ERP data. N170 signals were observed for pictures of both cars and faces but were stronger for faces. A monotonic decrease with added noise was observed for the N170 at right hemisphere sites but was less clear on the left and occipital central sites. Correlations between fMRI signal and N170 amplitudes for faces were highly significant (P < 0.001) in bilateral fusiform gyrus and superior temporal gyrus. For cars, the strongest correlations were observed in the parahippocampal region and in the STG (P < 0.005). Besides contributing to clarify the spatiotemporal course of face processing, this study illustrates how ERP information may be used synergistically in fMRI analyses. Parametric designs may be developed further to provide some timing information on fMRI activity and help identify the generators of ERP signals.
Bahrami, Sheyda; Shamsi, Mousa
2017-01-01
Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Pan, Xiaohong; Liu, Jiangang
2007-03-01
The purpose of this paper is to compare between EEG source localization and fMRI during emotional processing. 108 pictures for EEG (categorized as positive, negative and neutral) and 72 pictures for fMRI were presented to 24 healthy, right-handed subjects. The fMRI data were analyzed using statistical parametric mapping with SPM2. LORETA was applied to grand averaged ERP data to localize intracranial sources. Statistical analysis was implemented to compare spatiotemporal activation of fMRI and EEG. The fMRI results are in accordance with EEG source localization to some extent, while part of mismatch in localization between the two methods was also observed. In the future we should apply the method for simultaneous recording of EEG and fMRI to our study.
Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel
2016-10-01
Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
When We like What We Know--A Parametric fMRI Analysis of Beauty and Familiarity
ERIC Educational Resources Information Center
Bohrn, Isabel C.; Altmann, Ulrike; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.
2013-01-01
This paper presents a neuroscientific study of aesthetic judgments on written texts. In an fMRI experiment participants read a number of proverbs without explicitly evaluating them. In a post-scan rating they rated each item for familiarity and beauty. These individual ratings were correlated with the functional data to investigate the neural…
Bansal, Ravi; Peterson, Bradley S
2018-06-01
Identifying regional effects of interest in MRI datasets usually entails testing a priori hypotheses across many thousands of brain voxels, requiring control for false positive findings in these multiple hypotheses testing. Recent studies have suggested that parametric statistical methods may have incorrectly modeled functional MRI data, thereby leading to higher false positive rates than their nominal rates. Nonparametric methods for statistical inference when conducting multiple statistical tests, in contrast, are thought to produce false positives at the nominal rate, which has thus led to the suggestion that previously reported studies should reanalyze their fMRI data using nonparametric tools. To understand better why parametric methods may yield excessive false positives, we assessed their performance when applied both to simulated datasets of 1D, 2D, and 3D Gaussian Random Fields (GRFs) and to 710 real-world, resting-state fMRI datasets. We showed that both the simulated 2D and 3D GRFs and the real-world data contain a small percentage (<6%) of very large clusters (on average 60 times larger than the average cluster size), which were not present in 1D GRFs. These unexpectedly large clusters were deemed statistically significant using parametric methods, leading to empirical familywise error rates (FWERs) as high as 65%: the high empirical FWERs were not a consequence of parametric methods failing to model spatial smoothness accurately, but rather of these very large clusters that are inherently present in smooth, high-dimensional random fields. In fact, when discounting these very large clusters, the empirical FWER for parametric methods was 3.24%. Furthermore, even an empirical FWER of 65% would yield on average less than one of those very large clusters in each brain-wide analysis. Nonparametric methods, in contrast, estimated distributions from those large clusters, and therefore, by construct rejected the large clusters as false positives at the nominal FWERs. Those rejected clusters were outlying values in the distribution of cluster size but cannot be distinguished from true positive findings without further analyses, including assessing whether fMRI signal in those regions correlates with other clinical, behavioral, or cognitive measures. Rejecting the large clusters, however, significantly reduced the statistical power of nonparametric methods in detecting true findings compared with parametric methods, which would have detected most true findings that are essential for making valid biological inferences in MRI data. Parametric analyses, in contrast, detected most true findings while generating relatively few false positives: on average, less than one of those very large clusters would be deemed a true finding in each brain-wide analysis. We therefore recommend the continued use of parametric methods that model nonstationary smoothness for cluster-level, familywise control of false positives, particularly when using a Cluster Defining Threshold of 2.5 or higher, and subsequently assessing rigorously the biological plausibility of the findings, even for large clusters. Finally, because nonparametric methods yielded a large reduction in statistical power to detect true positive findings, we conclude that the modest reduction in false positive findings that nonparametric analyses afford does not warrant a re-analysis of previously published fMRI studies using nonparametric techniques. Copyright © 2018 Elsevier Inc. All rights reserved.
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs
Eklund, Anders; Dufort, Paul; Villani, Mattias; LaConte, Stephen
2014-01-01
Analysis of functional magnetic resonance imaging (fMRI) data is becoming ever more computationally demanding as temporal and spatial resolutions improve, and large, publicly available data sets proliferate. Moreover, methodological improvements in the neuroimaging pipeline, such as non-linear spatial normalization, non-parametric permutation tests and Bayesian Markov Chain Monte Carlo approaches, can dramatically increase the computational burden. Despite these challenges, there do not yet exist any fMRI software packages which leverage inexpensive and powerful graphics processing units (GPUs) to perform these analyses. Here, we therefore present BROCCOLI, a free software package written in OpenCL (Open Computing Language) that can be used for parallel analysis of fMRI data on a large variety of hardware configurations. BROCCOLI has, for example, been tested with an Intel CPU, an Nvidia GPU, and an AMD GPU. These tests show that parallel processing of fMRI data can lead to significantly faster analysis pipelines. This speedup can be achieved on relatively standard hardware, but further, dramatic speed improvements require only a modest investment in GPU hardware. BROCCOLI (running on a GPU) can perform non-linear spatial normalization to a 1 mm3 brain template in 4–6 s, and run a second level permutation test with 10,000 permutations in about a minute. These non-parametric tests are generally more robust than their parametric counterparts, and can also enable more sophisticated analyses by estimating complicated null distributions. Additionally, BROCCOLI includes support for Bayesian first-level fMRI analysis using a Gibbs sampler. The new software is freely available under GNU GPL3 and can be downloaded from github (https://github.com/wanderine/BROCCOLI/). PMID:24672471
NIRS-SPM: statistical parametric mapping for near infrared spectroscopy
NASA Astrophysics Data System (ADS)
Tak, Sungho; Jang, Kwang Eun; Jung, Jinwook; Jang, Jaeduck; Jeong, Yong; Ye, Jong Chul
2008-02-01
Even though there exists a powerful statistical parametric mapping (SPM) tool for fMRI, similar public domain tools are not available for near infrared spectroscopy (NIRS). In this paper, we describe a new public domain statistical toolbox called NIRS-SPM for quantitative analysis of NIRS signals. Specifically, NIRS-SPM statistically analyzes the NIRS data using GLM and makes inference as the excursion probability which comes from the random field that are interpolated from the sparse measurement. In order to obtain correct inference, NIRS-SPM offers the pre-coloring and pre-whitening method for temporal correlation estimation. For simultaneous recording NIRS signal with fMRI, the spatial mapping between fMRI image and real coordinate in 3-D digitizer is estimated using Horn's algorithm. These powerful tools allows us the super-resolution localization of the brain activation which is not possible using the conventional NIRS analysis tools.
Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study
Shen, Hui; Chau, Desmond K. P.; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen
2016-01-01
Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions. PMID:27779211
Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study.
Shen, Hui; Chau, Desmond K P; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen
2016-10-25
Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.
Potvin, Stéphane; Tikàsz, Andràs; Richard-Devantoy, Stéphane; Lungu, Ovidiu; Dumais, Alexandre
2018-01-01
Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ - S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task . A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ - S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making.
Richard-Devantoy, Stéphane; Dumais, Alexandre
2018-01-01
Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S) and 19 without a history of suicidal attempt (SCZ − S). Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task. A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation), relative to both SCZ − S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making. PMID:29686902
Mandelkow, Hendrik; de Zwart, Jacco A.; Duyn, Jeff H.
2016-01-01
Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. PMID:27065832
Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.
Hu, Sien; Ide, Jaime S; Zhang, Sheng; Sinha, Rajita; Li, Chiang-Shan R
2015-01-01
Our previous work characterized altered cerebral activations during cognitive control in individuals with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust behavior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural correlates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD. Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the study. fMRI data were pre-processed and modeled with SPM8. We modeled fMRI signals at trial onset with individual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared regional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT). Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect - a correlation between p(Stop) and RT during go trials - and the magnitude of sequential effect is diminished, suggesting a deficit in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD showed deactivation of the perigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of the pgACC to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is correlated with increased activation of the thalamus and cerebellum in AD during conflict anticipation. The current results highlight altered proactive control that may serve as an additional behavioral and neural marker of alcohol dependence.
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
Bien, Nina; Sack, Alexander T
2014-07-01
In the current study we aimed to empirically test previously proposed accounts of a division of labour between the left and right posterior parietal cortices during visuospatial mental imagery. The representation of mental images in the brain has been a topic of debate for several decades. Although the posterior parietal cortex is involved bilaterally, previous studies have postulated that hemispheric specialisation might result in a division of labour between the left and right parietal cortices. In the current fMRI study, we used an elaborated version of a behaviourally-controlled spatial imagery paradigm, the mental clock task, which involves mental image generation and a subsequent spatial comparison between two angles. By systematically varying the difference between the two angles that are mentally compared, we induced a symbolic distance effect: smaller differences between the two angles result in higher task difficulty. We employed parametrically weighed brain imaging to reveal brain areas showing a graded activation pattern in accordance with the induced distance effect. The parametric difficulty manipulation influenced behavioural data and brain activation patterns in a similar matter. Moreover, since this difficulty manipulation only starts to play a role from the angle comparison phase onwards, it allows for a top-down dissociation between the initial mental image formation, and the subsequent angle comparison phase of the spatial imagery task. Employing parametrically weighed fMRI analysis enabled us to top-down disentangle brain activation related to mental image formation, and activation reflecting spatial angle comparison. The results provide first empirical evidence for the repeatedly proposed division of labour between the left and right posterior parietal cortices during spatial imagery. Copyright © 2014 Elsevier Inc. All rights reserved.
Kucian, Karin; Loenneker, Thomas; Martin, Ernst; von Aster, Michael
2011-01-01
This study investigated areas of brain activation related to non-symbolic distance effects in children with and without developmental dyscalculia (DD). We examined 15 children with DD (11.3 years) and 15 controls (10.6 years) by means of functional magnetic resonance imaging (fMRI). Both groups displayed similar behavioral performance, but differences in brain activation were observed, particularly in the supplementary motor area and the right fusiform gyrus, where children with DD demonstrated stronger activation. These results suggest that dyscalculic children engage areas attributed to higher difficulty in response selection more than control children, possibly due to a deficient development of a spatial number representation in DD.
Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis
2017-12-01
Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis
2017-01-01
Abstract. Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp–brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity. PMID:28386575
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Chao-Gan, Yan; Yu-Feng, Zang
2010-01-01
Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.
A longitudinal model for functional connectivity networks using resting-state fMRI.
Hart, Brian; Cribben, Ivor; Fiecas, Mark
2018-06-04
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
fMRI paradigm designing and post-processing tools
James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan
2014-01-01
In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001
2006-08-01
characterizing brain areas using fMRI activation during parametric variations of attentional load.Neuron, 2001, 32: 737–745. Doran, S . M., Van Dongen...four nouns. Three images collected at the begin- ning of each run were omitted form the analysis. The entire task lasted 300 s . Data Analysis fMRI data...The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the
Saggar, Manish; Quintin, Eve-Marie; Kienitz, Eliza; Bott, Nicholas T; Sun, Zhaochun; Hong, Wei-Chen; Chien, Yin-hsuan; Liu, Ning; Dougherty, Robert F; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L
2015-05-28
A novel game-like and creativity-conducive fMRI paradigm is developed to assess the neural correlates of spontaneous improvisation and figural creativity in healthy adults. Participants were engaged in the word-guessing game of Pictionary(TM), using an MR-safe drawing tablet and no explicit instructions to be "creative". Using the primary contrast of drawing a given word versus drawing a control word (zigzag), we observed increased engagement of cerebellum, thalamus, left parietal cortex, right superior frontal, left prefrontal and paracingulate/cingulate regions, such that activation in the cingulate and left prefrontal cortices negatively influenced task performance. Further, using parametric fMRI analysis, increasing subjective difficulty ratings for drawing the word engaged higher activations in the left pre-frontal cortices, whereas higher expert-rated creative content in the drawings was associated with increased engagement of bilateral cerebellum. Altogether, our data suggest that cerebral-cerebellar interaction underlying implicit processing of mental representations has a facilitative effect on spontaneous improvisation and figural creativity.
Saggar, Manish; Quintin, Eve-Marie; Kienitz, Eliza; Bott, Nicholas T.; Sun, Zhaochun; Hong, Wei-Chen; Chien, Yin-hsuan; Liu, Ning; Dougherty, Robert F.; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L.
2015-01-01
A novel game-like and creativity-conducive fMRI paradigm is developed to assess the neural correlates of spontaneous improvisation and figural creativity in healthy adults. Participants were engaged in the word-guessing game of PictionaryTM, using an MR-safe drawing tablet and no explicit instructions to be “creative”. Using the primary contrast of drawing a given word versus drawing a control word (zigzag), we observed increased engagement of cerebellum, thalamus, left parietal cortex, right superior frontal, left prefrontal and paracingulate/cingulate regions, such that activation in the cingulate and left prefrontal cortices negatively influenced task performance. Further, using parametric fMRI analysis, increasing subjective difficulty ratings for drawing the word engaged higher activations in the left pre-frontal cortices, whereas higher expert-rated creative content in the drawings was associated with increased engagement of bilateral cerebellum. Altogether, our data suggest that cerebral-cerebellar interaction underlying implicit processing of mental representations has a facilitative effect on spontaneous improvisation and figural creativity. PMID:26018874
Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI
NASA Astrophysics Data System (ADS)
Gkiatis, K.; Bromis, K.; Kakkos, I.; Karanasiou, I. S.; Matsopoulos, G. K.; Garganis, K.
2017-11-01
Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI
Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.
2018-01-01
Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy.
Gupta, Shikha; Kumaran, Senthil S; Saxena, Rohit; Gudwani, Sunita; Menon, Vimala; Sharma, Pradeep
2016-08-01
Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.
Lorey, Britta; Pilgramm, Sebastian; Bischoff, Matthias; Stark, Rudolf; Vaitl, Dieter; Kindermann, Stefan; Munzert, Jörn; Zentgraf, Karen
2011-01-01
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas. PMID:21655298
The supplementary motor area in motor and perceptual time processing: fMRI studies.
Macar, Françoise; Coull, Jennifer; Vidal, Franck
2006-06-01
The neural bases of timing mechanisms in the second-to-minute range are currently investigated using multidisciplinary approaches. This paper documents the involvement of the supplementary motor area (SMA) in the encoding of target durations by reporting convergent fMRI data from motor and perceptual timing tasks. Event-related fMRI was used in two temporal procedures, involving (1) the production of an accurate interval as compared to an accurate force, and (2) a dual-task of time and colour discrimination with parametric manipulation of the level of attention attributed to each parameter. The first study revealed greater activation of the SMA proper in skilful control of time compared to force. The second showed that increasing attentional allocation to time increased activity in a cortico-striatal network including the pre-SMA (in contrast with the occipital cortex for increasing attention to colour). Further, the SMA proper was sensitive to the attentional modulation cued prior to the time processing period. Taken together, these data and related literature suggest that the SMA plays a key role in time processing as part of the striato-cortical pathway previously identified by animal studies, human neuropsychology and neuroimaging.
Hauk, Olaf; Davis, Matthew H; Pulvermüller, Friedemann
2008-09-01
Psycholinguistic research has documented a range of variables that influence visual word recognition performance. Many of these variables are highly intercorrelated. Most previous studies have used factorial designs, which do not exploit the full range of values available for continuous variables, and are prone to skewed stimulus selection as well as to effects of the baseline (e.g. when contrasting words with pseudowords). In our study, we used a parametric approach to study the effects of several psycholinguistic variables on brain activation. We focussed on the variable word frequency, which has been used in numerous previous behavioural, electrophysiological and neuroimaging studies, in order to investigate the neuronal network underlying visual word processing. Furthermore, we investigated the variable orthographic typicality as well as a combined variable for word length and orthographic neighbourhood size (N), for which neuroimaging results are still either scarce or inconsistent. Data were analysed using multiple linear regression analysis of event-related fMRI data acquired from 21 subjects in a silent reading paradigm. The frequency variable correlated negatively with activation in left fusiform gyrus, bilateral inferior frontal gyri and bilateral insulae, indicating that word frequency can affect multiple aspects of word processing. N correlated positively with brain activity in left and right middle temporal gyri as well as right inferior frontal gyrus. Thus, our analysis revealed multiple distinct brain areas involved in visual word processing within one data set.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients.
Meda, Shashwath A; Bhattarai, Manish; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D
2008-09-01
Identifying intermediate phenotypes of genetically complex psychiatric illnesses such as schizophrenia is important. First-degree relatives of persons with schizophrenia have increased genetic risk for the disorder and tend to show deficits on working memory (WM) tasks. An open question is the relationship between such behavioral endophenotypes and the corresponding brain activation patterns revealed during functional imaging. We measured task performance during a Sternberg WM task and used functional magnetic resonance imaging (fMRI) to assess whether 23 non-affected first-degree relatives showed altered performance and functional activation compared to 43 matched healthy controls. We predicted that a significant proportion of unaffected first-degree relatives would show either aberrant task performance and/or abnormal related fMRI blood oxygen level dependent (BOLD) patterns. While task performance in the relatives was not different than that of controls they were significantly slower in responding to probes., Schizophrenia relatives displayed reduced activation, most markedly in bilateral dorsolateral/ventrolateral (DLPFC/VLPFC) prefrontal and posterior parietal cortex when encoding stimuli and in bilateral DLPFC and parietal areas during response selection. Additionally, fMRI differences in both conditions were modulated by load, with a parametric increase in between-group differences with load in several key regions during encoding and an opposite effect during response selection.
Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel
2016-05-01
The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .
Decrease in fMRI brain activation during working memory performed after sleeping under 10 lux light.
Kang, Seung-Gul; Yoon, Ho-Kyoung; Cho, Chul-Hyun; Kwon, Soonwook; Kang, June; Park, Young-Min; Lee, Eunil; Kim, Leen; Lee, Heon-Jeong
2016-11-09
The aim of this study was to investigate the effect of exposure to dim light at night (dLAN) when sleeping on functional brain activation during a working-memory tasks. We conducted the brain functional magnetic resonance imaging (fMRI) analysis on 20 healthy male subjects. All participants slept in a polysomnography laboratory without light exposure on the first and second nights and under a dim-light condition of either 5 or 10 lux on the third night. The fMRI scanning was conducted during n-back tasks after second and third nights. Statistical parametric maps revealed less activation in the right inferior frontal gyrus (IFG) after exposure to 10-lux light. The brain activity in the right and left IFG areas decreased more during the 2-back task than during the 1- or 0-back task in the 10-lux group. The exposure to 5-lux light had no significant effect on brain activities. The exposure to dLAN might influence the brain function which is related to the cognition.
The representation of object viewpoint in human visual cortex.
Andresen, David R; Vinberg, Joakim; Grill-Spector, Kalanit
2009-04-01
Understanding the nature of object representations in the human brain is critical for understanding the neural basis of invariant object recognition. However, the degree to which object representations are sensitive to object viewpoint is unknown. Using fMRI we employed a parametric approach to examine the sensitivity to object view as a function of rotation (0 degrees-180 degrees ), category (animal/vehicle) and fMRI-adaptation paradigm (short or long-lagged). For both categories and fMRI-adaptation paradigms, object-selective regions recovered from adaptation when a rotated view of an object was shown after adaptation to a specific view of that object, suggesting that representations are sensitive to object rotation. However, we found evidence for differential representations across categories and ventral stream regions. Rotation cross-adaptation was larger for animals than vehicles, suggesting higher sensitivity to vehicle than animal rotation, and was largest in the left fusiform/occipito-temporal sulcus (pFUS/OTS), suggesting that this region has low sensitivity to rotation. Moreover, right pFUS/OTS and FFA responded more strongly to front than back views of animals (without adaptation) and rotation cross-adaptation depended both on the level of rotation and the adapting view. This result suggests a prevalence of neurons that prefer frontal views of animals in fusiform regions. Using a computational model of view-tuned neurons, we demonstrate that differential neural view tuning widths and relative distributions of neural-tuned populations in fMRI voxels can explain the fMRI results. Overall, our findings underscore the utility of parametric approaches for studying the neural basis of object invariance and suggest that there is no complete invariance to object view in the human ventral stream.
Rajesh, P G; Thomas, Bejoy; Pammi, V S Chandrasekhar; Kesavadas, C; Alexander, Aley; Radhakrishnan, Ashalatha; Thomas, S V; Menon, R N
2018-05-26
To validate concurrent utility of within-scanner encoding and delayed recognition-memory paradigms to ascertain hippocampal activations during task-based memory fMRI. Memory paradigms were designed for faces, word-pairs and abstract designs. A deep-encoding task was designed comprising of a total of 9 cycles run within a 1.5T MRI scanner. A recall session was performed after 1 h within the scanner using an event-related design. Group analysis was done with 'correct-incorrect' responses applied as parametric modulators in Statistical Parametric Mapping version 8 using boot-strap method to enable estimation of laterality indices (LI) using custom anatomical masks involving the medio-basal temporal structures. Twenty seven subjects with drug-resistant mesial temporal lobe epilepsy due to hippocampal sclerosis (MTLE-HS) [17 patients of left-MTLE and 10 patients of right-MTLE] and 21 right handed age-matched healthy controls (HC) were recruited. For the encoding paradigm blood oxygen level dependent (BOLD) responses in HC demonstrated right laterality for faces, left laterality for word pairs, and bilaterality for design encoding over the regions of interest. Both right and left MTLE-HS groups revealed left lateralisation for word-pair encoding, bilateral activation for face encoding, with design encoding in right MTLE-HS demonstrating a left shift. As opposed to lateralization shown in controls, group analysis of cued-recall BOLD signals acquired within scanner in left MTLE-HS demonstrated right lateralization for word-pairs with bilaterality for faces and designs. The right MTLE-HS group demonstrated bilateral activations for faces, word-pairs and designs. Recall-based fMRI paradigms indicate hippocampal plasticity in MTLE-HS, maximal for word-pair associate recall tasks. Copyright © 2018 Elsevier B.V. All rights reserved.
Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.
Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei
2017-06-01
Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.
Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.
Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel
2014-07-01
Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.
Mapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI.
Caballero-Gaudes, César; Van de Ville, Dimitri; Grouiller, Frédéric; Thornton, Rachel; Lemieux, Louis; Seeck, Margitta; Lazeyras, François; Vulliemoz, Serge
2013-03-01
The mapping of haemodynamic changes related to interictal epileptic discharges (IED) in simultaneous electroencephalography (EEG) and functional MRI (fMRI) studies is usually carried out by means of EEG-correlated fMRI analyses where the EEG information specifies the model to test on the fMRI signal. The sensitivity and specificity critically depend on the accuracy of EEG detection and the validity of the haemodynamic model. In this study we investigated whether an information theoretic analysis based on the mutual information (MI) between the presence of epileptic activity on EEG and the fMRI data can provide further insights into the haemodynamic changes related to interictal epileptic activity. The important features of MI are that: 1) both recording modalities are treated symmetrically; 2) no requirement for a-priori models for the haemodynamic response function, or assumption of a linear relationship between the spiking activity and BOLD responses, and 3) no parametric model for the type of noise or its probability distribution is necessary for the computation of MI. Fourteen patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI and intracranial EEG and/or surgical resection with positive postoperative outcome (seizure freedom or considerable reduction in seizure frequency) was available in 7/14 patients. We used nonparametric statistical assessment of the MI maps based on a four-dimensional wavelet packet resampling method. The results of MI were compared to the statistical parametric maps obtained with two conventional General Linear Model (GLM) analyses based on the informed basis set (canonical HRF and its temporal and dispersion derivatives) and the Finite Impulse Response (FIR) models. The MI results were concordant with the electro-clinically or surgically defined epileptogenic area in 8/14 patients and showed the same degree of concordance as the results obtained with the GLM-based methods in 12 patients (7 concordant and 5 discordant). In one patient, the information theoretic analysis improved the delineation of the irritative zone compared with the GLM-based methods. Our findings suggest that an information theoretic analysis can provide clinically relevant information about the BOLD signal changes associated with the generation and propagation of interictal epileptic discharges. The concordance between the MI, GLM and FIR maps support the validity of the assumptions adopted in GLM-based analyses of interictal epileptic activity with EEG-fMRI in such a manner that they do not significantly constrain the localization of the epileptogenic zone. Copyright © 2012 Elsevier Inc. All rights reserved.
BOLD responses in reward regions to hypothetical and imaginary monetary rewards
Miyapuram, Krishna P.; Tobler, Philippe N.; Gregorios-Pippas, Lucy; Schultz, Wolfram
2015-01-01
Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewards can overcome the limitations of smaller monetary rewards but it is less well known whether predictors of hypothetical rewards activate reward regions. In two experiments, visual stimuli were associated with hypothetical monetary rewards. In Experiment 1, we used stimuli predicting either visually presented or imagined hypothetical monetary rewards, together with non-rewarding control pictures. Activations to reward predictive stimuli occurred in reward regions, namely the medial orbitofrontal cortex and midbrain. In Experiment 2, we parametrically varied the amount of visually presented hypothetical monetary reward keeping constant the amount of actually received reward. Graded activation in midbrain was observed to stimuli predicting increasing hypothetical rewards. The results demonstrate the efficacy of using hypothetical monetary rewards in fMRI studies. PMID:21985912
BOLD responses in reward regions to hypothetical and imaginary monetary rewards.
Miyapuram, Krishna P; Tobler, Philippe N; Gregorios-Pippas, Lucy; Schultz, Wolfram
2012-01-16
Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewards can overcome the limitations of smaller monetary rewards but it is less well known whether predictors of hypothetical rewards activate reward regions. In two experiments, visual stimuli were associated with hypothetical monetary rewards. In Experiment 1, we used stimuli predicting either visually presented or imagined hypothetical monetary rewards, together with non-rewarding control pictures. Activations to reward predictive stimuli occurred in reward regions, namely the medial orbitofrontal cortex and midbrain. In Experiment 2, we parametrically varied the amount of visually presented hypothetical monetary reward keeping constant the amount of actually received reward. Graded activation in midbrain was observed to stimuli predicting increasing hypothetical rewards. The results demonstrate the efficacy of using hypothetical monetary rewards in fMRI studies. Copyright © 2011 Elsevier Inc. All rights reserved.
The power of emotional valence-from cognitive to affective processes in reading.
Altmann, Ulrike; Bohrn, Isabel C; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M
2012-01-01
The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy.
The power of emotional valence—from cognitive to affective processes in reading
Altmann, Ulrike; Bohrn, Isabel C.; Lubrich, Oliver; Menninghaus, Winfried; Jacobs, Arthur M.
2012-01-01
The comprehension of stories requires the reader to imagine the cognitive and affective states of the characters. The content of many stories is unpleasant, as they often deal with conflict, disturbance or crisis. Nevertheless, unpleasant stories can be liked and enjoyed. In this fMRI study, we used a parametric approach to examine (1) the capacity of increasing negative valence of story contents to activate the mentalizing network (cognitive and affective theory of mind, ToM), and (2) the neural substrate of liking negatively valenced narratives. A set of 80 short narratives was compiled, ranging from neutral to negative emotional valence. For each story mean rating values on valence and liking were obtained from a group of 32 participants in a prestudy, and later included as parametric regressors in the fMRI analysis. Another group of 24 participants passively read the narratives in a three Tesla MRI scanner. Results revealed a stronger engagement of affective ToM-related brain areas with increasingly negative story valence. Stories that were unpleasant, but simultaneously liked, engaged the medial prefrontal cortex (mPFC), which might reflect the moral exploration of the story content. Further analysis showed that the more the mPFC becomes engaged during the reading of negatively valenced stories, the more coactivation can be observed in other brain areas related to the neural processing of affective ToM and empathy. PMID:22754519
Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.
Makni, Salima; Beckmann, Christian; Smith, Steve; Woolrich, Mark
2008-10-01
In Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993], a particular case of the Linear Dynamical Systems (LDSs) was used to model the dynamic behavior of the BOLD response in functional MRI. This state-space model, called bilinear dynamical system (BDS), is used to deconvolve the fMRI time series in order to estimate the neuronal response induced by the different stimuli of the experimental paradigm. The BDS model parameters are estimated using an expectation-maximization (EM) algorithm proposed by Ghahramani and Hinton [Ghahramani, Z., Hinton, G.E. 1996. Parameter Estimation for Linear Dynamical Systems. Technical Report, Department of Computer Science, University of Toronto]. In this paper we introduce modifications to the BDS model in order to explicitly model the spatial variations of the haemodynamic response function (HRF) in the brain using a non-parametric approach. While in Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993] the relationship between neuronal activation and fMRI signals is formulated as a first-order convolution with a kernel expansion using basis functions (typically two or three), in this paper, we argue in favor of a spatially adaptive GLM in which a local non-parametric estimation of the HRF is performed. Furthermore, in order to overcome the overfitting problem typically associated with simple EM estimates, we propose a full Variational Bayes (VB) solution to infer the BDS model parameters. We demonstrate the usefulness of our model which is able to estimate both the neuronal activity and the haemodynamic response function in every voxel of the brain. We first examine the behavior of this approach when applied to simulated data with different temporal and noise features. As an example we will show how this method can be used to improve interpretability of estimates from an independent component analysis (ICA) analysis of fMRI data. We finally demonstrate its use on real fMRI data in one slice of the brain.
Han, Hyemin; Glenn, Andrea L
2018-06-01
In fMRI research, the goal of correcting for multiple comparisons is to identify areas of activity that reflect true effects, and thus would be expected to replicate in future studies. Finding an appropriate balance between trying to minimize false positives (Type I error) while not being too stringent and omitting true effects (Type II error) can be challenging. Furthermore, the advantages and disadvantages of these types of errors may differ for different areas of study. In many areas of social neuroscience that involve complex processes and considerable individual differences, such as the study of moral judgment, effects are typically smaller and statistical power weaker, leading to the suggestion that less stringent corrections that allow for more sensitivity may be beneficial and also result in more false positives. Using moral judgment fMRI data, we evaluated four commonly used methods for multiple comparison correction implemented in Statistical Parametric Mapping 12 by examining which method produced the most precise overlap with results from a meta-analysis of relevant studies and with results from nonparametric permutation analyses. We found that voxelwise thresholding with familywise error correction based on Random Field Theory provides a more precise overlap (i.e., without omitting too few regions or encompassing too many additional regions) than either clusterwise thresholding, Bonferroni correction, or false discovery rate correction methods.
Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling
2017-01-01
In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies. PMID:28529472
Yang, Ping; Fan, Chenggui; Wang, Min; Li, Ling
2017-01-01
In simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) studies, average reference (AR), and digitally linked mastoid (LM) are popular re-referencing techniques in event-related potential (ERP) analyses. However, they may introduce their own physiological signals and alter the EEG/ERP outcome. A reference electrode standardization technique (REST) that calculated a reference point at infinity was proposed to solve this problem. To confirm the advantage of REST in ERP analyses of synchronous EEG-fMRI studies, we compared the reference effect of AR, LM, and REST on task-related ERP results of a working memory task during an fMRI scan. As we hypothesized, we found that the adopted reference did not change the topography map of ERP components (N1 and P300 in the present study), but it did alter the task-related effect on ERP components. LM decreased or eliminated the visual working memory (VWM) load effect on P300, and the AR distorted the distribution of VWM location-related effect at left posterior electrodes as shown in the statistical parametric scalp mapping (SPSM) of N1. ERP cortical source estimates, which are independent of the EEG reference choice, were used as the golden standard to infer the relative utility of different references on the ERP task-related effect. By comparison, REST reference provided a more integrated and reasonable result. These results were further confirmed by the results of fMRI activations and a corresponding EEG-only study. Thus, we recommend the REST, especially with a realistic head model, as the optimal reference method for ERP data analysis in simultaneous EEG-fMRI studies.
Xiao, Fu-Long; Gao, Pei-Yi; Qian, Tian-Yi; Sui, Bin-Bin; Xue, Jing; Zhou, Jian; Lin, Yan
2017-05-01
Functional magnetic resonance imaging (fMRI) mapping can present the activated cortical area during movement, while little is known about precise location in facial and tongue movements. To investigate the representation of facial and tongue movements by task fMRI. Twenty right-handed healthy subjects were underwent block design task fMRI examination. Task movements included lip pursing, cheek bulging, grinning and vertical tongue excursion. Statistical parametric mapping (SPM8) was applied to analysis the data. One-sample t-test was used to calculate the common activation area between facial and tongue movements. Also, paired t-test was used to test for areas of over- or underactivation in tongue movement compared with each group of facial movements. The common areas within facial and tongue movements suggested the similar motor circuits of activation in both movements. Prior activation in tongue movement was situated laterally and inferiorly in sensorimotor area relative to facial movements. Prior activation of tongue movement was investigated in left superior parietal lobe relative to lip pursing. Also, prior activation in bilateral cuneus lobe in grinning compared with tongue movement was detected. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Exploiting Complexity Information for Brain Activation Detection
Zhang, Yan; Liang, Jiali; Lin, Qiang; Hu, Zhenghui
2016-01-01
We present a complexity-based approach for the analysis of fMRI time series, in which sample entropy (SampEn) is introduced as a quantification of the voxel complexity. Under this hypothesis the voxel complexity could be modulated in pertinent cognitive tasks, and it changes through experimental paradigms. We calculate the complexity of sequential fMRI data for each voxel in two distinct experimental paradigms and use a nonparametric statistical strategy, the Wilcoxon signed rank test, to evaluate the difference in complexity between them. The results are compared with the well known general linear model based Statistical Parametric Mapping package (SPM12), where a decided difference has been observed. This is because SampEn method detects brain complexity changes in two experiments of different conditions and the data-driven method SampEn evaluates just the complexity of specific sequential fMRI data. Also, the larger and smaller SampEn values correspond to different meanings, and the neutral-blank design produces higher predictability than threat-neutral. Complexity information can be considered as a complementary method to the existing fMRI analysis strategies, and it may help improving the understanding of human brain functions from a different perspective. PMID:27045838
Juenger, Hendrik; Kuhnke, Nicola; Braun, Christoph; Ummenhofer, Frank; Wilke, Marko; Walther, Michael; Koerte, Inga; Delvendahl, Igor; Jung, Nikolai H; Berweck, Steffen; Staudt, Martin; Mall, Volker
2013-10-01
Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always remains in the lesioned hemisphere. Here, we report on differences in exercise-induced neuroplasticity between individuals with such ipsilateral motor projections (ipsi) and individuals with early unilateral lesions but 'healthy' contralateral motor projections (contra). Sixteen children and young adults with congenital hemiparesis participated in the study (contralateral [Contra] group: n=7, four females, three males; age range 10-30y, median age 16y; ipsilateral [Ipsi] group: n=9, four females, five males; age range 11-31y, median age 12y; Manual Ability Classification System levels I to II in all individuals in both groups). The participants underwent a 12-day intervention of constraint-induced movement therapy (CIMT), consisting of individual training (2h/d) and group training (8h/d). Before and after CIMT, hand function was tested using the Wolf Motor Function Test (WMFT) and diverging neuroplastic effects were observed by transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). Statistical analysis of TMS data was performed using the non-parametric Wilcoxon signed-rank test for pair-wise comparison; for fMRI standard statistical parametric and non-parametric mapping (SPM5, SnPM3) procedures (first level/second level) were carried out. Statistical analyses of MEG data involved analyses of variance (ANOVA) and t-tests. While MEG demonstrated a significant increase in S1 activation in both groups (p=0.012), TMS showed a decrease in M1 excitability in the Ipsi group (p=0.036), but an increase in M1 excitability in the Contra group (p=0.043). Similarly, fMRI showed a decrease in M1 activation in the Ipsi group, but an increase in activation in the M1-S1 region in the Contra group (for both groups p<0.001 [SnPM3] within the search volume). Different patterns of sensorimotor (re)organization in individuals with early unilateral lesions show, on a cortical level, different patterns of exercise-induced neuroplasticity. The findings help to improve the understanding of the general principles of sensorimotor learning and will help to develop more specific therapies for different pathologies in congenital hemiparesis. © 2013 Mac Keith Press.
The neural bases underlying social risk perception in purchase decisions.
Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta
2014-05-01
Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental processes involved in purchase decisions. Copyright © 2014 Elsevier Inc. All rights reserved.
Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E.L.
2011-01-01
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while monitoring CA1 and CA3/dentate for separation and completion-like signals using high-resolution fMRI. In the CA1, activity varied in a graded fashion in response to increases in the change in input. In contrast, the CA3/dentate showed a stepwise transfer function that was highly sensitive to small changes in input. PMID:21164173
Spectral decompositions of multiple time series: a Bayesian non-parametric approach.
Macaro, Christian; Prado, Raquel
2014-01-01
We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.
Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.
2010-01-01
Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363
ERIC Educational Resources Information Center
Lacy, Joyce W.; Yassa, Michael A.; Stark, Shauna M.; Muftuler, L. Tugan; Stark, Craig E. L.
2011-01-01
Producing and maintaining distinct (orthogonal) neural representations for similar events is critical to avoiding interference in long-term memory. Recently, our laboratory provided the first evidence for separation-like signals in the human CA3/dentate. Here, we extended this by parametrically varying the change in input (similarity) while…
An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data.
Della-Maggiore, Valeria; Chau, Wilkin; Peres-Neto, Pedro R; McIntosh, Anthony R
2002-09-01
We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.
Statistical testing and power analysis for brain-wide association study.
Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng
2018-04-05
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.
Gray, Jeremy R; Bargh, John A; Morsella, Ezequiel
2013-09-01
The study of intrapsychic conflict has long been central to many key theories about the control of behavior. More recently, by focusing on the nature of conflicting processes in the brain, investigators have revealed great insights about controlled versus automatic processes and the nature of self-control. Despite these advances, many theories of cognitive control or self-control remain agnostic about the function of subjective awareness (i.e., basic consciousness). Why people consciously experience some conflicts in the nervous system but not others remains a mystery. One hypothesis is that people become conscious only of conflicts involving competition for the control of skeletal muscle. To test one aspect of this larger hypothesis, in the present study, 14 participants were trained to introspect the feeling of conflict (the urge to make an error during a Stroop color-word interference task) and then were asked to introspect in the same way while sustaining simple compatible and incompatible intentions during fMRI scanning (to move a finger left or right). As predicted, merely sustaining incompatible skeletomotor intentions prior to their execution produced stronger systematic changes in subjective experience than sustaining compatible intentions, as indicated by self-report ratings obtained in the scanner. Similar ratings held for a modified Stroop-like task when contrasting incompatible versus compatible trials also during fMRI scanning. We use subjective ratings as the basis of parametric analyses of fMRI data, focusing a priori on the brain regions involved in action-related urges (e.g., parietal cortex) and cognitive control (e.g., dorsal anterior cingulate cortex, lateral PFC). The results showed that subjective conflict from sustaining incompatible intentions was consistently related to activity in the left post-central gyrus.
Macià, Dídac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan
2018-06-01
There is ample evidence from basic research in neuroscience of the importance of local corticocortical networks. Millimetric resolution is achievable with current functional magnetic resonance imaging (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of IsoDistant Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated isodistant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using red-green-blue color coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multidistance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multidistance IDAC mapping was able to discriminate between gross anatomofunctional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and deactivate during audiovisual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
MANGALATHU-ARUMANA, J.; BEARDSLEY, S. A.; LIEBENTHAL, E.
2012-01-01
The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post- central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI. PMID:22377443
Abnormal resting-state brain activities in patients with first-episode obsessive-compulsive disorder
Niu, Qihui; Yang, Lei; Song, Xueqin; Chu, Congying; Liu, Hao; Zhang, Lifang; Li, Yan; Zhang, Xiang; Cheng, Jingliang; Li, Youhui
2017-01-01
Objective This paper attempts to explore the brain activity of patients with obsessive-compulsive disorder (OCD) and its correlation with the disease at resting duration in patients with first-episode OCD, providing a forceful imaging basis for clinic diagnosis and pathogenesis of OCD. Methods Twenty-six patients with first-episode OCD and 25 healthy controls (HC group; matched for age, sex, and education level) underwent functional magnetic resonance imaging (fMRI) scanning at resting state. Statistical parametric mapping 8, data processing assistant for resting-state fMRI analysis toolkit, and resting state fMRI data analysis toolkit packages were used to process the fMRI data on Matlab 2012a platform, and the difference of regional homogeneity (ReHo) values between the OCD group and HC group was detected with independent two-sample t-test. With age as a concomitant variable, the Pearson correlation analysis was adopted to study the correlation between the disease duration and ReHo value of whole brain. Results Compared with HC group, the ReHo values in OCD group were decreased in brain regions, including left thalamus, right thalamus, right paracentral lobule, right postcentral gyrus, and the ReHo value was increased in the left angular gyrus region. There was a negative correlation between disease duration and ReHo value in the bilateral orbitofrontal cortex (OFC). Conclusion OCD is a multifactorial disease generally caused by abnormal activities of many brain regions at resting state. Worse brain activity of the OFC is related to the OCD duration, which provides a new insight to the pathogenesis of OCD. PMID:28243104
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Reward magnitude tracking by neural populations in ventral striatum
Fiallos, Ana M.; Bricault, Sarah J.; Cai, Lili X.; Worku, Hermoon A.; Colonnese, Matthew T.; Westmeyer, Gil; Jasanoff, Alan
2017-01-01
Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals’ responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes. PMID:27789262
Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I
2000-01-01
OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours. METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI. RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy. CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation. PMID:10990503
Hand grips strength effect on motor function in human brain using fMRI: a pilot study
NASA Astrophysics Data System (ADS)
Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.
2014-11-01
Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.
Evaluation of Second-Level Inference in fMRI Analysis
Roels, Sanne P.; Loeys, Tom; Moerkerke, Beatrijs
2016-01-01
We investigate the impact of decisions in the second-level (i.e., over subjects) inferential process in functional magnetic resonance imaging on (1) the balance between false positives and false negatives and on (2) the data-analytical stability, both proxies for the reproducibility of results. Second-level analysis based on a mass univariate approach typically consists of 3 phases. First, one proceeds via a general linear model for a test image that consists of pooled information from different subjects. We evaluate models that take into account first-level (within-subjects) variability and models that do not take into account this variability. Second, one proceeds via inference based on parametrical assumptions or via permutation-based inference. Third, we evaluate 3 commonly used procedures to address the multiple testing problem: familywise error rate correction, False Discovery Rate (FDR) correction, and a two-step procedure with minimal cluster size. Based on a simulation study and real data we find that the two-step procedure with minimal cluster size results in most stable results, followed by the familywise error rate correction. The FDR results in most variable results, for both permutation-based inference and parametrical inference. Modeling the subject-specific variability yields a better balance between false positives and false negatives when using parametric inference. PMID:26819578
NASA Astrophysics Data System (ADS)
Tamam, S.; Ahmad, A. H.; Aziz, M. E.; Kamil, W. A.
2017-05-01
The aim of the study is to investigate brain responses to acute laser pain when a loved one is nearby. Laser pain stimuli at individual pain threshold were delivered using Th:YAG laser to 17 female participants. The participants were categorised into two groups, Love Hurts or Love Heals, according to their responses to pain stimulation during the presence of their loved ones. fMRI brain activation was obtained using 3 T Philips Achieva MRI scanner utilising blocked design paradigm comprising 15 blocks of stimulation phase and 15 blocks of no stimulation. fMRI images were analysed using statistical parametric mapping (SPM) focusing on random effects (RFX) analysis. We found that both groups activated pain-related areas such as the thalamus, secondary somatosensory cortex, insula and cingulate cortex. However, Love Hurts showed more activity in thalamus, parahippocampal gyrus and hippocampus; while Love Heals showed more activity in the entire part of cingulate cortex during the presence of their loved ones. In conclusion, there may be specific brain regions responsible for modulation of pain due to the presence of a loved one thus manifesting as Love Hurts or Love Heals.
Concept typicality responses in the semantic memory network.
Santi, Andrea; Raposo, Ana; Frade, Sofia; Marques, J Frederico
2016-12-01
For decades concept typicality has been recognized as critical to structuring conceptual knowledge, but only recently has typicality been applied in better understanding the processes engaged by the neurological network underlying semantic memory. This previous work has focused on one region within the network - the Anterior Temporal Lobe (ATL). The ATL responds negatively to concept typicality (i.e., the more atypical the item, the greater the activation in the ATL). To better understand the role of typicality in the entire network, we ran an fMRI study using a category verification task in which concept typicality was manipulated parametrically. We argue that typicality is relevant to both amodal feature integration centers as well as category-specific regions. Both the Inferior Frontal Gyrus (IFG) and ATL demonstrated a negative correlation with typicality, whereas inferior parietal regions showed positive effects. We interpret this in light of functional theories of these regions. Interactions between category and typicality were not observed in regions classically recognized as category-specific, thus, providing an argument against category specific regions, at least with fMRI. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo
2016-03-01
Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Pardini, Matteo; Samson, Rebecca S.; D'Angelo, Egidio; Friston, Karl J.; Toosy, Ahmed T.; Gandini Wheeler‐Kingshott, Claudia A.M.
2015-01-01
Abstract Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event‐related visually guided dynamic power‐grip paradigm with parametric (three) forces (GF) in healthy right‐handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL‐specific and hemisphere‐specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL‐specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand‐side‐independent activations of nonmotor‐specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori‐motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power‐grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments. Hum Brain Mapp 36:5079–5100, 2015. © 2015 Wiley Periodicals, Inc. PMID:26415818
Effects of overnight fasting on working memory-related brain network: an fMRI study.
Chechko, Natalia; Vocke, Sebastian; Habel, Ute; Toygar, Timur; Kuckartz, Lisa; Berthold-Losleben, Mark; Laoutidis, Zacharias G; Orfanos, Stelios; Wassenberg, Annette; Karges, Wölfram; Schneider, Frank; Kohn, Nils
2015-03-01
Glucose metabolism serves as the central source of energy for the human brain. Little is known about the effects of blood glucose level (BGL) on higher-order cognitive functions within a physiological range (e.g., after overnight fasting). In this randomized, placebo-controlled, double blind study, we assessed the impact of overnight fasting (14 h) on brain activation during a working memory task. We sought to mimic BGLs that occur naturally in healthy humans after overnight fasting. After standardized periods of food restriction, 40 (20 male) healthy participants were randomly assigned to receive either glucagon to balance the BGL or placebo (NaCl). A parametric fMRI paradigm, including 2-back and 0-back tasks, was used. Subclinically low BGL following overnight fasting was found to be linked to reduced involvement of the bilateral dorsal midline thalamus and the bilateral basal ganglia, suggesting high sensitivity of those regions to minimal changes in BGLs. Our results indicate that overnight fasting leads to physiologically low levels of glucose, impacting brain activation during working memory tasks even when there are no differences in cognitive performance. © 2014 Wiley Periodicals, Inc.
Yang, Jong-Chul; Park, Kwangsung; Eun, Sung-Jong; Lee, Moo-Suk; Yoon, Jin-Sang; Shin, Il-Seon; Kim, Yong-Ku; Chung, Tae-Woong; Kang, Heoung-Keun; Jeong, Gwang-Woo
2008-03-01
Mental illness is closely related with sexual dysfunction. A number of investigators have reported that depressive women have difficulties in sexual arousal. The purpose of this study was to compare the cerebrocortical regions associated with sexual arousal between the healthy and depressive women using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) technique. Together with nine healthy women (mean age: 40.3), seven depressive women (mean age: 41.7 years, mean Beck Depression Inventory: 35.6, mean Hamilton Rating Scale Depression-17: 34.9) underwent fMRI examinations using a 1.5T MR scanner (Signa Horizon; GE Medical Systems, Milwaukee, WI, USA). The fMRI data were obtained from seven oblique planes using gradient-echo EPI. Sexual stimulation paradigm began with a 1-minute rest and then 4-minute stimulation using an erotic video film. The brain activation maps and their resulting quantification were analyzed by the statistical parametric mapping (SPM99) program. The number of pixels activated by each task was used as brain activity, where the significance of the differences was evaluated by using independent t-test. We measured brain activation areas using BOLD-based fMRI with visual sexual stimulation in healthy volunteers and depressive patients. Healthy women were significantly (P < 0.05) activated in the regions of middle occipital gyrus, middle temporal gyrus, inferior frontal gyrus, insula, hypothalamus, septal area, anterior cingulate gyrus, parahippocampal gyrus, thalamus, and amygdala by erotic visual stimulation. In comparison with the healthy women, the depressive women gave lower activity, especially in the brain regions of hypothalamus (55.5:3.0), septal area (49.6:8.6), anterior cingulate gyrus (23.5:11.0), and parahippocampal gyrus (18.2:5.8). This preliminary study performed by fMRI gives valuable information on differentiation of the activated cerebral regions associated with visually evoked sexual arousal between healthy and depressive women. In addition, these findings might be useful to understand neural mechanisms for female sexual dysfunction in depressive women.
Huang, Huiyuan; Ding, Zhongxiang; Mao, Dewang; Yuan, Jianhua; Zhu, Fangmei; Chen, Shuda; Xu, Yan; Lou, Lin; Feng, Xiaoyan; Qi, Le; Qiu, Wusi; Zhang, Han; Zang, Yu-Feng
2016-10-01
The main goal of brain tumor surgery is to maximize tumor resection while minimizing the risk of irreversible postoperative functional sequelae. Eloquent functional areas should be delineated preoperatively, particularly for patients with tumors near eloquent areas. Functional magnetic resonance imaging (fMRI) is a noninvasive technique that demonstrates great promise for presurgical planning. However, specialized data processing toolkits for presurgical planning remain lacking. Based on several functions in open-source software such as Statistical Parametric Mapping (SPM), Resting-State fMRI Data Analysis Toolkit (REST), Data Processing Assistant for Resting-State fMRI (DPARSF) and Multiple Independent Component Analysis (MICA), here, we introduce an open-source MATLAB toolbox named PreSurgMapp. This toolbox can reveal eloquent areas using comprehensive methods and various complementary fMRI modalities. For example, PreSurgMapp supports both model-based (general linear model, GLM, and seed correlation) and data-driven (independent component analysis, ICA) methods and processes both task-based and resting-state fMRI data. PreSurgMapp is designed for highly automatic and individualized functional mapping with a user-friendly graphical user interface (GUI) for time-saving pipeline processing. For example, sensorimotor and language-related components can be automatically identified without human input interference using an effective, accurate component identification algorithm using discriminability index. All the results generated can be further evaluated and compared by neuro-radiologists or neurosurgeons. This software has substantial value for clinical neuro-radiology and neuro-oncology, including application to patients with low- and high-grade brain tumors and those with epilepsy foci in the dominant language hemisphere who are planning to undergo a temporal lobectomy.
Gizewski, Elke R; Krause, Eva; Schlamann, Marc; Happich, Friederike; Ladd, Mark E; Forsting, Michael; Senf, Wolfgang
2009-02-01
Transsexuals harbor the strong feeling of having been born to the wrong sex. There is a continuing controversial discussion of whether or not transsexualism has a biological representation. Differences between males and females in terms of functional imaging during erotic stimuli have been previously described, revealing gender-specific results. Therefore, we postulated that male-to-female (MTF) transsexuals may show specific cerebral activation differing from their biological gender. Cerebral activation patterns during viewing of erotic film excerpts in functional magnetic resonance imaging (fMRI). Twelve male and 12 female heterosexual volunteers and 12 MTF transsexuals before any treatment viewed erotic film excerpts during fMRI. Additionally, subjective rating of sexual arousal was assessed. Statistics were performed using the Statistical Parametric Mapping software. Significantly enhanced activation for men compared with women was revealed in brain areas involved in erotic processing, i.e., the thalamus, the amygdala, and the orbitofrontal and insular cortex, whereas no specific activation for women was found. When comparing MTF transsexuals with male volunteers, activation patterns similar to female volunteers being compared with male volunteers were revealed. Sexual arousal was assessed using standard rating scales and did not differ significantly for the three groups. We revealed a cerebral activation pattern in MTF transsexuals compared with male controls similar to female controls compared with male controls during viewing of erotic stimuli, indicating a tendency of female-like cerebral processing in transsexualism.
Luo, Qiuling; Mo, Lei
2016-01-01
To test the hypothesis that pleasure from artistic music is intellectual while that from popular music is physiological, this study investigated the different functional mechanisms between aesthetic appreciation of artistic and popular music using fMRI. 18 male non-musicians were scanned while they performed an aesthetic rating task for excerpts of artistic music, popular music and musical notes playing and singing (control). The rating scores of artistic and popular music excerpts were both significantly higher than that of control materials while the scores of them were not different. The fMRI results showed both artistic and popular conditions activated the VS and vmPFC, compared with control condition. When contrasted popular and artistic condition directly, we found popular music activated right putamen, while artistic music activated right mPFC. By parametric analysis, we found the activation of right putamen tracked the aesthetic ratings of popular music, whereas the BOLD signal in right mPFC tracked the aesthetic ratings of artistic music. These results indicate the reward induced by popular music is closer to a primary reward while that induced by artistic music is closer to a secondary reward. We also found artistic music activated ToM areas, including PCC/PC, arMFC and TPJ, when compared with popular music. And these areas also tracked aesthetic ratings of artistic music but not those of popular music. These results imply that the pleasure from former comes from cognitive empathy. In conclusion, this study gives clear neuronal evidences supporting the view that artistic music is of intelligence and social cognition involved while the popular music is of physiology. PMID:27814379
Huang, Ping; Huang, Hanhua; Luo, Qiuling; Mo, Lei
2016-01-01
To test the hypothesis that pleasure from artistic music is intellectual while that from popular music is physiological, this study investigated the different functional mechanisms between aesthetic appreciation of artistic and popular music using fMRI. 18 male non-musicians were scanned while they performed an aesthetic rating task for excerpts of artistic music, popular music and musical notes playing and singing (control). The rating scores of artistic and popular music excerpts were both significantly higher than that of control materials while the scores of them were not different. The fMRI results showed both artistic and popular conditions activated the VS and vmPFC, compared with control condition. When contrasted popular and artistic condition directly, we found popular music activated right putamen, while artistic music activated right mPFC. By parametric analysis, we found the activation of right putamen tracked the aesthetic ratings of popular music, whereas the BOLD signal in right mPFC tracked the aesthetic ratings of artistic music. These results indicate the reward induced by popular music is closer to a primary reward while that induced by artistic music is closer to a secondary reward. We also found artistic music activated ToM areas, including PCC/PC, arMFC and TPJ, when compared with popular music. And these areas also tracked aesthetic ratings of artistic music but not those of popular music. These results imply that the pleasure from former comes from cognitive empathy. In conclusion, this study gives clear neuronal evidences supporting the view that artistic music is of intelligence and social cognition involved while the popular music is of physiology.
Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D
2012-01-01
Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing potential biomarkers of economic representations that can be applied to the study of deficits in motivational behaviour in neurological and psychiatric patients.
Deshpande, Aniruddha K; Tan, Lirong; Lu, Long J; Altaye, Mekibib; Holland, Scott K
2018-05-01
The trends in cochlear implantation candidacy and benefit have changed rapidly in the last two decades. It is now widely accepted that early implantation leads to better postimplant outcomes. Although some generalizations can be made about postimplant auditory and language performance, neural mechanisms need to be studied to predict individual prognosis. The aim of this study was to use functional magnetic resonance imaging (fMRI) to identify preimplant neuroimaging biomarkers that predict children's postimplant auditory and language outcomes as measured by parental observation/reports. This is a pre-post correlational measures study. Twelve possible cochlear implant candidates with bilateral severe to profound hearing loss were recruited via referrals for a clinical magnetic resonance imaging to ensure structural integrity of the auditory nerve for implantation. Participants underwent cochlear implantation at a mean age of 19.4 mo. All children used the advanced combination encoder strategy (ACE, Cochlear Corporation™, Nucleus ® Freedom cochlear implants). Three participants received an implant in the right ear; one in the left ear whereas eight participants received bilateral implants. Participants' preimplant neuronal activation in response to two auditory stimuli was studied using an event-related fMRI method. Blood oxygen level dependent contrast maps were calculated for speech and noise stimuli. The general linear model was used to create z-maps. The Auditory Skills Checklist (ASC) and the SKI-HI Language Development Scale (SKI-HI LDS) were administered to the parents 2 yr after implantation. A nonparametric correlation analysis was implemented between preimplant fMRI activation and postimplant auditory and language outcomes based on ASC and SKI-HI LDS. Statistical Parametric Mapping software was used to create regression maps between fMRI activation and scores on the aforementioned tests. Regression maps were overlaid on the Imaging Research Center infant template and visualized in MRIcro. Regression maps revealed two clusters of brain activation for the speech versus silence contrast and five clusters for the noise versus silence contrast that were significantly correlated with the parental reports. These clusters included auditory and extra-auditory regions such as the middle temporal gyrus, supramarginal gyrus, precuneus, cingulate gyrus, middle frontal gyrus, subgyral, and middle occipital gyrus. Both positive and negative correlations were observed. Correlation values for the different clusters ranged from -0.90 to 0.95 and were significant at a corrected p value of <0.05. Correlations suggest that postimplant performance may be predicted by activation in specific brain regions. The results of the present study suggest that (1) fMRI can be used to identify neuroimaging biomarkers of auditory and language performance before implantation and (2) activation in certain brain regions may be predictive of postimplant auditory and language performance as measured by parental observation/reports. American Academy of Audiology.
Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F
2007-10-01
Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.
Variational Bayesian Parameter Estimation Techniques for the General Linear Model
Starke, Ludger; Ostwald, Dirk
2017-01-01
Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572
Attention and amygdala activity: an fMRI study with spider pictures in spider phobia.
Alpers, Georg W; Gerdes, Antje B M; Lagarie, Bernadette; Tabbert, Katharina; Vaitl, Dieter; Stark, Rudolf
2009-06-01
Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.
Multiple-object tracking as a tool for parametrically modulating memory reactivation
Poppenk, J.; Norman, K.A.
2017-01-01
Converging evidence supports the “non-monotonic plasticity” hypothesis that although complete retrieval may strengthen memories, partial retrieval weakens them. Yet, the classic experimental paradigms used to study effects of partial retrieval are not ideally suited to doing so, because they lack the parametric control needed to ensure that the memory is activated to the appropriate degree (i.e., that there is some retrieval, but not enough to cause memory strengthening). Here we present a novel procedure designed to accommodate this need. After participants learned a list of word-scene associates, they completed a cued mental visualization task that was combined with a multiple-object tracking (MOT) procedure, which we selected for its ability to interfere with mental visualization in a parametrically adjustable way (by varying the number of MOT targets). We also used fMRI data to successfully train an “associative recall” classifier for use in this task: this classifier revealed greater memory reactivation during trials in which associative memories were cued while participants tracked one, rather than five MOT targets. However, the classifier was insensitive to task difficulty when recall was not taking place, suggesting it had indeed tracked memory reactivation rather than task difficulty per se. Consistent with the classifier findings, participants’ introspective ratings of visualization vividness were modulated by MOT task difficulty. In addition, we observed reduced classifier output and slowing of responses in a post-reactivation memory test, consistent with the hypothesis that partial reactivation, induced by MOT, weakened memory. These results serve as a “proof of concept” that MOT can be used to parametrically modulate memory retrieval – a property that may prove useful in future investigation of partial retrieval effects, e.g., in closed-loop experiments. PMID:28387587
Korostil, Michele; Remington, Gary; McIntosh, Anthony Randal
2016-01-01
Understanding how practice mediates the transition of brain-behavior networks between early and later stages of learning is constrained by the common approach to analysis of fMRI data. Prior imaging studies have mostly relied on a single scan, and parametric, task-related analyses. Our experiment incorporates a multisession fMRI lexicon-learning experiment with multivariate, whole-brain analysis to further knowledge of the distributed networks supporting practice-related learning in schizophrenia (SZ). Participants with SZ were compared with healthy control (HC) participants as they learned a novel lexicon during two fMRI scans over a several day period. All participants were trained to equal task proficiency prior to scanning. Behavioral-Partial Least Squares, a multivariate analytic approach, was used to analyze the imaging data. Permutation testing was used to determine statistical significance and bootstrap resampling to determine the reliability of the findings. With practice, HC participants transitioned to a brain-accuracy network incorporating dorsostriatal regions in late-learning stages. The SZ participants did not transition to this pattern despite comparable behavioral results. Instead, successful learners with SZ were differentiated primarily on the basis of greater engagement of perceptual and perceptual-integration brain regions. There is a different spatiotemporal unfolding of brain-learning relationships in SZ. In SZ, given the same amount of practice, the movement from networks suggestive of effortful learning toward subcortically driven procedural one differs from HC participants. Learning performance in SZ is driven by varying levels of engagement in perceptual regions, which suggests perception itself is impaired and may impact downstream, "higher level" cognition.
Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi
2014-01-01
Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P < 0.05) and bilaterally in 2 areas heavily implicated in nociceptive processing. These areas consisted of the primary somatosensory cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.
Neurofunctional Abnormalities during Sustained Attention in Severe Childhood Abuse.
Lim, Lena; Hart, Heledd; Mehta, Mitul A; Simmons, Andrew; Mirza, Kah; Rubia, Katya
2016-01-01
Childhood maltreatment is associated with adverse affective and cognitive consequences including impaired emotion processing, inhibition and attention. However, the majority of functional magnetic resonance imaging (fMRI) studies in childhood maltreatment have examined emotion processing, while very few studies have tested the neurofunctional substrates of cognitive functions and none of attention. This study investigated the association between severe childhood abuse and fMRI brain activation during a parametric sustained attention task with a progressively increasing load of sustained attention in 21 medication-naïve, drug-free young people with a history of childhood abuse controlling for psychiatric comorbidities by including 19 psychiatric controls matched for psychiatric diagnoses, and 27 healthy controls. Behaviorally, the participants exposed to childhood abuse showed increased omission errors in the task which correlated positively trend-wise with the duration of their abuse. Neurofunctionally, the participants with a history of childhood abuse, but not the psychiatric controls, displayed significantly reduced activation relative to the healthy controls during the most challenging attention condition only in typical attention regions including left inferior and dorsolateral prefrontal cortex, insula and temporal areas. We therefore show for the first time that severe childhood abuse is associated with neurofunctional abnormalities in key ventral frontal-temporal sustained attention regions. The findings represent a first step towards the delineation of abuse-related neurofunctional abnormalities in sustained attention, which may help in the development of effective treatments for victims of childhood abuse.
Neural Correlates of Decision-Making Under Ambiguity and Conflict.
Pushkarskaya, Helen; Smithson, Michael; Joseph, Jane E; Corbly, Christine; Levy, Ifat
2015-01-01
HIGHLIGHTS We use a simple gambles design in an fMRI study to compare two conditions: ambiguity and conflict.Participants were more conflict averse than ambiguity averse.Ambiguity aversion did not correlate with conflict aversion.Activation in the medial prefrontal cortex correlated with ambiguity level and ambiguity aversion.Activation in the ventral striatum correlated with conflict level and conflict aversion. Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities ("ambiguity"). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional magnetic resonance imaging (fMRI) and a simple gamble design to study this question. In this design the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on expected value. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across participants. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. These novel results indicate that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.
Neural Correlates of Decision-Making Under Ambiguity and Conflict
Pushkarskaya, Helen; Smithson, Michael; Joseph, Jane E.; Corbly, Christine; Levy, Ifat
2015-01-01
HIGHLIGHTS We use a simple gambles design in an fMRI study to compare two conditions: ambiguity and conflict.Participants were more conflict averse than ambiguity averse.Ambiguity aversion did not correlate with conflict aversion.Activation in the medial prefrontal cortex correlated with ambiguity level and ambiguity aversion.Activation in the ventral striatum correlated with conflict level and conflict aversion. Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional magnetic resonance imaging (fMRI) and a simple gamble design to study this question. In this design the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on expected value. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across participants. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. These novel results indicate that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research. PMID:26640434
Zamboni, Giovanna; Gozzi, Marta; Krueger, Frank; Duhamel, Jean-René; Sirigu, Angela; Grafman, Jordan
2009-01-01
Politics is a manifestation of the uniquely human ability to debate, decide, and reach consensus on decisions affecting large groups over long durations of time. Recent neuroimaging studies on politics have focused on the association between brain regions and specific political behaviors by adopting party or ideological affiliation as a criterion to classify either experimental stimuli or subjects. However, it is unlikely that complex political beliefs (i.e., "the government should protect freedom of speech") are evaluated only on a liberal-to-conservative criterion. Here we used multidimensional scaling and parametric functional magnetic resonance imaging to identify which criteria/dimensions people use to structure complex political beliefs and which brain regions are concurrently activated. We found that three independent dimensions explained the variability of a set of statements expressing political beliefs and that each dimension was reflected in a distinctive pattern of neural activation: individualism (medial prefrontal cortex and temporoparietal junction), conservatism (dorsolateral prefrontal cortex), and radicalism (ventral striatum and posterior cingulate). The structures we identified are also known to be important in self-other processing, social decision-making in ambivalent situations, and reward prediction. Our results extend current knowledge on the neural correlates of the structure of political beliefs, a fundamental aspect of the human ability to coalesce into social entities.
Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations.
de Munck, J C; Gonçalves, S I; Mammoliti, R; Heethaar, R M; Lopes da Silva, F H
2009-08-01
In EEG/fMRI correlation studies it is common to consider the fMRI BOLD as filtered version of the EEG alpha power. Here the question is addressed whether other EEG frequency components may affect the correlation between alpha and BOLD. This was done comparing the statistical parametric maps (SPMs) of three different filter models wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. EEG and fMRI were co-registered in a 30 min resting state condition in 15 healthy young subjects. Power variations in the delta, theta, alpha, beta and gamma bands were extracted from the EEG and used as regressors in a general linear model. Statistical parametric maps (SPMs) were computed using three different filter models, wherein either the free or the standard hemodynamic response functions (HRF) were used in combination with the full spectral bandwidth of the EEG. Results show that the SPMs of different EEG frequency bands, when significant, are very similar to that of the alpha rhythm. This is true in particular for the beta band, despite the fact that the alpha harmonics were discarded. It is shown that inclusion of EEG frequency bands as confounder in the fMRI-alpha correlation model has a large effect on the resulting SPM, in particular when for each frequency band the HRF is extracted from the data. We conclude that power fluctuations of different EEG frequency bands are mutually highly correlated, and that a multi frequency model is required to extract the SPM of the frequency of interest from EEG/fMRI data. When no constraints are put on the shapes of the HRFs of the nuisance frequencies, the correlation model looses so much statistical power that no correlations can be detected.
Kalmady, Sunil Vasu; Agarwal, Sri Mahavir; Shivakumar, Venkataram; Jose, Dania; Venkatasubramanian, Ganesan; Reddy, Y C Janardhan
2013-01-01
The Geschwind-Behan-Galaburda (GBG) hypothesis links cerebral lateralisation with prenatal testosterone exposure. Digit ratio measures in adults have been established as potential markers of foetal sex hormonal milieu. The aim of the study was to evaluate the sex-dependent interaction of digit ratio measures and cerebral lateralization as well as their neurohemodynamic correlates using functional MRI (fMRI). Digit ratio measures-ratio of index finger (2D) length to ring finger (4D) length (2D:4D) and difference between 2D:4D of two hands, i.e., right minus left (DR-L)-were calculated using high resolution digital images in 70 right-handed participants (42 men) based on reliable and valid method. fMRI was acquired during the performance of a spatial working memory task in a subset of 25 individuals (14 men), and analysed using Statistical Parametric Mapping 8 (SPM8) and the Laterality Index toolbox for SPM8. Men had significantly less bilateral 2D:4D than women. There was a significant negative correlation between right 2D:4D and 2-Back task accuracy (2BACC) in women. A significant sex-by-right 2D:4D interaction was observed in left parahippocampal gyrus activation. Additionally, sex-by-DR-L interaction was observed in left IPL activation. DR-L showed a significant positive correlation with the whole brain Laterality Index (LI), and LI, in turn, demonstrated a significant negative correlation with 2BACC. Our study observations suggest several novel sex-differential relationships between 2D:4D measures and fMRI activation during spatial working memory task performance. Given the pre-existing background data supporting digit ratio measures as putative indicator of prenatal sex hormonal milieu, our study findings add support to the Geschwind-Behan-Galaburda (GBG) hypothesis.
Jagtap, Pranav; Diwadkar, Vaibhav A.
2016-01-01
Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals (Dynamic Causal Modeling; DCM) to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian Model Selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: While positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. PMID:27145923
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs
Siegle, Greg
2009-01-01
Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927
An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats
Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta
2011-01-01
Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894
Vuilleumier, Patrik; Richardson, Mark P; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2004-11-01
Emotional visual stimuli evoke enhanced responses in the visual cortex. To test whether this reflects modulatory influences from the amygdala on sensory processing, we used event-related functional magnetic resonance imaging (fMRI) in human patients with medial temporal lobe sclerosis. Twenty-six patients with lesions in the amygdala, the hippocampus or both, plus 13 matched healthy controls, were shown pictures of fearful or neutral faces in task-releant or task-irrelevant positions on the display. All subjects showed increased fusiform cortex activation when the faces were in task-relevant positions. Both healthy individuals and those with hippocampal damage showed increased activation in the fusiform and occipital cortex when they were shown fearful faces, but this was not the case for individuals with damage to the amygdala, even though visual areas were structurally intact. The distant influence of the amygdala was also evidenced by the parametric relationship between amygdala damage and the level of emotional activation in the fusiform cortex. Our data show that combining the fMRI and lesion approaches can help reveal the source of functional modulatory influences between distant but interconnected brain regions.
Neurofunctional Abnormalities during Sustained Attention in Severe Childhood Abuse
Mehta, Mitul A.; Simmons, Andrew; Mirza, Kah; Rubia, Katya
2016-01-01
Childhood maltreatment is associated with adverse affective and cognitive consequences including impaired emotion processing, inhibition and attention. However, the majority of functional magnetic resonance imaging (fMRI) studies in childhood maltreatment have examined emotion processing, while very few studies have tested the neurofunctional substrates of cognitive functions and none of attention. This study investigated the association between severe childhood abuse and fMRI brain activation during a parametric sustained attention task with a progressively increasing load of sustained attention in 21 medication-naïve, drug-free young people with a history of childhood abuse controlling for psychiatric comorbidities by including 19 psychiatric controls matched for psychiatric diagnoses, and 27 healthy controls. Behaviorally, the participants exposed to childhood abuse showed increased omission errors in the task which correlated positively trend-wise with the duration of their abuse. Neurofunctionally, the participants with a history of childhood abuse, but not the psychiatric controls, displayed significantly reduced activation relative to the healthy controls during the most challenging attention condition only in typical attention regions including left inferior and dorsolateral prefrontal cortex, insula and temporal areas. We therefore show for the first time that severe childhood abuse is associated with neurofunctional abnormalities in key ventral frontal-temporal sustained attention regions. The findings represent a first step towards the delineation of abuse-related neurofunctional abnormalities in sustained attention, which may help in the development of effective treatments for victims of childhood abuse. PMID:27832090
Ragland, J. Daniel; Ranganath, Charan; Harms, Michael P.; Barch, Deanna M.; Gold, James M.; Layher, Evan; Lesh, Tyler A.; MacDonald, Angus W.; Niendam, Tara A.; Phillips, Joshua; Silverstein, Steven M.; Yonelinas, Andrew P.; Carter, Cameron S.
2015-01-01
Importance Individuals with schizophrenia (SZ) can encode item-specific information to support familiarity-based recognition, but are disproportionately impaired encoding inter-item relationships (relational encoding) and recollecting information. The Relational and Item-Specific Encoding (RiSE) paradigm has been used to disentangle these encoding and retrieval processes, which may be dependent on specific medial temporal lobe (MTL) and prefrontal cortex (PFC) subregions. Functional imaging during RiSE task performance could help to specify dysfunctional neural circuits in SZ that can be targeted for interventions to improve memory and functioning in the illness. Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that SZ disproportionately affects MTL and PFC subregions during relational encoding and retrieval, relative to item-specific memory processes. Imaging results from healthy comparison subjects (HC) will also be used to establish neural construct validity for RiSE. Design, Setting, and Participants This multi-site, case-control, cross-sectional fMRI study was conducted at five CNTRACS sites. The final sample included 52 clinically stable outpatients with SZ, and 57 demographically matched HC. Main Outcomes and Measures Behavioral performance speed and accuracy (d’) on item recognition and associative recognition tasks. Voxelwise statistical parametric maps for a priori MTL and PFC regions of interest (ROI), testing activation differences between relational and item-specific memory during encoding and retrieval. Results Item recognition was disproportionately impaired in SZ patients relative to controls following relational encoding. The differential deficit was accompanied by reduced dorsolateral prefrontal cortex (DLPFC) activation during relational encoding in SZ, relative to HC. Retrieval success (hits > misses) was associated with hippocampal (HI) activation in HC during relational item recognition and associative recognition conditions, and HI activation was specifically reduced in SZ for recognition of relational but not item-specific information. Conclusions In this unique, multi-site fMRI study, HC results supported RiSE construct validity by revealing expected memory effects in PFC and MTL subregions during encoding and retrieval. Comparison of SZ and HC revealed disproportionate memory deficits in SZ for relational versus item-specific information, accompanied by regionally and functionally specific deficits in DLPFC and HI activation. PMID:26200928
Transport on Riemannian manifold for functional connectivity-based classification.
Ng, Bernard; Dressler, Martin; Varoquaux, Gaël; Poline, Jean Baptiste; Greicius, Michael; Thirion, Bertrand
2014-01-01
We present a Riemannian approach for classifying fMRI connectivity patterns before and after intervention in longitudinal studies. A fundamental difficulty with using connectivity as features is that covariance matrices live on the positive semi-definite cone, which renders their elements inter-related. The implicit independent feature assumption in most classifier learning algorithms is thus violated. In this paper, we propose a matrix whitening transport for projecting the covariance estimates onto a common tangent space to reduce the statistical dependencies between their elements. We show on real data that our approach provides significantly higher classification accuracy than directly using Pearson's correlation. We further propose a non-parametric scheme for identifying significantly discriminative connections from classifier weights. Using this scheme, a number of neuroanatomically meaningful connections are found, whereas no significant connections are detected with pure permutation testing.
Levels of conflict in reasoning modulate right lateral prefrontal cortex.
Stollstorff, Melanie; Vartanian, Oshin; Goel, Vinod
2012-01-05
Right lateral prefrontal cortex (rlPFC) has previously been implicated in logical reasoning under conditions of conflict. A functional magnetic resonance imaging (fMRI) study was conducted to explore its role in conflict more precisely. Specifically, we distinguished between belief-logic conflict and belief-content conflict, and examined the role of rlPFC under each condition. The results demonstrated that a specific region of rlPFC is consistently activated under both types of conflict. Moreover, the results of a parametric analysis demonstrated that the same region was modulated by the level of conflict contained in reasoning arguments. This supports the idea that this specific region is engaged to resolve conflict, including during deductive reasoning. This article is part of a Special Issue entitled "The Cognitive Neuroscience of Thought". Copyright © 2011 Elsevier B.V. All rights reserved.
Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu
2018-04-23
Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.
Frewen, Paul; Thornley, Elizabeth; Rabellino, Daniela; Lanius, Ruth
2017-01-01
ABSTRACT Background: Changes to the diagnostic criteria for PTSD in DSM-5 reflect an increased emphasis on negative cognition referring to self and other, including self-blame, and related pervasive negative affective states including for self-conscious emotions such as guilt and shame. Objective: Investigate the neural correlates of valenced self-referential processing (SRP) and other-referential processing (ORP) in persons with PTSD. Method: We compared response to the Visual-Verbal Self-Other Referential Processing Task in an fMRI study of women with (n = 20) versus without (n = 24) PTSD primarily relating to childhood and interpersonal trauma histories using statistical parametric mapping and group independent component analysis. Results: As compared to women without PTSD, women with PTSD endorsed negative words as more descriptive both of themselves and others, whereas positive words were endorsed as less descriptive both of themselves and others. Women with PTSD also reported a greater experience of negative affect and a lesser experience of positive affect during SRP specifically. Significant differences between groups were observed within independent components defined by ventral- and middle-medial prefrontal corte x, mediolateral parietal cortex, and visual cortex, depending on experimental conditions. Conclusions: This study reveals brain-based disturbances during SRP and ORP in women with PTSD related to interpersonal and developmental trauma. Psychological assessment and treatment should address altered sense of self and affective response to others in PTSD. PMID:28649298
Harris, Robert; de Jong, Bauke M
2015-10-22
Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar music, subjects either (covertly) appraised the presented music performance or imagined they were playing the music themselves. We hypothesized that improvising musicians would exhibit enhanced efficiency of audiomotor transformation reflected by stronger ventral premotor activation. Statistical Parametric Mapping revealed that, while virtually 'playing along׳ with the music, improvising musicians exhibited activation of a right-hemisphere distribution of cerebral areas including posterior-superior parietal and dorsal premotor cortex. Involvement of these right-hemisphere dorsal stream areas suggests that improvising musicians recruited an amodal spatial processing system subserving pitch-to-space transformations to facilitate their virtual motor performance. Score-dependent musicians recruited a primarily left-hemisphere pattern of motor areas together with the posterior part of the right superior temporal sulcus, suggesting a relationship between aural discrimination and symbolic representation. Activations in bilateral auditory cortex were significantly larger for improvising musicians than for score-dependent musicians, suggesting enhanced top-down effects on aural perception. Our results suggest that learning to play a music instrument primarily from notation predisposes musicians toward aural identification and discrimination, while learning by improvisation involves audio-spatial-motor transformations, not only during performance, but also perception. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Kosaka, H; Omori, M; Murata, T; Iidaka, T; Yamada, H; Okada, T; Takahashi, T; Sadato, N; Itoh, H; Yonekura, Y; Wada, Y
2002-09-01
Human lesion or neuroimaging studies suggest that amygdala is involved in facial emotion recognition. Although impairments in recognition of facial and/or emotional expression have been reported in schizophrenia, there are few neuroimaging studies that have examined differential brain activation during facial recognition between patients with schizophrenia and normal controls. To investigate amygdala responses during facial recognition in schizophrenia, we conducted a functional magnetic resonance imaging (fMRI) study with 12 right-handed medicated patients with schizophrenia and 12 age- and sex-matched healthy controls. The experiment task was a type of emotional intensity judgment task. During the task period, subjects were asked to view happy (or angry/disgusting/sad) and neutral faces simultaneously presented every 3 s and to judge which face was more emotional (positive or negative face discrimination). Imaging data were investigated in voxel-by-voxel basis for single-group analysis and for between-group analysis according to the random effect model using Statistical Parametric Mapping (SPM). No significant difference in task accuracy was found between the schizophrenic and control groups. Positive face discrimination activated the bilateral amygdalae of both controls and schizophrenics, with more prominent activation of the right amygdala shown in the schizophrenic group. Negative face discrimination activated the bilateral amygdalae in the schizophrenic group whereas the right amygdala alone in the control group, although no significant group difference was found. Exaggerated amygdala activation during emotional intensity judgment found in the schizophrenic patients may reflect impaired gating of sensory input containing emotion. Copyright 2002 Elsevier Science B.V.
BRAPH: A graph theory software for the analysis of brain connectivity
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447
BRAPH: A graph theory software for the analysis of brain connectivity.
Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni
2017-01-01
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
Jing, Rixing; Huang, Jiangjie; Jiang, Deguo; Lin, Xiaodong; Ma, Xiaolei; Tian, Hongjun; Li, Jie; Zhuo, Chuanjun
2018-01-23
Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.
Steinberg, Joel L.; Cunningham, Kathryn A.; Lane, Scott D.; Kramer, Larry A.; Narayana, Ponnada A.; Kosten, Thomas R.; Bechara, Antoine; Moeller, F. Gerard
2015-01-01
Abstract This study employed functional magnetic resonance imaging (fMRI)-based dynamic causal modeling (DCM) to study the effective (directional) neuronal connectivity underlying inhibitory behavioral control. fMRI data were acquired from 15 healthy subjects while they performed a Go/NoGo task with two levels of NoGo difficulty (Easy and Hard NoGo conditions) in distinguishing spatial patterns of lines. Based on the previous inhibitory control literature and the present fMRI activation results, 10 brain regions were postulated as nodes in the effective connectivity model. Due to the large number of potential interconnections among these nodes, the number of models for final analysis was reduced to a manageable level for the whole group by conducting DCM Network Discovery, which is a recently developed option within the Statistical Parametric Mapping software package. Given the optimum network model, the DCM Network Discovery analysis found that the locations of the driving input into the model from all the experimental stimuli in the Go/NoGo task were the amygdala and the hippocampus. The strengths of several cortico-subcortical connections were modulated (influenced) by the two NoGo conditions. Specifically, connectivity from the middle frontal gyrus (MFG) to hippocampus was enhanced by the Easy condition and further enhanced by the Hard NoGo condition, possibly suggesting that compared with the Easy NoGo condition, stronger control from MFG was needed for the hippocampus to discriminate/learn the spatial pattern in order to respond correctly (inhibit), during the Hard NoGo condition. PMID:25336321
The Brain Circuitry Underlying the Temporal Evolution of Nausea in Humans
Sheehan, James D.; Kim, Jieun; LaCount, Lauren T.; Park, Kyungmo; Kaptchuk, Ted J.; Rosen, Bruce R.; Kuo, Braden
2013-01-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus–associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom. PMID:22473843
The brain circuitry underlying the temporal evolution of nausea in humans.
Napadow, Vitaly; Sheehan, James D; Kim, Jieun; Lacount, Lauren T; Park, Kyungmo; Kaptchuk, Ted J; Rosen, Bruce R; Kuo, Braden
2013-04-01
Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus-associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom.
Perspectives on Machine Learning for Classification of Schizotypy Using fMRI Data.
Madsen, Kristoffer H; Krohne, Laerke G; Cai, Xin-Lu; Wang, Yi; Chan, Raymond C K
2018-03-15
Functional magnetic resonance imaging is capable of estimating functional activation and connectivity in the human brain, and lately there has been increased interest in the use of these functional modalities combined with machine learning for identification of psychiatric traits. While these methods bear great potential for early diagnosis and better understanding of disease processes, there are wide ranges of processing choices and pitfalls that may severely hamper interpretation and generalization performance unless carefully considered. In this perspective article, we aim to motivate the use of machine learning schizotypy research. To this end, we describe common data processing steps while commenting on best practices and procedures. First, we introduce the important role of schizotypy to motivate the importance of reliable classification, and summarize existing machine learning literature on schizotypy. Then, we describe procedures for extraction of features based on fMRI data, including statistical parametric mapping, parcellation, complex network analysis, and decomposition methods, as well as classification with a special focus on support vector classification and deep learning. We provide more detailed descriptions and software as supplementary material. Finally, we present current challenges in machine learning for classification of schizotypy and comment on future trends and perspectives.
Broca's area and the language instinct.
Musso, Mariacristina; Moro, Andrea; Glauche, Volkmar; Rijntjes, Michel; Reichenbach, Jürgen; Büchel, Christian; Weiller, Cornelius
2003-07-01
Language acquisition in humans relies on abilities like abstraction and use of syntactic rules, which are absent in other animals. The neural correlate of acquiring new linguistic competence was investigated with two functional magnetic resonance imaging (fMRI) studies. German native speakers learned a sample of 'real' grammatical rules of different languages (Italian or Japanese), which, although parametrically different, follow the universal principles of grammar (UG). Activity during this task was compared with that during a task that involved learning 'unreal' rules of language. 'Unreal' rules were obtained manipulating the original two languages; they used the same lexicon as Italian or Japanese, but were linguistically illegal, as they violated the principles of UG. Increase of activation over time in Broca's area was specific for 'real' language acquisition only, independent of the kind of language. Thus, in Broca's area, biological constraints and language experience interact to enable linguistic competence for a new language.
Dynamic changes in brain activity during prism adaptation.
Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik
2009-01-07
Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Fellah, Slim; Cheung, Yin T; Scoggins, Matthew A; Zou, Ping; Sabin, Noah D; Pui, Ching-Hon; Robison, Leslie L; Hudson, Melissa M; Ogg, Robert J; Krull, Kevin R
2018-05-21
The impact of contemporary chemotherapy treatment for childhood acute lymphoblastic leukemia on central nervous system activity is not fully appreciated. Neurocognitive testing and functional magnetic resonance imaging (fMRI) were obtained in 165 survivors five or more years postdiagnosis (average age = 14.4 years, 7.7 years from diagnosis, 51.5% males). Chemotherapy exposure was measured as serum concentration of methotrexate following high-dose intravenous injection. Neurocognitive testing included measures of attention and executive function. fMRI was obtained during completion of two tasks, the continuous performance task (CPT) and the attention network task (ANT). Image analysis was performed using Statistical Parametric Mapping software, with contrasts targeting sustained attention, alerting, orienting, and conflict. All statistical tests were two-sided. Compared with population norms, survivors demonstrated impairment on number-letter switching (P < .001, a measure of cognitive flexibility), which was associated with treatment intensity (P = .048). Task performance during fMRI was associated with neurocognitive dysfunction across multiple tasks. Regional brain activation was lower in survivors diagnosed at younger ages for the CPT (bilateral parietal and temporal lobes) and the ANT (left parietal and right hippocampus). With higher serum methotrexate exposure, CPT activation decreased in the right temporal and bilateral frontal and parietal lobes, but ANT alerting activation increased in the ventral frontal, insula, caudate, and anterior cingulate. Brain activation during attention and executive function tasks was associated with serum methotrexate exposure and age at diagnosis. These findings provide evidence for compromised and compensatory changes in regional brain function that may help clarify the neural substrates of cognitive deficits in acute lymphoblastic leukemia survivors.
Functional quantitative susceptibility mapping (fQSM).
Balla, Dávid Z; Sanchez-Panchuelo, Rosa M; Wharton, Samuel J; Hagberg, Gisela E; Scheffler, Klaus; Francis, Susan T; Bowtell, Richard
2014-10-15
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a powerful technique, typically based on the statistical analysis of the magnitude component of the complex time-series. Here, we additionally interrogated the phase data of the fMRI time-series and used quantitative susceptibility mapping (QSM) in order to investigate the potential of functional QSM (fQSM) relative to standard magnitude BOLD fMRI. High spatial resolution data (1mm isotropic) were acquired every 3 seconds using zoomed multi-slice gradient-echo EPI collected at 7 T in single orientation (SO) and multiple orientation (MO) experiments, the latter involving 4 repetitions with the subject's head rotated relative to B0. Statistical parametric maps (SPM) were reconstructed for magnitude, phase and QSM time-series and each was subjected to detailed analysis. Several fQSM pipelines were evaluated and compared based on the relative number of voxels that were coincidentally found to be significant in QSM and magnitude SPMs (common voxels). We found that sensitivity and spatial reliability of fQSM relative to the magnitude data depended strongly on the arbitrary significance threshold defining "activated" voxels in SPMs, and on the efficiency of spatio-temporal filtering of the phase time-series. Sensitivity and spatial reliability depended slightly on whether MO or SO fQSM was performed and on the QSM calculation approach used for SO data. Our results present the potential of fQSM as a quantitative method of mapping BOLD changes. We also critically discuss the technical challenges and issues linked to this intriguing new technique. Copyright © 2014 Elsevier Inc. All rights reserved.
Comparing consistency of R2* and T2*-weighted BOLD analysis of resting state fetal fMRI
NASA Astrophysics Data System (ADS)
Seshamani, Sharmishtaa; Blazejewska, Anna I.; Gatenby, Christopher; Mckown, Susan; Caucutt, Jason; Dighe, Manjiri; Studholme, Colin
2015-03-01
Understanding when and how resting state brain functional activity begins in the human brain is an increasing area of interest in both basic neuroscience and in the clinical evaluation of the brain during pregnancy and after premature birth. Although fMRI studies have been carried out on pregnant women since the 1990's, reliable mapping of brain function in utero is an extremely challenging problem due to the unconstrained fetal head motion. Recent studies have employed scrubbing to exclude parts of the time series and whole subjects from studies in order to control the confounds of motion. Fundamentally, even after correction of the location of signals due to motion, signal intensity variations are a fundamental limitation, due to coil sensitivity and spin history effects. An alternative technique is to use a more parametric MRI signal derived from multiple echoes that provides a level of independence from basic MRI signal variation. Here we examine the use of R2* mapping combined with slice based multi echo geometric distortion correction for in-utero studies. The challenges for R2* mapping arise from the relatively low signal strength of in-utero data. In this paper we focus on comparing activation detection in-utero using T2W and R2* approaches. We make use a subset of studies with relatively limited motion to compare the activation patterns without the additional confound of significant motion. Results at different gestational ages indicate comparable agreement in many activation patterns when limited motion is present, and the detection of some additional networks in the R2* data, not seen in the T2W results.
Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention.
Vossel, Simone; Mathys, Christoph; Stephan, Klaas E; Friston, Karl J
2015-08-19
The deployment of visuospatial attention and the programming of saccades are governed by the inferred likelihood of events. In the present study, we combined computational modeling of psychophysical data with fMRI to characterize the computational and neural mechanisms underlying this flexible attentional control. Sixteen healthy human subjects performed a modified version of Posner's location-cueing paradigm in which the percentage of cue validity varied in time and the targets required saccadic responses. Trialwise estimates of the certainty (precision) of the prediction that the target would appear at the cued location were derived from a hierarchical Bayesian model fitted to individual trialwise saccadic response speeds. Trial-specific model parameters then entered analyses of fMRI data as parametric regressors. Moreover, dynamic causal modeling (DCM) was performed to identify the most likely functional architecture of the attentional reorienting network and its modulation by (Bayes-optimal) precision-dependent attention. While the frontal eye fields (FEFs), intraparietal sulcus, and temporoparietal junction (TPJ) of both hemispheres showed higher activity on invalid relative to valid trials, reorienting responses in right FEF, TPJ, and the putamen were significantly modulated by precision-dependent attention. Our DCM results suggested that the precision of predictability underlies the attentional modulation of the coupling of TPJ with FEF and the putamen. Our results shed new light on the computational architecture and neuronal network dynamics underlying the context-sensitive deployment of visuospatial attention. Spatial attention and its neural correlates in the human brain have been studied extensively with the help of fMRI and cueing paradigms in which the location of targets is pre-cued on a trial-by-trial basis. One aspect that has so far been neglected concerns the question of how the brain forms attentional expectancies when no a priori probability information is available but needs to be inferred from observations. This study elucidates the computational and neural mechanisms under which probabilistic inference governs attentional deployment. Our results show that Bayesian belief updating explains changes in cortical connectivity; in that directional influences from the temporoparietal junction on the frontal eye fields and the putamen were modulated by (Bayes-optimal) updates. Copyright © 2015 Vossel et al.
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
The Route to an Integrative Associative Memory Is Influenced by Emotion
Murray, Brendan D.; Kensinger, Elizabeth A.
2014-01-01
Though the hippocampus typically has been implicated in processes related to associative binding, special types of associations – such as those created by integrative mental imagery – may be supported by processes implemented in other medial temporal-lobe or sensory processing regions. Here, we investigated what neural mechanisms underlie the formation and subsequent retrieval of integrated mental images, and whether those mechanisms differ based on the emotionality of the integration (i.e., whether it contains an emotional item or not). Participants viewed pairs of words while undergoing a functional MRI scan. They were instructed to imagine the two items separately from one another (“non-integrative” study) or as a single, integrated mental image (“integrative” study). They provided ratings of how successful they were at generating vivid images that fit the instructions. They were then given a surprise associative recognition test, also while undergoing an fMRI scan. The cuneus showed parametric correspondence to increasing imagery success selectively during encoding and retrieval of emotional integrations, while the parahippocampal gyri and prefrontal cortices showed parametric correspondence during the encoding and retrieval of non-emotional integrations. Connectivity analysis revealed that selectively during negative integration, left amygdala activity was negatively correlated with frontal and hippocampal activity. These data indicate that individuals utilize two different neural routes for forming and retrieving integrations depending on their emotional content, and they suggest a potentially disruptive role for the amygdala on frontal and medial-temporal regions during negative integration. PMID:24427267
Mitchell, Rachel L C
2010-05-01
Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.
Fusiform gyrus face selectivity relates to individual differences in facial recognition ability.
Furl, Nicholas; Garrido, Lúcia; Dolan, Raymond J; Driver, Jon; Duchaine, Bradley
2011-07-01
Regions of the occipital and temporal lobes, including a region in the fusiform gyrus (FG), have been proposed to constitute a "core" visual representation system for faces, in part because they show face selectivity and face repetition suppression. But recent fMRI studies of developmental prosopagnosics (DPs) raise questions about whether these measures relate to face processing skills. Although DPs manifest deficient face processing, most studies to date have not shown unequivocal reductions of functional responses in the proposed core regions. We scanned 15 DPs and 15 non-DP control participants with fMRI while employing factor analysis to derive behavioral components related to face identification or other processes. Repetition suppression specific to facial identities in FG or to expression in FG and STS did not show compelling relationships with face identification ability. However, we identified robust relationships between face selectivity and face identification ability in FG across our sample for several convergent measures, including voxel-wise statistical parametric mapping, peak face selectivity in individually defined "fusiform face areas" (FFAs), and anatomical extents (cluster sizes) of those FFAs. None of these measures showed associations with behavioral expression or object recognition ability. As a group, DPs had reduced face-selective responses in bilateral FFA when compared with non-DPs. Individual DPs were also more likely than non-DPs to lack expected face-selective activity in core regions. These findings associate individual differences in face processing ability with selectivity in core face processing regions. This confirms that face selectivity can provide a valid marker for neural mechanisms that contribute to face identification ability.
Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E
2012-12-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.
Collins, Heather R.; Zhu, Xun; Bhatt, Ramesh S.; Clark, Jonathan D.; Joseph, Jane E.
2015-01-01
The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. The present study parametrically varied demands on featural, first-order configural or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing) or reflected generalized perceptual differentiation (i.e. differentiation that crosses category and processing type boundaries). Regions of interest were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process-specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex, and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain-specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories. PMID:22849402
Abdulrahman, Hunar; Henson, Richard N.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All” (LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs < 5 s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299
Jagtap, Pranav; Diwadkar, Vaibhav A
2016-07-01
Frontal-thalamic interactions are crucial for bottom-up gating and top-down control, yet have not been well studied from brain network perspectives. We applied network modeling of fMRI signals [dynamic causal modeling (DCM)] to investigate frontal-thalamic interactions during an attention task with parametrically varying levels of demand. fMRI was collected while subjects participated in a sustained continuous performance task with low and high attention demands. 162 competing model architectures were employed in DCM to evaluate hypotheses on bilateral frontal-thalamic connections and their modulation by attention demand, selected at a second level using Bayesian model selection. The model architecture evinced significant contextual modulation by attention of ascending (thalamus → dPFC) and descending (dPFC → thalamus) pathways. However, modulation of these pathways was asymmetric: while positive modulation of the ascending pathway was comparable across attention demand, modulation of the descending pathway was significantly greater when attention demands were increased. Increased modulation of the (dPFC → thalamus) pathway in response to increased attention demand constitutes novel evidence of attention-related gain in the connectivity of the descending attention pathway. By comparison demand-independent modulation of the ascending (thalamus → dPFC) pathway suggests unbiased thalamic inputs to the cortex in the context of the paradigm. Hum Brain Mapp 37:2557-2570, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wald, Lawrence L; Polimeni, Jonathan R
2017-07-01
We review the components of time-series noise in fMRI experiments and the effect of image acquisition parameters on the noise. In addition to helping determine the total amount of signal and noise (and thus temporal SNR), the acquisition parameters have been shown to be critical in determining the ratio of thermal to physiological induced noise components in the time series. Although limited attention has been given to this latter metric, we show that it determines the degree of spatial correlations seen in the time-series noise. The spatially correlations of the physiological noise component are well known, but recent studies have shown that they can lead to a higher than expected false-positive rate in cluster-wise inference based on parametric statistical methods used by many researchers. Based on understanding the effect of acquisition parameters on the noise mixture, we propose several acquisition strategies that might be helpful reducing this elevated false-positive rate, such as moving to high spatial resolution or using highly-accelerated acquisitions where thermal sources dominate. We suggest that the spatial noise correlations at the root of the inflated false-positive rate problem can be limited with these strategies, and the well-behaved spatial auto-correlation functions (ACFs) assumed by the conventional statistical methods are retained if the high resolution data is smoothed to conventional resolutions. Copyright © 2017 Elsevier Inc. All rights reserved.
Koush, Yury; Ashburner, John; Prilepin, Evgeny; Sladky, Ronald; Zeidman, Peter; Bibikov, Sergei; Scharnowski, Frank; Nikonorov, Artem; De Ville, Dimitri Van
2017-08-01
Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido
2016-10-01
As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced affective brain representations of chocolate in cravers vs. non-cravers.
Rolls, Edmund T; McCabe, Ciara
2007-08-01
To examine the neural circuitry involved in food craving, in making food particularly appetitive and thus in driving wanting and eating, we used fMRI to measure the response to the flavour of chocolate, the sight of chocolate and their combination in cravers vs. non-cravers. Statistical parametric mapping (SPM) analyses showed that the sight of chocolate produced more activation in chocolate cravers than non-cravers in the medial orbitofrontal cortex and ventral striatum. For cravers vs. non-cravers, a combination of a picture of chocolate with chocolate in the mouth produced a greater effect than the sum of the components (i.e. supralinearity) in the medial orbitofrontal cortex and pregenual cingulate cortex. Furthermore, the pleasantness ratings of the chocolate and chocolate-related stimuli had higher positive correlations with the fMRI blood oxygenation level-dependent signals in the pregenual cingulate cortex and medial orbitofrontal cortex in the cravers than in the non-cravers. To our knowledge, this is the first study to show that there are differences between cravers and non-cravers in their responses to the sensory components of a craved food in the orbitofrontal cortex, ventral striatum and pregenual cingulate cortex, and that in some of these regions the differences are related to the subjective pleasantness of the craved foods. Understanding individual differences in brain responses to very pleasant foods helps in the understanding of the mechanisms that drive the liking for specific foods and thus intake of those foods.
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability
Barnett, Michael A.; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit
2016-01-01
Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5–12 years) and adults (ages, 19–34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved performance. Using fMRI in children and adults, we find that from childhood to adulthood, neural sensitivity to changes in face identity increases in face-selective regions. Critically, subjects' perceptual discriminability among faces is linked to neural sensitivity: participants with higher neural sensitivity in face-selective regions demonstrate higher perceptual discriminability. Thus, our results suggest that developmental increases in face-selective regions' sensitivity to face identity improve perceptual discrimination of faces. These findings significantly advance understanding of the neural mechanisms underlying the development of face perception and have important implications for assessing both typical and atypical development. PMID:27798143
Khader, Patrick H; Pachur, Thorsten; Meier, Stefanie; Bien, Siegfried; Jost, Kerstin; Rösler, Frank
2011-11-01
Many of our daily decisions are memory based, that is, the attribute information about the decision alternatives has to be recalled. Behavioral studies suggest that for such decisions we often use simple strategies (heuristics) that rely on controlled and limited information search. It is assumed that these heuristics simplify decision-making by activating long-term memory representations of only those attributes that are necessary for the decision. However, from behavioral studies alone, it is unclear whether using heuristics is indeed associated with limited memory search. The present study tested this assumption by monitoring the activation of specific long-term-memory representations with fMRI while participants made memory-based decisions using the "take-the-best" heuristic. For different decision trials, different numbers and types of information had to be retrieved and processed. The attributes consisted of visual information known to be represented in different parts of the posterior cortex. We found that the amount of information required for a decision was mirrored by a parametric activation of the dorsolateral PFC. Such a parametric pattern was also observed in all posterior areas, suggesting that activation was not limited to those attributes required for a decision. However, the posterior increases were systematically modulated by the relative importance of the information for making a decision. These findings suggest that memory-based decision-making is mediated by the dorsolateral PFC, which selectively controls posterior storage areas. In addition, the systematic modulations of the posterior activations indicate a selective boosting of activation of decision-relevant attributes.
Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.
Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz
2017-01-01
Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.
Using fMRI to study reward processing in humans: past, present, and future
Wang, Kainan S.; Smith, David V.
2016-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive tool used to probe cognitive and affective processes. Although fMRI provides indirect measures of neural activity, the advent of fMRI has allowed for 1) the corroboration of significant animal findings in the human brain, and 2) the expansion of models to include more common human attributes that inform behavior. In this review, we briefly consider the neural basis of the blood oxygenation level dependent signal to set up a discussion of how fMRI studies have applied it in examining cognitive models in humans and the promise of using fMRI to advance such models. Specifically, we illustrate the contribution that fMRI has made to the study of reward processing, focusing on the role of the striatum in encoding reward-related learning signals that drive anticipatory and consummatory behaviors. For instance, we discuss how fMRI can be used to link neural signals (e.g., striatal responses to rewards) to individual differences in behavior and traits. While this functional segregation approach has been constructive to our understanding of reward-related functions, many fMRI studies have also benefitted from a functional integration approach that takes into account how interconnected regions (e.g., corticostriatal circuits) contribute to reward processing. We contend that future work using fMRI will profit from using a multimodal approach, such as combining fMRI with noninvasive brain stimulation tools (e.g., transcranial electrical stimulation), that can identify causal mechanisms underlying reward processing. Consequently, advancements in implementing fMRI will promise new translational opportunities to inform our understanding of psychopathologies. PMID:26740530
Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.
Druzgal, T Jason; D'Esposito, Mark
2003-08-15
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
2015-07-30
Unlimited Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study The views, opinions and/or findings contained in this...27709-2211 Visual search, Camouflage, Functional magnetic resonance imaging ( fMRI ), Perceptual learning REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Neural Mechanisms of Recognizing Camouflaged Objects: A Human fMRI Study
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
St. Jacques, Peggy L.; Botzung, Anne; Miles, Amanda; Rubin, David C.
2010-01-01
Post-traumatic stress disorder (PTSD) affects regions that support autobiographical memory (AM) retrieval, such as the hippocampus, amygdala and ventral medial prefrontal cortex (PFC). However, it is not well understood how PTSD may impact the neural mechanisms of memory retrieval for the personal past. We used a generic cue method combined with parametric modulation analysis and functional MRI (fMRI) to investigate the neural mechanisms affected by PTSD symptoms during the retrieval of a large sample of emotionally intense AMs. There were three main results. First, the PTSD group showed greater recruitment of the amygdala/hippocampus during the construction of negative versus positive emotionally intense AMs, when compared to controls. Second, across both the construction and elaboration phases of retrieval the PTSD group showed greater recruitment of the ventral medial PFC for negatively intense memories, but less recruitment for positively intense memories. Third, the PTSD group showed greater functional coupling between the ventral medial PFC and the amygdala for negatively intense memories, but less coupling for positively intense memories. In sum, the fMRI data suggest that there was greater recruitment and coupling of emotional brain regions during the retrieval of negatively intense AMs in the PTSD group when compared to controls. PMID:21109253
The role of temporo-parietal junction (TPJ) in global Gestalt perception.
Huberle, Elisabeth; Karnath, Hans-Otto
2012-07-01
Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.
Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281
Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.
Weiskopf, Nikolaus; Veit, Ralf; Erb, Michael; Mathiak, Klaus; Grodd, Wolfgang; Goebel, Rainer; Birbaumer, Niels
2003-07-01
A brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral-ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.
Asaad, Mazen; Lee, Jin Hyung
2018-05-18
Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. © 2018. Published by The Company of Biologists Ltd.
A guide to using functional magnetic resonance imaging to study Alzheimer's disease in animal models
Asaad, Mazen
2018-01-01
ABSTRACT Alzheimer's disease is a leading healthcare challenge facing our society today. Functional magnetic resonance imaging (fMRI) of the brain has played an important role in our efforts to understand how Alzheimer's disease alters brain function. Using fMRI in animal models of Alzheimer's disease has the potential to provide us with a more comprehensive understanding of the observations made in human clinical fMRI studies. However, using fMRI in animal models of Alzheimer's disease presents some unique challenges. Here, we highlight some of these challenges and discuss potential solutions for researchers interested in performing fMRI in animal models. First, we briefly summarize our current understanding of Alzheimer's disease from a mechanistic standpoint. We then overview the wide array of animal models available for studying this disease and how to choose the most appropriate model to study, depending on which aspects of the condition researchers seek to investigate. Finally, we discuss the contributions of fMRI to our understanding of Alzheimer's disease and the issues to consider when designing fMRI studies for animal models, such as differences in brain activity based on anesthetic choice and ways to interrogate more specific questions in rodents beyond those that can be addressed in humans. The goal of this article is to provide information on the utility of fMRI, and approaches to consider when using fMRI, for studies of Alzheimer's disease in animal models. PMID:29784664
Neuronal bases of structural coherence in contemporary dance observation.
Bachrach, Asaf; Jola, Corinne; Pallier, Christophe
2016-01-01
The neuronal processes underlying dance observation have been the focus of an increasing number of brain imaging studies over the past decade. However, the existing literature mainly dealt with effects of motor and visual expertise, whereas the neural and cognitive mechanisms that underlie the interpretation of dance choreographies remained unexplored. Hence, much attention has been given to the action observation network (AON) whereas the role of other potentially relevant neuro-cognitive mechanisms such as mentalizing (theory of mind) or language (narrative comprehension) in dance understanding is yet to be elucidated. We report the results of an fMRI study where the structural coherence of short contemporary dance choreographies was manipulated parametrically using the same taped movement material. Our participants were all trained dancers. The whole-brain analysis argues that the interpretation of structurally coherent dance phrases involves a subpart (superior parietal) of the AON as well as mentalizing regions in the dorsomedial prefrontal cortex. An ROI analysis based on a similar study using linguistic materials (Pallier et al., 2011) suggests that structural processing in language and dance might share certain neural mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
The precuneus may encode irrationality in human gambling.
Sacre, P; Kerr, M S D; Subramanian, S; Kahn, K; Gonzalez-Martinez, J; Johnson, M A; Sarma, S V; Gale, J T
2016-08-01
Humans often make irrational decisions, especially psychiatric patients who have dysfunctional cognitive and emotional circuitry. Understanding the neural basis of decision-making is therefore essential towards patient management, yet current studies suffer from several limitations. Functional magnetic resonance imaging (fMRI) studies in humans have dominated decision-making neuroscience, but have poor temporal resolution and the blood oxygenation level-dependent signal is only a proxy for neural activity. On the other hand, lesion studies in humans used to infer functionality in decision-making lack characterization of neural activity altogether. Using a combination of local field potential recordings in human subjects performing a financial decision-making task, spectral analyses, and non-parametric cluster statistics, we analyzed the activity in the precuneus. In nine subjects, the neural activity modulated significantly between rational and irrational trials in the precuneus (p <; 0.001). In particular, high-frequency activity (70-100 Hz) increased when irrational decisions were made. Although preliminary, these results suggest suppression of gamma rhythms via electrical stimulation in the precuneus as a therapeutic intervention for pathological decision-making.
Brain Activation during Addition and Subtraction Tasks In-Noise and In-Quiet
Abd Hamid, Aini Ismafairus; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina
2011-01-01
Background: In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information—the working memory—and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds. Methods: Eighteen healthy young males performed simple arithmetic operations of addition and subtraction with in-quiet and in-noise backgrounds. The MATLAB-based Statistical Parametric Mapping (SPM8) was implemented on the fMRI datasets to generate and analyse the activated brain regions. Results: Group results showed that addition and subtraction operations evoked extended activation in the left inferior parietal lobe, left precentral gyrus, left superior parietal lobe, left supramarginal gyrus, and left middle temporal gyrus. This supported the hypothesis that the human brain relatively activates its left hemisphere more compared with the right hemisphere when solving arithmetic problems. The insula, middle cingulate cortex, and middle frontal gyrus, however, showed more extended right hemispheric activation, potentially due to the involvement of attention, executive processes, and working memory. For addition operations, there was extensive left hemispheric activation in the superior temporal gyrus, inferior frontal gyrus, and thalamus. In contrast, subtraction tasks evoked a greater activation of similar brain structures in the right hemisphere. For both addition and subtraction operations, the total number of activated voxels was higher for in-noise than in-quiet conditions. Conclusion: These findings suggest that when arithmetic operations were delivered auditorily, the auditory, attention, and working memory functions were required to accomplish the executive processing of the mathematical calculation. The respective brain activation patterns appear to be modulated by the noisy background condition. PMID:22135581
A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.
Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer
2013-11-01
Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping. © 2013.
Modelling brain activations and connectivity of pain modulated by having a loved one nearby
NASA Astrophysics Data System (ADS)
Tamam, Sofina; Ahmad, Asma Hayati; Kamil, Wan Ahmad
2018-06-01
This study is to model the connectivity between activated areas in the brain associated with pain responses in the presence and absence of a loved one. We used Th:YAG laser targeted onto the dorsum of the right hand of 17 Malay-female participants (mean age 20.59; SD 2.85 years) in two conditions: (1) in the absence of a loved one in the functional magnetic resonance imaging (fMRI) room (Alone condition), and (2) in the presence of a loved one (Support condition). The laser-induced pain stimuli were delivered according to an fMRI paradigm utilising blocked design comprising 15 blocks of activity and 15 blocks of rest. Brain activations and connectivity were analysed using statistical parametric mapping (SPM), dynamic causal modelling (DCM) and Bayesian model selection (BMS) analyses. Individual responses to pain were found to be divided into two categories: (1) Love Hurts (participants who reported more pain in the presence of a loved one) involved activations in thalamus (THA), parahippocampal gyrus (PHG) and hippocampus (HIP); and (2) Love Heals (participants who reported less pain in the presence of a loved one) involved activations in all parts of cingulate cortex. BMS showed that Love Heals could be represented by a cortical network involving the area of anterior cingulate cortex (ACC), middle cingulate cortex (MCC) and posterior cingulate cortex (PCC) in the intrinsic connectivity of ACC → PCC → MCC and ACC → MCC. There was no optimal model to explain the increase in pain threshold when accompanied by the loved one in Love Hurts. The present study reveals a new possible cortical network for the reduction of pain by having a loved one nearby.
Effects of leptin deficiency and replacement on cerebellar response to food-related cues
Berman, Steven M.; Paz-Filho, Gilberto; Wong, Ma-Li; Kohno, Milky; Licinio, Julio; London, Edythe D.
2013-01-01
Leptin affects eating behavior partly by altering the response of the brain to food-related stimuli. Effects of leptin on brain structure have been observed in the cerebellum, where leptin receptors are most densely expressed, but the function of leptin in the cerebellum remains unclear. We performed a nonrandomized, prospective interventional study of three adults with genetically-mediated leptin deficiency. FMRI was recorded three times each year during years 5 and 6 of leptin replacement treatment. Session one of each year occurred after 10 months of continuous daily replacement, session two after 33–37 days without leptin, and session three 14–23 days after daily replacement was restored. Statistical parametric mapping software (SPM5) was employed to contrast the fMRI blood-oxygenation level-dependent response to images of high-calorie foods versus images of brick walls. Covariate analyses quantified the effects of the duration of leptin replacement and concomitant changes in body mass on the cerebral responses. Longer duration of replacement was associated with more activation by food images in a ventral portion of the posterior lobe of the cerebellum, while simultaneous decreases in body mass were associated with decreased activation in a more dorsal portion of the same lobe. These findings indicate that leptin replacement reversibly alters neural function within the posterior cerebellum, and modulates plasticity-dependent brain physiology in response to food cues. The results suggest an underexplored role for the posterior cerebellum in the regulation of leptin-mediated processes related to food intake. PMID:22576622
Functional neuroimaging for addiction medicine: From mechanisms to practical considerations.
Ekhtiari, Hamed; Faghiri, Ashkan; Oghabian, Mohammad-Ali; Paulus, Martin P
2016-01-01
During last 20 years, neuroimaging with functional magnetic resonance imaging (fMRI) in people with drug addictions has introduced a wide range of quantitative biomarkers from brain's regional or network level activities during different cognitive functions. These quantitative biomarkers could be potentially used for assessment, planning, prediction, and monitoring for "addiction medicine" during screening, acute intoxication, admission to a program, completion of an acute program, admission to a long-term program, and postgraduation follow-up. In this chapter, we have briefly reviewed main neurocognitive targets for fMRI studies associated with addictive behaviors, main study types using fMRI among drug dependents, and potential applications for fMRI in addiction medicine. Main challenges and limitations for extending fMRI studies and evidences aiming at clinical applications in addiction medicine are also discussed. There is still a significant gap between available evidences from group-based fMRI studies and personalized decisions during daily practices in addiction medicine. It will be important to fill this gap with large-scale clinical trials and longitudinal studies using fMRI measures with a well-defined strategic plan for the future. © 2016 Elsevier B.V. All rights reserved.
Bauer, Prisca R; Reitsma, Johannes B; Houweling, Bernard M; Ferrier, Cyrille H; Ramsey, Nick F
2014-05-01
Recent studies have shown that fMRI (functional magnetic resonance imaging) may be of value for pre-surgical assessment of language lateralisation. The aim of this study was to systematically review and analyse the available literature. A systematic electronic search for studies comparing fMRI with Wada testing was conducted in the PubMed database between March 2009 and November 2011. Studies involving unilateral Wada testing, study population consisting exclusively of children younger than 12 years of age or involving five patients or fewer were excluded. 22 studies (504 patients) were included. A random effects meta-analysis was conducted to obtain pooled estimates of the positive and negative predictive values of the fMRI using the Wada test as the reference standard. The impact of several study features on the performance of fMRI was assessed. The results showed that 81% of patients were correctly classified as having left or right language dominance or mixed language representation. Techniques were discordant in 19% of patients. fMRI and Wada test agreed in 94% for typical language lateralisation and in 51% for atypical language lateralisation. Language production or language comprehension tasks and different regions of interest did not yield statistically significant different results. It can be concluded that fMRI is reliable when there is strong left-lateralised language. The Wada test is warranted when fMRI fails to show clear left-lateralisation.
Prado, Jérôme; Noveck, Ira A
2007-04-01
Participants experience difficulty detecting that an item depicting an H-in-a-square confirms the logical rule, "If there is not a T then there is not a circle." Indeed, there is a perceptual conflict between the items mentioned in the rule (T and circle) and in the test item (H and square). Much evidence supports the claim that correct responding depends on detecting and resolving such conflicts. One aim of this study is to find more precise neurological evidence in support of this claim by using a parametric event-related functional magnetic resonance imaging (fMRI) paradigm. We scanned 20 participants while they were required to judge whether or not a conditional rule was verified (or falsified) by a corresponding target item. We found that the right middorsolateral prefrontal cortex (mid-DLPFC) was specifically engaged, together with the medial frontal (anterior cingulate and presupplementary motor area [pre-SMA]) and parietal cortices, when mismatching was present. Activity in these regions was also linearly correlated with the level of mismatch between the rule and the test item. Furthermore, a psychophysiological interaction analysis revealed that activation of the mid-DLPFC, which increases as mismatching does, was accompanied by a decrease in functional integration with the bilateral primary visual cortex and an increase in functional integration with the right parietal cortex. This indicates a need to break away from perceptual cues in order to select an appropriate logical response. These findings strongly indicate that the regions involved in inhibitory control (including the right mid-DLPFC and the medial frontal cortex) are engaged when participants have to overcome perceptual mismatches in order to provide a logical response. These findings are also consistent with neuroimaging studies investigating the belief bias, where prior beliefs similarly interfere with logical reasoning.
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Cluster mass inference via random field theory.
Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D
2009-01-01
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.
ERIC Educational Resources Information Center
Parsons, Michael W.; Haut, Marc W.; Lemieux, Susan K.; Moran, Maria T.; Leach, Sharon G.
2006-01-01
The existence of a rostrocaudal gradient of medial temporal lobe (MTL) activation during memory encoding has historically received support from positron emission tomography studies, but less so from functional MRI (FMRI) studies. More recently, FMRI studies have demonstrated that characteristics of the stimuli can affect the location of activation…
Thresholding functional connectomes by means of mixture modeling.
Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F
2018-05-01
Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Sorger, Bettina; Kamp, Tabea; Weiskopf, Nikolaus; Peters, Judith Caroline; Goebel, Rainer
2018-05-15
Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n=10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most participants further enhanced their gradual self-regulation ability. Our findings were observed across a wide variety of mental tasks and across clinical MR field strengths (i.e., at 1.5T and 3T), indicating that these findings are robust and can be generalized across mental tasks and scanner types. The suggested novel parametric activation paradigm enriches the spectrum of current rtfMRI-neurofeedback and BCI methodology and has considerable potential for fundamental and clinical neuroscience applications. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.
Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit
2016-10-19
Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved performance. Using fMRI in children and adults, we find that from childhood to adulthood, neural sensitivity to changes in face identity increases in face-selective regions. Critically, subjects' perceptual discriminability among faces is linked to neural sensitivity: participants with higher neural sensitivity in face-selective regions demonstrate higher perceptual discriminability. Thus, our results suggest that developmental increases in face-selective regions' sensitivity to face identity improve perceptual discrimination of faces. These findings significantly advance understanding of the neural mechanisms underlying the development of face perception and have important implications for assessing both typical and atypical development. Copyright © 2016 the authors 0270-6474/16/3610893-15$15.00/0.
Altered Dynamics of the fMRI Response to Faces in Individuals with Autism
ERIC Educational Resources Information Center
Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth
2016-01-01
Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…
Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N
2010-01-01
Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.
Becker, Michael P I; Nitsch, Alexander M; Hewig, Johannes; Miltner, Wolfgang H R; Straube, Thomas
2016-12-01
Several regions of the frontal cortex interact with striatal and amygdala regions to mediate the evaluation of reward-related information and subsequent adjustment of response choices. Recent theories discuss the particular relevance of dorsal anterior cingulate cortex (dACC) for switching behavior; consecutively, ventromedial prefrontal cortex (VMPFC) is involved in mediating exploitative behaviors by tracking reward values unfolding after the behavioral switch. Amygdala, on the other hand, has been implied in coding the valence of stimulus-outcome associations and the ventral striatum (VS) has consistently been shown to code a reward prediction error (RPE). Here, we used fMRI data acquired in humans during a reversal task to parametrically model different sequences of positive feedback in order to unravel differential contributions of these brain regions to the tracking and exploitation of rewards. Parameters from an Optimal Bayesian Learner accurately predicted the divergent involvement of dACC and VMPFC during feedback processing: dACC signaled the first, but not later, presentations of positive feedback, while VMPFC coded trial-by-trial accumulations in reward value. Our results confirm that dACC carries a prominent confirmatory signal during processing of first positive feedback. Amygdala coded positive feedbacks more uniformly, while striatal regions were associated with RPE. Copyright © 2016 Elsevier Inc. All rights reserved.
Lying about Facial Recognition: An fMRI Study
ERIC Educational Resources Information Center
Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.
2009-01-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…
Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth
2013-08-01
Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.
Intersession reliability of fMRI activation for heat pain and motor tasks
Quiton, Raimi L.; Keaser, Michael L.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.
2014-01-01
As the practice of conducting longitudinal fMRI studies to assess mechanisms of pain-reducing interventions becomes more common, there is a great need to assess the test–retest reliability of the pain-related BOLD fMRI signal across repeated sessions. This study quantitatively evaluated the reliability of heat pain-related BOLD fMRI brain responses in healthy volunteers across 3 sessions conducted on separate days using two measures: (1) intraclass correlation coefficients (ICC) calculated based on signal amplitude and (2) spatial overlap. The ICC analysis of pain-related BOLD fMRI responses showed fair-to-moderate intersession reliability in brain areas regarded as part of the cortical pain network. Areas with the highest intersession reliability based on the ICC analysis included the anterior midcingulate cortex, anterior insula, and second somatosensory cortex. Areas with the lowest intersession reliability based on the ICC analysis also showed low spatial reliability; these regions included pregenual anterior cingulate cortex, primary somatosensory cortex, and posterior insula. Thus, this study found regional differences in pain-related BOLD fMRI response reliability, which may provide useful information to guide longitudinal pain studies. A simple motor task (finger-thumb opposition) was performed by the same subjects in the same sessions as the painful heat stimuli were delivered. Intersession reliability of fMRI activation in cortical motor areas was comparable to previously published findings for both spatial overlap and ICC measures, providing support for the validity of the analytical approach used to assess intersession reliability of pain-related fMRI activation. A secondary finding of this study is that the use of standard ICC alone as a measure of reliability may not be sufficient, as the underlying variance structure of an fMRI dataset can result in inappropriately high ICC values; a method to eliminate these false positive results was used in this study and is recommended for future studies of test–retest reliability. PMID:25161897
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Presurgical language fMRI: Clinical practices and patient outcomes in epilepsy surgical planning.
Benjamin, Christopher F A; Li, Alexa X; Blumenfeld, Hal; Constable, R Todd; Alkawadri, Rafeed; Bickel, Stephan; Helmstaedter, Christoph; Meletti, Stefano; Bronen, Richard; Warfield, Simon K; Peters, Jurriaan M; Reutens, David; Połczyńska, Monika; Spencer, Dennis D; Hirsch, Lawrence J
2018-03-12
The goal of this study was to document current clinical practice and report patient outcomes in presurgical language functional MRI (fMRI) for epilepsy surgery. Epilepsy surgical programs worldwide were surveyed as to the utility, implementation, and efficacy of language fMRI in the clinic; 82 programs responded. Respondents were predominantly US (61%) academic programs (85%), and evaluated adults (44%), adults and children (40%), or children only (16%). Nearly all (96%) reported using language fMRI. Surprisingly, fMRI is used to guide surgical margins (44% of programs) as well as lateralize language (100%). Sites using fMRI for localization most often use a distance margin around activation of 10mm. While considered useful, 56% of programs reported at least one instance of disagreement with other measures. Direct brain stimulation typically confirmed fMRI findings (74%) when guiding margins, but instances of unpredicted decline were reported by 17% of programs and 54% reported unexpected preservation of function. Programs reporting unexpected decline did not clearly differ from those which did not. Clinicians using fMRI to guide surgical margins do not typically map known language-critical areas beyond Broca's and Wernicke's. This initial data shows many clinical teams are confident using fMRI not only for language lateralization but also to guide surgical margins. Reported cases of unexpected language preservation when fMRI activation is resected, and cases of language decline when it is not, emphasize a critical need for further validation. Comprehensive studies comparing commonly-used fMRI paradigms to predict stimulation mapping and post-surgical language decline remain of high importance. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Tracking brain arousal fluctuations with fMRI
Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.
2016-01-01
Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064
Kallioniemi, Elisa; Pitkänen, Minna; Könönen, Mervi; Vanninen, Ritva; Julkunen, Petro
2016-11-01
Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship. Copyright © 2016 Elsevier B.V. All rights reserved.
The experience of mathematical beauty and its neural correlates
Zeki, Semir; Romaya, John Paul; Benincasa, Dionigi M. T.; Atiyah, Michael F.
2014-01-01
Many have written of the experience of mathematical beauty as being comparable to that derived from the greatest art. This makes it interesting to learn whether the experience of beauty derived from such a highly intellectual and abstract source as mathematics correlates with activity in the same part of the emotional brain as that derived from more sensory, perceptually based, sources. To determine this, we used functional magnetic resonance imaging (fMRI) to image the activity in the brains of 15 mathematicians when they viewed mathematical formulae which they had individually rated as beautiful, indifferent or ugly. Results showed that the experience of mathematical beauty correlates parametrically with activity in the same part of the emotional brain, namely field A1 of the medial orbito-frontal cortex (mOFC), as the experience of beauty derived from other sources. PMID:24592230
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
Kim, Seong-Gi; Ye, Jong Chul
2015-01-01
Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503
Comparison of fMRI data analysis by SPM99 on different operating systems.
Shinagawa, Hideo; Honda, Ei-ichi; Ono, Takashi; Kurabayashi, Tohru; Ohyama, Kimie
2004-09-01
The hardware chosen for fMRI data analysis may depend on the platform already present in the laboratory or the supporting software. In this study, we ran SPM99 software on multiple platforms to examine whether we could analyze fMRI data by SPM99, and to compare their differences and limitations in processing fMRI data, which can be attributed to hardware capabilities. Six normal right-handed volunteers participated in a study of hand-grasping to obtain fMRI data. Each subject performed a run that consisted of 98 images. The run was measured using a gradient echo-type echo planar imaging sequence on a 1.5T apparatus with a head coil. We used several personal computer (PC), Unix and Linux machines to analyze the fMRI data. There were no differences in the results obtained on several PC, Unix and Linux machines. The only limitations in processing large amounts of the fMRI data were found using PC machines. This suggests that the results obtained with different machines were not affected by differences in hardware components, such as the CPU, memory and hard drive. Rather, it is likely that the limitations in analyzing a huge amount of the fMRI data were due to differences in the operating system (OS).
ERIC Educational Resources Information Center
Liang, Chun-Yu; Xu, Zhi-Yuan; Mei, Wei; Wang, Li-Li; Xue, Li; Lu, De Jian; Zhao, Hu
2012-01-01
Previous functional magnetic resonance imaging (fMRI) studies have identified activation in the prefrontal-parietal-sub-cortical circuit during feigned memory impairment when comparing with truthful telling. Here, we used fMRI to determine whether neural activity can differentiate between answering correctly, answering randomly, answering…
ERIC Educational Resources Information Center
Steinbrink, Claudia; Groth, Katarina; Lachmann, Thomas; Riecker, Axel
2012-01-01
This fMRI study investigated phonological vs. auditory temporal processing in developmental dyslexia by means of a German vowel length discrimination paradigm (Groth, Lachmann, Riecker, Muthmann, & Steinbrink, 2011). Behavioral and fMRI data were collected from dyslexics and controls while performing same-different judgments of vowel duration in…
Mendrek, Adrianna; Mancini-Marië, Adham; Fahim, Cherine; Stip, Emmanuel
2007-02-01
Impaired processing of various emotions is considered one of the fundamental features of schizophrenia. In the recent study intriguing sex differences were observed in the cerebral function associated with the experience of sadness in schizophrenia patients. The aim of the present study was to explore this phenomenon during exposure to aversive stimuli. Fifteen men and 10 women with the DSM-IV diagnosis of schizophrenia underwent functional magnetic resonance imaging (fMRI) while viewing alternating blocks of negative and neutral pictures. Data were analysed using random-effects model within statistical parametric mapping (SPM99) software. Processing of negative stimuli evoked significantly greater activations in men in the thalamus, cerebellum, temporal, occipital and posterior cingulate cortex, while women exhibited greater activations in the left middle frontal gyrus. The sex differences in the cerebral activations in schizophrenia patients deviate from what has been observed in the general population during exposure and experience of negative affect. As such the present study supports and extends the authors' preliminary observation of the anomalous sexual dimorphism in schizophrenia at the functional neuroanatomical level, suggesting potential masculinization of female subjects and feminization of male subjects with schizophrenia.
Human memory manipulated: dissociating factors contributing to MTL activity, an fMRI study.
Pustina, Dorian; Gizewski, Elke; Forsting, Michael; Daum, Irene; Suchan, Boris
2012-04-01
Memory processes are mainly studied with subjective rating procedures. We used a morphing procedure to objectively manipulate the similarity of target stimuli. While undergoing functional magnetic resonance imaging, nineteen subjects performed a encoding and recognition task on face and scene stimuli, varying the degree of manipulation of previously studied targets at 0%, 20%, 40% or 60%. Analyses were performed with parametric modulations for objective stimulus status (morphing level), subjective memory (confidence rating), and reaction times (RTs). Results showed that medial temporal lobe (MTL) activity can be best explained by a combination of subjective and objective factors. Memory success is associated with activity modulation in the hippocampus both for faces and for scenes. Memory failures correlated with lower hippocampal activity for scenes, but not for faces. Activity changed during retrieval on similar areas activated during encoding. There was a considerable impact of RTs on memory-related areas. Objective perceptual identity correlated with activity in the left MTL, while subjective memory experience correlated with activity in the right MTL for both types of material. Overall, the results indicate that MTL activity is heterogeneous, showing both linear and non-linear activity, depending on the factor analyzed. Copyright © 2011 Elsevier B.V. All rights reserved.
Sapara, Adegboyega; ffytche, Dominic H.; Birchwood, Max; Cooke, Michael A.; Fannon, Dominic; Williams, Steven C.R.; Kuipers, Elizabeth; Kumari, Veena
2014-01-01
Background Poor insight in schizophrenia has been theorised to reflect a cognitive deficit that is secondary to brain abnormalities, localized in the brain regions that are implicated in higher order cognitive functions, including working memory (WM). This study investigated WM-related neural substrates of preserved and poor insight in schizophrenia. Method Forty stable schizophrenia outpatients, 20 with preserved and 20 with poor insight (usable data obtained from 18 preserved and 14 poor insight patients), and 20 healthy participants underwent functional magnetic resonance imaging (fMRI) during a parametric ‘n-back’ task. The three groups were preselected to match on age, education and predicted IQ, and the two patient groups to have distinct insight levels. Performance and fMRI data were analysed to determine how groups of patients with preserved and poor insight differed from each other, and from healthy participants. Results Poor insight patients showed lower performance accuracy, relative to healthy participants (p = 0.01) and preserved insight patients (p = 0.08); the two patient groups were comparable on symptoms and medication. Preserved insight patients, relative to poor insight patients, showed greater activity most consistently in the precuneus and cerebellum (both bilateral) during WM; they also showed greater activity than healthy participants in the inferior–superior frontal gyrus and cerebellum (bilateral). Group differences in brain activity did not co-vary significantly with performance accuracy. Conclusions The precuneus and cerebellum function contribute to preserved insight in schizophrenia. Preserved insight as well as normal-range WM capacity in schizophrenia sub-groups may be achieved via compensatory neural activity in the frontal cortex and cerebellum. PMID:24332795
Ivanov, Iliyan; Liu, Xun; Shulz, Kurt; Fan, Jin; London, Edythe; Friston, Karl; Halperin, Jeffrey M; Newcorn, Jeffrey H
2012-02-28
It is hypothesized that the development of substance abuse (SA) may be due to imbalance in functions of the motivation-reward and behavioral inhibition systems in the brain. This speaks to the search for biological risk factors for SA in drug-naïve children who also exhibit motivational and inhibitory control deficits; however, this type of research is currently lacking. The objective of this study was to establish a neurobiological basis for addiction vulnerability using functional magnetic resonance imaging (fMRI) in drug-naïve youth with attention deficit/hyperactivity disorder (ADHD). We hypothesized that children with ADHD alone would show higher activity in regions of the motivation-reward and behavioral inhibition systems than children with ADHD and a parental history of SA. Toward this goal we scanned 20 drug-naïve children with ADHD ages 8-13 while performing an event-related reward task. High (N=10) and low (N=10) risk subjects were identified, based on parental history of SA. The effects of anticipation, conflict, and reward were assessed with appropriate linear contrasts, and between-group differences were assessed using statistical parametric mapping. The two groups did not differ on behavioral measures of the task. The fMRI results show heightened activation in the brain motivational-reward system and reduced activation of the inhibitory control system in high-risk compared to low-risk children. These results suggest that a functional mismatch between these two systems may represent one possible biological underpinning of SA risk, which is conferred by a parental history of addiction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Functional mapping of language networks in the normal brain using a word-association task.
Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash
2010-08-01
Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association network of words processed postlexical access. This finding is important when assessing the extent of cognitive damage and/or recovery and can be used for presurgical planning after optimization.
Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama
2013-01-01
A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.
A new vibrator to stimulate muscle proprioceptors in fMRI.
Montant, Marie; Romaiguère, Patricia; Roll, Jean-Pierre
2009-03-01
Studying cognitive brain functions by functional magnetic resonance imaging (fMRI) requires appropriate stimulation devices that do not interfere with the magnetic fields. Since the emergence of fMRI in the 90s, a number of stimulation devices have been developed for the visual and auditory modalities. Only few devices, however, have been developed for the somesthesic modality. Here, we present a vibration device for studying somesthesia that is compatible with high magnetic field environments and that can be used in fMRI machines. This device consists of a poly vinyl chloride (PVC) vibrator containing a wind turbine and of a pneumatic apparatus that controls 1-6 vibrators simultaneously. Just like classical electromagnetic vibrators, our device stimulates muscle mechanoreceptors (muscle spindles) and generates reliable illusions of movement. We provide the fMRI compatibility data (phantom test), the calibration curve (vibration frequency as a function of air flow), as well as the results of a kinesthetic test (perceived speed of the illusory movement as a function of vibration frequency). This device was used successfully in several brain imaging studies using both fMRI and magnetoencephalography.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).
Makkie, Milad; Zhao, Shijie; Jiang, Xi; Lv, Jinglei; Zhao, Yu; Ge, Bao; Li, Xiang; Han, Junwei; Liu, Tianming
2015-12-01
Tremendous efforts have thus been devoted on the establishment of functional MRI informatics systems that recruit a comprehensive collection of statistical/computational approaches for fMRI data analysis. However, the state-of-the-art fMRI informatics systems are especially designed for specific fMRI sessions or studies of which the data size is not really big, and thus has difficulty in handling fMRI 'big data.' Given the size of fMRI data are growing explosively recently due to the advancement of neuroimaging technologies, an effective and efficient fMRI informatics system which can process and analyze fMRI big data is much needed. To address this challenge, in this work, we introduce our newly developed informatics platform, namely, 'HAFNI-enabled largescale platform for neuroimaging informatics (HELPNI).' HELPNI implements our recently developed computational framework of sparse representation of whole-brain fMRI signals which is called holistic atlases of functional networks and interactions (HAFNI) for fMRI data analysis. HELPNI provides integrated solutions to archive and process large-scale fMRI data automatically and structurally, to extract and visualize meaningful results information from raw fMRI data, and to share open-access processed and raw data with other collaborators through web. We tested the proposed HELPNI platform using publicly available 1000 Functional Connectomes dataset including over 1200 subjects. We identified consistent and meaningful functional brain networks across individuals and populations based on resting state fMRI (rsfMRI) big data. Using efficient sampling module, the experimental results demonstrate that our HELPNI system has superior performance than other systems for large-scale fMRI data in terms of processing and storing the data and associated results much faster.
fMRI Validation of fNIRS Measurements During a Naturalistic Task
Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy
2015-01-01
We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365
Warbrick, Tracy; Reske, Martina; Shah, N Jon
2014-09-22
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2010-01-01
Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823
Trinh, Victoria T; Fahim, Daniel K; Maldaun, Marcos V C; Shah, Komal; McCutcheon, Ian E; Rao, Ganesh; Lang, Frederick; Weinberg, Jeffrey; Sawaya, Raymond; Suki, Dima; Prabhu, Sujit S
2014-01-01
We wanted to study the role of functional MRI (fMRI) in preventing neurological injury in awake craniotomy patients as this has not been previously studied. To examine the role of fMRI as an intraoperative adjunct during awake craniotomy procedures. Preoperative fMRI was carried out routinely in 214 patients undergoing awake craniotomy with direct cortical stimulation (DCS). In 40% of our cases (n = 85) fMRI was utilized for the intraoperative localization of the eloquent cortex. In the other 129 cases significant noise distortion, poor task performance and nonspecific BOLD activation precluded the surgeon from using the fMRI data. Compared with DCS, fMRI had a sensitivity and specificity, respectively, of 91 and 64% in Broca's area, 93 and 18% in Wernicke's area and 100 and 100% in motor areas. A new intraoperative neurological deficit during subcortical dissection was predictive of a worsened deficit following surgery (p < 0.001). The use of fMRI for intraoperative localization was, however, not significant in preventing worsened neurological deficits, both in the immediate postoperative period (p = 1.00) and at the 3-month follow-up (p = 0.42). The routine use of fMRI was not useful in identifying language sites as performed and, more importantly, practiced tasks failed to prevent neurological deficits following awake craniotomy procedures. © 2014 S. Karger AG, Basel.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Silva, Guilherme; Citterio, Alberto
2017-10-01
Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking
Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus
2013-01-01
Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194
The Language–Number Interface in the Brain: A Complex Parametric Study of Quantifiers and Quantities
Heim, Stefan; Amunts, Katrin; Drai, Dan; Eickhoff, Simon B.; Hautvast, Sarah; Grodzinsky, Yosef
2011-01-01
The neural bases for numerosity and language are of perennial interest. In monkeys, neural separation of numerical Estimation and numerical Comparison has been demonstrated. As linguistic and numerical knowledge can only be compared in humans, we used a new fMRI paradigm in an attempt to dissociate Estimation from Comparison, and at the same time uncover the neural relation between numerosity and language. We used complex stimuli: images depicting a proportion between quantities of blue and yellow circles were coupled with sentences containing quantifiers that described them (e.g., “most/few of the circles are yellow”). Participants verified sentences against images. Both Estimation and Comparison recruited adjacent, partially overlapping bi-hemispheric fronto-parietal regions. Additional semantic analysis of positive vs. negative quantifiers involving the interpretation of quantity and numerosity specifically recruited left area 45. The anatomical proximity between numerosity regions and those involved in semantic analysis points to subtle links between the number system and language. Results fortify the homology of Estimation and Comparison between humans and monkeys. PMID:22470338
Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds.
Van Ruijssevelt, Lisbeth; De Groof, Geert; Van der Kant, Anne; Poirier, Colline; Van Audekerke, Johan; Verhoye, Marleen; Van der Linden, Annemie
2013-06-03
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Schallmo, Michael-Paul; Grant, Andrea N; Burton, Philip C; Olman, Cheryl A
2016-08-01
Although V1 responses are driven primarily by elements within a neuron's receptive field, which subtends about 1° visual angle in parafoveal regions, previous work has shown that localized fMRI responses to visual elements reflect not only local feature encoding but also long-range pattern attributes. However, separating the response to an image feature from the response to the surrounding stimulus and studying the interactions between these two responses demands both spatial precision and signal independence, which may be challenging to attain with fMRI. The present study used 7 Tesla fMRI with 1.2-mm resolution to measure the interactions between small sinusoidal grating patches (targets) at 3° eccentricity and surrounds of various sizes and orientations to test the conditions under which localized, context-dependent fMRI responses could be predicted from either psychophysical or electrophysiological data. Targets were presented at 8%, 16%, and 32% contrast while manipulating (a) spatial extent of parallel (strongly suppressive) or orthogonal (weakly suppressive) surrounds, (b) locus of attention, (c) stimulus onset asynchrony between target and surround, and (d) blocked versus event-related design. In all experiments, the V1 fMRI signal was lower when target stimuli were flanked by parallel versus orthogonal context. Attention amplified fMRI responses to all stimuli but did not show a selective effect on central target responses or a measurable effect on orientation-dependent surround suppression. Suppression of the V1 fMRI response by parallel surrounds was stronger than predicted from psychophysics but showed a better match to previous electrophysiological reports.
Richards, Todd; Webb, Sara Jane; Murias, Michael; Merkle, Kristen; Kleinhans, Natalia M.; Johnson, L. Clark; Poliakov, Andrew; Aylward, Elizabeth; Dawson, Geraldine
2013-01-01
Brain activity patterns during face processing have been extensively explored with functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs). ERP source localization adds a spatial dimension to the ERP time series recordings, which allows for a more direct comparison and integration with fMRI findings. The goals for this study were (1) to compare the spatial descriptions of neuronal activity during face processing obtained with fMRI and ERP source localization using low-resolution electro-magnetic tomography (LORETA), and (2) to use the combined information from source localization and fMRI to explore how the temporal sequence of brain activity during face processing is summarized in fMRI activation maps. fMRI and high-density ERP data were acquired in separate sessions for 17 healthy adult males for a face and object processing task. LORETA statistical maps for the comparison of viewing faces and viewing houses were coregistered and compared to fMRI statistical maps for the same conditions. The spatial locations of face processing-sensitive activity measured by fMRI and LORETA were found to overlap in a number of areas including the bilateral fusiform gyri, the right superior, middle and inferior temporal gyri, and the bilateral precuneus. Both the fMRI and LORETA solutions additionally demon-strated activity in regions that did not overlap. fMRI and LORETA statistical maps of face processing-sensitive brain activity were found to converge spatially primarily at LORETA solution latencies that were within 18 ms of the N170 latency. The combination of data from these techniques suggested that electrical brain activity at the latency of the N170 is highly represented in fMRI statistical maps. PMID:19322649
Technical Note: Independent component analysis for quality assurance in functional MRI.
Astrakas, Loukas G; Kallistis, Nikolaos S; Kalef-Ezra, John A
2016-02-01
Independent component analysis (ICA) is an established method of analyzing human functional MRI (fMRI) data. Here, an ICA-based fMRI quality control (QC) tool was developed and used. ICA-based fMRI QC tool to be used with a commercial phantom was developed. In an attempt to assess the performance of the tool relative to preexisting alternative tools, it was used seven weeks before and eight weeks after repair of a faulty gradient amplifier of a non-state-of-the-art MRI unit. More specifically, its performance was compared with the AAPM 100 acceptance testing and quality assurance protocol and two fMRI QC protocols, proposed by Freidman et al. ["Report on a multicenter fMRI quality assurance protocol," J. Magn. Reson. Imaging 23, 827-839 (2006)] and Stocker et al. ["Automated quality assurance routines for fMRI data applied to a multicenter study," Hum. Brain Mapp. 25, 237-246 (2005)], respectively. The easily developed and applied ICA-based QC protocol provided fMRI QC indices and maps equally sensitive to fMRI instabilities with the indices and maps of other established protocols. The ICA fMRI QC indices were highly correlated with indices of other fMRI QC protocols and in some cases theoretically related to them. Three or four independent components with slow varying time series are detected under normal conditions. ICA applied on phantom measurements is an easy and efficient tool for fMRI QC. Additionally, it can protect against misinterpretations of artifact components as human brain activations. Evaluating fMRI QC indices in the central region of a phantom is not always the optimal choice.
Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Raymond, Kristen; McWilliams, Shannon; Tanabe, Jody; Rojas, Don; Regner, Michael; Banich, Marie T; Crowley, Thomas J
2017-05-30
We sought to identify brain activation differences in conduct-problem youth with limited prosocial emotions (LPE) compared to conduct-problem youth without LPE and community adolescents, and to test associations between brain activation and severity of callous-unemotional traits. We utilized a novel task, which asks subjects to repeatedly decide whether to accept offers where they will benefit but a beneficent other will be harmed. Behavior on this task has been previously associated with levels of prosocial emotions and severity of callous-unemotional traits, and is related to empathic concern. During fMRI acquisition, 66 male adolescents (21 conduct-problem patients with LPE, 21 without, and 24 typically-developing controls) played this novel game. Within typically-developing controls, we identified a network engaged during decision involving bilateral insula, and inferior parietal and medial frontal cortices, among other regions. Group comparisons using non-parametric (distribution-free) permutation tests demonstrated LPE patients had lower activation estimates than typically-developing adolescents in right anterior insula. Additional significant group differences emerged with our a priori parametric cluster-wise inference threshold. These results suggest measurable functional brain activation differences in conduct-problem adolescents with LPE compared to typically-developing adolescents. Such differences may underscore differential treatment needs for conduct-problem males with and without LPE. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Neural mechanisms of planning: A computational analysis using event-related fMRI
Fincham, Jon M.; Carter, Cameron S.; van Veen, Vincent; Stenger, V. Andrew; Anderson, John R.
2002-01-01
To investigate the neural mechanisms of planning, we used a novel adaptation of the Tower of Hanoi (TOH) task and event-related functional MRI. Participants were trained in applying a specific strategy to an isomorph of the five-disk TOH task. After training, participants solved novel problems during event-related functional MRI. A computational cognitive model of the task was used to generate a reference time series representing the expected blood oxygen level-dependent response in brain areas involved in the manipulation and planning of goals. This time series was used as one term within a general linear modeling framework to identify brain areas in which the time course of activity varied as a function of goal-processing events. Two distinct time courses of activation were identified, one in which activation varied parametrically with goal-processing operations, and the other in which activation became pronounced only during goal-processing intensive trials. Regions showing the parametric relationship comprised a frontoparietal system and include right dorsolateral prefrontal cortex [Brodmann's area (BA 9)], bilateral parietal (BA 40/7), and bilateral premotor (BA 6) areas. Regions preferentially engaged only during goal-intensive processing include left inferior frontal gyrus (BA 44). The implications of these results for the current model, as well as for our understanding of the neural mechanisms of planning and functional specialization of the prefrontal cortex, are discussed. PMID:11880658
Real-time fMRI: a tool for local brain regulation.
Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels
2012-10-01
Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.
Sources and implications of whole-brain fMRI signals in humans
Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex
2016-01-01
Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941
McGraw, P; Mathews, V P; Wang, Y; Phillips, M D
2001-05-01
Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.
Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min
2017-11-15
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. Copyright © 2017 the authors 0270-6474/17/3711192-12$15.00/0.
2017-01-01
This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. PMID:29038239
Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study
Luh, Wen-Ming; Talavage, Thomas M.
2010-01-01
Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477
Richlan, Fabio; Gagl, Benjamin; Hawelka, Stefan; Braun, Mario; Schurz, Matthias; Kronbichler, Martin; Hutzler, Florian
2014-10-01
The present study investigated the feasibility of using self-paced eye movements during reading (measured by an eye tracker) as markers for calculating hemodynamic brain responses measured by functional magnetic resonance imaging (fMRI). Specifically, we were interested in whether the fixation-related fMRI analysis approach was sensitive enough to detect activation differences between reading material (words and pseudowords) and nonreading material (line and unfamiliar Hebrew strings). Reliable reading-related activation was identified in left hemisphere superior temporal, middle temporal, and occipito-temporal regions including the visual word form area (VWFA). The results of the present study are encouraging insofar as fixation-related analysis could be used in future fMRI studies to clarify some of the inconsistent findings in the literature regarding the VWFA. Our study is the first step in investigating specific visual word recognition processes during self-paced natural sentence reading via simultaneous eye tracking and fMRI, thus aiming at an ecologically valid measurement of reading processes. We provided the proof of concept and methodological framework for the analysis of fixation-related fMRI activation in the domain of reading research. © The Author 2013. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.
2017-11-01
Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.
Behavioral and neural properties of social reinforcement learning
Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Libby, Victoria; Glover, Gary; Voss, Henning U.; Ballon, Douglas J.; Casey, BJ
2011-01-01
Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based upon work in non-human primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging (fMRI). Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis - social preferences, response latencies and modeling neural responses – are consistent with reinforcement learning theory and non-human primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one’s peers in altering subsequent behavior. PMID:21917787
Functional magnetic resonance imaging: basic principles and application in the neurosciences.
Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C
2018-03-12
Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
On how high performers keep cool brains in situations of cognitive overload.
Jaeggi, Susanne M; Buschkuehl, Martin; Etienne, Alex; Ozdoba, Christoph; Perrig, Walter J; Nirkko, Arto C
2007-06-01
What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.
Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review.
Pascual-Marqui, R D; Esslen, M; Kochi, K; Lehmann, D
2002-01-01
This paper reviews several recent publications that have successfully used the functional brain imaging method known as LORETA. Emphasis is placed on the electrophysiological and neuroanatomical basis of the method, on the localization properties of the method, and on the validation of the method in real experimental human data. Papers that criticize LORETA are briefly discussed. LORETA publications in the 1994-1997 period based localization inference on images of raw electric neuronal activity. In 1998, a series of papers appeared that based localization inference on the statistical parametric mapping methodology applied to high-time resolution LORETA images. Starting in 1999, quantitative neuroanatomy was added to the methodology, based on the digitized Talairach atlas provided by the Brain Imaging Centre, Montreal Neurological Institute. The combination of these methodological developments has placed LORETA at a level that compares favorably to the more classical functional imaging methods, such as PET and fMRI.
Chiu, Pearl H.; Kayali, M. Amin; Kishida, Kenneth T.; Tomlin, Damon; Klinger, Laura G.; Klinger, Mark R.; Montague, P. Read
2014-01-01
Summary Attributing behavioral outcomes correctly to oneself or to other agents is essential for all productive social exchange. We approach this issue in high-functioning males with autism spectrum disorder (ASD) using two separate fMRI paradigms. First, using a visual imagery task, we extract a basis set for responses along the cingulate cortex of control subjects that reveals an agent-specific eigenvector (self eigenmode) associated with imagining oneself executing a specific motor act. Second, we show that the same self eigenmode arises during one's own decision (the self phase) in an interpersonal exchange game (iterated trust game). Third, using this exchange game, we show that ASD males exhibit a severely diminished self eigenmode when playing the game with a human partner. This diminished response covaries parametrically with their behaviorally assessed symptom severity suggesting its value as an objective endophenotype. These findings may provide a quantitative assessment tool for high functioning ASD. PMID:18255038
Knowledge acquisition is governed by striatal prediction errors.
Pine, Alex; Sadeh, Noa; Ben-Yakov, Aya; Dudai, Yadin; Mendelsohn, Avi
2018-04-26
Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs-most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.
Sozda, Christopher N.; Larson, Michael J.; Kaufman, David A.S.; Schmalfuss, Ilona M.; Perlstein, William M.
2011-01-01
Continuous monitoring of one’s performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. PMID:21756946
Sozda, Christopher N; Larson, Michael J; Kaufman, David A S; Schmalfuss, Ilona M; Perlstein, William M
2011-10-01
Continuous monitoring of one's performance is invaluable for guiding behavior towards successful goal attainment by identifying deficits and strategically adjusting responses when performance is inadequate. In the present study, we exploited the advantages of event-related functional magnetic resonance imaging (fMRI) to examine brain activity associated with error-related processing after severe traumatic brain injury (sTBI). fMRI and behavioral data were acquired while 10 sTBI participants and 12 neurologically-healthy controls performed a task-switching cued-Stroop task. fMRI data were analyzed using a random-effects whole-brain voxel-wise general linear model and planned linear contrasts. Behaviorally, sTBI patients showed greater error-rate interference than neurologically-normal controls. fMRI data revealed that, compared to controls, sTBI patients showed greater magnitude error-related activation in the anterior cingulate cortex (ACC) and an increase in the overall spatial extent of error-related activation across cortical and subcortical regions. Implications for future research and potential limitations in conducting fMRI research in neurologically-impaired populations are discussed, as well as some potential benefits of employing multimodal imaging (e.g., fMRI and event-related potentials) of cognitive control processes in TBI. Copyright © 2011 Elsevier B.V. All rights reserved.
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Long, Zhiying; Chen, Kewei; Wu, Xia; Reiman, Eric; Peng, Danling; Yao, Li
2009-02-01
Spatial Independent component analysis (sICA) has been widely used to analyze functional magnetic resonance imaging (fMRI) data. The well accepted implicit assumption is the spatially statistical independency of intrinsic sources identified by sICA, making the sICA applications difficult for data in which there exist interdependent sources and confounding factors. This interdependency can arise, for instance, from fMRI studies investigating two tasks in a single session. In this study, we introduced a linear projection approach and considered its utilization as a tool to separate task-related components from two-task fMRI data. The robustness and feasibility of the method are substantiated through simulation on computer data and fMRI real rest data. Both simulated and real two-task fMRI experiments demonstrated that sICA in combination with the projection method succeeded in separating spatially dependent components and had better detection power than pure model-based method when estimating activation induced by each task as well as both tasks.
Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.
Sheu, Lei K; Jennings, J Richard; Gianaros, Peter J
2012-07-01
We examined the reliability of measures of fMRI, subjective, and cardiovascular reactions to standardized versions of a Stroop color-word task and a multisource interference task. A sample of 14 men and 12 women (30-49 years old) completed the tasks on two occasions, separated by a median of 88 days. The reliability of fMRI BOLD signal changes in brain areas engaged by the tasks was moderate, and aggregating fMRI BOLD signal changes across the tasks improved test-retest reliability metrics. These metrics included voxel-wise intraclass correlation coefficients (ICCs) and overlap ratio statistics. Task-aggregated ratings of subjective arousal, valence, and control, as well as cardiovascular reactions evoked by the tasks showed ICCs of 0.57 to 0.87 (ps < .001), indicating moderate-to-strong reliability. These findings support using these tasks as a battery for fMRI studies of cardiovascular reactivity. Copyright © 2012 Society for Psychophysiological Research.
NEURAL SUBSTRATES OF CUE-REACTIVITY: ASSOCIATION WITH TREATMENT OUTCOMES AND RELAPSE
Courtney, Kelly E.; Schacht, Joseph P.; Hutchison, Kent; Roche, Daniel J.O.; Ray, Lara A.
2016-01-01
Given the strong evidence for neurological alterations at the basis of drug dependence, functional magnetic resonance imaging (fMRI) represents an important tool in the clinical neuroscience of addiction. fMRI cue-reactivity paradigms represent an ideal platform to probe the involvement of neurobiological pathways subserving the reward/motivation system in addiction and potentially offer a translational mechanism by which interventions and behavioral predictions can be tested. Thus, this review summarizes the research that has applied fMRI cue-reactivity paradigms to the study of adult substance use disorder treatment responses. Studies utilizing fMRI cue-reactivity paradigms for the prediction of relapse, and as a means to investigate psychosocial and pharmacological treatment effects on cue-elicited brain activation are presented within four primary categories of substances: alcohol, nicotine, cocaine, and opioids. Lastly, suggestions for how to leverage fMRI technology to advance addiction science and treatment development are provided. PMID:26435524
Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian
2014-01-01
Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for cognitive processes in MS.
2012-10-01
Yurgelun-Todd DA, Killgore WD. Fear-related activity in the prefrontal cortex increases with age during adolescence: a preliminary fMRI study . Neurosci...associated with altered brain activation during visual perception of high-calorie foods: An fMRI study . Abstract presented at the 25th Annual Meeting of the...Fereira MD, Nasello AG, Savoia M, et al. Police officers under attack: resilience implications of an fMRI study . J Psychiatr Res 2011; 45:727–734. 22
Altered spinal cord activity during sexual stimulation in women with SCI: a pilot fMRI study.
Alexander, Marcalee; Kozyrev, Natalie; Figley, Chase R; Richards, J Scott
2017-01-01
The objective of this study was to assess the feasibility of the use of functional magnetic resonance imaging (fMRI) to evaluate the spinal activation during sexual response of the thoracic, lumbar and sacral spinal cord. This is a laboratory-based pilot study in human females at a University-based medical center in the United States. In three healthy spinal cord injury (SCI) females, spinal cord activations during sexual audiovisual stimulation (alone), genital self-stimulation (alone) and simultaneous audiovisual and genital self-stimulation (combined) were assessed and then compared with each subjects' remaining sensory and motor function. Spinal fMRI responses of the intermediolateral columns were found during audiovisual stimulation in both subjects with incomplete injuries, but they were not observed in the subject with a complete injury. Moreover, sacral responses to combined stimulation differed greatly between the subjects with complete and incomplete injuries. These results not only provide the first in vivo documentation of spinal fMRI responses associated with sexual arousal in women with SCIs, but also suggest that spinal cord fMRI is capable of distinguishing between injury subtypes. Therefore, although there are certain limitations associated with fMRI during sexual stimulation (for example, movement artifacts, an artificially controlled environment and so), these findings demonstrate the potential utility of incorporating spinal cord fMRI in future research to evaluate the impact of specific patterns of SCI on sexual responses and/or the effects of treatment.
Optimizing methods for linking cinematic features to fMRI data.
Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia
2015-04-15
One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.
Functional Brain Activation Differences in Stuttering Identified with a Rapid fMRI Sequence
ERIC Educational Resources Information Center
Loucks, Torrey; Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.
2011-01-01
The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech…
Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
Wong, Chung-Ki; Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Luo, Qingfei; Bodurka, Jerzy
2016-04-01
Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings performed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it involves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facilitate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an automatic identification of motion-related ICs. aE-REMCOR has been used to perform retrospective motion correction for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3T MRI scanner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio (TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion parameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI data. In particular, when there are significant rapid head movements during the scan, a large TSNR improvement and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR improvement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conveniently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Hierarchical Model for Simultaneous Detection and Estimation in Multi-subject fMRI Studies
Degras, David; Lindquist, Martin A.
2014-01-01
In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An e cient estimation algorithm is presented, as is an inferential framework that not only allows for tests of activation, but also for tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain. PMID:24793829
Effects of hypoglycemia on human brain activation measured with fMRI.
Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C
2006-07-01
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Motor Cortex Stimulation Reverses Maladaptive Plasticity Following Spinal Cord Injury
2012-09-01
pp 74–85. Austin: Landes Biosciences. 3. Abstracts o Mechanisms of Pain Relief Following Motor Cortex Stimulation: An fMRI Study. Society for...Neuroscience Meeting. Washington, DC. 2012. o Resting State fMRI in a Rat Model of Spinal Cord Injury Neuropathic Pain: A Longitudinal Study. Society...2601–2610. 16. Stefanacci L, Reber P, Costanza J, Wong E, Buxton R, Zola S, Squire L, Albright T. fMRI of monkey visual cortex. Neuron 1998;20:1051
Dual-TRACER: High resolution fMRI with constrained evolution reconstruction.
Li, Xuesong; Ma, Xiaodong; Li, Lyu; Zhang, Zhe; Zhang, Xue; Tong, Yan; Wang, Lihong; Sen Song; Guo, Hua
2018-01-01
fMRI with high spatial resolution is beneficial for studies in psychology and neuroscience, but is limited by various factors such as prolonged imaging time, low signal to noise ratio and scarcity of advanced facilities. Compressed Sensing (CS) based methods for accelerating fMRI data acquisition are promising. Other advanced algorithms like k-t FOCUSS or PICCS have been developed to improve performance. This study aims to investigate a new method, Dual-TRACER, based on Temporal Resolution Acceleration with Constrained Evolution Reconstruction (TRACER), for accelerating fMRI acquisitions using golden angle variable density spiral. Both numerical simulations and in vivo experiments at 3T were conducted to evaluate and characterize this method. Results show that Dual-TRACER can provide functional images with a high spatial resolution (1×1mm 2 ) under an acceleration factor of 20 while maintaining hemodynamic signals well. Compared with other investigated methods, dual-TRACER provides a better signal recovery, higher fMRI sensitivity and more reliable activation detection. Copyright © 2017 Elsevier Inc. All rights reserved.
Wood, Guilherme; Nuerk, Hans-Christoph; Moeller, Korbinian; Geppert, Barbara; Schnitker, Ralph; Weber, Jochen; Willmes, Klaus
2008-01-02
Number processing recruits a complex network of multiple numerical representations. Usually the components of this network are examined in a between-task approach with the disadvantage of relying upon different instructions, tasks, and inhomogeneous stimulus sets across different studies. A within-task approach may avoid these disadvantages and access involved numerical representations more specifically. In the present study we employed a within-task approach to investigate numerical representations activated in the number bisection task (NBT) using parametric rapid event-related fMRI. Participants were to judge whether the central number of a triplet was also its arithmetic mean (e.g. 23_26_29) or not (e.g. 23_25_29). Activation in the left inferior parietal cortex was associated with the deployment of arithmetic fact knowledge, while activation of the intraparietal cortex indicated more intense magnitude processing, instrumental aspects of calculation and integration of the base-10 structure of two-digit numbers. These results replicate evidence from the literature. Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex revealed mechanisms of feature monitoring and inhibition as well as allocation of cognitive resources recruited to solve a specific triplet. We conclude that the network of numerical representations should rather be studied in a within-task approach than in varying between-task approaches.
Monkey cortex through fMRI glasses
Vanduffel, Wim; Zhu, Qi; Orban, Guy A.
2015-01-01
In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559
Monkey cortex through fMRI glasses.
Vanduffel, Wim; Zhu, Qi; Orban, Guy A
2014-08-06
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan
2016-01-01
Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534
2014-01-01
Background The ability to walk independently is a primary goal for rehabilitation after stroke. Gait analysis provides a great amount of valuable information, while functional magnetic resonance imaging (fMRI) offers a powerful approach to define networks involved in motor control. The present study reports a new methodology based on both fMRI and gait analysis outcomes in order to investigate the ability of fMRI to reflect the phases of motor learning before/after electromyographic biofeedback treatment: the preliminary fMRI results of a post stroke subject’s brain activation, during passive and active ankle dorsal/plantarflexion, before and after biofeedback (BFB) rehabilitation are reported and their correlation with gait analysis data investigated. Methods A control subject and a post-stroke patient with chronic hemiparesis were studied. Functional magnetic resonance images were acquired during a block-design protocol on both subjects while performing passive and active ankle dorsal/plantarflexion. fMRI and gait analysis were assessed on the patient before and after electromyographic biofeedback rehabilitation treatment during gait activities. Lower limb three-dimensional kinematics, kinetics and surface electromyography were evaluated. Correlation between fMRI and gait analysis categorical variables was assessed: agreement/disagreement was assigned to each variable if the value was in/outside the normative range (gait analysis), or for presence of normal/diffuse/no activation of motor area (fMRI). Results Altered fMRI activity was found on the post-stroke patient before biofeedback rehabilitation with respect to the control one. Meanwhile the patient showed a diffuse, but more limited brain activation after treatment (less voxels). The post-stroke gait data showed a trend towards the normal range: speed, stride length, ankle power, and ankle positive work increased. Preliminary correlation analysis revealed that consistent changes were observed both for the fMRI data, and the gait analysis data after treatment (R > 0.89): this could be related to the possible effects BFB might have on the central as well as on the peripheral nervous system. Conclusions Our findings showed that this methodology allows evaluation of the relationship between alterations in gait and brain activation of a post-stroke patient. Such methodology, if applied on a larger sample subjects, could provide information about the specific motor area involved in a rehabilitation treatment. PMID:24716475
Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan
2017-01-15
Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Suarez, Ralph O; Taimouri, Vahid; Boyer, Katrina; Vega, Clemente; Rotenberg, Alexander; Madsen, Joseph R; Loddenkemper, Tobias; Duffy, Frank H; Prabhu, Sanjay P; Warfield, Simon K
2014-12-01
In this study we validate passive language fMRI protocols designed for clinical application in pediatric epilepsy surgical planning as they do not require overt participation from patients. We introduced a set of quality checks that assess reliability of noninvasive fMRI mappings utilized for clinical purposes. We initially compared two fMRI language mapping paradigms, one active in nature (requiring participation from the patient) and the other passive in nature (requiring no participation from the patient). Group-level analysis in a healthy control cohort demonstrated similar activation of the putative language centers of the brain in the inferior frontal (IFG) and temporoparietal (TPG) regions. Additionally, we showed that passive language fMRI produced more left-lateralized activation in TPG (LI=+0.45) compared to the active task; with similarly robust left-lateralized IFG (LI=+0.24) activations using the passive task. We validated our recommended fMRI mapping protocols in a cohort of 15 pediatric epilepsy patients by direct comparison against the invasive clinical gold-standards. We found that language-specific TPG activation by fMRI agreed to within 9.2mm to subdural localizations by invasive functional mapping in the same patients, and language dominance by fMRI agreed with Wada test results at 80% congruency in TPG and 73% congruency in IFG. Lastly, we tested the recommended passive language fMRI protocols in a cohort of very young patients and confirmed reliable language-specific activation patterns in that challenging cohort. We concluded that language activation maps can be reliably achieved using the passive language fMRI protocols we proposed even in very young (average 7.5 years old) or sedated pediatric epilepsy patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing.
Lankinen, Kaisu; Saari, Jukka; Hlushchuk, Yevhen; Tikka, Pia; Parkkonen, Lauri; Hari, Riitta; Koskinen, Miika
2018-06-01
Movie viewing allows human perception and cognition to be studied in complex, real-life-like situations in a brain-imaging laboratory. Previous studies with functional magnetic resonance imaging (fMRI) and with magneto- and electroencephalography (MEG and EEG) have demonstrated consistent temporal dynamics of brain activity across movie viewers. However, little is known about the similarities and differences of fMRI and MEG or EEG dynamics during such naturalistic situations. We thus compared MEG and fMRI responses to the same 15-min black-and-white movie in the same eight subjects who watched the movie twice during both MEG and fMRI recordings. We analyzed intra- and intersubject voxel-wise correlations within each imaging modality as well as the correlation of the MEG envelopes and fMRI signals. The fMRI signals showed voxel-wise within- and between-subjects correlations up to r = 0.66 and r = 0.37, respectively, whereas these correlations were clearly weaker for the envelopes of band-pass filtered (7 frequency bands below 100 Hz) MEG signals (within-subjects correlation r < 0.14 and between-subjects r < 0.05). Direct MEG-fMRI voxel-wise correlations were unreliable. Notably, applying a spatial-filtering approach to the MEG data uncovered consistent canonical variates that showed considerably stronger (up to r = 0.25) between-subjects correlations than the univariate voxel-wise analysis. Furthermore, the envelopes of the time courses of these variates up to about 10 Hz showed association with fMRI signals in a general linear model. Similarities between envelopes of MEG canonical variates and fMRI voxel time-courses were seen mostly in occipital, but also in temporal and frontal brain regions, whereas intra- and intersubject correlations for MEG and fMRI separately were strongest only in the occipital areas. In contrast to the conventional univariate analysis, the spatial-filtering approach was able to uncover associations between the MEG envelopes and fMRI time courses, shedding light on the similarities of hemodynamic and electromagnetic brain activities during movie viewing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.
2016-01-01
Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403
fMRI reliability: influences of task and experimental design.
Bennett, Craig M; Miller, Michael B
2013-12-01
As scientists, it is imperative that we understand not only the power of our research tools to yield results, but also their ability to obtain similar results over time. This study is an investigation into how common decisions made during the design and analysis of a functional magnetic resonance imaging (fMRI) study can influence the reliability of the statistical results. To that end, we gathered back-to-back test-retest fMRI data during an experiment involving multiple cognitive tasks (episodic recognition and two-back working memory) and multiple fMRI experimental designs (block, event-related genetic sequence, and event-related m-sequence). Using these data, we were able to investigate the relative influences of task, design, statistical contrast (task vs. rest, target vs. nontarget), and statistical thresholding (unthresholded, thresholded) on fMRI reliability, as measured by the intraclass correlation (ICC) coefficient. We also utilized data from a second study to investigate test-retest reliability after an extended, six-month interval. We found that all of the factors above were statistically significant, but that they had varying levels of influence on the observed ICC values. We also found that these factors could interact, increasing or decreasing the relative reliability of certain Task × Design combinations. The results suggest that fMRI reliability is a complex construct whose value may be increased or decreased by specific combinations of factors.
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.
2017-01-01
Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998
EEG-Informed fMRI: A Review of Data Analysis Methods
Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia
2018-01-01
The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634
The power of using functional fMRI on small rodents to study brain pharmacology and disease
Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie
2015-01-01
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
Functional MR imaging assessment of a non-responsive brain injured patient.
Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B
2001-10-01
Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.
FMRI Is a Valid Noninvasive Alternative to Wada Testing
Binder, Jeffrey R.
2010-01-01
Partial removal of the anterior temporal lobe (ATL) is a highly effective surgical treatment for intractable temporal lobe epilepsy, yet roughly half of patients who undergo left ATL resection show decline in language or verbal memory function postoperatively. Two recent studies demonstrate that preoperative fMRI can predict postoperative naming and verbal memory changes in such patients. Most importantly, fMRI significantly improves the accuracy of prediction relative to other noninvasive measures used alone. Addition of language and memory lateralization data from the intracarotid amobarbital (Wada) test did not improve prediction accuracy in these studies. Thus, fMRI provides patients and practitioners with a safe, non-invasive, and well-validated tool for making better-informed decisions regarding elective surgery based on a quantitative assessment of cognitive risk. PMID:20850386
Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.
Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F
2017-01-01
Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.
Strigel, Roberta M; Moritz, Chad H; Haughton, Victor M; Badie, Behnam; Field, Aaron; Wood, David; Hartman, Michael; Rowley, Howard A
2005-03-01
The purpose of this study was to determine the incidence of susceptibility artifacts on functional MR imaging (fMRI) studies and their effect on fMRI readings. We hypothesized that the availability of the signal intensity maps (SIMs) changes the interpretation of fMRI studies in which susceptibility artifacts affected eloquent brain regions. We reviewed 152 consecutive clinical fMRI studies performed with a SIM. The SIM consisted of the initial echo-planar images (EPI) in each section thresholded to eliminate signal intensity from outside the brain and then overlaid on anatomic images. The cause of the artifact was then determined by examining the images. Cases with a susceptibility artifact in eloquent brain were included in a blinded study read by four readers, first without and then with the SIM. For each reader, the number of times the interpretation changed on viewing the SIM was counted. Of 152 patients, 44% had signal intensity loss involving cerebral cortex and 18% involving an eloquent brain region. Causes of the artifacts were: surgical site artifact, blood products, dental devices, calcium, basal ganglia calcifications, ICP monitors, embolization materials, and air. When provided with the SIM, readers changed interpretations in 8-38% of patient cases, depending on reader experience and size and location of susceptibility artifact. Patients referred for clinical fMRI have a high incidence of susceptibility artifacts, whose presence and size can be determined by inspection of the SIM but not anatomic images. The availability of the SIM may affect interpretation of the fMRI.
Murnane, Kevin Sean; Howell, Leonard Lee
2010-08-15
Functional magnetic resonance imaging (fMRI) is a technique with significant potential to advance our understanding of multiple brain systems. However, when human subjects undergo fMRI studies they are typically conscious whereas pre-clinical fMRI studies typically utilize anesthesia, which complicates comparisons across studies. Therefore, we have developed an apparatus suitable for imaging conscious rhesus monkeys. In order to minimize subject stress and spatial motion, each subject was acclimated to the necessary procedures over several months. The effectiveness of this process was then evaluated, in fully trained subjects, by quantifying objective physiological measures. These physiological metrics were stable both within and across sessions and did not differ from when these same subjects were immobilized using standard primate handling procedures. Subject motion and blood oxygenation level dependent (BOLD) fMRI measurements were then evaluated by scanning subjects under three different conditions: the absence of stimulation, presentation of a visual stimulus, or administration of intravenous (i.v.) cocaine (0.3mg/kg). Spatial motion differed neither by condition nor along the three principal axes. In addition, maximum translational and rotational motion never exceeded one half of the voxel size (0.75 mm) or 1.5 degrees, respectively. Furthermore, the localization of changes in blood oxygenation closely matched those reported in previous studies using similar stimuli. These findings document the feasibility of fMRI data collection in conscious rhesus monkeys using these procedures and allow for the further study of the neural effects of psychoactive drugs. (c) 2010 Elsevier B.V. All rights reserved.
Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P
2017-11-01
Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.
Fully automated processing of fMRI data in SPM: from MRI scanner to PACS.
Maldjian, Joseph A; Baer, Aaron H; Kraft, Robert A; Laurienti, Paul J; Burdette, Jonathan H
2009-01-01
Here we describe the Wake Forest University Pipeline, a fully automated method for the processing of fMRI data using SPM. The method includes fully automated data transfer and archiving from the point of acquisition, real-time batch script generation, distributed grid processing, interface to SPM in MATLAB, error recovery and data provenance, DICOM conversion and PACS insertion. It has been used for automated processing of fMRI experiments, as well as for the clinical implementation of fMRI and spin-tag perfusion imaging. The pipeline requires no manual intervention, and can be extended to any studies requiring offline processing.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
McLaren, Donald G.; Sreenivasan, Aishwarya; Diamond, Eli L.; Mitchell, Meghan B.; Van Dijk, Koene R.A.; DeLuca, Amy N.; O’Brien, Jacqueline L.; Rentz, Dorene M.; Sperling, Reisa A.; Atri, Alireza
2012-01-01
Background Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. Objective: To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Methods Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Results Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Conclusion Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. PMID:22456451
McLaren, Donald G; Sreenivasan, Aishwarya; Diamond, Eli L; Mitchell, Meghan B; Van Dijk, Koene R A; Deluca, Amy N; O'Brien, Jacqueline L; Rentz, Dorene M; Sperling, Reisa A; Atri, Alireza
2012-01-01
Previous studies have revealed that functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in specific brain regions correlates with cross-sectional performance on standardized clinical trial measures in Alzheimer's disease (AD); however, the relationship between longitudinal change in fMRI-BOLD signal and neuropsychological performance remains unknown. To identify changes in regional fMRI-BOLD activity that tracks change in neuropsychological performance in mild AD dementia over 6 months. Twenty-four subjects (mean age 71.6) with mild AD dementia (mean Mini Mental State Examination 21.7, Global Clinical Dementia Rating 1.0) on stable donepezil dosing participated in two task-related fMRI sessions consisting of a face-name paired associative encoding memory paradigm 24 weeks apart during a randomized placebo-controlled pharmaco-fMRI drug study. Regression analysis was used to identify regions where the change in fMRI activity for Novel > Repeated stimulus contrast was associated with the change scores on postscan memory tests and the Free and Cued Selective Reminding Test (FCSRT). Correlations between changes in postscan memory accuracy and changes in fMRI activity were observed in regions including the angular gyrus, parahippocampal gyrus, inferior frontal gyrus and cerebellum. Correlations between changes in FCSRT-free recall and changes in fMRI were observed in regions including the inferior parietal lobule, precuneus, hippocampus and parahippocampal gyrus. Changes in encoding-related fMRI activity in regions implicated in mnemonic networks correlated with changes in psychometric measures of episodic memory retrieval performed outside the scanner. These exploratory results support the potential of fMRI activity to track cognitive change and detect signals of short-term pharmacologic effect in early-phase AD studies. Copyright © 2012 S. Karger AG, Basel.
Ruggieri, Andrea; Vaudano, Anna Elisabetta; Benuzzi, Francesca; Serafini, Marco; Gessaroli, Giuliana; Farinelli, Valentina; Nichelli, Paolo Frigio; Meletti, Stefano
2015-01-15
During resting-state EEG-fMRI studies in epilepsy, patients' spontaneous head-face movements occur frequently. We tested the usefulness of synchronous video recording to identify and model the fMRI changes associated with non-epileptic movements to improve sensitivity and specificity of fMRI maps related to interictal epileptiform discharges (IED). Categorization of different facial/cranial movements during EEG-fMRI was obtained for 38 patients [with benign epilepsy with centro-temporal spikes (BECTS, n=16); with idiopathic generalized epilepsy (IGE, n=17); focal symptomatic/cryptogenic epilepsy (n=5)]. We compared at single subject- and at group-level the IED-related fMRI maps obtained with and without additional regressors related to spontaneous movements. As secondary aim, we considered facial movements as events of interest to test the usefulness of video information to obtain fMRI maps of the following face movements: swallowing, mouth-tongue movements, and blinking. Video information substantially improved the identification and classification of the artifacts with respect to the EEG observation alone (mean gain of 28 events per exam). Inclusion of physiological activities as additional regressors in the GLM model demonstrated an increased Z-score and number of voxels of the global maxima and/or new BOLD clusters in around three quarters of the patients. Video-related fMRI maps for swallowing, mouth-tongue movements, and blinking were comparable to the ones obtained in previous task-based fMRI studies. Video acquisition during EEG-fMRI is a useful source of information. Modeling physiological movements in EEG-fMRI studies for epilepsy will lead to more informative IED-related fMRI maps in different epileptic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Neurocomputational mechanisms underlying subjective valuation of effort costs
Giehl, Kathrin; Sillence, Annie
2017-01-01
In everyday life, we have to decide whether it is worth exerting effort to obtain rewards. Effort can be experienced in different domains, with some tasks requiring significant cognitive demand and others being more physically effortful. The motivation to exert effort for reward is highly subjective and varies considerably across the different domains of behaviour. However, very little is known about the computational or neural basis of how different effort costs are subjectively weighed against rewards. Is there a common, domain-general system of brain areas that evaluates all costs and benefits? Here, we used computational modelling and functional magnetic resonance imaging (fMRI) to examine the mechanisms underlying value processing in both the cognitive and physical domains. Participants were trained on two novel tasks that parametrically varied either cognitive or physical effort. During fMRI, participants indicated their preferences between a fixed low-effort/low-reward option and a variable higher-effort/higher-reward offer for each effort domain. Critically, reward devaluation by both cognitive and physical effort was subserved by a common network of areas, including the dorsomedial and dorsolateral prefrontal cortex, the intraparietal sulcus, and the anterior insula. Activity within these domain-general areas also covaried negatively with reward and positively with effort, suggesting an integration of these parameters within these areas. Additionally, the amygdala appeared to play a unique, domain-specific role in processing the value of rewards associated with cognitive effort. These results are the first to reveal the neurocomputational mechanisms underlying subjective cost–benefit valuation across different domains of effort and provide insight into the multidimensional nature of motivation. PMID:28234892
Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia
Williams, David A; Gracely, Richard H
2006-01-01
Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; He, Yong; Zuo, Xi-Nian
2015-03-01
Most of the previous task functional magnetic resonance imaging (fMRI) studies found abnormalities in distributed brain regions in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and few studies investigated the brain network dysfunction from the system level. In this meta-analysis, we aimed to examine brain network dysfunction in MCI and AD. We systematically searched task-based fMRI studies in MCI and AD published between January 1990 and January 2014. Activation likelihood estimation meta-analyses were conducted to compare the significant group differences in brain activation, the significant voxels were overlaid onto seven referenced neuronal cortical networks derived from the resting-state fMRI data of 1,000 healthy participants. Thirty-nine task-based fMRI studies (697 MCI patients and 628 healthy controls) were included in MCI-related meta-analysis while 36 task-based fMRI studies (421 AD patients and 512 healthy controls) were included in AD-related meta-analysis. The meta-analytic results revealed that MCI and AD showed abnormal regional brain activation as well as large-scale brain networks. MCI patients showed hypoactivation in default, frontoparietal, and visual networks relative to healthy controls, whereas AD-related hypoactivation mainly located in visual, default, and ventral attention networks relative to healthy controls. Both MCI-related and AD-related hyperactivation fell in frontoparietal, ventral attention, default, and somatomotor networks relative to healthy controls. MCI and AD presented different pathological while shared similar compensatory large-scale networks in fulfilling the cognitive tasks. These system-level findings are helpful to link the fundamental declines of cognitive tasks to brain networks in MCI and AD. © 2014 Wiley Periodicals, Inc.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan
2017-01-01
Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI.
Maintenance and Representation of Mind Wandering during Resting-State fMRI.
Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei
2017-01-12
Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.
Figure-ground representation and its decay in primary visual cortex.
Strother, Lars; Lavell, Cheryl; Vilis, Tutis
2012-04-01
We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.
Chan, Suk-tak; Evans, Karleyton C; Rosen, Bruce R; Song, Tian-yue; Kwong, Kenneth K
2015-01-01
To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. Case report. fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.
Brain Functional Connectivity in MS: An EEG-NIRS Study
2015-10-01
electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling
Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD
2015-10-01
functioning. Functional magnetic resonance imaging ( fMRI ) will be used to evaluate changes in cortical function in frontostriate and frontoparietal circuits...EEG and fMRI will be conducted and then transport Veterans back to our laboratory. We will assure transportation is running efficiently and without...delays before study commencement. Transportation to the EEG and fMRI was arranged through the UNC-Chapel Hill School of Medicine at month 9
Slotnick, Scott D
2017-07-01
Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.
Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia
2012-04-01
This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) < 0.001) in bilateral HG and STG. Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p < 0.05). Subsequent model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with the activity in STG influencing the STG-HG connectivity non-linearly.
Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe
Papanastassiou, Alex M.; DiCarlo, James J.
2013-01-01
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850
Estimating neural response functions from fMRI
Kumar, Sukhbinder; Penny, William
2014-01-01
This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246
FIACH: A biophysical model for automatic retrospective noise control in fMRI.
Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W
2016-01-01
Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
A SVM-based quantitative fMRI method for resting-state functional network detection.
Song, Xiaomu; Chen, Nan-kuei
2014-09-01
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Combining fMRI and behavioral measures to examine the process of human learning.
Karuza, Elisabeth A; Emberson, Lauren L; Aslin, Richard N
2014-03-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Combining fMRI and Behavioral Measures to Examine the Process of Human Learning
Karuza, Elisabeth A.; Emberson, Lauren L.; Aslin, Richard N.
2013-01-01
Prior to the advent of fMRI, the primary means of examining the mechanisms underlying learning were restricted to studying human behavior and non-human neural systems. However, recent advances in neuroimaging technology have enabled the concurrent study of human behavior and neural activity. We propose that the integration of behavioral response with brain activity provides a powerful method of investigating the process through which internal representations are formed or changed. Nevertheless, a review of the literature reveals that many fMRI studies of learning either (1) focus on outcome rather than process or (2) are built on the untested assumption that learning unfolds uniformly over time. We discuss here various challenges faced by the field and highlight studies that have begun to address them. In doing so, we aim to encourage more research that examines the process of learning by considering the interrelation of behavioral measures and fMRI recording during learning. PMID:24076012
Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.
Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek
2016-01-01
Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.
Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants.
Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Lau, Hakwan; Kawato, Mitsuo
2017-04-01
Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination task), with the order of training counterbalanced across participants. Behavioral results indicated that the manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects, and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to down-regulation was more prominent, and confidence changes (regardless of the direction) were largely preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as compared to the effect of the first session, indicating strong anterograde learning interference. These results are interpreted in the framework of reinforcement learning and provide important implications for its application to basic neuroscience, to occupational and sports training, and to therapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S
2016-02-01
Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities and differences may help us to understand the origins of divergent interpersonal emotional experience in persons with ASD. Hum Brain Mapp 37:443-461, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A.; Peterson, Bradley S.
2016-01-01
Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically-developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities and differences may help us to understand the origins of divergent interpersonal emotional experience in persons with ASD. PMID:26526072
Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants
Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Lau, Hakwan; Kawato, Mitsuo
2017-01-01
Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination task), with the order of training counterbalanced across participants. Behavioral results indicated that the manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects, and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to down-regulation was more prominent, and confidence changes (regardless of the direction) were largely preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as compared to the effect of the first session, indicating strong anterograde learning interference. These results are interpreted in the framework of reinforcement learning and provide important implications for its application to basic neuroscience, to occupational and sports training, and to therapy. PMID:28163140
Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan
2011-03-01
We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Marmarelis, Vasilis Z.; Berger, Theodore W.
2009-01-01
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609
Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J
2017-02-15
Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. Copyright © 2017 Elsevier Inc. All rights reserved.
A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies
Tang, Li
2014-01-01
Summary An important goal in fMRI studies is to decompose the observed series of brain images to identify and characterize underlying brain functional networks. Independent component analysis (ICA) has been shown to be a powerful computational tool for this purpose. Classic ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix. Existing group ICA methods generally concatenate observed fMRI data across subjects on the temporal domain and then decompose multi-subject data in a similar manner to single-subject ICA. The major limitation of existing methods is that they ignore between-subject variability in spatial distributions of brain functional networks in group ICA. In this paper, we propose a new hierarchical probabilistic group ICA method to formally model subject-specific effects in both temporal and spatial domains when decomposing multi-subject fMRI data. The proposed method provides model-based estimation of brain functional networks at both the population and subject level. An important advantage of the hierarchical model is that it provides a formal statistical framework to investigate similarities and differences in brain functional networks across subjects, e.g., subjects with mental disorders or neurodegenerative diseases such as Parkinson’s as compared to normal subjects. We develop an EM algorithm for model estimation where both the E-step and M-step have explicit forms. We compare the performance of the proposed hierarchical model with that of two popular group ICA methods via simulation studies. We illustrate our method with application to an fMRI study of Zen meditation. PMID:24033125
Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition
ERIC Educational Resources Information Center
Vul, Edward; Harris, Christine; Winkielman, Piotr; Pashler, Harold
2009-01-01
Functional Magnetic Resonance Imaging (fMRI) studies of emotion, personality, and social cognition have drawn much attention in recent years, with high-profile studies frequently reporting extremely high (e.g., > 8) correlations between behavioral and self-report measures of personality or emotion and measures of brain activation. We show…
Using fMRI to Study Conceptual Change: Why and How?
ERIC Educational Resources Information Center
Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie
2012-01-01
Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…
Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan
2018-01-01
Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
but these delays are nearing resolution and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task...resonance imagining ( fMRI ) and diffusion tensor imaging (DTI) to characterize the extent of functional cortical recruitment and white matter injury...respectively. The inclusion of fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye
2013-03-01
fMRI data (e.g. Kamitami & Tong, 2005). This approach has been remarkably successful in classifying mental workload in complex tasks (Berka, et al...1991). These previous studies relied upon spectral comparison rather than classification. In previous research examining the stability of fMRI ...chose to focus on electrophysiology, as the collection conditions may be more carefully controlled across days than fMRI and it is more amenable to
Hantke, Nathan; Nielson, Kristy A; Woodard, John L; Breting, Leslie M Guidotti; Butts, Alissa; Seidenberg, Michael; Carson Smith, J; Durgerian, Sally; Lancaster, Melissa; Matthews, Monica; Sugarman, Michael A; Rao, Stephen M
2013-01-01
Previous studies suggest that task-activated functional magnetic resonance imaging (fMRI) can predict future cognitive decline among healthy older adults. The present fMRI study examined the relative sensitivity of semantic memory (SM) versus episodic memory (EM) activation tasks for predicting cognitive decline. Seventy-eight cognitively intact elders underwent neuropsychological testing at entry and after an 18-month interval, with participants classified as cognitively "Stable" or "Declining" based on ≥ 1.0 SD decline in performance. Baseline fMRI scanning involved SM (famous name discrimination) and EM (name recognition) tasks. SM and EM fMRI activation, along with Apolipoprotein E (APOE) ε4 status, served as predictors of cognitive outcome using a logistic regression analysis. Twenty-seven (34.6%) participants were classified as Declining and 51 (65.4%) as Stable. APOE ε4 status alone significantly predicted cognitive decline (R(2) = .106; C index = .642). Addition of SM activation significantly improved prediction accuracy (R(2) = .285; C index = .787), whereas the addition of EM did not (R(2) = .212; C index = .711). In combination with APOE status, SM task activation predicts future cognitive decline better than EM activation. These results have implications for use of fMRI in prevention clinical trials involving the identification of persons at-risk for age-associated memory loss and Alzheimer's disease.
Spritzer, Scott D; Hoerth, Matthew T; Zimmerman, Richard S; Shmookler, Aaron; Hoffman-Snyder, Charlene R; Wellik, Kay E; Demaerschalk, Bart M; Wingerchuk, Dean M
2012-09-01
Presurgical evaluation for refractory epilepsy typically includes assessment of cognitive and language functions. The reference standard for determination of hemispheric language dominance has been the intracarotid amobarbital test (IAT) but functional magnetic resonance imaging (fMRI) is increasingly used. To critically assess current evidence regarding the diagnostic properties of fMRI in comparison with the IAT for determination of hemispheric language dominance. The objective was addressed through the development of a structured critically appraised topic. This included a clinical scenario, structured question, literature search strategy, critical appraisal, results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and content experts in the fields of epilepsy and neurosurgery. A systematic review and meta-analysis that compared the sensitivity and specificity of fMRI to IAT-determined language lateralization was selected for critical appraisal. The review included data from 23 articles (n=442); study methodology varied widely. fMRI was 83.5% sensitive and 88.1% specific for detection of hemispheric language dominance. There are insufficient data to support routine use of fMRI for the purpose of determining hemispheric language dominance in patients with intractable epilepsy. Larger, well-designed studies of fMRI for language and other cognitive outcomes as part of the presurgical and postsurgical evaluation of epilepsy patients are necessary.
Sparse representation of whole-brain fMRI signals for identification of functional networks.
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Chen, Hanbo; Zhang, Tuo; Zhang, Shu; Hu, Xintao; Han, Junwei; Huang, Heng; Zhang, Jing; Guo, Lei; Liu, Tianming
2015-02-01
There have been several recent studies that used sparse representation for fMRI signal analysis and activation detection based on the assumption that each voxel's fMRI signal is linearly composed of sparse components. Previous studies have employed sparse coding to model functional networks in various modalities and scales. These prior contributions inspired the exploration of whether/how sparse representation can be used to identify functional networks in a voxel-wise way and on the whole brain scale. This paper presents a novel, alternative methodology of identifying multiple functional networks via sparse representation of whole-brain task-based fMRI signals. Our basic idea is that all fMRI signals within the whole brain of one subject are aggregated into a big data matrix, which is then factorized into an over-complete dictionary basis matrix and a reference weight matrix via an effective online dictionary learning algorithm. Our extensive experimental results have shown that this novel methodology can uncover multiple functional networks that can be well characterized and interpreted in spatial, temporal and frequency domains based on current brain science knowledge. Importantly, these well-characterized functional network components are quite reproducible in different brains. In general, our methods offer a novel, effective and unified solution to multiple fMRI data analysis tasks including activation detection, de-activation detection, and functional network identification. Copyright © 2014 Elsevier B.V. All rights reserved.
Cardoso, Ellison Fernando; Maia, Fernanda Martins; Fregni, Felipe; Myczkowski, Martin Luis; Melo, Luciano M; Sato, João R; Marcolin, Marco Antonio; Rigonatti, Sergio P; Cruz, Antonio Cesário; Barbosa, Egberto Reis; Amaro, Edson
2009-08-15
Depression is the most frequent psychiatric disorder in Parkinson's disease (PD). Although evidence suggests that depression in PD is related to the degenerative process that underlies the disease, further studies are necessary to better understand the neural basis of depression in this population of patients. In order to investigate neuronal alterations underlying the depression in PD, we studied thirty-six patients with idiopathic PD. Twenty of these patients had the diagnosis of major depression disorder and sixteen did not. The two groups were matched for PD motor severity according to Unified Parkinson Disease Rating Scale (UPDRS). First we conducted a functional magnetic resonance imaging (fMRI) using an event-related parametric emotional perception paradigm with test retest design. Our results showed decreased activation in the left mediodorsal (MD) thalamus and in medial prefrontal cortex in PD patients with depression compared to those without depression. Based upon these results and the increased neuron count in MD thalamus found in previous studies, we conducted a region of interest (ROI) guided voxel-based morphometry (VBM) study comparing the thalamic volume. Our results showed an increased volume in mediodorsal thalamic nuclei bilaterally. Converging morphological changes and functional emotional processing in mediodorsal thalamus highlight the importance of limbic thalamus in PD depression. In addition this data supports the link between neurodegenerative alterations and mood regulation.
Face value: amygdala response reflects the validity of first impressions.
Rule, Nicholas O; Moran, Joseph M; Freeman, Jonathan B; Whitfield-Gabrieli, Susan; Gabrieli, John D E; Ambady, Nalini
2011-01-01
The human amygdala responds to first impressions of people as judged from their faces, such as normative judgments about the trustworthiness of strangers. It is unknown, however, whether amygdala responses to first impressions can be validated by objective criteria. Here, we examined amygdala responses to faces of Chief Executive Officers (CEOs) where real-world outcomes could be measured objectively by the amounts of profits made by each CEO's company. During fMRI scanning, participants made incidental judgments about the symmetry of each CEO's face. After scanning, participants rated each CEO's face on leadership ability. Parametric analyses showed that greater left amygdala response to the CEOs' faces was associated with higher post-scan ratings of the CEOs' leadership ability. In addition, greater left amygdala response was also associated with greater profits made by the CEOs' companies and this relationship was statistically mediated by external raters' perceptions of arousal. Thus, amygdala response reflected both subjective judgments and objective measures of leadership ability based on first impressions. Copyright © 2010 Elsevier Inc. All rights reserved.
Does taste matter? How anticipation of cola brands influences gustatory processing in the brain.
Kühn, Simone; Gallinat, Jürgen
2013-01-01
Brands surround us everywhere in daily life. Here we investigate the influences of brand cues on gustatory processing of the same beverage. Participants were led to believe that the brand that announced the administration of a Cola mixture provided correct information about the drink to come. We found stronger fMRI signal in right mOFC during weak compared to strong brand cues in a contrast of parametric modulation with subjective liking. When directly comparing the two strong brands cues, more activation in the right amygdala was found for Coca Cola cues compared with Pepsi Cola cues. During the taste phase the same beverage elicited stronger activation in left ventral striatum when it was previously announced by a strong compared with a weak brand. This effect was stronger in participants who drink Cola infrequently and might therefore point to a stronger reliance on brand cues in less experienced consumers. The present results reveal strong effects of brand labels on neural responses signalling reward.
Does Taste Matter? How Anticipation of Cola Brands Influences Gustatory Processing in the Brain
Kühn, Simone; Gallinat, Jürgen
2013-01-01
Brands surround us everywhere in daily life. Here we investigate the influences of brand cues on gustatory processing of the same beverage. Participants were led to believe that the brand that announced the administration of a Cola mixture provided correct information about the drink to come. We found stronger fMRI signal in right mOFC during weak compared to strong brand cues in a contrast of parametric modulation with subjective liking. When directly comparing the two strong brands cues, more activation in the right amygdala was found for Coca Cola cues compared with Pepsi Cola cues. During the taste phase the same beverage elicited stronger activation in left ventral striatum when it was previously announced by a strong compared with a weak brand. This effect was stronger in participants who drink Cola infrequently and might therefore point to a stronger reliance on brand cues in less experienced consumers. The present results reveal strong effects of brand labels on neural responses signalling reward. PMID:23637857
Norrelgen, Fritjof; Lilja, Anders; Ingvar, Martin; Gisselgård, Jens; Fransson, Peter
2012-01-01
Objective The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL). The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. Methods In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1st, 4th and the 7th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10–11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. Results The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88%) a conclusion could be reached about hemispheric language dominance. In 2 cases (12%) DL provided critical data. Conclusions The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually. PMID:23284796
Morrison, Melanie A.; Churchill, Nathan W.; Cusimano, Michael D.; Schweizer, Tom A.; Das, Sunit; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes. Method Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms. Results There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task. Conclusion In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns. PMID:26894279
Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V
2015-03-01
Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p < 0.02) between fMRI-LI and DTI-LI. Group mean of AFV by DTI was higher on the left side (2659.89 ± 654.75 mm(3)) as compared to the right (1824.11 ± 582.81 mm(3)) (p < 0.01). Like fMRI, DTI also reveals language laterality in children with a high degree of correlation between the two imaging modalities.
Working Memory in 8 Kleine-Levin Syndrome Patients: An fMRI Study
Engstrom, Maria; Vigren, Patrick; Karlsson, Thomas; Landtblom, Anne-Marie
2009-01-01
Study Objectives: The objectives of this study were to investigate possible neuropathology behind the Kleine-Levin Syndrome (KLS), a severe form of hypersomnia with onset during adolescence. Design: Functional magnetic resonance imaging (fMRI) applying a verbal working memory task was used in conjunction with a paper-and-pencil version of the task. Participants: Eight patients with KLS and 12 healthy volunteers participated in the study. Results: The results revealed a pattern of increased thalamic activity and reduced frontal activity (involving the anterior cingulate and adjacent prefrontal cortex) while performing a reading span task. Discussion: This finding may explain the clinical symptoms observed in KLS, in that the thalamus is known to be involved in the control of sleep. Given the increasing access to fMRI, this investigation may aid clinicians in the diagnosis of patients suffering from severe forms of hypersomnia. Citation: Engström M; Vigren P; Karlsson T; Landtblom AM. Working memory in 8 kleine-levin syndrome patients: an fmri study. SLEEP 2009;32(5):681–688. PMID:19480235
Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio
2014-11-07
Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-01-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.
Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-08-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.
Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.
Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques
2017-12-01
Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.
Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten
2014-01-01
To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823
Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng
2018-05-15
An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.
Functional Neuroimaging of Spike-Wave Seizures
Motelow, Joshua E.; Blumenfeld, Hal
2013-01-01
Generalized spike-wave seizures are typically brief events associated with dynamic changes in brain physiology, metabolism, and behavior. Functional magnetic resonance imaging (fMRI) provides a relatively high spatio-temporal resolution method for imaging cortical-subcortical network activity during spike-wave seizures. Patients with spike-wave seizures often have episodes of staring and unresponsiveness which interfere with normal behavior. Results from human fMRI studies suggest that spike-wave seizures disrupt specific networks in the thalamus and fronto-parietal association cortex which are critical for normal attentive consciousness. However, the neuronal activity underlying imaging changes seen during fMRI is not well understood, particularly in abnormal conditions such as seizures. Animal models have begun to provide important fundamental insights into the neuronal basis for fMRI changes during spike-wave activity. Work from these models including both fMRI and direct neuronal recordings suggest that, like in humans, specific cortical-subcortical networks are involved in spike-wave, while other regions are spared. Regions showing fMRI increases demonstrate correlated increases in neuronal activity in animal models. The mechanisms of fMRI decreases in spike-wave will require further investigation. A better understanding of the specific brain regions involved in generating spike-wave seizures may help guide efforts to develop targeted therapies aimed at preventing or reversing abnormal excitability in these brain regions, ultimately leading to a cure for this disorder. PMID:18839093
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task has been completed and is in beta testing...neurocognitive test battery, and self-report measures of cognitive efficacy. We will also include functional magnetic resonance imagining ( fMRI ) and... fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye tracking data will be
Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Hou, YanBing; Luo, ChunYan; Yang, Jing; Ou, RuWei; Song, Wei; Wei, QianQian; Cao, Bei; Zhao, Bi; Wu, Ying; Shang, Hui-Fang; Gong, QiYong
2016-07-15
Neuroimaging holds the promise that it may one day aid the clinical assessment. However, the vast majority of studies using resting-state functional magnetic resonance imaging (fMRI) have reported average differences between Parkinson's disease (PD) patients and healthy controls, which do not permit inferences at the level of individuals. This study was to develop a model for the prediction of PD illness severity ratings from individual fMRI brain scan. The resting-state fMRI scans were obtained from 84 patients with PD and the Unified Parkinson's Disease Rating Scale-III (UPDRS-III) scores were obtained before scanning. The RVR method was used to predict clinical scores (UPDRS-III) from fMRI scans. The application of RVR to whole-brain resting-state fMRI data allowed prediction of UPDRS-III scores with statistically significant accuracy (correlation=0.35, P-value=0.001; mean sum of squares=222.17, P-value=0.002). This prediction was informed strongly by negative weight areas including prefrontal lobe and medial occipital lobe, and positive weight areas including medial parietal lobe. It was suggested that fMRI scans contained sufficient information about neurobiological change in patients with PD to permit accurate prediction about illness severity, on an individual subject basis. Our results provided preliminary evidence, as proof-of-concept, to support that fMRI might be possible to be a clinically useful quantitative assessment aid in PD at individual level. This may enable clinicians to target those uncooperative patients and machines to replace human for a more efficient use of health care resources. Copyright © 2016 Elsevier B.V. All rights reserved.
Presurgical functional magnetic resonance imaging in patients with brain tumors.
Ravn, Søren; Holmberg, Mats; Sørensen, Preben; Frokjaer, Jens B; Carl, Jesper
2016-01-01
Clinical functional magnetic resonance imaging (fMRI) is still an upcoming diagnostic tool because it is time-consuming to perform the post-scan calculations and interpretations. A standardized and easily used method for the clinical assessment of fMRI scans could decrease the workload and make fMRI more attractive for clinical use. To evaluate a standardized clinical approach for distance measurement between benign brain tumors and eloquent cortex in terms of the ability to predict pre- and postoperative neurological deficits after intraoperative neuronavigation-assisted surgery. A retrospective study of 34 patients. The fMRI data were reanalyzed using a standardized distance measurement procedure combining data from both fMRI and three-dimensional T1 MRI scans. The pre- and postoperative neurological status of each patient was obtained from hospital records. Data analysis was performed using logistic regression analysis to determine whether the distance measured between the tumor margin and fMRI activity could serve as a predictor for neurological deficits. An odds ratio of 0.89 mm(-1) (P = 0.03) was found between the risk of preoperative neurological motor deficits and the tumor-fMRI distance. An odds ratio of 0.82 mm(-1) (P = 0.04) was found between the risk of additional postoperative neurological motor deficits and the tumor-fMRI distance. The tumor was radically removed in 10 cases; five patients experienced additional postoperative motor deficits (tumor-fMRI distance <18 mm) and five did not (tumor-fMRI distance >18 mm) (P = 0.008). This study indicates that the distance measured between the tumor margin and fMRI activation could serve as a valuable predictor of neurological motor deficits. © The Foundation Acta Radiologica 2014.
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?
Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.
2016-01-01
Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727
Wittmann, A; Schlagenhauf, F; John, T; Guhn, A; Rehbein, H; Siegmund, A; Stoy, M; Held, D; Schulz, I; Fehm, L; Fydrich, T; Heinz, A; Bruhn, H; Ströhle, A
2011-04-01
Agoraphobia (with and without panic disorder) is a highly prevalent and disabling anxiety disorder. Its neural complexity can be characterized by specific cues in fMRI studies. Therefore, we developed a fMRI paradigm with agoraphobia-specific stimuli. Pictures of potential agoraphobic situations were generated. Twenty-six patients, suffering from panic disorder and agoraphobia, and 22 healthy controls rated the pictures with respect to arousal, valence, and agoraphobia-related anxiety. The 96 pictures, which discriminated best between groups were chosen, split into two parallel sets and supplemented with matched neutral pictures from the International Affective Picture System. Reliability, criterion, and construct validity of the picture set were determined in a second sample (44 patients, 28 controls). The resulting event-related "Westphal-Paradigm" with cued and uncued pictures was tested in a fMRI pilot study with 16 patients. Internal consistency of the sets was very high; parallelism was given. Positive correlations of picture ratings with Mobility Inventory and Hamilton anxiety scores support construct validity. FMRI data revealed activations in areas associated with the fear circuit including amygdala, insula, and hippocampal areas. Psychometric properties of the Westphal-Paradigm meet necessary quality requirements for further scientific use. The paradigm reliably produces behavioral and fMRI patterns in response to agoraphobia-specific stimuli. To our knowledge, it is the first fMRI paradigm with these properties. This paradigm can be used to further characterize the functional neuroanatomy of panic disorder and agoraphobia and might be useful to contribute data to the differentiation of panic disorder and agoraphobia as related, but conceptually different clinical disorders.
ERIC Educational Resources Information Center
Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.
2011-01-01
Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…
Are Errors Differentiable from Deceptive Responses when Feigning Memory Impairment? An fMRI Study
ERIC Educational Resources Information Center
Lee, Tatia M. C.; Au, Ricky K. C.; Liu, Ho-Ling; Ting, K. H.; Huang, Chih-Mao; Chan, Chetwyn C. H.
2009-01-01
Previous neuroimaging studies have suggested that the neural activity associated with truthful recall, with false memory, and with feigned memory impairment are different from one another. Here, we report a functional magnetic resonance imaging (fMRI) study that addressed an important but yet unanswered question: Is the neural activity associated…
An fMRI Study of Sentence-Embedded Lexical-Semantic Decision in Children and Adults
ERIC Educational Resources Information Center
Moore-Parks, Erin Nicole; Burns, Erin L.; Bazzill, Rebecca; Levy, Sarah; Posada, Valerie; Muller, Ralph-Axel
2010-01-01
Lexical-semantic knowledge is a core language component that undergoes prolonged development throughout childhood and is therefore highly amenable to developmental studies. Most previous lexical-semantic functional MRI (fMRI) studies have been limited to single-word or word-pair tasks, outside a sentence context. Our objective was to investigate…
When encoding yields remembering: insights from event-related neuroimaging.
Wagner, A D; Koutstaal, W; Schacter, D L
1999-01-01
To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153
Cerebral correlates of heart rate variations during a spontaneous panic attack in the fMRI scanner.
Spiegelhalder, Kai; Hornyak, Magdolna; Kyle, Simon David; Paul, Dominik; Blechert, Jens; Seifritz, Erich; Hennig, Jürgen; Tebartz van Elst, Ludger; Riemann, Dieter; Feige, Bernd
2009-12-01
We report the first published case study of a suddenly occurring panic attack in a patient with no prior history of panic disorder during combined functional magnetic resonance imaging (fMRI, 1.5 Tesla) and electrocardiogram (ECG) recording. The single case was a 46-year-old woman who developed a panic attack near the planned end of the fMRI acquisition session, which therefore had to be aborted. Correlational analysis of heart rate fluctuations and fMRI data revealed a significant negative association in the left middle temporal gyrus. Additionally, regions-of-interest (ROI) analyses indicated significant positive associations in the left amygdala, and trends towards significance in the right amygdala and left insula.
ERIC Educational Resources Information Center
Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.
2009-01-01
The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…
Living With Anxiety Disorders, Worried Sick | NIH MedlinePlus the Magazine
... behaviors. Using an imaging technique called functional MRI (fMRI), scientists are scanning the brain in action as ... Bishop of the University of California, Berkeley, uses fMRI to study people at high risk for anxiety ...
Liu, Ho-Ling; Wu, Chien-Te; Chen, Jian-Chuan; Hsu, Yuan-Yu; Wai, Yau-Yau; Wan, Yung-Liang
2003-01-01
Recently, functional MRI (fMRI) using word generation (WG) tasks has been shown to be effective for mapping the Chinese language-related brain areas. In clinical applications, however, patients' performance cannot be easily monitored during WG tasks. In this study, we evaluated the feasibility of a word choice (WC) paradigm in the clinical setting and compared the results with those from WG tasks. Intrasubject comparisons of fMRI with both WG and WC paradigms were performed on six normal human subjects and two tumor patients. Subject responses in the WC paradigm, based on semantic judgments, were recorded. Activation strength, extent, and laterality were evaluated and compared. Our results showed that fMRI with the WC paradigm evoked weaker neuronal activation than that with the WG paradigm in Chinese language-related brain areas. It was sufficient to reveal language laterality for clinical use, however. In addition, it resulted in less nonlanguage-specific brain activation. Results from the patient data demonstrated strong evidence for the necessity of incorporating response monitoring during fMRI studies, which suggested that fMRI with the WC paradigm is more appropriate to be implemented for the prediction of Chinese language dominance in clinical environments.
Causal mapping of emotion networks in the human brain: Framework and initial findings.
Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph
2017-11-13
Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla
Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B. W.; Pinborg, Lars H.; Kjær, Troels W.; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Posse, Stefan
2017-01-01
Purpose Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. Materials and methods The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18–70 years) and 13 patients with epilepsy (8 males, age range 21–67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). Results RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG recorded during high-speed fMRI and during conventional EPI (p = 0.78). Residual ballistocardiographic artifacts resulted in 58% of EEG data being rated as poor quality. Conclusion This study demonstrates that high-density EEG can be safely implemented in conjunction with high-speed fMRI and that high-speed fMRI does not adversely affect EEG data quality. However, the deterioration of the EEG quality due to residual ballistocardiographic artifacts remains a significant constraint for routine clinical applications of concurrent EEG-fMRI. PMID:28552957
fMRI for mapping language networks in neurosurgical cases
Gupta, Santosh S
2014-01-01
Evaluating language has been a long-standing application in functional magnetic resonance imaging (fMRI) studies, both in research and clinical circumstances, and still provides challenges. Localization of eloquent areas is important in neurosurgical cases, so that there is least possible damage to these areas during surgery, maintaining their function postoperatively, therefore providing good quality of life to the patient. Preoperative fMRI study is a non-invasive tool to localize the eloquent areas, including language, with other traditional methods generally used being invasive and at times perilous. In this article, we describe methods and various paradigms to study the language areas, in clinical neurosurgical cases, along with illustrations of cases from our institute. PMID:24851003
The influence of FMRI lie detection evidence on juror decision-making.
McCabe, David P; Castel, Alan D; Rhodes, Matthew G
2011-01-01
In the current study, we report on an experiment examining whether functional magnetic resonance imaging (fMRI) lie detection evidence would influence potential jurors' assessment of guilt in a criminal trial. Potential jurors (N = 330) read a vignette summarizing a trial, with some versions of the vignette including lie detection evidence indicating that the defendant was lying about having committed the crime. Lie detector evidence was based on evidence from the polygraph, fMRI (functional brain imaging), or thermal facial imaging. Results showed that fMRI lie detection evidence led to more guilty verdicts than lie detection evidence based on polygraph evidence, thermal facial imaging, or a control condition that did not include lie detection evidence. However, when the validity of the fMRI lie detection evidence was called into question on cross-examination, guilty verdicts were reduced to the level of the control condition. These results provide important information about the influence of lie detection evidence in legal settings. Copyright © 2011 John Wiley & Sons, Ltd.
How challenges in auditory fMRI led to general advancements for the field.
Talavage, Thomas M; Hall, Deborah A
2012-08-15
In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
A hybrid method for classifying cognitive states from fMRI data.
Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R
2015-09-01
Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.
Minati, Ludovico; Visani, Elisa; Dowell, Nick G; Medford, Nick; Critchley, Hugo D
2011-01-01
Brain near-infrared spectroscopy (NIRS) is emerging as a potential alternative to functional MRI (fMRI). To date, no study has explicitly compared the two techniques in terms of measurement variability, a key parameter dictating attainable statistical power. Here, NIRS and fMRI were simultaneously recorded during event-related visual stimulation. Inter-subject coefficients of variation (CVs) for peak response amplitude were considerably larger for NIRS than fMRI, but inter-subject CVs for response latency and intra-subject CVs for response amplitude were overall comparable. Our results may represent an optimistic estimate of the CVs of NIRS measurements, as optode positioning was guided by structural MRI, which is normally unavailable. We conclude that fMRI may be preferable to NIRS for group comparisons, but NIRS is equally powerful when comparing conditions within participants. The discrepancy between inter- and intra-subject CVs is likely related to variability in head anatomy and tissue properties which may be better accounted for by emerging NIRS technology. PMID:21780948
Kühn, Simone; Fernyhough, Charles; Alderson-Day, Benjamin; Hurlburt, Russell T.
2014-01-01
To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI. PMID:25538649
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.
Yaple, Zachary; Arsalidou, Marie
2018-05-07
The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.
Attention and Semantic Processing during Speech: An fMRI Study
ERIC Educational Resources Information Center
Rama, Pia; Relander-Syrjanen, Kristiina; Carlson, Synnove; Salonen, Oili; Kujala, Teija
2012-01-01
This fMRI study was conducted to investigate whether language semantics is processed even when attention is not explicitly directed to word meanings. In the "unattended" condition, the subjects performed a visual detection task while hearing semantically related and unrelated word pairs. In the "phoneme" condition, the subjects made phoneme…
Lying about facial recognition: an fMRI study.
Bhatt, S; Mbwana, J; Adeyemo, A; Sawyer, A; Hailu, A; Vanmeter, J
2009-03-01
Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study, 18 subjects were instructed during an fMRI "line-up" task to either conceal (lie) or reveal (truth) the identities of individuals seen in study sets in order to determine the neural correlates of intentionally misidentifying previously known faces (lying about recognition). A repeated measures ANOVA (lie vs. truth and familiar vs. unfamiliar) and two paired t-tests (familiar vs. unfamiliar and familiar lie vs. familiar truth) revealed areas of activation associated with deception in the right MGF, red nucleus, IFG, SMG, SFG (with ACC), DLPFC, and bilateral precuneus. The areas activated in the present study may be involved in the suppression of truth, working and visuospatial memories, and imagery when providing misleading (deceptive) responses to facial identification prompts in the form of a "line-up".
Self-referential processing influences functional activation during cognitive control: an fMRI study
Koch, Kathrin; Schachtzabel, Claudia; Peikert, Gregor; Schultz, Carl Christoph; Reichenbach, Jürgen R.; Sauer, Heinrich; Schlösser, Ralf G.
2013-01-01
Rostral anterior cingulate cortex (rACC) plays a central role in the pathophysiology of major depressive disorder (MDD). As we reported in our previous study (Wagner et al., 2006), patients with MDD were characterized by an inability to deactivate this region during cognitive processing leading to a compensatory prefrontal hyperactivation. This hyperactivation in rACC may be related to a deficient inhibitory control of negative self-referential processes, which in turn may interfere with cognitive control task execution and the underlying fronto-cingulate network activation. To test this assumption, a functional magnetic resonance imaging study was conducted in 34 healthy subjects. Univariate and functional connectivity analyses in statistical parametric mapping software 8 were used. Self-referential stimuli and the Stroop task were presented in an event-related design. As hypothesized, rACC was specifically engaged during negative self-referential processing (SRP) and was significantly related to the degree of depressive symptoms in participants. BOLD signal in rACC showed increased valence-dependent (negative vs neutral SRP) interaction with BOLD signal in prefrontal and dorsal anterior cingulate regions during Stroop task performance. This result provides strong support for the notion that enhanced rACC interacts with brain regions involved in cognitive control processes and substantiates our previous interpretation of increased rACC and prefrontal activation in patients during Stroop task. PMID:22798398
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B
2012-05-01
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.
Studying brain organization via spontaneous fMRI signal
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408
Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi
2012-01-01
The neural specificity of hemodynamic-based functional magnetic resonance imaging (fMRI) signals are dependent on both the vascular regulation and the sensitivity of the applied fMRI technique to different types and sizes of blood vessels. In order to examine the specificity of MRI-detectable hemodynamic responses, submillimeter blood oxygenation-level dependent (BOLD) and cerebral blood volume (CBV) fMRI studies were performed in a well-established cat orientation column model at 9.4 Tesla. Neural-nonspecific and -specific signals were separated by comparing the fMRI responses of orthogonal orientation stimuli. The BOLD response was dominantly neural-nonspecific, mostly originating from pial and intracortical emerging veins, and thus was highly correlated with baseline blood volume. Uneven baseline CBV may displace or distort small functional domains in high-resolution BOLD maps. The CBV response in the parenchyma exhibited dual spatiotemporal characteristics, a fast and early neural-nonspecific response (with 4.3-s time constant) and a slightly slower and delayed neural-specific response (with 9.4-s time constant). The nonspecific CBV signal originates from early-responding arteries and arterioles, while the specific CBV response, which is not correlated with baseline blood volume, arises from late-responding microvessels including small pre-capillary arterioles and capillaries. Our data indicate that although the neural specificity of CBV fMRI signals is dependent on stimulation duration, high-resolution functional maps can be obtained from steady-state CBV studies. PMID:22960251
Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients
MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.
2016-01-01
Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267
Brain atrophy can introduce age-related differences in BOLD response.
Liu, Xueqing; Gerraty, Raphael T; Grinband, Jack; Parker, David; Razlighi, Qolamreza R
2017-04-11
Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation level dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has been extensively investigated in the field of neuroimaging, there is currently no consensus about the existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy by circumventing spatial normalization and processing the data in subjects' native space eliminated these observed differences. In addition, we simulated fMRI data using age differences in brain morphology while controlling HRF shape. Analyzing these simulated fMRI data using standard image processing resulted in differences in HRF amplitude, which were eliminated when the data were analyzed in subjects' native space. Our results indicate that age-related atrophy introduces inaccuracy in co-registration to standard space, which subsequently appears as attenuation in BOLD response amplitude. Our finding could explain some of the existing contradictory reports regarding age-related differences in the fMRI BOLD responses. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tensorial extensions of independent component analysis for multisubject FMRI analysis.
Beckmann, C F; Smith, S M
2005-03-01
We discuss model-free analysis of multisubject or multisession FMRI data by extending the single-session probabilistic independent component analysis model (PICA; Beckmann and Smith, 2004. IEEE Trans. on Medical Imaging, 23 (2) 137-152) to higher dimensions. This results in a three-way decomposition that represents the different signals and artefacts present in the data in terms of their temporal, spatial, and subject-dependent variations. The technique is derived from and compared with parallel factor analysis (PARAFAC; Harshman and Lundy, 1984. In Research methods for multimode data analysis, chapter 5, pages 122-215. Praeger, New York). Using simulated data as well as data from multisession and multisubject FMRI studies we demonstrate that the tensor PICA approach is able to efficiently and accurately extract signals of interest in the spatial, temporal, and subject/session domain. The final decompositions improve upon PARAFAC results in terms of greater accuracy, reduced interference between the different estimated sources (reduced cross-talk), robustness (against deviations of the data from modeling assumptions and against overfitting), and computational speed. On real FMRI 'activation' data, the tensor PICA approach is able to extract plausible activation maps, time courses, and session/subject modes as well as provide a rich description of additional processes of interest such as image artefacts or secondary activation patterns. The resulting data decomposition gives simple and useful representations of multisubject/multisession FMRI data that can aid the interpretation and optimization of group FMRI studies beyond what can be achieved using model-based analysis techniques.
Eryilmaz, Hamdi; Van De Ville, Dimitri; Schwartz, Sophie; Vuilleumier, Patrik
2014-06-04
Obtaining lower gains than rejected alternatives during decision making evokes feelings of regret, whereas higher gains elicit gratification. Although decision-related emotions produce lingering effects on mental state, neuroscience research has generally focused on transient brain responses to positive or negative events, but ignored more sustained consequences of emotional episodes on subsequent brain states. We investigated how spontaneous brain activity and functional connectivity at rest are modulated by postdecision regret and gratification in 18 healthy human subjects using a gambling task in fMRI. Differences between obtained and unobtained outcomes were manipulated parametrically to evoke different levels of regret or gratification. We investigated how individual personality traits related to depression and rumination affected these responses. Medial and ventral prefrontal areas differentially responded to favorable and unfavorable outcomes during the gambling period. More critically, during subsequent rest, rostral anterior and posterior cingulate cortex, ventral striatum, and insula showed parametric response to the gratification level of preceding outcomes. Functional coupling of posterior cingulate with striatum and amygdala was also enhanced during rest after high gratification. Regret produced distinct changes in connectivity of subgenual cingulate with orbitofrontal cortex and thalamus. Interestingly, individual differences in depressive traits and ruminations correlated with activity of the striatum after gratification and orbitofrontal cortex after regret, respectively. By revealing lingering effects of decision-related emotions on key nodes of resting state networks, our findings illuminate how such emotions may influence self-reflective processing and subsequent behavioral adjustment, but also highlight the malleability of resting networks in emotional contexts. Copyright © 2014 the authors 0270-6474/14/347825-11$15.00/0.
ERIC Educational Resources Information Center
Whalley, Matthew G.; Rugg, Michael D.; Smith, Adam P. R.; Dolan, Raymond J.; Brewin, Chris R.
2009-01-01
In the present study, we used fMRI to assess patients suffering from post-traumatic stress disorder (PTSD) or depression, and trauma-exposed controls, during an episodic memory retrieval task that included non-trauma-related emotional information. In the study phase of the task neutral pictures were presented in emotional or neutral contexts.…
ERIC Educational Resources Information Center
Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak
2013-01-01
We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…
Say It with Flowers! An fMRI Study of Object Mediated Communication
ERIC Educational Resources Information Center
Tylen, Kristian; Wallentin, Mikkel; Roepstorff, Andreas
2009-01-01
Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event-related fMRI to study the brain activity caused by…
Neural Substrates of the Topology Test to Measure Fluid Reasoning: An fMRI Study
ERIC Educational Resources Information Center
Masunaga, Hiromi; Kawashima, Ryuta; Horn, John L.; Sassa, Yuko; Sekiguchi, Atsushi
2008-01-01
In our prior study the negative correlation between Topology, a behavioral measure of fluid reasoning, and adult age diminished with the increase in the level of expertise in a cognitively-demanding domain of expertise in the game of GO. The present fMRI study was designed to investigate neural substrates of Topology. The modified topology…
Cong, Fengyu; Puoliväli, Tuomas; Alluri, Vinoo; Sipola, Tuomo; Burunat, Iballa; Toiviainen, Petri; Nandi, Asoke K; Brattico, Elvira; Ristaniemi, Tapani
2014-02-15
Independent component analysis (ICA) has been often used to decompose fMRI data mostly for the resting-state, block and event-related designs due to its outstanding advantage. For fMRI data during free-listening experiences, only a few exploratory studies applied ICA. For processing the fMRI data elicited by 512-s modern tango, a FFT based band-pass filter was used to further pre-process the fMRI data to remove sources of no interest and noise. Then, a fast model order selection method was applied to estimate the number of sources. Next, both individual ICA and group ICA were performed. Subsequently, ICA components whose temporal courses were significantly correlated with musical features were selected. Finally, for individual ICA, common components across majority of participants were found by diffusion map and spectral clustering. The extracted spatial maps (by the new ICA approach) common across most participants evidenced slightly right-lateralized activity within and surrounding the auditory cortices. Meanwhile, they were found associated with the musical features. Compared with the conventional ICA approach, more participants were found to have the common spatial maps extracted by the new ICA approach. Conventional model order selection methods underestimated the true number of sources in the conventionally pre-processed fMRI data for the individual ICA. Pre-processing the fMRI data by using a reasonable band-pass digital filter can greatly benefit the following model order selection and ICA with fMRI data by naturalistic paradigms. Diffusion map and spectral clustering are straightforward tools to find common ICA spatial maps. Copyright © 2013 Elsevier B.V. All rights reserved.
A New Paradigm for Individual Subject Language Mapping: Movie-Watching fMRI.
Tie, Yanmei; Rigolo, Laura; Ozdemir Ovalioglu, Aysegul; Olubiyi, Olutayo; Doolin, Kelly L; Mukundan, Srinivasan; Golby, Alexandra J
2015-01-01
Functional MRI (fMRI) based on language tasks has been used in presurgical language mapping in patients with lesions in or near putative language areas. However, if patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or noninterpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. A 7-minute movie clip with contrasting speech and nonspeech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, 6 language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of 2 brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. These results suggest that it is feasible to use this novel "task-free" paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. Copyright © 2015 by the American Society of Neuroimaging.
Durning, Steven J; Graner, John; Artino, Anthony R; Pangaro, Louis N; Beckman, Thomas; Holmboe, Eric; Oakes, Terrance; Roy, Michael; Riedy, Gerard; Capaldi, Vincent; Walter, Robert; van der Vleuten, Cees; Schuwirth, Lambert
2012-09-01
Clinical reasoning is essential to medical practice, but because it entails internal mental processes, it is difficult to assess. Functional magnetic resonance imaging (fMRI) and think-aloud protocols may improve understanding of clinical reasoning as these methods can more directly assess these processes. The objective of our study was to use a combination of fMRI and think-aloud procedures to examine fMRI correlates of a leading theoretical model in clinical reasoning based on experimental findings to date: analytic (i.e., actively comparing and contrasting diagnostic entities) and nonanalytic (i.e., pattern recognition) reasoning. We hypothesized that there would be functional neuroimaging differences between analytic and nonanalytic reasoning theory. 17 board-certified experts in internal medicine answered and reflected on validated U.S. Medical Licensing Exam and American Board of Internal Medicine multiple-choice questions (easy and difficult) during an fMRI scan. This procedure was followed by completion of a formal think-aloud procedure. fMRI findings provide some support for the presence of analytic and nonanalytic reasoning systems. Statistically significant activation of prefrontal cortex distinguished answering incorrectly versus correctly (p < 0.01), whereas activation of precuneus and midtemporal gyrus distinguished not guessing from guessing (p < 0.01). We found limited fMRI evidence to support analytic and nonanalytic reasoning theory, as our results indicate functional differences with correct vs. incorrect answers and guessing vs. not guessing. However, our findings did not suggest one consistent fMRI activation pattern of internal medicine expertise. This model of employing fMRI correlates offers opportunities to enhance our understanding of theory, as well as improve our teaching and assessment of clinical reasoning, a key outcome of medical education.
Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying
2015-04-30
Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.
A new paradigm for individual subject language mapping: Movie-watching fMRI
Tie, Yanmei; Rigolo, Laura; Ovalioglu, Aysegul Ozdemir; Olubiyi, Olutayo; Doolin, Kelly L.; Mukundan, Srinivasan; Golby, Alexandra J.
2015-01-01
Background Functional MRI (fMRI) based on language tasks has been used in pre-surgical language mapping in patients with lesions in or near putative language areas. However, if the patients have difficulty performing the tasks due to neurological deficits, it leads to unreliable or non-interpretable results. In this study, we investigate the feasibility of using a movie-watching fMRI for language mapping. Methods A 7-min movie clip with contrasting speech and non-speech segments was shown to 22 right-handed healthy subjects. Based on all subjects' language functional regions-of-interest, six language response areas were defined, within which a language response model (LRM) was derived by extracting the main temporal activation profile. Using a leave-one-out procedure, individuals' language areas were identified as the areas that expressed highly correlated temporal responses with the LRM derived from an independent group of subjects. Results Compared with an antonym generation task-based fMRI, the movie-watching fMRI generated language maps with more localized activations in the left frontal language area, larger activations in the left temporoparietal language area, and significant activations in their right-hemisphere homologues. Results of two brain tumor patients' movie-watching fMRI using the LRM derived from the healthy subjects indicated its ability to map putative language areas; while their task-based fMRI maps were less robust and noisier. Conclusions These results suggest that it is feasible to use this novel “task-free” paradigm as a complementary tool for fMRI language mapping when patients cannot perform the tasks. Its deployment in more neurosurgical patients and validation against gold-standard techniques need further investigation. PMID:25962953
Dager, Alecia D; Tice, Madelynn R; Book, Gregory A; Tennen, Howard; Raskin, Sarah A; Austad, Carol S; Wood, Rebecca M; Fallahi, Carolyn R; Hawkins, Keith A; Pearlson, Godfrey D
2018-04-26
Marijuana (MJ) is widely used among college students, with peak use between ages 18-22. Research suggests memory dysfunction in adolescent and young adult MJ users, but the neural correlates are unclear. We examined functional magnetic resonance imaging (fMRI) response during a memory task among college students with varying degrees of MJ involvement. Participants were 64 college students, ages 18-20, who performed a visual encoding and recognition task during fMRI. MJ use was ascertained for 3 months prior to scanning; 27 individuals reported past 3-month MJ use, and 33 individuals did not. fMRI response was modeled during encoding based on whether targets were subsequently recognized (correct encoding), and during recognition based on target identification (hits). fMRI response in left and right inferior frontal gyrus (IFG) and hippocampal regions of interest was examined between MJ users and controls. There were no group differences between MJ users and controls on fMRI response during encoding, although single sample t-tests revealed that MJ users failed to activate the hippocampus. During recognition, MJ users showed less fMRI response than controls in right hippocampus (Cohen's d = 0.55), left hippocampus (Cohen's d = 0.67) and left IFG (Cohen's d = 0.61). Heavier MJ involvement was associated with lower fMRI response in left hippocampus and left IFG. This study provides evidence of MJ-related prefrontal and hippocampal dysfunction during recognition memory in college students. These findings may contribute to our previously identified decrements in academic performance in college MJ users and could have substantial implications for academic and occupational functioning. Copyright © 2018 Elsevier B.V. All rights reserved.
Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes
2015-10-01
Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.
Chen, Hsiang-Yu; Chang, Erik C; Chen, Sinead H Y; Lin, Yi-Chen; Wu, Denise H
2016-04-01
The contribution of orthographic representations to reading and writing has been intensively investigated in the literature. However, the distinction between neuronal correlates of the orthographic lexicon and the orthographic (graphemic) buffer has rarely been examined in alphabetic languages and never been explored in non-alphabetic languages. To determine whether the neural networks associated with the orthographic lexicon and buffer of logographic materials are comparable to those reported in the literature, the present fMRI experiment manipulated frequency and the stroke number of Chinese characters in the tasks of form judgment and stroke judgment, which emphasized the processing of character recognition and writing, respectively. It was found that the left fusiform gyrus exhibited higher activation when encountering low-frequency than high-frequency characters in both tasks, which suggested this region to be the locus of the orthographic lexicon that represents the knowledge of character forms. On the other hand, the activations in the posterior part of the left middle frontal gyrus and in the left angular gyrus were parametrically modulated by the stroke number of target characters only in the stroke judgment task, which suggested these regions to be the locus of the orthographic buffer that represents the processing of stroke sequence in writing. These results provide the first evidence for the functional and anatomical dissociation between the orthographic lexicon and buffer in reading and writing Chinese characters. They also demonstrate the critical roles of the left fusiform area and the frontoparietal network to the long-term and short-term representations of orthographic knowledge, respectively, across different orthographies. Copyright © 2016 Elsevier Inc. All rights reserved.
Anterior temporal face patches: a meta-analysis and empirical study
Von Der Heide, Rebecca J.; Skipper, Laura M.; Olson, Ingrid R.
2013-01-01
Evidence suggests the anterior temporal lobe (ATL) plays an important role in person identification and memory. In humans, neuroimaging studies of person memory report consistent activations in the ATL to famous and personally familiar faces and studies of patients report resection or damage of the ATL causes an associative prosopagnosia in which face perception is intact but face memory is compromised. In addition, high-resolution fMRI studies of non-human primates and electrophysiological studies of humans also suggest regions of the ventral ATL are sensitive to novel faces. The current study extends previous findings by investigating whether similar subregions in the dorsal, ventral, lateral, or polar aspects of the ATL are sensitive to personally familiar, famous, and novel faces. We present the results of two studies of person memory: a meta-analysis of existing fMRI studies and an empirical fMRI study using optimized imaging parameters. Both studies showed left-lateralized ATL activations to familiar individuals while novel faces activated the right ATL. Activations to famous faces were quite ventral, similar to what has been reported in previous high-resolution fMRI studies of non-human primates. These findings suggest that face memory-sensitive patches in the human ATL are in the ventral/polar ATL. PMID:23378834
Hattemer, Katja; Plate, Annika; Heverhagen, Johannes T; Haag, Anja; Keil, Boris; Klein, Karl Martin; Hermsen, Anke; Oertel, Wolfgang H; Hamer, Hajo M; Rosenow, Felix; Knake, Susanne
2011-01-01
the aim of this study was to investigate specific activation patterns and potential gender differences during mental rotation and to investigate whether functional magnetic resonance imaging (fMRI) and functional transcranial Doppler sonography (fTCD) lateralize hemispheric dominance concordantly. regional brain activation and hemispheric dominance during mental rotation (cube perspective test) were investigated in 10 female and 10 male healthy subjects using fMRI and fTCD. significant activation was found in the superior parietal lobe, at the parieto-occipital border, in the middle and superior frontal gyrus bilaterally, and the right inferior frontal gyrus using fMRI. Men showed a stronger lateralization to the right hemisphere during fMRI and a tendency toward stronger right-hemispheric activation during fTCD. Furthermore, more activation in frontal and parieto-occipital regions of the right hemisphere was observed using fMRI. Hemispheric dominance for mental rotation determined by the 2 methods correlated well (P= .008), but did not show concordant results in every single subject. the neural basis of mental rotation depends on a widespread bilateral network. Hemispheric dominance for mental rotation determined by fMRI and fTCD, though correlating well, is not always concordant. Hemispheric lateralization of complex cortical functions such as spatial rotation therefore should be investigated using multimodal imaging approaches, especially if used clinically as a tool for the presurgical evaluation of patients undergoing neurosurgery. Copyright © 2009 by the American Society of Neuroimaging.
High-field fMRI unveils orientation columns in humans.
Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil
2008-07-29
Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.
Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
Plichta, Michael M; Schwarz, Adam J; Grimm, Oliver; Morgen, Katrin; Mier, Daniela; Haddad, Leila; Gerdes, Antje B M; Sauer, Carina; Tost, Heike; Esslinger, Christine; Colman, Peter; Wilson, Frederick; Kirsch, Peter; Meyer-Lindenberg, Andreas
2012-04-15
Even more than in cognitive research applications, moving fMRI to the clinic and the drug development process requires the generation of stable and reliable signal changes. The performance characteristics of the fMRI paradigm constrain experimental power and may require different study designs (e.g., crossover vs. parallel groups), yet fMRI reliability characteristics can be strongly dependent on the nature of the fMRI task. The present study investigated both within-subject and group-level reliability of a combined three-task fMRI battery targeting three systems of wide applicability in clinical and cognitive neuroscience: an emotional (face matching), a motivational (monetary reward anticipation) and a cognitive (n-back working memory) task. A group of 25 young, healthy volunteers were scanned twice on a 3T MRI scanner with a mean test-retest interval of 14.6 days. FMRI reliability was quantified using the intraclass correlation coefficient (ICC) applied at three different levels ranging from a global to a localized and fine spatial scale: (1) reliability of group-level activation maps over the whole brain and within targeted regions of interest (ROIs); (2) within-subject reliability of ROI-mean amplitudes and (3) within-subject reliability of individual voxels in the target ROIs. Results showed robust evoked activation of all three tasks in their respective target regions (emotional task=amygdala; motivational task=ventral striatum; cognitive task=right dorsolateral prefrontal cortex and parietal cortices) with high effect sizes (ES) of ROI-mean summary values (ES=1.11-1.44 for the faces task, 0.96-1.43 for the reward task, 0.83-2.58 for the n-back task). Reliability of group level activation was excellent for all three tasks with ICCs of 0.89-0.98 at the whole brain level and 0.66-0.97 within target ROIs. Within-subject reliability of ROI-mean amplitudes across sessions was fair to good for the reward task (ICCs=0.56-0.62) and, dependent on the particular ROI, also fair-to-good for the n-back task (ICCs=0.44-0.57) but lower for the faces task (ICC=-0.02-0.16). In conclusion, all three tasks are well suited to between-subject designs, including imaging genetics. When specific recommendations are followed, the n-back and reward task are also suited for within-subject designs, including pharmaco-fMRI. The present study provides task-specific fMRI reliability performance measures that will inform the optimal use, powering and design of fMRI studies using comparable tasks. Copyright © 2012 Elsevier Inc. All rights reserved.
Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling
2017-07-01
Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865
Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.
Folia, Vasiliki; Petersson, Karl Magnus
2014-01-01
In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.
Seeing Chinese Characters in Action: An fMRI Study of the Perception of Writing Sequences
ERIC Educational Resources Information Center
Yu, Hongbo; Gong, Lanyun; Qiu, Yinchen; Zhou, Xiaolin
2011-01-01
The Chinese character is composed of a finite set of strokes whose order in writing follows consensual principles and is learnt through school education. Using functional magnetic resonance imaging (fMRI), this study investigates the neural activity associated with the perception of writing sequences by asking participants to observe…
Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study
ERIC Educational Resources Information Center
Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu
2008-01-01
In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…
Gender Differences in the Cognitive Control of Emotion: An fMRI Study
ERIC Educational Resources Information Center
Koch, Kathrin; Pauly, Katharina; Kellermann, Thilo; Seiferth, Nina Y.; Reske, Martina; Backes, Volker; Stocker, Tony; Shah, N. Jon; Amunts, Katrin; Kircher, Tilo; Schneider, Frank; Habel, Ute
2007-01-01
The interaction of emotion and cognition has become a topic of major interest. However, the influence of gender on the interplay between the two processes, along with its neural correlates have not been fully analysed so far. In this functional magnetic resonance imaging (fMRI) study we induced negative emotion using negative olfactory stimulation…
Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization
ERIC Educational Resources Information Center
Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.
2012-01-01
Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…
An fMRI Study of the Social Competition in Healthy Subjects
ERIC Educational Resources Information Center
Polosan, M.; Baciu, M.; Cousin, E.; Perrone, M.; Pichat, C.; Bougerol, T.
2011-01-01
Social interaction requires the ability to infer another person's mental state (Theory of Mind, ToM) and also executive functions. This fMRI study aimed to identify the cerebral correlates activated by ToM during a specific social interaction, the human-human competition. In this framework, we tested a conflict resolution task (Stroop) adapted to…
[Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].
Ji, B B; Li, M; Zhang, J N
2018-02-07
Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.
Functional magnetic resonance imaging of internet addiction in young adults.
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-02-28
To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20(th), 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients' age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. IAD may seriously affect young adults' brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment.
Functional magnetic resonance imaging of internet addiction in young adults
Sepede, Gianna; Tavino, Margherita; Santacroce, Rita; Fiori, Federica; Salerno, Rosa Maria; Di Giannantonio, Massimo
2016-01-01
AIM: To report the results of functional magnetic resonance imaging (fMRI) studies pertaining internet addiction disorder (IAD) in young adults. METHODS: We conducted a systematic review on PubMed, focusing our attention on fMRI studies involving adult IAD patients, free from any comorbid psychiatric condition. The following search words were used, both alone and in combination: fMRI, internet addiction, internet dependence, functional neuroimaging. The search was conducted on April 20th, 2015 and yielded 58 records. Inclusion criteria were the following: Articles written in English, patients’ age ≥ 18 years, patients affected by IAD, studies providing fMRI results during resting state or cognitive/emotional paradigms. Structural MRI studies, functional imaging techniques other than fMRI, studies involving adolescents, patients with comorbid psychiatric, neurological or medical conditions were excluded. By reading titles and abstracts, we excluded 30 records. By reading the full texts of the 28 remaining articles, we identified 18 papers meeting our inclusion criteria and therefore included in the qualitative synthesis. RESULTS: We found 18 studies fulfilling our inclusion criteria, 17 of them conducted in Asia, and including a total number of 666 tested subjects. The included studies reported data acquired during resting state or different paradigms, such as cue-reactivity, guessing or cognitive control tasks. The enrolled patients were usually males (95.4%) and very young (21-25 years). The most represented IAD subtype, reported in more than 85% of patients, was the internet gaming disorder, or videogame addiction. In the resting state studies, the more relevant abnormalities were localized in the superior temporal gyrus, limbic, medial frontal and parietal regions. When analyzing the task related fmri studies, we found that less than half of the papers reported behavioral differences between patients and normal controls, but all of them found significant differences in cortical and subcortical brain regions involved in cognitive control and reward processing: Orbitofrontal cortex, insula, anterior and posterior cingulate cortex, temporal and parietal regions, brain stem and caudate nucleus. CONCLUSION: IAD may seriously affect young adults’ brain functions. It needs to be studied more in depth to provide a clear diagnosis and an adequate treatment. PMID:26981230
Learning Computational Models of Video Memorability from fMRI Brain Imaging.
Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming
2015-08-01
Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.
Memory Performance and fMRI Signal in Presymptomatic Familial Alzheimer’s Disease
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Thompson, Paul M.; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2013-01-01
Rare autosomal dominant mutations result in familial Alzheimer’s disease (FAD) with a relatively consistent age of onset within families. This provides an estimate of years until disease onset (relative age) in mutation carriers. Increased AD risk has been associated with differences in functional magnetic resonance imaging (fMRI) activity during memory tasks, but most of these studies have focused on possession of apolipoprotein E allele 4 (APOE4), a risk factor, but not causative variant, of late-onset AD. Evaluation of fMRI activity in presymptomatic FAD mutation carriers versus noncarriers provides insight into preclinical changes in those who will certainly develop AD in a prescribed period of time. Adults from FAD mutation-carrying families (nine mutation carriers, eight noncarriers) underwent fMRI scanning while performing a memory task. We examined fMRI signal differences between carriers and noncarriers, and how signal related to fMRI task performance within mutation status group, controlling for relative age and education. Mutation noncarriers had greater retrieval period activity than carriers in several AD-relevant regions, including the left hippocampus. Better performing noncarriers showed greater encoding period activity including in the parahippocampal gyrus. Poorer performing carriers showed greater retrieval period signal, including in the frontal and temporal lobes, suggesting underlying pathological processes. PMID:22806961
Feature-space-based FMRI analysis using the optimal linear transformation.
Sun, Fengrong; Morris, Drew; Lee, Wayne; Taylor, Margot J; Mills, Travis; Babyn, Paul S
2010-09-01
The optimal linear transformation (OLT), an image analysis technique of feature space, was first presented in the field of MRI. This paper proposes a method of extending OLT from MRI to functional MRI (fMRI) to improve the activation-detection performance over conventional approaches of fMRI analysis. In this method, first, ideal hemodynamic response time series for different stimuli were generated by convolving the theoretical hemodynamic response model with the stimulus timing. Second, constructing hypothetical signature vectors for different activity patterns of interest by virtue of the ideal hemodynamic responses, OLT was used to extract features of fMRI data. The resultant feature space had particular geometric clustering properties. It was then classified into different groups, each pertaining to an activity pattern of interest; the applied signature vector for each group was obtained by averaging. Third, using the applied signature vectors, OLT was applied again to generate fMRI composite images with high SNRs for the desired activity patterns. Simulations and a blocked fMRI experiment were employed for the method to be verified and compared with the general linear model (GLM)-based analysis. The simulation studies and the experimental results indicated the superiority of the proposed method over the GLM-based analysis in detecting brain activities.
[fMRI study of the dominant hemisphere for language in patients with brain tumor].
Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu
2013-01-01
Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.
A general probabilistic model for group independent component analysis and its estimation methods
Guo, Ying
2012-01-01
SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789
Multivariate Strategies in Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Hansen, Lars Kai
2007-01-01
We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.
The Global Signal in fMRI: Nuisance or Information?
Nalci, Alican; Falahpour, Maryam
2017-01-01
The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. PMID:28213118
Integration of fMRI, NIROT and ERP for studies of human brain function.
Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel
2006-05-01
Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.
BOLDSync: a MATLAB-based toolbox for synchronized stimulus presentation in functional MRI.
Joshi, Jitesh; Saharan, Sumiti; Mandal, Pravat K
2014-02-15
Precise and synchronized presentation of paradigm stimuli in functional magnetic resonance imaging (fMRI) is central to obtaining accurate information about brain regions involved in a specific task. In this manuscript, we present a new MATLAB-based toolbox, BOLDSync, for synchronized stimulus presentation in fMRI. BOLDSync provides a user friendly platform for design and presentation of visual, audio, as well as multimodal audio-visual (AV) stimuli in functional imaging experiments. We present simulation experiments that demonstrate the millisecond synchronization accuracy of BOLDSync, and also illustrate the functionalities of BOLDSync through application to an AV fMRI study. BOLDSync gains an advantage over other available proprietary and open-source toolboxes by offering a user friendly and accessible interface that affords both precision in stimulus presentation and versatility across various types of stimulus designs and system setups. BOLDSync is a reliable, efficient, and versatile solution for synchronized stimulus presentation in fMRI study. Copyright © 2013 Elsevier B.V. All rights reserved.
Stern, C E; Corkin, S; González, R G; Guimaraes, A R; Baker, J R; Jennings, P J; Carr, C A; Sugiura, R M; Vedantham, V; Rosen, B R
1996-01-01
Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory. Images Fig. 1 Fig. 3 PMID:8710927
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study
NASA Astrophysics Data System (ADS)
Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang
2010-03-01
Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.
Khachaturian, Mark Haig
2010-01-01
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106
Studying brain organization via spontaneous fMRI signal.
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-11-19
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.
Orbit Transfer Rocket Engine Technology Program, Advanced Engine Study Task D.6
1992-02-28
l!J~iliiJl 1. Report No. 2. Government Accession No. 3 . Recipient’s Catalog No. NASA 187215 4. Title and Subtitle 5. Report Date ORBIT TRANSFER ROCKET...Engine Study, three primary subtasks were accomplished: 1) Design and Parametric Data, 2) Engine Requirement Variation Studies, and 3 ) Vehicle Study...Mixture Ratio Parametrics 18 3 . Thrust Parametrics Off-Design Mixture Ratio Scans 22 4. Expansion Area Ratio Parametrics 24 5. OTV 20 klbf Engine Off
Zanto, Theodore P; Pa, Judy; Gazzaley, Adam
2014-01-01
As the aging population grows, it has become increasingly important to carefully characterize amnestic mild cognitive impairment (aMCI), a preclinical stage of Alzheimer's disease (AD). Functional magnetic resonance imaging (fMRI) is a valuable tool for monitoring disease progression in selectively vulnerable brain regions associated with AD neuropathology. However, the reliability of fMRI data in longitudinal studies of older adults with aMCI is largely unexplored. To address this, aMCI participants completed two visual working tasks, a Delayed-Recognition task and a One-Back task, on three separate scanning sessions over a three-month period. Test-retest reliability of the fMRI blood oxygen level dependent (BOLD) activity was assessed using an intraclass correlation (ICC) analysis approach. Results indicated that brain regions engaged during the task displayed greater reliability across sessions compared to regions that were not utilized by the task. During task-engagement, differential reliability scores were observed across the brain such that the frontal lobe, medial temporal lobe, and subcortical structures exhibited fair to moderate reliability (ICC=0.3-0.6), while temporal, parietal, and occipital regions exhibited moderate to good reliability (ICC=0.4-0.7). Additionally, reliability across brain regions was more stable when three fMRI sessions were used in the ICC calculation relative to two fMRI sessions. In conclusion, the fMRI BOLD signal is reliable across scanning sessions in this population and thus a useful tool for tracking longitudinal change in observational and interventional studies in aMCI. © 2013.
Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz
2013-01-01
Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457
Simultaneous GCaMP6-based fiber photometry and fMRI in rats.
Liang, Zhifeng; Ma, Yuncong; Watson, Glenn D R; Zhang, Nanyin
2017-09-01
Understanding the relationship between neural and vascular signals is essential for interpretation of functional MRI (fMRI) results with respect to underlying neuronal activity. Simultaneously measuring neural activity using electrophysiology with fMRI has been highly valuable in elucidating the neural basis of the blood oxygenation-level dependent (BOLD) signal. However, this approach is also technically challenging due to the electromagnetic interference that is observed in electrophysiological recordings during MRI scanning. Recording optical correlates of neural activity, such as calcium signals, avoids this issue, and has opened a new avenue to simultaneously acquire neural and BOLD signals. The present study is the first to demonstrate the feasibility of simultaneously and repeatedly acquiring calcium and BOLD signals in animals using a genetically encoded calcium indicator, GCaMP6. This approach was validated with a visual stimulation experiment, during which robust increases of both calcium and BOLD signals in the superior colliculus were observed. In addition, repeated measurement in the same animal demonstrated reproducible calcium and BOLD responses to the same stimuli. Taken together, simultaneous GCaMP6-based fiber photometry and fMRI recording presents a novel, artifact-free approach to simultaneously measuring neural and fMRI signals. Furthermore, given the cell-type specificity of GCaMP6, this approach has the potential to mechanistically dissect the contributions of individual neuron populations to BOLD signal, and ultimately reveal its underlying neural mechanisms. The current study established the method for simultaneous GCaMP6-based fiber photometry and fMRI in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Schoo, L A; van Zandvoort, M J E; Biessels, G J; Kappelle, L J; Postma, A; de Haan, E H F
2011-03-01
Recent functional magnetic resonance imaging (fMRI) studies addressing healthy subjects point towards posterior parietal cortex (PPC) involvement in episodic memory tasks. This is noteworthy, since neuropsychological studies usually do not connect parietal lesions to episodic memory impairments. Therefore an inventory of the possible factors behind this apparent paradox is warranted. This review compared fMRI studies which demonstrated PPC activity in episodic memory tasks, with findings with studies of patients with PPC lesions. A systematic evaluation of possible explanations for the posterior parietal paradox indicates that PPC activation in fMRI studies does not appear to be attributable to confounding cognitive/psychomotor processes, such as button pressing or stimulus processing. What may be of more importance is the extent to which an episodic memory task loads on three closely related cognitive processes: effort and attention, self-related activity, and scene and image construction. We discuss to what extent these cognitive processes can account for the paradox between lesion and fMRI results. They are strongly intertwined with the episodic memory and may critically determine in how far the PPC plays a role in a given memory task. Future patient studies might profit from specifically taking these cognitive factors into consideration in the task design. ©2010 The British Psychological Society.
Hippocampal Networks Habituate as Novelty Accumulates
ERIC Educational Resources Information Center
Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison
2013-01-01
Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…
Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.
2012-01-01
Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages of the auditory system appear to process or extract a number of quantifiable low-order signal attributes that are characteristic of action events perceived as being object-like, representing stages that may begin to dissociate different perceptual dimensions and categories of every-day, real-world action sounds. PMID:22582038
Mental Time Travel into the Past and the Future in Healthy Aged Adults: An fMRI Study
ERIC Educational Resources Information Center
Viard, Armelle; Chetelat, Gael; Lebreton, Karine; Desgranges, Beatrice; Landeau, Brigitte; de La Sayette, Vincent; Eustache, Francis; Piolino, Pascale
2011-01-01
Remembering the past and envisioning the future rely on episodic memory which enables mental time travel. Studies in young adults indicate that past and future thinking share common cognitive and neural underpinnings. No imaging data is yet available in healthy aged subjects. Using fMRI, we scanned older subjects while they remembered personal…
The Effect of 30% Oxygen on Visuospatial Performance and Brain Activation: An Fmri Study
ERIC Educational Resources Information Center
Chung, S.C.; Tack, G.R.; Lee, B.; Eom, G.M.; Lee, S.Y.; Sohn, J.H.
2004-01-01
This study aimed to investigate the hypothesis that administration of the air with 30% oxygen compared with normal air (21% oxygen) enhances cognitive functioning through increased activation in the brain. A visuospatial task was presented while brain images were scanned by a 3 T fMRI system. The results showed that there was an improvement in…
Prospects of functional magnetic resonance imaging as lie detector.
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-09-24
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies "as the savior of scientifically verifiable lie detection in the courtroom" (Gerard, 2008: 5). These proponents believe the future impact of neuroscience "will be inevitable, dramatic, and will fundamentally alter the way the law does business" (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.
Prospects of functional magnetic resonance imaging as lie detector
Rusconi, Elena; Mitchener-Nissen, Timothy
2013-01-01
Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies “as the savior of scientifically verifiable lie detection in the courtroom” (Gerard, 2008: 5). These proponents believe the future impact of neuroscience “will be inevitable, dramatic, and will fundamentally alter the way the law does business” (Erickson, 2010: 29); however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever) be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social) and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts. PMID:24065912
A receptor-based model for dopamine-induced fMRI signal
Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.
2013-01-01
This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936
Aggarwal, Priya; Gupta, Anubha
2017-12-01
A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Adolescent Bariatric Surgery on the Brain and Cognition: A Pilot Study.
Pearce, Alaina L; Mackey, Eleanor; Cherry, J Bradley C; Olson, Alexandra; You, Xiaozhen; Magge, Sheela N; Mietus-Snyder, Michele; Nadler, Evan P; Vaidya, Chandan J
2017-11-01
Neurocognitive deficits in pediatric obesity relate to poor developmental outcomes. We sought preliminary evidence for changes in brain and cognitive functioning relevant to obesogenic behavior following vertical sleeve gastrectomy (VSG) in adolescents relative to wait-listed (WL) and healthy controls (HC). Thirty-six adolescents underwent fMRI twice 4 months apart, during executive, reward, and episodic memory encoding, in addition to behavioral testing for reward-related decision making. VSG adolescents lost weight, while WL gained weight and HC did not change between time points. Gains in executive and reward-related performance were larger in VSG than control groups. Group × Time interaction (P < 0.05 corrected) in left prefrontal cortex during N-back showed greater presurgical activation and postsurgical reduction comparable to HC levels but increased in WL between time points. Similarly, left striatal parametric response to reward value reduced after surgery to HC levels; WL did not change. Memory-related medial temporal activation did not change in any group. Results provide pilot evidence for functional brain changes induced by VSG in adolescents with severe obesity. Weight loss and gain were paralleled by reduced and increased prefrontal activation, respectively, suggesting neural plasticity related to metabolic change. © 2017 The Obesity Society.
Skokauskas, Norbert; Carballedo, Angela; Fagan, Andrew; Frodl, Thomas
2015-10-01
Victims of child sexual abuse can develop depression and other mental health conditions that follow them well into adulthood. This study aimed to clarify the role of sexual abuse (SA) on functional imaging markers associated with MDD. Thirty-seven patients with MDD only; and 13 patients with both MDD and SA and 43 healthy controls performed emotional attention shifting tasks during fMRI session. Clinical diagnoses were made by consultant psychiatrists based on the DSM-IV-TR criteria and diagnoses were confirmed using SCID-I. Magnetic resonance images were obtained with a Philips Achieva 3 Tesla MRI scanner. Short form childhood trauma questionnaire, Hamilton Rating Scale for Depression and Beck's Depression Inventory were also employed. Data were analysed with Statistical Parametric Mapping 8 (SPM8). Using the contrast judgment of emotion minus judgment of geometry following emotional neutral stimuli, patients with MDD showed significantly reduced activation in comparison to healthy controls in the area of the right fusiform gyrus. With the contrast judgment of emotion minus judgment of geometry following emotional negative stimuli, participants with MDD and SA showed significantly higher activation in the area of the left inferior parietal lobe in comparison to participants with MDD without SA. The history of sexual abuse affects functional neuroimaging markers associated with major depressive disorder.
Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred
2014-07-11
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G.; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery. PMID:29922216
Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco
2018-01-01
Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the greater the chances were of maintaining elementary motor functions after adult surgery. In particular, DTI-tractography and quantification of FA-maps were useful to assess the lateralization of motor network. In these cases reorganization of motor connectivity continued for long time periods after surgery.
Cognitive dissonance induction in everyday life: An fMRI study.
de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth
2015-01-01
This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.
The insula is not specifically involved in disgust processing: an fMRI study.
Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D
2002-11-15
fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.
Wilson, Stephen M; Isenberg, Anna Lisette; Hickok, Gregory
2009-11-01
Word production is a complex multistage process linking conceptual representations, lexical entries, phonological forms and articulation. Previous studies have revealed a network of predominantly left-lateralized brain regions supporting this process, but many details regarding the precise functions of different nodes in this network remain unclear. To better delineate the functions of regions involved in word production, we used event-related functional magnetic resonance imaging (fMRI) to identify brain areas where blood oxygen level-dependent (BOLD) responses to overt picture naming were modulated by three psycholinguistic variables: concept familiarity, word frequency, and word length, and one behavioral variable: reaction time. Each of these variables has been suggested by prior studies to be associated with different aspects of word production. Processing of less familiar concepts was associated with greater BOLD responses in bilateral occipitotemporal regions, reflecting visual processing and conceptual preparation. Lower frequency words produced greater BOLD signal in left inferior temporal cortex and the left temporoparietal junction, suggesting involvement of these regions in lexical selection and retrieval and encoding of phonological codes. Word length was positively correlated with signal intensity in Heschl's gyrus bilaterally, extending into the mid-superior temporal gyrus (STG) and sulcus (STS) in the left hemisphere. The left mid-STS site was also modulated by reaction time, suggesting a role in the storage of lexical phonological codes.
Lewis, James W.; Talkington, William J.; Walker, Nathan A.; Spirou, George A.; Jajosky, Audrey; Frum, Chris
2009-01-01
The ability to detect and rapidly process harmonic sounds, which in nature are typical of animal vocalizations and speech, can be critical for communication among conspecifics and for survival. Single-unit studies have reported neurons in auditory cortex sensitive to specific combinations of frequencies (e.g. harmonics), theorized to rapidly abstract or filter for specific structures of incoming sounds, where large ensembles of such neurons may constitute spectral templates. We studied the contribution of harmonic structure to activation of putative spectral templates in human auditory cortex by using a wide variety of animal vocalizations, as well as artificially constructed iterated rippled noises (IRNs). Both the IRNs and vocalization sounds were quantitatively characterized by calculating a global harmonics-to-noise ratio (HNR). Using fMRI we identified HNR-sensitive regions when presenting either artificial IRNs and/or recordings of natural animal vocalizations. This activation included regions situated between functionally defined primary auditory cortices and regions preferential for processing human non-verbal vocalizations or speech sounds. These results demonstrate that the HNR of sound reflects an important second-order acoustic signal attribute that parametrically activates distinct pathways of human auditory cortex. Thus, these results provide novel support for putative spectral templates, which may subserve a major role in the hierarchical processing of vocalizations as a distinct category of behaviorally relevant sound. PMID:19228981
Age-Related Variability in Cortical Activity during Language Processing
ERIC Educational Resources Information Center
Fridriksson, Julius; Morrow, K. Leigh; Moser, Dana; Baylis, Gordon C.
2006-01-01
Purpose: The present study investigated the extent of cortical activity during overt picture naming using functional magnetic resonance imaging (fMRI). Method: Participants comprised 20 healthy, adult participants with ages ranging from 20 to 82 years. While undergoing fMRI, participants completed a picture-naming task consisting of 60…
Autobiographical Memory in Semantic Dementia: A Longitudinal fMRI Study
ERIC Educational Resources Information Center
Maguire, Eleanor A.; Kumaran, Dharshan; Hassabis, Demis; Kopelman, Michael D.
2010-01-01
Whilst patients with semantic dementia (SD) are known to suffer from semantic memory and language impairments, there is less agreement about whether memory for personal everyday experiences, autobiographical memory, is compromised. In healthy individuals, functional MRI (fMRI) has helped to delineate a consistent and distributed brain network…
Item Memory, Context Memory and the Hippocampus: fMRI Evidence
ERIC Educational Resources Information Center
Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki
2012-01-01
Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880
A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.
Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming
2018-01-01
The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.
NASA Astrophysics Data System (ADS)
Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.
2018-03-01
This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).
The Stroop Effect in Kana and Kanji Scripts in Native Japanese Speakers: An fMRI Study
Coderre, Emily L.; Filippi, Christopher G.; Newhouse, Paul A.; Dumas, Julie A.
2008-01-01
Prior research has shown that the two writing systems of the Japanese orthography are processed differently: kana (syllabic symbols) are processed like other phonetic languages such as English, while kanji (a logographic writing system) are processed like other logographic languages like Chinese. Previous work done with the Stroop task in Japanese has shown that these differences in processing strategies create differences in Stroop effects. This study investigated the Stroop effect in kanji and kana using functional magnetic resonance imaging (fMRI) to examine the similarities and differences in brain processing between logographic and phonetic languages. Nine native Japanese speakers performed the Stroop task both in kana and kanji scripts during fMRI. Both scripts individually produced significant Stroop effects as measured by the behavioral reaction time data. The imaging data for both scripts showed brain activation in the anterior cingulate gyrus, an area involved in inhibiting automatic processing. Though behavioral data showed no significant differences between the Stroop effects in kana and kanji, there were differential areas of activation in fMRI found for each writing system. In fMRI, the Stroop task activated an area in the left inferior parietal lobule during the kana task and the left inferior frontal gyrus during the kanji task. The results of the present study suggest that the Stroop task in Japanese kana and kanji elicits differential activation in brain regions involved in conflict detection and resolution for syllabic and logographic writing systems. PMID:18325582
The neural code for face orientation in the human fusiform face area.
Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan
2014-09-03
Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.
Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.
2015-01-01
Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201
Hale, Matthew D; Zaman, Arshad; Morrall, Matthew C H J; Chumas, Paul; Maguire, Melissa J
2018-03-01
Presurgical evaluation for temporal lobe epilepsy routinely assesses speech and memory lateralization and anatomic localization of the motor and visual areas but not baseline musical processing. This is paramount in a musician. Although validated tools exist to assess musical ability, there are no reported functional magnetic resonance imaging (fMRI) paradigms to assess musical processing. We examined the utility of a novel fMRI paradigm in an 18-year-old left-handed pianist who underwent surgery for a left temporal low-grade ganglioglioma. Preoperative evaluation consisted of neuropsychological evaluation, T1-weighted and T2-weighted magnetic resonance imaging, and fMRI. Auditory blood oxygen level-dependent fMRI was performed using a dedicated auditory scanning sequence. Three separate auditory investigations were conducted: listening to, humming, and thinking about a musical piece. All auditory fMRI paradigms activated the primary auditory cortex with varying degrees of auditory lateralization. Thinking about the piece additionally activated the primary visual cortices (bilaterally) and right dorsolateral prefrontal cortex. Humming demonstrated left-sided predominance of auditory cortex activation with activity observed in close proximity to the tumor. This study demonstrated an fMRI paradigm for evaluating musical processing that could form part of preoperative assessment for patients undergoing temporal lobe surgery for epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.
2015-01-01
Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398
STABILITY OF FMRI STRIATAL RESPONSE TO ALCOHOL CUES: A HIERARCHICAL LINEAR MODELING APPROACH
Schacht, Joseph P.; Anton, Raymond F.; Randall, Patrick K.; Li, Xingbao; Henderson, Scott; Myrick, Hugh
2011-01-01
In functional magnetic resonance imaging (fMRI) studies of alcohol-dependent individuals, alcohol cues elicit activation of the ventral and dorsal aspects of the striatum (VS and DS), which are believed to underlie aspects of reward learning critical to the initiation and maintenance of alcohol dependence. Cue-elicited striatal activation may represent a biological substrate through which treatment efficacy may be measured. However, to be useful for this purpose, VS or DS activation must first demonstrate stability across time. Using hierarchical linear modeling (HLM), this study tested the stability of cue-elicited activation in anatomically and functionally defined regions of interest in bilateral VS and DS. Nine non-treatment-seeking alcohol-dependent participants twice completed an alcohol cue reactivity task during two fMRI scans separated by 14 days. HLM analyses demonstrated that, across all participants, alcohol cues elicited significant activation in each of the regions of interest. At the group level, these activations attenuated slightly between scans, but session-wise differences were not significant. Within-participants stability was best in the anatomically defined right VS and DS and in a functionally defined region that encompassed right caudate and putamen (intraclass correlation coefficients of .75, .81, and .76, respectively). Thus, within this small sample, alcohol cue-elicited fMRI activation had good reliability in the right striatum, though a larger sample is necessary to ensure generalizability and further evaluate stability. This study also demonstrates the utility of HLM analytic techniques for serial fMRI studies, in which separating within-participants variance (individual changes in activation) from between-participants factors (time or treatment) is critical. PMID:21316465
Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies
Engelmann, Jeffrey M.; Versace, Francesco; Robinson, Jason D.; Minnix, Jennifer A.; Lam, Cho Y.; Cui, Yong; Brown, Victoria L.; Cinciripini, Paul M.
2012-01-01
Reactivity to smoking-related cues may be an important factor that precipitates relapse in smokers who are trying to quit. The neurobiology of smoking cue reactivity has been investigated in several fMRI studies. We combined the results of these studies using activation likelihood estimation, a meta-analytic technique for fMRI data. Results of the meta-analysis indicated that smoking cues reliably evoke larger fMRI responses than neutral cues in the extended visual system, precuneus, posterior cingulate gyrus, anterior cingulate gyrus, dorsal and medial prefrontal cortex, insula, and dorsal striatum. Subtraction meta-analyses revealed that parts of the extended visual system and dorsal prefrontal cortex are more reliably responsive to smoking cues in deprived smokers than in non-deprived smokers, and that short-duration cues presented in event-related designs produce larger responses in the extended visual system than long-duration cues presented in blocked designs. The areas that were found to be responsive to smoking cues agree with theories of the neurobiology of cue reactivity, with two exceptions. First, there was a reliable cue reactivity effect in the precuneus, which is not typically considered a brain region important to addiction. Second, we found no significant effect in the nucleus accumbens, an area that plays a critical role in addiction, but this effect may have been due to technical difficulties associated with measuring fMRI data in that region. The results of this meta-analysis suggest that the extended visual system should receive more attention in future studies of smoking cue reactivity. PMID:22206965
fMRI amygdala activation during a spontaneous panic attack in a patient with panic disorder.
Pfleiderer, Bettina; Zinkirciran, Sariye; Arolt, Volker; Heindel, Walter; Deckert, Juergen; Domschke, Katharina
2007-01-01
Previous studies on neuronal activation correlates of panic attacks were mostly based on challenge tests, sensory-related stimulation or fear conditioning in healthy subjects. In the present study, we report on a female patient with panic disorder experiencing a spontaneous panic attack under an auditory habituation paradigm in the last stimulation block with sine tones captured with fMRI at 3T. The panic attack was associated with a significantly increased activity in the right amygdala. This is the first report on neuronal activation correlates of a spontaneous panic attack in a patient with panic disorder as measured by fMRI, which lends further support to a pivotal role of the amygdala in the pathogenesis of the disease.
Visual feature extraction from voxel-weighted averaging of stimulus images in 2 fMRI studies.
Hart, Corey B; Rose, William J
2013-11-01
Multiple studies have provided evidence for distributed object representation in the brain, with several recent experiments leveraging basis function estimates for partial image reconstruction from fMRI data. Using a novel combination of statistical decomposition, generalized linear models, and stimulus averaging on previously examined image sets and Bayesian regression of recorded fMRI activity during presentation of these data sets, we identify a subset of relevant voxels that appear to code for covarying object features. Using a technique we term "voxel-weighted averaging," we isolate image filters that these voxels appear to implement. The results, though very cursory, appear to have significant implications for hierarchical and deep-learning-type approaches toward the understanding of neural coding and representation.
ERIC Educational Resources Information Center
Szucs, Denes; Soltesz, Fruzsina; Bryce, Donna; Whitebread, David
2009-01-01
The ability to select an appropriate motor response by resolving competition among alternative responses plays a major role in cognitive performance. fMRI studies suggest that the development of this skill is related to the maturation of the frontal cortex that underlies the improvement of motor inhibition abilities. However, fMRI cannot…
ERIC Educational Resources Information Center
Dinomais, Mickael; Lignon, Gregoire; Chinier, Eva; Richard, Isabelle; Minassian, Aram Ter; The Tich, Sylvie N'Guyen
2013-01-01
The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated…
Differential fMRI Activation Patterns to Noxious Heat and Tactile Stimuli in the Primate Spinal Cord
Yang, Pai-Feng; Wang, Feng
2015-01-01
Mesoscale local functional organizations of the primate spinal cord are largely unknown. Using high-resolution fMRI at 9.4 T, we identified distinct interhorn and intersegment fMRI activation patterns to tactile versus nociceptive heat stimulation of digits in lightly anesthetized monkeys. Within a spinal segment, 8 Hz vibrotactile stimuli elicited predominantly fMRI activations in the middle part of ipsilateral dorsal horn (iDH), along with significantly weaker activations in ipsilateral (iVH) and contralateral (cVH) ventral horns. In contrast, nociceptive heat stimuli evoked widespread strong activations in the superficial part of iDH, as well as in iVH and contralateral dorsal (cDH) horns. As controls, only weak signal fluctuations were detected in the white matter. The iDH responded most strongly to both tactile and heat stimuli, whereas the cVH and cDH responded selectively to tactile versus nociceptive heat, respectively. Across spinal segments, iDH activations were detected in three consecutive segments in both tactile and heat conditions. Heat responses, however, were more extensive along the cord, with strong activations in iVH and cDH in two consecutive segments. Subsequent subunit B of cholera toxin tracer histology confirmed that the spinal segments showing fMRI activations indeed received afferent inputs from the stimulated digits. Comparisons of the fMRI signal time courses in early somatosensory area 3b and iDH revealed very similar hemodynamic stimulus–response functions. In summary, we identified with fMRI distinct segmental networks for the processing of tactile and nociceptive heat stimuli in the cervical spinal cord of nonhuman primates. SIGNIFICANCE STATEMENT This is the first fMRI demonstration of distinct intrasegmental and intersegmental nociceptive heat and touch processing circuits in the spinal cord of nonhuman primates. This study provides novel insights into the local functional organizations of the primate spinal cord for pain and touch, information that will be valuable for designing and optimizing therapeutic interventions for chronic pain management. PMID:26203144
Liu, Peiying; Hebrank, Andrew C.; Rodrigue, Karen M.; Kennedy, Kristen M.; Section, Jarren; Park, Denise C.; Lu, Hanzhang
2013-01-01
BOLD fMRI has provided a wealth of information about the aging brain. A common finding is that posterior regions of the brain manifest an age-related decrease in activation while the anterior regions show an age-related increase. Several neurocognitive models have been proposed to interpret these findings. However, one issue that has not been sufficiently considered to date is that the BOLD signal is based on vascular responses secondary to neural activity. Thus the above findings could be in part due to a vascular change, especially in view of the expected decline of vascular health with age. In the present study, we aim to examine age-related differences in memory-encoding fMRI response in the context of vascular aging. One hundred and thirty healthy subjects ranging from 20 to 89 years old underwent a scene-viewing fMRI task and, in the same session, cerebrovascular reactivity (CVR) was measured in each subject using a CO2-inhalation task. Without accounting for the influence of vascular changes, the task-activated fMRI signal showed the typical age-related decrease in visual cortex and medial temporal lobe (MTL), but manifested an increase in the right inferior frontal gyrus (IFG). In the same individuals, an age-related CVR reduction was observed in all of these regions. We then used a previously proposed normalization approach to calculate a CVR-corrected fMRI signal, which was defined as the uncorrected signal divided by CVR. Based on the CVR-corrected fMRI signal, an age-related increase is now seen in both the left and right side of IFG; and no brain regions showed a signal decrease with age. We additionally used a model-based approach to examine the fMRI data in the context of CVR, which again suggested an age-related change in the two frontal regions, but not in the visual and MTL regions. PMID:23624491
PCA leverage: outlier detection for high-dimensional functional magnetic resonance imaging data.
Mejia, Amanda F; Nebel, Mary Beth; Eloyan, Ani; Caffo, Brian; Lindquist, Martin A
2017-07-01
Outlier detection for high-dimensional (HD) data is a popular topic in modern statistical research. However, one source of HD data that has received relatively little attention is functional magnetic resonance images (fMRI), which consists of hundreds of thousands of measurements sampled at hundreds of time points. At a time when the availability of fMRI data is rapidly growing-primarily through large, publicly available grassroots datasets-automated quality control and outlier detection methods are greatly needed. We propose principal components analysis (PCA) leverage and demonstrate how it can be used to identify outlying time points in an fMRI run. Furthermore, PCA leverage is a measure of the influence of each observation on the estimation of principal components, which are often of interest in fMRI data. We also propose an alternative measure, PCA robust distance, which is less sensitive to outliers and has controllable statistical properties. The proposed methods are validated through simulation studies and are shown to be highly accurate. We also conduct a reliability study using resting-state fMRI data from the Autism Brain Imaging Data Exchange and find that removal of outliers using the proposed methods results in more reliable estimation of subject-level resting-state networks using independent components analysis. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M
2014-08-01
The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
fMRI during natural sleep as a method to study brain function during early childhood.
Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric
2007-12-01
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Yan, Chao-Gan; Craddock, R. Cameron; Zuo, Xi-Nian; Zang, Yu-Feng; Milham, Michael P.
2014-01-01
As researchers increase their efforts to characterize variations in the functional connectome across studies and individuals, concerns about the many sources of nuisance variation present and their impact on resting state fMRI (R-fMRI) measures continue to grow. Although substantial within-site variation can exist, efforts to aggregate data across multiple sites such as the 1000 Functional Connectomes Project (FCP) and International Neuroimaging Data-sharing Initiative (INDI) datasets amplify these concerns. The present work draws upon standardization approaches commonly used in the microarray gene expression literature, and to a lesser extent recent imaging studies, and compares them with respect to their impact on relationships between common R-fMRI measures and nuisance variables (e.g., imaging site, motion), as well as phenotypic variables of interest (age, sex). Standardization approaches differed with regard to whether they were applied post-hoc vs. during pre-processing, and at the individual vs. group level; additionally they varied in whether they addressed additive effects vs. additive + multiplicative effects, and were parametric vs. non-parametric. While all standardization approaches were effective at reducing undesirable relationships with nuisance variables, post-hoc approaches were generally more effective than global signal regression (GSR). Across approaches, correction for additive effects (global mean) appeared to be more important than for multiplicative effects (global SD) for all R-fMRI measures, with the exception of amplitude of low frequency fluctuations (ALFF). Group-level post-hoc standardizations for mean-centering and variance-standardization were found to be advantageous in their ability to avoid the introduction of artifactual relationships with standardization parameters; though results between individual and group-level post-hoc approaches were highly similar overall. While post-hoc standardization procedures drastically increased test–retest (TRT) reliability for ALFF, modest reductions were observed for other measures after post-hoc standardizations—a phenomena likely attributable to the separation of voxel-wise from global differences among subjects (global mean and SD demonstrated moderate TRT reliability for these measures). Finally, the present work calls into question previous observations of increased anatomical specificity for GSR over mean centering, and draws attention to the near equivalence of global and gray matter signal regression. PMID:23631983
NASA Astrophysics Data System (ADS)
Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin
2005-04-01
The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.
An fMRI compatible wrist robotic interface to study brain development in neonates.
Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E
2013-06-01
A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.
Filippi, Massimo; Agosta, Federica
2011-01-01
Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.
Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.
2010-01-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task. We found a indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, that was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. PMID:20227508
Caffo, Brian S; Crainiceanu, Ciprian M; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H; Bassett, Susan Spear; Pekar, James J
2010-07-01
Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer's disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer's disease risk under a verbal paired associates task. We found an indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, which was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.
Kim, Seong-Gi; Ogawa, Seiji
2012-07-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.
Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals
Kim, Seong-Gi; Ogawa, Seiji
2012-01-01
After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207
fMRI and MEG in the study of typical and atypical cognitive development.
Taylor, M J; Donner, E J; Pang, E W
2012-01-01
The tremendous changes in brain structure over childhood are critical to the development of cognitive functions. Neuroimaging provides a means of linking these brain-behaviour relations, as task protocols can be adapted for use with young children to assess the development of cognitive functions in both typical and atypical populations. This paper reviews some of our research using magnetoencephalography (MEG) and functional MRI (fMRI) in the study of cognitive development, with a focus on frontal lobe functions. Working memory for complex abstract patterns showed clear development in terms of the recruitment of frontal regions, seen with fMRI, with indications of strategy differences across the age range, from 6 to 35 years of age. Right hippocampal involvement was also evident in these n-back tasks, demonstrating its involvement in recognition in simple working memory protocols. Children born very preterm (7 to 9 years of age) showed reduced fMRI activation particularly in the precuneus and right hippocampal regions relative to control children. In a large normative n-back study (n=90) with upright and inverted faces, MEG data also showed right hippocampal activation that was present across the age range; frontal sources were evident only from 10 years of age. Other studies have investigated the development of set shifting, an executive function that is often deficit in atypical populations. fMRI showed recruitment of frontal areas, including the insula, that have significantly different patterns in children (7 to 14 years of age) with autism spectrum disorder compared to typically developing children, indicating that successful performance implicated differing strategies in these two groups of children. These types of studies will help our understanding of both normal brain-behaviour development and cognitive dysfunction in atypically developing populations. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study
ERIC Educational Resources Information Center
Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.
2015-01-01
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face…
The Effect of Strategy on Problem Solving: An FMRI Study
ERIC Educational Resources Information Center
Newman, Sharlene D.; Pruce, Benjamin; Rusia, Akash; Burns, Thomas, Jr.
2010-01-01
fMRI was used to examine the differential effect of two problem-solving strategies. Participants were trained to use both a pictorial/spatial and a symbolic/algebraic strategy to solve word problems. While these two strategies activated similar cortical regions, a number of differences were noted in the level of activation. These differences…
What Has fMRI Told Us about the Development of Cognitive Control through Adolescence?
ERIC Educational Resources Information Center
Luna, Beatriz; Padmanabhan, Aarthi; O'Hearn, Kirsten
2010-01-01
Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic resonance imaging (fMRI) indicate…
How Verbal and Spatial Manipulation Networks Contribute to Calculation: An fMRI Study
ERIC Educational Resources Information Center
Zago, Laure; Petit, Laurent; Turbelin, Marie-Renee; Andersson, Frederic; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie
2008-01-01
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and…
Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study
ERIC Educational Resources Information Center
Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov
2012-01-01
Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…
Neural Changes after Phonological Treatment for Anomia: An fMRI Study
ERIC Educational Resources Information Center
Rochon, Elizabeth; Leonard, Carol; Burianova, Hana; Laird, Laura; Soros, Peter; Graham, Simon; Grady, Cheryl
2010-01-01
Functional magnetic resonance imaging (fMRI) was used to investigate the neural processing characteristics associated with word retrieval abilities after a phonologically-based treatment for anomia in two stroke patients with aphasia. Neural activity associated with a phonological and a semantic task was compared before and after treatment with…
The Effect of fMRI (Noise) on Cognitive Control
ERIC Educational Resources Information Center
Hommel, Bernhard; Fischer, Rico; Colzato, Lorenza S.; van den Wildenberg, Wery P. M.; Cellini, Cristiano
2012-01-01
Stressful situations, the aversiveness of events, or increases in task difficulty (e.g., conflict) have repeatedly been shown to be capable of triggering attentional control adjustments. In the present study we tested whether the particularity of an fMRI testing environment (i.e., EPI noise) might result in such increases of the cognitive control…
Mapping white-matter functional organization at rest and during naturalistic visual perception.
Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming
2017-02-01
Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel
2017-08-01
Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J
2009-01-01
Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric
2010-11-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.
McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric
2010-01-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212
Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex
2018-02-27
"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.
Ille, Sebastian; Sollmann, Nico; Hauck, Theresa; Maurer, Stefanie; Tanigawa, Noriko; Obermueller, Thomas; Negwer, Chiara; Droese, Doris; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M
2015-08-01
Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.
Ishikawa, Tatsuya; Muragaki, Yoshihiro; Maruyama, Takashi; Abe, Kayoko; Kawamata, Takakazu
2017-01-15
This study examined the accuracy of functional magnetic resonance imaging (fMRI) in identifying the language-dominant hemisphere and the situations in which the Wada test can be skipped among patients with gliomas located near speech areas. We examined 74 patients [48 men (64.9%); mean ± standard deviation age of 42.7 ± 13.6 years (range: 13 to 70 years); 71 right-handed, 2 left-handed, and 1 ambidextrous] with gliomas located near speech areas. All patients underwent the Wada test and fMRI, and 34 patients underwent awake surgery. The "last-and-first" task was administered during fMRI. The Wada test was successful in determining the language-dominant hemisphere in 73 patients (98.6%): left hemisphere in 68 patients (91.9%), right hemisphere in 4 patients (5.4%), and bilateral in 1 patient (1.4%). The dominant hemisphere for right-handed patients (n = 71) was the left hemisphere in 67 patients (94.3%), right hemisphere in 3 patients (4.2%), and undetectable in 1 patient (1.4%). The fMRI was successful in determining the language-dominant hemisphere in 53 patients (71.6%). The results of the Wada test and fMRI were inconsistent in 5 patients (8.6%), of which 3 (5.2%) exhibited dominance in opposite hemispheres. Furthermore, 2 of these 3 cases (2.7%) were contralateral false positive cases, whereby fMRI identified the right-hemisphere as language dominant for right-handed individuals with tumors in the left hemisphere. Based on these findings, we concluded that the Wada test can be skipped if language dominancy can be detected by fMRI.
Presurgical language fMRI: Mapping of six critical regions
Walshaw, Patricia D.; Hale, Kayleigh; Gaillard, William D.; Baxter, Leslie C.; Berl, Madison M.; Polczynska, Monika; Noble, Stephanie; Alkawadri, Rafeed; Hirsch, Lawrence J.; Constable, R. Todd; Bookheimer, Susan Y.
2017-01-01
Abstract Language mapping is a key goal in neurosurgical planning. fMRI mapping typically proceeds with a focus on Broca's and Wernicke's areas, although multiple other language‐critical areas are now well‐known. We evaluated whether clinicians could use a novel approach, including clinician‐driven individualized thresholding, to reliably identify six language regions, including Broca's Area, Wernicke's Area (inferior, superior), Exner's Area, Supplementary Speech Area, Angular Gyrus, and Basal Temporal Language Area. We studied 22 epilepsy and tumor patients who received Wada and fMRI (age 36.4[12.5]; Wada language left/right/mixed in 18/3/1). fMRI tasks (two × three tasks) were analyzed by two clinical neuropsychologists who flexibly thresholded and combined these to identify the six regions. The resulting maps were compared to fixed threshold maps. Clinicians generated maps that overlapped significantly, and were highly consistent, when at least one task came from the same set. Cases diverged when clinicians prioritized different language regions or addressed noise differently. Language laterality closely mirrored Wada data (85% accuracy). Activation consistent with all six language regions was consistently identified. In blind review, three external, independent clinicians rated the individualized fMRI language maps as superior to fixed threshold maps; identified the majority of regions significantly more frequently; and judged language laterality to mirror Wada lateralization more often. These data provide initial validation of a novel, clinician‐based approach to localizing language cortex. They also demonstrate clinical fMRI is superior when analyzed by an experienced clinician and that when fMRI data is of low quality judgments of laterality are unreliable and should be withheld. Hum Brain Mapp 38:4239–4255, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544168
High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging
Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard
2013-01-01
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications. PMID:23986677
Parametric Cooling of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael
2017-04-01
An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.
Utility of functional MRI in pediatric neurology.
Freilich, Emily R; Gaillard, William D
2010-01-01
Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.
Habermeyer, Benedikt; Händel, Nadja; Lemoine, Patrick; Klarhöfer, Markus; Seifritz, Erich; Dittmann, Volker; Graf, Marc
2012-01-01
Pedophilia is characterized by a persistent sexual attraction to prepubescent children. Treatment with anti-androgen agents, such as luteinizing hormone-releasing hormone (LH-RH) agonists, reduces testosterone levels and thereby sexual drive and arousal. We used functional magnetic resonance imaging (fMRI) to compare visual erotic stimulation pre- and on-treatment with the LH-RH agonist leuprolide acetate in the case of homosexual pedophilia. The pre-treatment contrasts of the erotic pictures against the respective neutral pictures showed an activation of the right amygdala and adjacent parahippocampal gyrus that decreased significantly under treatment with leuprolide acetate. Our single case fMRI study supports the notion that anti-androgens may modify amygdala response to visual erotic stimulation, a hypothesis that should be further examined in larger studies.
De Angelis, Vittoria; De Martino, Federico; Moerel, Michelle; Santoro, Roberta; Hausfeld, Lars; Formisano, Elia
2017-11-13
Pitch is a perceptual attribute related to the fundamental frequency (or periodicity) of a sound. So far, the cortical processing of pitch has been investigated mostly using synthetic sounds. However, the complex harmonic structure of natural sounds may require different mechanisms for the extraction and analysis of pitch. This study investigated the neural representation of pitch in human auditory cortex using model-based encoding and decoding analyses of high field (7 T) functional magnetic resonance imaging (fMRI) data collected while participants listened to a wide range of real-life sounds. Specifically, we modeled the fMRI responses as a function of the sounds' perceived pitch height and salience (related to the fundamental frequency and the harmonic structure respectively), which we estimated with a computational algorithm of pitch extraction (de Cheveigné and Kawahara, 2002). First, using single-voxel fMRI encoding, we identified a pitch-coding region in the antero-lateral Heschl's gyrus (HG) and adjacent superior temporal gyrus (STG). In these regions, the pitch representation model combining height and salience predicted the fMRI responses comparatively better than other models of acoustic processing and, in the right hemisphere, better than pitch representations based on height/salience alone. Second, we assessed with model-based decoding that multi-voxel response patterns of the identified regions are more informative of perceived pitch than the remainder of the auditory cortex. Further multivariate analyses showed that complementing a multi-resolution spectro-temporal sound representation with pitch produces a small but significant improvement to the decoding of complex sounds from fMRI response patterns. In sum, this work extends model-based fMRI encoding and decoding methods - previously employed to examine the representation and processing of acoustic sound features in the human auditory system - to the representation and processing of a relevant perceptual attribute such as pitch. Taken together, the results of our model-based encoding and decoding analyses indicated that the pitch of complex real life sounds is extracted and processed in lateral HG/STG regions, at locations consistent with those indicated in several previous fMRI studies using synthetic sounds. Within these regions, pitch-related sound representations reflect the modulatory combination of height and the salience of the pitch percept. Copyright © 2017 Elsevier Inc. All rights reserved.
Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data
Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924
Resting-state fMRI and social cognition: An opportunity to connect.
Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M
2017-09-01
Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.
Improvement in cerebral function with treatment of posttraumatic stress disorder.
Roy, Michael J; Francis, Jennifer; Friedlander, Joshua; Banks-Williams, Lisa; Lande, Raymond G; Taylor, Patricia; Blair, James; McLellan, Jennifer; Law, Wendy; Tarpley, Vanita; Patt, Ivy; Yu, Henry; Mallinger, Alan; Difede, Joann; Rizzo, Albert; Rothbaum, Barbara
2010-10-01
Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are signature illnesses of the Iraq and Afghanistan wars, but current diagnostic and therapeutic measures for these conditions are suboptimal. In our study, functional magnetic resonance imaging (fMRI) is used to try to differentiate military service members with: PTSD and mTBI, PTSD alone, mTBI alone, and neither PTSD nor mTBI. Those with PTSD are then randomized to virtual reality exposure therapy or imaginal exposure. fMRI is repeated after treatment and along with the Clinician-Administered PTSD Scale (CAPS) and Clinical Global Impression (CGI) scores to compare with baseline. Twenty subjects have completed baseline fMRI scans, including four controls and one mTBI only; of 15 treated for PTSD, eight completed posttreatment scans. Most subjects have been male (93%) and Caucasian (83%), with a mean age of 34. Significant improvements are evident on fMRI scans, and corroborated by CGI scores, but CAPS scores improvements are modest. In conclusion, CGI scores and fMRI scans indicate significant improvement in PTSD in both treatment arms, though CAPS score improvements are less robust. © 2010 Association for Research in Nervous and Mental Disease.
Distinct encoding of risk and value in economic choice between multiple risky options☆
Wright, Nicholas D.; Symmonds, Mkael; Dolan, Raymond J.
2013-01-01
Neural encoding of value-based stimuli is suggested to involve representations of summary statistics, including risk and expected value (EV). A more complex, but ecologically more common, context is when multiple risky options are evaluated together. However, it is unknown whether encoding related to option evaluation in these situations involves similar principles. Here we employed fMRI during a task that parametrically manipulated EV and risk in two simultaneously presented lotteries, both of which contained either gains or losses. We found representations of EV in medial prefrontal cortex and anterior insula, an encoding that was dependent on which option was chosen (i.e. chosen and unchosen EV) and whether the choice was over gains or losses. Parietal activity reflected whether the riskier or surer option was selected, whilst activity in a network of regions that also included parietal cortex reflected both combined risk and difference in risk for the two options. Our findings provide support for the idea that summary statistics underpin a representation of value-based stimuli, and further that these summary statistics undergo distinct forms of encoding. PMID:23684860
Efficient Posterior Probability Mapping Using Savage-Dickey Ratios
Penny, William D.; Ridgway, Gerard R.
2013-01-01
Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner. PMID:23533640
Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F
2013-01-01
The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).
ERIC Educational Resources Information Center
Van de Winckel, Ann; Klingels, Katrijn; Bruyninckx, Frans; Wenderoth, Nici; Peeters, Ron; Sunaert, Stefan; Van Hecke, Wim; De Cock, Paul; Eyssen, Maria; De Weerdt, Willy; Feys, Hilde
2013-01-01
The aim of the functional magnetic resonance imaging (fMRI) study was to investigate brain activation associated with active and passive movements, and tactile stimulation in 17 children with right-sided unilateral cerebral palsy (CP), compared to 19 typically developing children (TD). The active movements consisted of repetitive opening and…
Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.
Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D
2003-03-01
As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.
Kurland, Jacquie; Naeser, Margaret A.; Baker, Errol H.; Doron, Karl; Martin, Paula I.; Seekins, Heidi E.; Bogdan, Andrew; Renshaw, Perry; Yurgelun-Todd, Deborah
2005-01-01
Cortical reorganization in poststroke aphasia is not well understood. Few studies have investigated neural mechanisms underlying language recovery in severe aphasia patients, who are typically viewed as having a poor prognosis for language recovery. Although test-retest reliability is routinely demonstrated during collection of language data in single-subject aphasia research, this is rarely examined in fMRI studies investigating the underlying neural mechanisms in aphasia recovery. The purpose of this study was to acquire fMRI test-retest data examining semantic decisions both within and between two aphasia patients. Functional MRI was utilized to image individuals with chronic, moderate-severe nonfluent aphasia during nonverbal, yes/no button-box semantic judgments of iconic sentences presented in the Computer-assisted Visual Communication (C-ViC) program. We investigated the critical issue of intra-subject reliability by exploring similarities and differences in regions of activation during participants’ performance of identical tasks twice on the same day. Each participant demonstrated high intra-subject reliability, with response decrements typical of task familiarity. Differences between participants included greater left hemisphere perilesional activation in the individual with better response to C-ViC training. This study provides fMRI reliability in chronic nonfluent aphasia, and adds to evidence supporting differences in individual cortical reorganization in aphasia recovery. PMID:15706052
Lindquist, Martin A.; Xu, Yuting; Nebel, Mary Beth; Caffo, Brain S.
2014-01-01
To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-windows technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data. PMID:24993894
Davis, Susan R; Davison, Sonia L; Gavrilescu, Maria; Searle, Karissa; Gogos, Andrea; Rossell, Susan L; Egan, Gary F; Bell, Robin J
2014-04-01
This study aims to investigate the effects of testosterone on cognitive performance during functional magnetic resonance imaging (fMRI) in healthy estrogen-treated postmenopausal women. This was an open-label study in which postmenopausal women on nonoral estrogen therapy were treated with transdermal testosterone for 26 weeks. Women performed tests of verbal fluency (number of words) and mental rotation (reaction time and accuracy) during pretreatment and posttreatment fMRI. Blood oxygen level-dependent (BOLD) signal intensity was measured during fMRI tasks. Nine women with a mean (SD) age of 55.4 (3.8) years completed the study. Twenty-six weeks of testosterone therapy was associated with significant decreases in BOLD intensity during the mental rotation task in the right superior parietal, left inferior parietal, and left precuneus regions, and during the verbal fluency task in the left inferior frontal gyrus, left lingual gyrus, and medial frontal gyrus (all P < 0.05), with no change in task performance, accuracy, or speed. Testosterone therapy is associated with reduced BOLD signal activation in key anatomical areas during fMRI verbal fluency and visuospatial tasks in healthy estrogen-treated postmenopausal women. Our interpretation is that testosterone therapy facilitates preservation of cognitive function with less neuronal recruitment.
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B
2015-06-01
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.
2015-01-01
Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25727740
Multivariate pattern analysis of fMRI: the early beginnings.
Haxby, James V
2012-08-15
In 2001, we published a paper on the representation of faces and objects in ventral temporal cortex that introduced a new method for fMRI analysis, which subsequently came to be called multivariate pattern analysis (MVPA). MVPA now refers to a diverse set of methods that analyze neural responses as patterns of activity that reflect the varying brain states that a cortical field or system can produce. This paper recounts the circumstances and events that led to the original study and later developments and innovations that have greatly expanded this approach to fMRI data analysis, leading to its widespread application. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.
Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi
2007-10-01
Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.
Parametric Methods for Dynamic 11C-Phenytoin PET Studies.
Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A
2017-03-01
In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Levy, Ifat; Rosenberg Belmaker, Lior; Manson, Kirk; Tymula, Agnieszka; Glimcher, Paul W
2012-09-19
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity(1,2), the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method(3 )to assess the neural representation of the subjective values of risky and ambiguous options(4). This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations. In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual's choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options.
McLaren, Donald G.; Ries, Michele L.; Xu, Guofan; Johnson, Sterling C.
2012-01-01
Functional MRI (fMRI) allows one to study task-related regional responses and task-dependent connectivity analysis using psychophysiological interaction (PPI) methods. The latter affords the additional opportunity to understand how brain regions interact in a task-dependent manner. The current implementation of PPI in Statistical Parametric Mapping (SPM8) is configured primarily to assess connectivity differences between two task conditions, when in practice fMRI tasks frequently employ more than two conditions. Here we evaluate how a generalized form of context-dependent PPI (gPPI; http://www.nitrc.org/projects/gppi), which is configured to automatically accommodate more than two task conditions in the same PPI model by spanning the entire experimental space, compares to the standard implementation in SPM8. These comparisons are made using both simulations and an empirical dataset. In the simulated dataset, we compare the interaction beta estimates to their expected values and model fit using the Akaike Information Criterion (AIC). We found that interaction beta estimates in gPPI were robust to different simulated data models, were not different from the expected beta value, and had better model fits than when using standard PPI (sPPI) methods. In the empirical dataset, we compare the model fit of the gPPI approach to sPPI. We found that the gPPI approach improved model fit compared to sPPI. There were several regions that became non-significant with gPPI. These regions all showed significantly better model fits with gPPI. Also, there were several regions where task-dependent connectivity was only detected using gPPI methods, also with improved model fit. Regions that were detected with all methods had more similar model fits. These results suggest that gPPI may have greater sensitivity and specificity than standard implementation in SPM. This notion is tempered slightly as there is no gold standard; however, data simulations with a known outcome support our conclusions about gPPI. In sum, the generalized form of context-dependent PPI approach has increased flexibility of statistical modeling, and potentially improves model fit, specificity to true negative findings, and sensitivity to true positive findings. PMID:22484411
OdorMapComparer: an application for quantitative analyses and comparisons of fMRI brain odor maps.
Liu, Nian; Xu, Fuqiang; Miller, Perry L; Shepherd, Gordon M
2007-01-01
Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience.
Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki
2013-01-01
Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Feasibility of using fMRI to study mothers responding to infant cries.
Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S
1999-01-01
While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P < 0.001 and spatial extent threshold of P < 0.05). These results demonstrate the feasibility of using fMRI to study brain activity in mothers listening to infant cries and that the anterior cingulate may be involved in mothers listening to crying babies. We are currently replicating this study in a larger group of mothers. Future work in this area may help (1) unravel the functional neuroanatomy of the parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.
Spatially Regularized Machine Learning for Task and Resting-state fMRI
Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei
2015-01-01
Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627
Stevens, Courtney
2015-01-01
This article presents a modular activity on the neurobiology of sign language that engages undergraduate students in reading and analyzing the primary functional magnetic resonance imaging (fMRI) literature. Drawing on a seed empirical article and subsequently published critique and rebuttal, students are introduced to a scientific debate concerning the functional significance of right-hemisphere recruitment observed in some fMRI studies of sign language processing. The activity requires minimal background knowledge and is not designed to provide students with a specific conclusion regarding the debate. Instead, the activity and set of articles allow students to consider key issues in experimental design and analysis of the primary literature, including critical thinking regarding the cognitive subtractions used in blocked-design fMRI studies, as well as possible confounds in comparing results across different experimental tasks. By presenting articles representing different perspectives, each cogently argued by leading scientists, the readings and activity also model the type of debate and dialogue critical to science, but often invisible to undergraduate science students. Student self-report data indicate that undergraduates find the readings interesting and that the activity enhances their ability to read and interpret primary fMRI articles, including evaluating research design and considering alternate explanations of study results. As a stand-alone activity completed primarily in one 60-minute class block, the activity can be easily incorporated into existing courses, providing students with an introduction both to the analysis of empirical fMRI articles and to the role of debate and critique in the field of neuroscience. PMID:26557797
Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori
2012-04-18
It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.