Software for Managing Parametric Studies
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian
2003-01-01
The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.
NASA Astrophysics Data System (ADS)
Kumar, V.; Singh, A.; Sharma, S. P.
2016-12-01
Regular grid discretization is often utilized to define complex geological models. However, this subdivision strategy performs at lower precision to represent the topographical observation surface. We have developed a new 2D unstructured grid based inversion for magnetic data for models including topography. It will consolidate prior parametric information into a deterministic inversion system to enhance the boundary between the different lithology based on recovered magnetic susceptibility distribution from the inversion. The presented susceptibility model will satisfy both the observed magnetic data and parametric information and therefore can represent the earth better than geophysical inversion models that only honor the observed magnetic data. Geophysical inversion and lithology classification are generally treated as two autonomous methodologies and connected in a serial way. The presented inversion strategy integrates these two parts into a unified scheme. To reduce the storage space and computation time, the conjugate gradient method is used. It results in feasible and practical imaging inversion of magnetic data to deal with large number of triangular grids. The efficacy of the presented inversion is demonstrated using two synthetic examples and one field data example.
Evaluation of grid generation technologies from an applied perspective
NASA Technical Reports Server (NTRS)
Hufford, Gary S.; Harrand, Vincent J.; Patel, Bhavin C.; Mitchell, Curtis R.
1995-01-01
An analysis of the grid generation process from the point of view of an applied CFD engineer is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis projects. The analysis is geared towards comparing the effective turn around time for specific grid generation and CFD projects. The conclusion was made that a single grid generation methodology is not universally suited for all CFD applications due to both limitations in grid generation and flow solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced to effectively integrate the geometric modeling process to the various grid generation methodologies including structured, unstructured, and hybrid procedures. The full integration of the geometric modeling and grid generation allows implementation of extremely efficient updating procedures, a necessary requirement for large parametric analysis projects. The concept of using virtual parts libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to improve the efficiency of the applied CFD engineer.
Definition of NASTRAN sets by use of parametric geometry
NASA Technical Reports Server (NTRS)
Baughn, Terry V.; Tiv, Mehran
1989-01-01
Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.
Parametric boundary reconstruction algorithm for industrial CT metrology application.
Yin, Zhye; Khare, Kedar; De Man, Bruno
2009-01-01
High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.
Azimi, Seyed Mohammad; Afsharnia, Saeed
2017-01-01
This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Arc Length Based Grid Distribution For Surface and Volume Grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1996-01-01
Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.
Elliptic surface grid generation on minimal and parmetrized surfaces
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.
1995-01-01
An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.; Gollan, Rowan J.
2010-01-01
Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
NASA Astrophysics Data System (ADS)
Lai, Changliang; Wang, Junbiao; Liu, Chuang
2014-10-01
Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.
NASA Astrophysics Data System (ADS)
Alfieri, Luisa
2015-12-01
Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.
On non-parametric maximum likelihood estimation of the bivariate survivor function.
Prentice, R L
The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.
Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.
2000-01-01
The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.
Generating grids directly on CAD database surfaces using a parametric evaluator approach
NASA Technical Reports Server (NTRS)
Gatzhe, Timothy D.; Melson, Thomas G.
1995-01-01
A very important, but often overlooked step in grid generation is acquiring a suitable geometry definition of the vehicle to be analyzed. In the past, geometry was usually obtained by generating a number of cross-sections of each component. A number of recent efforts have focussed on non-uniform rational B-spline surfaces (NURBS) to provide as single type of analytic surface to deal with inside the grid generator. This approach has required the development of tools to read other types of surfaces and convert them, either exactly or by approximation, into a NURBS surface. This paper describes a more generic parametric evaluator approach, which does not rely on a particular surface type internal to the grid generation system and is less restrictive in the number of surface types that can be represented exactly. This approach has been implemented in the McDonnell Douglas grid generation system, MACGS, and offers direct access to all types of surfaces from a Unigraphics part file.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
A grid spacing control technique for algebraic grid generation methods
NASA Technical Reports Server (NTRS)
Smith, R. E.; Kudlinski, R. A.; Everton, E. L.
1982-01-01
A technique which controls the spacing of grid points in algebraically defined coordinate transformations is described. The technique is based on the generation of control functions which map a uniformly distributed computational grid onto parametric variables defining the physical grid. The control functions are smoothed cubic splines. Sets of control points are input for each coordinate directions to outline the control functions. Smoothed cubic spline functions are then generated to approximate the input data. The technique works best in an interactive graphics environment where control inputs and grid displays are nearly instantaneous. The technique is illustrated with the two-boundary grid generation algorithm.
Techniques for grid manipulation and adaptation. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.
1992-01-01
Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.
A design study for the addition of higher order parametric discrete elements to NASTRAN
NASA Technical Reports Server (NTRS)
Stanton, E. L.
1972-01-01
The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.
Fluidic Energy Harvester Optimization in Grid Turbulence
NASA Astrophysics Data System (ADS)
Danesh-Yazdi, Amir; Elvin, Niell; Andreopoulos, Yiannis
2017-11-01
Even though it is omnipresent in nature, there has not been a great deal of research in the literature involving turbulence as an energy source for piezoelectric fluidic harvesters. In the present work, a grid-generated turbulence forcing function model which we derived previously is employed in the single degree-of-freedom electromechanical equations to find the power output and tip displacement of piezoelectric cantilever beams. Additionally, we utilize simplified, deterministic models of the turbulence forcing function to obtain closed-form expressions for the power output. These theoretical models are studied using experiments that involve separately placing a hot-wire anemometer probe and a short PVDF beam in flows where turbulence is generated by means of passive and semi-passive grids. From a parametric study on the deterministic models, we show that the white noise forcing function best mimics the experimental data. Furthermore, our parametric study of the response spectrum of a generic fluidic harvester in grid-generated turbulent flow shows that optimum power output is attained for beams placed closer to the grid with a low natural frequency and damping ratio and a large electromechanical coupling coefficient. NSF Grant No. CBET 1033117.
Near-Body Grid Adaption for Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; Pulliam, Thomas H.
2016-01-01
A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
Investigations in a Simplified Bracketed Grid Approach to Metrical Structure
ERIC Educational Resources Information Center
Liu, Patrick Pei
2010-01-01
In this dissertation, I examine the fundamental mechanisms and assumptions of the Simplified Bracketed Grid Theory (Idsardi 1992) in two ways: first, by comparing it with Parametric Metrical Theory (Hayes 1995), and second, by implementing it in the analysis of several case studies in stress assignment and syllabification. Throughout these…
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
Occupancy Grid Map Merging Using Feature Maps
2010-11-01
each robot begins exploring at different starting points, once two robots can communicate, they send their odometry data, LIDAR observations, and maps...robots [11]. Moreover, it is relevant to mention that significant success has been achieved in solving SLAM problems when using hybrid maps [12...represents the environment by parametric features. Our method is capable of representing a LIDAR scanned environment map in a parametric fashion. In general
NASA Astrophysics Data System (ADS)
Siegenthaler-Le Drian, C.; Spichtinger, P.; Lohmann, U.
2010-09-01
Marine stratocumulus-capped boundary layers exhibit a strong net cooling impact on the Earth-Atmosphere system. Moreover, they are highly persistent over subtropical oceans. Therefore climate models need to represent them well in order to make reliable projections of future climate. One of the reasons for the absence of stratocumuli in the general circulation model ECHAM5-HAM (Roeckner et al., 2003; Stier et al., 2005) is due to the limited vertical resolution. In the current model version, no vertical sub-grid scale variability of clouds is taken into account, such that clouds occupy the full vertical layer. Around the inversion on top of the planetary boundary layer (PBL), conserved variables often have a steep gradient, which in a GCM may produce large discretization errors (Bretherton and Park, 2009). This inversion has a large diurnal cycle and varies with location around the globe, which is difficult to represent in a classical, coarse Eulerian approach. Furthermore, Lenderink and Holtslag (2000) and Lock (2001) showed that an inconsistent numerical representation between the entrainment parametrization and the other schemes, particularly with the vertical advection can lead to the occurrence of 'numerical entrainment'. The problem can be resolved by introducing a dynamical inversion as introduced by Grenier and Bretherton (2001) and Lock (2001). As these features can be seen in our version of ECHAM5-HAM, our implementation is aimed to reduce the numerical entrainment and to better represent stratocumuli in ECHAM5-HAM. To better resolve stratocumulus clouds, their inversion and the interaction between the turbulent diffusion and the vertical advection, the vertical grid is dynamically refined. The new grid is based on the reconstruction of the profiles of variables experiencing a sharp gradient (temperature, mixing ratio) applying the method presented in Grenier and Bretherton (2001). In typical stratocumulus regions, an additional grid level is thus associated with the PBL top. In case a cloud can be formed, a new level is associated with the lifting condensation level as well. The regular grid plus the two additional levels define the new dynamical grid, which varies geographically and temporally. The physical processes are computed on this new dynamical grid, Consequently, the sharp gradients and the interaction between the different processes can be better resolved. Some results of this new parametrization will be presented. On a single column model set-up, the reconstruction method accurately finds the inversion at the PBL top for the EPIC stratocumulus case. Also, on a global scale, the occurrence of a successful reconstruction, which is restricted in typical stratocumulus regions, occurs with a high frequency. The impact of the new dynamical grid on clouds and the radiation balance will be presented in the talk. References [Bretherton and Park, 2009] Bretherton, C. S. and Park, S. (2009). A new moist turbulence parametrization in the community atmosphere model. J. Climate, 22:3422-3448. [Grenier and Bretherton, 2001] Grenier, H. and Bretherton, C. S. (2001). A moist parametrization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Wea. Rev., 129:357-377. [Lenderink and Holtslag, 2000] Lenderink, G. and Holtslag, A. M. (2000). Evaluation of the kinetic energy approach for modeling turbulent fluxes in stratocumulus. Mon. Wea. Rev., 128:244-258. [Lock, 2001] Lock, A. P. (2001). The numerical representation of entrainment in parametrizations of boundary layer turbulent mixing. Mon. Wea. Rev., 129:1148-1163. [Roeckner et al., 2003] Roeckner, E., Bäuml, G., Bonaventura, L. et al. (2003). The atmospheric general circulation model echam5, part I: Model description. Technical Report 349, Max-Planck-Institute for Meteorology, Hamburg,Germany. [Stier et al., 2005] Stier, P., Feichter, J., Kinne, S. et al. (2005). The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 5:1125-1156.
Synthetic perspective optical flow: Influence on pilot control tasks
NASA Technical Reports Server (NTRS)
Bennett, C. Thomas; Johnson, Walter W.; Perrone, John A.; Phatak, Anil V.
1989-01-01
One approach used to better understand the impact of visual flow on control tasks has been to use synthetic perspective flow patterns. Such patterns are the result of apparent motion across a grid or random dot display. Unfortunately, the optical flow so generated is based on a subset of the flow information that exists in the real world. The danger is that the resulting optical motions may not generate the visual flow patterns useful for actual flight control. Researchers conducted a series of studies directed at understanding the characteristics of synthetic perspective flow that support various pilot tasks. In the first of these, they examined the control of altitude over various perspective grid textures (Johnson et al., 1987). Another set of studies was directed at studying the head tracking of targets moving in a 3-D coordinate system. These studies, parametric in nature, utilized both impoverished and complex virtual worlds represented by simple perspective grids at one extreme, and computer-generated terrain at the other. These studies are part of an applied visual research program directed at understanding the design principles required for the development of instruments displaying spatial orientation information. The experiments also highlight the need for modeling the impact of spatial displays on pilot control tasks.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Single block three-dimensional volume grids about complex aerodynamic vehicles
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, K. James
1993-01-01
This paper presents an alternate approach for the generation of volumetric grids for supersonic and hypersonic flows about complex configurations. The method uses parametric two dimensional block face grid definition within the framework of GRIDGEN2D. The incorporation of face decomposition reduces complex surfaces to simple shapes. These simple shapes are combined to obtain the final face definition. The advantages of this method include the reduction of overall grid generation time through the use of vectorized computer code, the elimination of the need to generate matching block faces, and the implementation of simplified boundary conditions. A simple axisymmetric grid is used to illustrate this method. In addition, volume grids for two complex configurations, the Langley Lifting Body (HL-20) and the Space Shuttle Orbiter, are shown.
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
NASA Astrophysics Data System (ADS)
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
Rapid Airplane Parametric Input Design(RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.
2004-01-01
An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.
Unstructured Grids for Sonic Boom Analysis and Design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Nayani, Sudheer N.
2015-01-01
An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.
Aerodynamic shape optimization of a HSCT type configuration with improved surface definition
NASA Technical Reports Server (NTRS)
Thomas, Almuttil M.; Tiwari, Surendra N.
1994-01-01
Two distinct parametrization procedures of generating free-form surfaces to represent aerospace vehicles are presented. The first procedure is the representation using spline functions such as nonuniform rational b-splines (NURBS) and the second is a novel (geometrical) parametrization using solutions to a suitably chosen partial differential equation. The main idea is to develop a surface which is more versatile and can be used in an optimization process. Unstructured volume grid is generated by an advancing front algorithm and solutions obtained using an Euler solver. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an automatic differentiator precompiler software tool. Aerodynamic shape optimization of a complete aircraft with twenty four design variables is performed. High speed civil transport aircraft (HSCT) configurations are targeted to demonstrate the process.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee
1998-01-01
TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
Geometry Modeling and Grid Generation for Design and Optimization
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
1998-01-01
Geometry modeling and grid generation (GMGG) have played and will continue to play an important role in computational aerosciences. During the past two decades, tremendous progress has occurred in GMGG; however, GMGG is still the biggest bottleneck to routine applications for complicated Computational Fluid Dynamics (CFD) and Computational Structures Mechanics (CSM) models for analysis, design, and optimization. We are still far from incorporating GMGG tools in a design and optimization environment for complicated configurations. It is still a challenging task to parameterize an existing model in today's Computer-Aided Design (CAD) systems, and the models created are not always good enough for automatic grid generation tools. Designers may believe their models are complete and accurate, but unseen imperfections (e.g., gaps, unwanted wiggles, free edges, slivers, and transition cracks) often cause problems in gridding for CSM and CFD. Despite many advances in grid generation, the process is still the most labor-intensive and time-consuming part of the computational aerosciences for analysis, design, and optimization. In an ideal design environment, a design engineer would use a parametric model to evaluate alternative designs effortlessly and optimize an existing design for a new set of design objectives and constraints. For this ideal environment to be realized, the GMGG tools must have the following characteristics: (1) be automated, (2) provide consistent geometry across all disciplines, (3) be parametric, and (4) provide sensitivity derivatives. This paper will review the status of GMGG for analysis, design, and optimization processes, and it will focus on some emerging ideas that will advance the GMGG toward the ideal design environment.
An approach to the parametric design of ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.
1988-01-01
A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.
Canard-Elevon Interactions on a Hypersonic Vehicle
2010-01-01
AIAA. †Professor, Department of Aerospace Engineering, 1320 Beal Avenue, 3024 Francois-Xavier Bagnoud Building; cesnik@umich.edu. Associate Fellow...high number of grid points on each airfoil face, the CFD squares are clustered close together and, therefore, appear to be a solid line. V . Parametric
Automatic blocking for complex three-dimensional configurations
NASA Technical Reports Server (NTRS)
Dannenhoffer, John F., III
1995-01-01
A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration.
Parametric Grid Information in the DOE Knowledge Base: Data Preparation, Storage, and Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
HIPP,JAMES R.; MOORE,SUSAN G.; MYERS,STEPHEN C.
The parametric grid capability of the Knowledge Base provides an efficient, robust way to store and access interpolatable information which is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use a new approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation (NNI). The method involves three basic steps: data preparation (DP), data storage (DS), and data access (DA). The goal of data preparation is to process a set of raw data points to produce a sufficient basis formore » accurate NNI of value and error estimates in the Data Access step. This basis includes a set of nodes and their connectedness, collectively known as a tessellation, and the corresponding values and errors that map to each node, which we call surfaces. In many cases, the raw data point distribution is not sufficiently dense to guarantee accurate error estimates from the NNI, so the original data set must be densified using a newly developed interpolation technique known as Modified Bayesian Kriging. Once appropriate kriging parameters have been determined by variogram analysis, the optimum basis for NNI is determined in a process they call mesh refinement, which involves iterative kriging, new node insertion, and Delauny triangle smoothing. The process terminates when an NNI basis has been calculated which will fir the kriged values within a specified tolerance. In the data storage step, the tessellations and surfaces are stored in the Knowledge Base, currently in a binary flatfile format but perhaps in the future in a spatially-indexed database. Finally, in the data access step, a client application makes a request for an interpolated value, which triggers a data fetch from the Knowledge Base through the libKBI interface, a walking triangle search for the containing triangle, and finally the NNI interpolation.« less
New Boundary Constraints for Elliptic Systems used in Grid Generation Problems
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.
Filter and Grid Resolution in DG-LES
NASA Astrophysics Data System (ADS)
Miao, Ling; Sammak, Shervin; Madnia, Cyrus K.; Givi, Peyman
2017-11-01
The discontinuous Galerkin (DG) methodology has proven very effective for large eddy simulation (LES) of turbulent flows. Two important parameters in DG-LES are the grid resolution (h) and the filter size (Δ). In most previous work, the filter size is usually set to be proportional to the grid spacing. In this work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to that of the filtered density function (FDF). The resulting hybrid scheme is particularly attractive because a larger portion of the resolved energy is captured as the order of spectral approximation increases. Different cases for LES of a three-dimensional temporally developing mixing layer are appraised and a systematic parametric study is conducted to investigate the effects of grid resolution, the filter width size, and the order of spectral discretization. Comparative assessments are also made via the use of high resolution direct numerical simulation (DNS) data.
Convergence Acceleration and Documentation of CFD Codes for Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Marquart, Jed E.
2005-01-01
The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the objectives listed, the following tasks were accomplished: 1) Parametric Study Of Preconditioning Parameters And Other Code Inputs; 2) Code Modifications To Reduce Runtimes; 3) Investigation Of Compiler Options To Reduce Code Runtime; and 4) Development/Enhancement of Users Manuals for Aardvark and Phantom
NASA Astrophysics Data System (ADS)
Ma, Yulong; Liu, Heping
2017-12-01
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.
NASA Technical Reports Server (NTRS)
Greathouse, James S.; Schwing, Alan M.
2015-01-01
This paper explores use of computational fluid dynamics to study the e?ect of geometric porosity on static stability and drag for NASA's Multi-Purpose Crew Vehicle main parachute. Both of these aerodynamic characteristics are of interest to in parachute design, and computational methods promise designers the ability to perform detailed parametric studies and other design iterations with a level of control previously unobtainable using ground or flight testing. The approach presented here uses a canopy structural analysis code to define the inflated parachute shapes on which structured computational grids are generated. These grids are used by the computational fluid dynamics code OVERFLOW and are modeled as rigid, impermeable bodies for this analysis. Comparisons to Apollo drop test data is shown as preliminary validation of the technique. Results include several parametric sweeps through design variables in order to better understand the trade between static stability and drag. Finally, designs that maximize static stability with a minimal loss in drag are suggested for further study in subscale ground and flight testing.
GridTool: A surface modeling and grid generation tool
NASA Technical Reports Server (NTRS)
Samareh-Abolhassani, Jamshid
1995-01-01
GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.
Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1997-01-01
A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.
Interactive algebraic grid-generation technique
NASA Technical Reports Server (NTRS)
Smith, R. E.; Wiese, M. R.
1986-01-01
An algebraic grid generation technique and use of an associated interactive computer program are described. The technique, called the two boundary technique, is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are referred to as the bottom and top, and they are defined by two ordered sets of points. Left and right side boundaries which intersect the bottom and top boundaries may also be specified by two ordered sets of points. when side boundaries are specified, linear blending functions are used to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly space computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth-cubic-spline functions is presented. The technique works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. An interactive computer program based on the technique and called TBGG (two boundary grid generation) is also described.
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
Visualizing Spatially Varying Distribution Data
NASA Technical Reports Server (NTRS)
Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique
Parametric design and gridding through relational geometry
NASA Technical Reports Server (NTRS)
Letcher, John S., Jr.; Shook, D. Michael
1995-01-01
Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.
Parametric resonance in the early Universe—a fitting analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanningmore » over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less
Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E
1997-12-30
Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.
NASA Technical Reports Server (NTRS)
Kjerstad, Kevin J.; Campbell, Bryan A.; Gile, Brenda E.; Kemmerly, Guy T.
1999-01-01
A parametric cranked delta planform study has been conducted in the Langley 14- by 22-Foot Subsonic Tunnel with the following objectives: (1) to evaluate the vortex flap design methodology for cranked delta wings, (2) to determine the influence of leading-edge sweep and the outboard wing on vortex flap effectiveness, (3) to evaluate novel flow control concepts, and (4) to validate unstructured grid Euler computer code predictions with modeled vortex and trailing-edge flaps. Two families of cranked delta planforms were investigated. One family had constant aspect ratio, while the other had a constant nondimensional semispan location of the leading-edge break. The inboard leading-edge sweep of the planforms was varied between 68 deg., 71 deg., and 74 deg., while outboard leading-edge sweep was varied between 48 deg. and 61 deg. Vortex flaps for the different planforms were designed by an analytical vortex flap design method. The results indicate that the effectiveness of the vortex flaps was only slightly influenced by the variations in the parametric planforms. The unstructured grid Euler computer code was successfully used to model the configurations with vortex flaps. The vortex trap concept was successfully demonstrated.
NASA Astrophysics Data System (ADS)
Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.
2018-02-01
The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.
NASA Astrophysics Data System (ADS)
Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.
2018-07-01
The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.
Towards a Comprehensive Computational Simulation System for Turbomachinery
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin
1994-01-01
The objective of this work is to develop algorithms associated with a comprehensive computational simulation system for turbomachinery flow fields. This development is accomplished in a modular fashion. These modules includes grid generation, visualization, network, simulation, toolbox, and flow modules. An interactive grid generation module is customized to facilitate the grid generation process associated with complicated turbomachinery configurations. With its user-friendly graphical user interface, the user may interactively manipulate the default settings to obtain a quality grid within a fraction of time that is usually required for building a grid about the same geometry with a general-purpose grid generation code. Non-Uniform Rational B-Spline formulations are utilized in the algorithm to maintain geometry fidelity while redistributing grid points on the solid surfaces. Bezier curve formulation is used to allow interactive construction of inner boundaries. It is also utilized to allow interactive point distribution. Cascade surfaces are transformed from three-dimensional surfaces of revolution into two-dimensional parametric planes for easy manipulation. Such a transformation allows these manipulated plane grids to be mapped to surfaces of revolution by any generatrix definition. A sophisticated visualization module is developed to al-low visualization for both grid and flow solution, steady or unsteady. A network module is built to allow data transferring in the heterogeneous environment. A flow module is integrated into this system, using an existing turbomachinery flow code. A simulation module is developed to combine the network, flow, and visualization module to achieve near real-time flow simulation about turbomachinery geometries. A toolbox module is developed to support the overall task. A batch version of the grid generation module is developed to allow portability and has been extended to allow dynamic grid generation for pitch changing turbomachinery configurations. Various applications with different characteristics are presented to demonstrate the success of this system.
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.
Marginally specified priors for non-parametric Bayesian estimation
Kessler, David C.; Hoff, Peter D.; Dunson, David B.
2014-01-01
Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813
Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh
NASA Technical Reports Server (NTRS)
Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.
2010-01-01
In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.
The Internet of things and Smart Grid
NASA Astrophysics Data System (ADS)
Li, Biao; Lv, Sen; Pan, Qing
2018-02-01
The Internet of things and smart grid are the frontier of information and Industry. The combination of Internet of things and smart grid will greatly enhance the ability of smart grid information and communication support. The key technologies of the Internet of things will be applied to the smart grid, and the grid operation and management information perception service centre will be built to support the commanding heights of the world’s smart grid.
Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V
2016-07-01
Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.
Coupled Ablation, Heat Conduction, Pyrolysis, Shape Change and Spallation of the Galileo Probe
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Y.-K.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
The Galileo probe enters the atmosphere of Jupiter in December 1995. This paper presents numerical methodology and detailed results of our final pre-impact calculations for the heat shield response. The calculations are performed using a highly modified version of a viscous shock layer code with massive radiation coupled with a surface thermochemical ablation and spallation model and with the transient in-depth thermal response of the charring and ablating heat shield. The flowfield is quasi-steady along the trajectory, but the heat shield thermal response is dynamic. Each surface node of the VSL grid is coupled with a one-dimensional thermal response calculation. The thermal solver includes heat conduction, pyrolysis, and grid movement owing to surface recession. Initial conditions for the heat shield temperature and density were obtained from the high altitude rarefied-flow calculations of Haas and Milos. Galileo probe surface temperature, shape, mass flux, and element flux are all determined as functions of time along the trajectory with spallation varied parametrically. The calculations also estimate the in-depth density and temperature profiles for the heat shield. All this information is required to determine the time-dependent vehicle mass and drag coefficient which are necessary inputs for the atmospheric reconstruction experiment on board the probe.
Parametric Modelling of As-Built Beam Framed Structure in Bim Environment
NASA Astrophysics Data System (ADS)
Yang, X.; Koehl, M.; Grussenmeyer, P.
2017-02-01
A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.
Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh
NASA Technical Reports Server (NTRS)
Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.
2007-01-01
A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.
Grid generation methodology and CFD simulations in sliding vane compressors and expanders
NASA Astrophysics Data System (ADS)
Bianchi, Giuseppe; Rane, Sham; Kovacevic, Ahmed; Cipollone, Roberto; Murgia, Stefano; Contaldi, Giulio
2017-08-01
The limiting factor for the employment of advanced 3D CFD tools in the analysis and design of rotary vane machines is the unavailability of methods for generation of computational grids suitable for fast and reliable numerical analysis. The paper addresses this challenge presenting the development of an analytical grid generation for vane machines that is based on the user defined nodal displacement. In particular, mesh boundaries are defined as parametric curves generated using trigonometrical modelling of the axial cross section of the machine while the distribution of computational nodes is performed using algebraic algorithms with transfinite interpolation, post orthogonalisation and smoothing. Algebraic control functions are introduced for distribution of nodes on the rotor and casing boundaries in order to achieve good grid quality in terms of cell size and expansion. In this way, the moving and deforming fluid domain of the sliding vane machine is discretized and the conservation of intrinsic quantities in ensured by maintaining the cell connectivity and structure. For validation of generated grids, a mid-size air compressor and a small-scale expander for Organic Rankine Cycle applications have been investigated in this paper. Remarks on implementation of the mesh motion algorithm, stability and robustness experienced with the ANSYS CFX solver as well as the obtained flow results are presented.
During running in place, grid cells integrate elapsed time and distance run
Kraus, Benjamin J.; Brandon, Mark P.; Robinson, Robert J.; Connerney, Michael A.; Hasselmo, Michael E.; Eichenbaum, Howard
2015-01-01
Summary The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience. PMID:26539893
The State of NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.
Rapid Airplane Parametric Input Design (RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1995-01-01
RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.
Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services
Sioshansi, Ramteen; Denholm, Paul
2009-01-22
Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. Here, we find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. Bymore » changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO x emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO 2, SO 2, and NO x emissions can be reduced even further.« less
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...
2016-03-09
We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less
Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
Sioshansi, Ramteen; Denholm, Paul
2009-02-15
Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.
A new Grid Product of Tropical Cyclone Precipitation (TCP) for North America from 1930 to 2013
NASA Astrophysics Data System (ADS)
Zhu, L.
2015-12-01
We first developed a new method that collects daily TCP by using historical storm tracks and precipitation observation based on daily rain gauges in both U.S. and Mexico and calibrated it with satellite precipitation observation. We used a parametrized wind field to correct the possible under-estimations of precipitation in rain gauges. Grid interpolation parameters were optimized by testing different historical rain gauge densities and comparing our grid estimation of TCP and the observation from TRMM Multi-satellite Precipitation Analysis (3B42) by for the data available period from 1998 to 2013. The calibrated method was then used for the whole 94 years of TCP estimation. The preliminary result shows that the frequency of TCP events does not have significant change but the TCP intensity has significant increasing trends, especially in certain locations in North Carolina and Yucatan Peninsula in Mexico. This new long term TCP climatology can potentially assist model calibration and disaster prevention/mitigation.
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
Grid Resolution Effects on LES of a Piloted Methane-Air Flame
2009-05-20
respectively. In the LES momen- tum equation , Eq.(3), the Smagorinsky model is used to obtain the deviatoric part of the unclosed SGS stress τi j... accurately predicted from integra- tion of their LES evolution equations ; and (ii), the flamelet parametrization should adequately approximate the... effect of the complex small-scale turbulence/chemistry interactions is modeled in an affordable way by a combustion model. A question of how a particular
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
Linking the Weather Generator with Regional Climate Model
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan
2013-04-01
One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
An Extensible Information Grid for Risk Management
NASA Technical Reports Server (NTRS)
Maluf, David A.; Bell, David G.
2003-01-01
This paper describes recent work on developing an extensible information grid for risk management at NASA - a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management - a closed-loop iterative process for explicit risk management, program/project management - a proactive process that includes risk management, and mishap management - a feedback loop for learning from historical risks that escaped other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, schemaless mapping of XML, and secure server-mediated communication using standard protocols.
ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.
Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles
2018-04-19
Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection, active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition, the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.
NASA Astrophysics Data System (ADS)
Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.
2018-01-01
Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.
Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch
2016-07-01
We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less
Importance of Grid Center Arrangement
NASA Astrophysics Data System (ADS)
Pasaogullari, O.; Usul, N.
2012-12-01
In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs
Gravitational wave production from preheating: parameter dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es
Parametric resonance is among the most efficient phenomena generating gravitational waves (GWs) in the early Universe. The dynamics of parametric resonance, and hence of the GWs, depend exclusively on the resonance parameter q . The latter is determined by the properties of each scenario: the initial amplitude and potential curvature of the oscillating field, and its coupling to other species. Previous works have only studied the GW production for fixed value(s) of q . We present an analytical derivation of the GW amplitude dependence on q , valid for any scenario, which we confront against numerical results. By running latticemore » simulations in an expanding grid, we study for a wide range of q values, the production of GWs in post-inflationary preheating scenarios driven by parametric resonance. We present simple fits for the final amplitude and position of the local maxima in the GW spectrum. Our parametrization allows to predict the location and amplitude of the GW background today, for an arbitrary q . The GW signal can be rather large, as h {sup 2Ω}{sub GW}( f {sub p} ) ∼< 10{sup −11}, but it is always peaked at high frequencies f {sub p} ∼> 10{sup 7} Hz. We also discuss the case of spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less
Li, Yi-Fan [Canadian Global Emissions Inventory Centre, Downsview, Ontario (Canada); Brenkert, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1996-01-01
This data base contains gridded (one degree by one degree) information on the world-wide distribution of the population for 1990 and country-specific information on the percentage of the country's population present in each grid cell (Li, 1996a). Secondly, the data base contains the percentage of a country's total area in a grid cell and the country's percentage of the grid cell that is terrestrial (Li, 1996b). Li (1996b) also developed an indicator signifying how many countries are represented in a grid cell and if a grid cell is part of the sea; this indicator is only relevant for the land, countries, and sea-partitioning information of the grid cell. Thirdly, the data base includes the latitude and longitude coordinates of each grid cell; a grid code number, which is a translation of the latitude/longitude value and is used in the Global Emission Inventory Activity (GEIA) data bases; the country or region's name; and the United Nations three-digit country code that represents that name.
Smart Grid Information Clearinghouse (SGIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Saifur
Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Chawner, John R.
1992-01-01
GRIDGEN is a government domain software package for interactive generation of multiple block grids around general configurations. Though it has been freely available since 1989, it has not been widely embraced by the internal flow community due to a misconception that it was designed for external flow use only. In reality GRIDGEN has always worked for internal flow applications, and GRIDGEN ongoing enhancements are increasing the quality of and efficiency with which grids for external and internal flow problems may be constructed. The software consists of four codes used to perform the four steps of the grid generation process. GRIDBLOCK is first used to decompose the flow domain into a collection of component blocks and then to establish interblock connections and flow solver boundary conditions. GRIDGEN2D is then used to generate surface grids on the outer shell of each component block. GRIDGEN3D generates grid points on the interior of each block, and finally GRIDVUE3D is used to inspect the resulting multiple block grid. Three of these codes (GRIDBLOCK, GRIDGEN2D, and GRIDVUE3D) are highly interactive and graphical in nature, and currently run on Silicon Graphics, Inc., and IBM RS/6000 workstations. The lone batch code (GRIDGEN3D) may be run on any of several Unix based platforms. Surface grid generation in GRIDGEN2D is being improved with the addition of higher order surface definitions (NURBS and parametric surfaces input in IGES format and bicubic surfaces input in PATRAN Neutral File format) and double precision mathematics. In addition, two types of automation have been added to GRIDGEN2D that reduce the learning curve slope for new users and eliminate work for experienced users. Volume grid generation using GRIDGEN3D has been improved via the addition of an advanced hybrid control function formulation that provides both orthogonality and clustering control at the block faces and clustering control on the block interior.
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
The evaluation and development of the Met Office Unified Model using surface and space borne radar.
NASA Astrophysics Data System (ADS)
Petch, J.
2012-12-01
The Met Office Unified Model is used for the prediction of weather and climate on time scales of hours through to centuries. Therefore, the parametrizations in that model need to work on weather and climate timescale, and with grid-lengths from hundres of meters through to several hundred kilometres. Focusing on the development of the cloud and radiation schemes I will discuss how we are using ground-based remote-sensing observations from Chilbolton (England) and a combination of Cloudsat and Calipso data to evaluate and improve the performance of the model. I will show how the prediction of the clouds has improved since the AR5 version of the model and how we have developed an improved cloud generator to rebresent the sub-grid variability of clouds for radiative transfer.
Nonparametric Bayesian models for a spatial covariance.
Reich, Brian J; Fuentes, Montserrat
2012-01-01
A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.
Efficient Simulation of Tropical Cyclone Pathways with Stochastic Perturbations
NASA Astrophysics Data System (ADS)
Webber, R.; Plotkin, D. A.; Abbot, D. S.; Weare, J.
2017-12-01
Global Climate Models (GCMs) are known to statistically underpredict intense tropical cyclones (TCs) because they fail to capture the rapid intensification and high wind speeds characteristic of the most destructive TCs. Stochastic parametrization schemes have the potential to improve the accuracy of GCMs. However, current analysis of these schemes through direct sampling is limited by the computational expense of simulating a rare weather event at fine spatial gridding. The present work introduces a stochastically perturbed parametrization tendency (SPPT) scheme to increase simulated intensity of TCs. We adapt the Weighted Ensemble algorithm to simulate the distribution of TCs at a fraction of the computational effort required in direct sampling. We illustrate the efficiency of the SPPT scheme by comparing simulations at different spatial resolutions and stochastic parameter regimes. Stochastic parametrization and rare event sampling strategies have great potential to improve TC prediction and aid understanding of tropical cyclogenesis. Since rising sea surface temperatures are postulated to increase the intensity of TCs, these strategies can also improve predictions about climate change-related weather patterns. The rare event sampling strategies used in the current work are not only a novel tool for studying TCs, but they may also be applied to sampling any range of extreme weather events.
Large deformation frictional contact analysis with immersed boundary method
NASA Astrophysics Data System (ADS)
Navarro-Jiménez, José Manuel; Tur, Manuel; Albelda, José; Ródenas, Juan José
2018-01-01
This paper proposes a method of solving 3D large deformation frictional contact problems with the Cartesian Grid Finite Element Method. A stabilized augmented Lagrangian contact formulation is developed using a smooth stress field as stabilizing term, calculated by Zienckiewicz and Zhu Superconvergent Patch Recovery. The parametric definition of the CAD surfaces (usually NURBS) is considered in the definition of the contact kinematics in order to obtain an enhanced measure of the contact gap. The numerical examples show the performance of the method.
Time distribution of heavy rainfall events in south west of Iran
NASA Astrophysics Data System (ADS)
Ghassabi, Zahra; kamali, G. Ali; Meshkatee, Amir-Hussain; Hajam, Sohrab; Javaheri, Nasrolah
2016-07-01
Accurate knowledge of rainfall time distribution is a fundamental issue in many Meteorological-Hydrological studies such as using the information of the surface runoff in the design of the hydraulic structures, flood control and risk management, and river engineering studies. Since the main largest dams of Iran are in the south-west of the country (i.e. South Zagros), this research investigates the temporal rainfall distribution based on an analytical numerical method to increase the accuracy of hydrological studies in Iran. The United States Soil Conservation Service (SCS) estimated the temporal rainfall distribution in various forms. Hydrology studies usually utilize the same distribution functions in other areas of the world including Iran due to the lack of sufficient observation data. However, we first used Weather Research Forecasting (WRF) model to achieve the simulated rainfall results of the selected storms on south west of Iran in this research. Then, a three-parametric Logistic function was fitted to the rainfall data in order to compute the temporal rainfall distribution. The domain of the WRF model is 30.5N-34N and 47.5E-52.5E with a resolution of 0.08 degree in latitude and longitude. We selected 35 heavy storms based on the observed rainfall data set to simulate with the WRF Model. Storm events were scrutinized independently from each other and the best analytical three-parametric logistic function was fitted for each grid point. The results show that the value of the coefficient a of the logistic function, which indicates rainfall intensity, varies from the minimum of 0.14 to the maximum of 0.7. Furthermore, the values of the coefficient B of the logistic function, which indicates rain delay of grid points from start time of rainfall, vary from 1.6 in south-west and east to more than 8 in north and central parts of the studied area. In addition, values of rainfall intensities are lower in south west of IRAN than those of observed or proposed by the SCS values in the US.
A Data Miner for the Information Power Grid
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.; Parks, John W. (Technical Monitor)
2002-01-01
Grid Miner (GM) is one of the early data mining applications developed by NASA to help users obtain information from the Information Power Grid (IPG). Topics cover include: benefits of data mining, potential use of grids in data mining activities, an overview of the GM application, and a brief review of GM architecture and implementation issues. The current status of the GM system is also discussed.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2012-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2013-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.
HappyFace as a generic monitoring tool for HEP experiments
NASA Astrophysics Data System (ADS)
Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Quadt, Arnulf; Rzehorz, Gerhard
2015-12-01
The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the information and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are always under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the different HEP grid systems. To cope with this issue, we use a reliable HEP software repository, the CernVM File System. We propose a new implementation and an architecture of HappyFace, the so-called grid-enabled HappyFace. It allows its basic framework to connect directly to the grid user applications and the grid collective services, without involving the monitoring resources in the HEP grid systems. This approach gives HappyFace several advantages: Portability, to provide an independent and generic monitoring system among the HEP grid systems. Eunctionality, to allow users to perform various diagnostic tools in the individual HEP grid systems and grid sites. Elexibility, to make HappyFace beneficial and open for the various distributed grid computing environments. Different grid-enabled modules, to connect to the Ganga job monitoring system and to check the performance of grid transfers among the grid sites, have been implemented. The new HappyFace system has been successfully integrated and now it displays the information and the status of both the monitoring resources and the direct access to the grid user applications and the grid collective services.
Dipolar eddies in a decaying stratified turbulent flow
NASA Astrophysics Data System (ADS)
Voropayev, S. I.; Fernando, H. J. S.; Morrison, R.
2008-02-01
Laboratory experiments on the evolution of dipolar (momentum) eddies in a stratified fluid in the presence of random background motions are described. A turbulent jet puff was used to generate the momentum eddies, and a decaying field of ambient random vortical motions was generated by a towed grid. Data on vorticity/velocity fields of momentum eddies, those of background motions, and their interactions were collected in the presence and absence of the other, and the main characteristics thereof were parametrized. Similarity arguments predict that dipolar eddies in stratified fluids may preserve their identity in decaying grid-generated stratified turbulence, which was verified experimentally. Possible applications of the results include mushroomlike currents and other naturally/artificially generated large dipolar eddies in strongly stratified layers of the ocean, the longevity of which is expected to be determined by the characteristics of the eddies and random background motions.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
High-throughput cardiac science on the Grid.
Abramson, David; Bernabeu, Miguel O; Bethwaite, Blair; Burrage, Kevin; Corrias, Alberto; Enticott, Colin; Garic, Slavisa; Gavaghan, David; Peachey, Tom; Pitt-Francis, J; Pueyo, E; Rodriguez, Blanca; Sher, Anna; Tan, Jefferson
2010-08-28
Cardiac electrophysiology is a mature discipline, with the first model of a cardiac cell action potential having been developed in 1962. Current models range from single ion channels, through very complex models of individual cardiac cells, to geometrically and anatomically detailed models of the electrical activity in whole ventricles. A critical issue for model developers is how to choose parameters that allow the model to faithfully reproduce observed physiological effects without over-fitting. In this paper, we discuss the use of a parametric modelling toolkit, called Nimrod, that makes it possible both to explore model behaviour as parameters are changed and also to tune parameters by optimizing model output. Importantly, Nimrod leverages computers on the Grid, accelerating experiments by using available high-performance platforms. We illustrate the use of Nimrod with two case studies, one at the cardiac tissue level and one at the cellular level.
Does topological information matter for power grid vulnerability?
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
Does topological information matter for power grid vulnerability?
NASA Astrophysics Data System (ADS)
Ouyang, Min; Yang, Kun
2014-12-01
Power grids, which are playing an important role in supporting the economy of a region as well as the life of its citizens, could be attacked by terrorists or enemies to damage the region. Depending on different levels of power grid information collected by the terrorists, their attack strategies might be different. This paper groups power grid information into four levels: no information, purely topological information (PTI), topological information with generator and load nodes (GLNI), and full information (including component physical properties and flow parameters information), and then identifies possible attack strategies for each information level. Analyzing and comparing power grid vulnerability under these attack strategies from both terrorists' and utility companies' point of view give rise to an approach to quantify the relative values of these three types of information, including PTI, GLNI, and component parameter information (CPI). This approach can provide information regarding the extent to which topological information matters for power system vulnerability decisions. Taking several test systems as examples, results show that for small attacks with p ≤ 0.1, CPI matters the most; when taking attack cost into consideration and assuming that the terrorists take the optimum cost-efficient attack intensity, then CPI has the largest cost-based information value.
Characteristics of stereo reproduction with parametric loudspeakers
NASA Astrophysics Data System (ADS)
Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa
2012-05-01
A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.
Research and design of smart grid monitoring control via terminal based on iOS system
NASA Astrophysics Data System (ADS)
Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji
2017-06-01
Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.
Exploring Hamiltonian dielectric solvent molecular dynamics
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Tavan, Paul; Mathias, Gerald
2014-09-01
Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.
Planar Inlet Design and Analysis Process (PINDAP)
NASA Technical Reports Server (NTRS)
Slater, John W.; Gruber, Christopher R.
2005-01-01
The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.
Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.
2016-01-01
Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
An integral conservative gridding--algorithm using Hermitian curve interpolation.
Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K
2008-11-07
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Evaluating the Information Power Grid using the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
VanderWijngaartm Rob F.; Frumkin, Michael A.
2004-01-01
The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.
Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change
Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.
2015-01-01
Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956
Impeller tandem blade study with grid embedding for local grid refinement
NASA Technical Reports Server (NTRS)
Bache, George
1992-01-01
Flow non-uniformity at the discharge of high power density impellers can result in significant unsteady interactions between impeller blades and downstream diffuser vanes. These interactions result in degradation of both performance and pump reliability. The MSFC Pump Technology Team has recognized the importance of resolving this problem and has thus initiated the development and testing of a high head coefficient impeller. One of the primary goals of this program is to improve impeller performance and discharge flow uniformity. The objective of the present work is complimentary. Flow uniformity and performance gains were sought through the application of a tandem blade arrangement. The approach adopted was to numerically establish flow characteristics at the impeller discharge for the baseline MSFC impeller and then parametrically evaluate tandem blade configurations. A tandem design was sought that improves both impeller performance and discharge uniformity. The Navier-Stokes solver AEROVISC was used to conduct the study. Grid embedding is used to resolve local gradients while attempting to minimize model size. Initial results indicate that significant gains in flow uniformity can be achieved through the tandem blade concept and that blade clocking rather than slot location is the primary driver for flow uniformity.
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander
2012-12-01
ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.
Military Cyberspace: From Evolution to Revolution
2012-02-08
support the GCCs and enable USCYBERCOM to accomplish its mission? 15. SUBJECT TERMS Network Operations, Global Information Grid ( GIG ), Network...DATE: 08 February 2012 WORD COUNT: 5,405 PAGES: 30 KEY TERMS: Network Operations, Global Information Grid ( GIG ), Network Architecture...defense of the DOD global information grid ( GIG ). The DOD must pursue an enterprise approach to network management in the cyberspace domain to
A Unified Framework for Periodic, On-Demand, and User-Specified Software Information
NASA Technical Reports Server (NTRS)
Kolano, Paul Z.
2004-01-01
Although grid computing can increase the number of resources available to a user; not all resources on the grid may have a software environment suitable for running a given application. To provide users with the necessary assistance for selecting resources with compatible software environments and/or for automatically establishing such environments, it is necessary to have an accurate source of information about the software installed across the grid. This paper presents a new OGSI-compliant software information service that has been implemented as part of NASA's Information Power Grid project. This service is built on top of a general framework for reconciling information from periodic, on-demand, and user-specified sources. Information is retrieved using standard XPath queries over a single unified namespace independent of the information's source. Two consumers of the provided software information, the IPG Resource Broker and the IPG Neutralization Service, are briefly described.
Bim Automation: Advanced Modeling Generative Process for Complex Structures
NASA Astrophysics Data System (ADS)
Banfi, F.; Fai, S.; Brumana, R.
2017-08-01
The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.
Earth Science community support in the EGI-Inspire Project
NASA Astrophysics Data System (ADS)
Schwichtenberg, H.
2012-04-01
The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to be accessed from EGI resources to enable future research activities by this HUC. The international climate community for IPCC has created the Earth System Grid (ESG) to store and share climate data. There is a need to interface ESG with EGI for climate studies - parametric, regional and impact aspects. Critical points concern the interoperability of security mechanism between both "organisations", data protection policy, data transfer, data storage and data caching. Presenter: Horst Schwichtenberg Co-Authors: Monique Petitdidier (IPSL), Andre Gemünd (SCAI), Wim Som de Cerff (KNMI), Michael Schnell (SCAI)
A Modular Approach to Model Oscillating Control Surfaces Using Navier Stokes Equations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Lee, Henry
2014-01-01
The use of active controls for rotorcraft is becoming more important for modern aerospace configurations. Efforts to reduce the vibrations of helicopter blades with use of active-controls are in progress. Modeling oscillating control surfaces using the linear aerodynamics theory is well established. However, higher-fidelity methods are needed to account for nonlinear effects, such as those that occur in transonic flow. The aeroelastic responses of a wing with an oscillating control surface, computed using the transonic small perturbation (TSP) theory, have been shown to cause important transonic flow effects such as a reversal of control surface effectiveness that occurs as the shock wave crosses the hinge line. In order to account for flow complexities such as blade-vortex interactions of rotor blades higher-fidelity methods based on the Navier-Stokes equations are used. Reference 6 presents a procedure that uses the Navier-Stokes equations with moving-sheared grids and demonstrates up to 8 degrees of control-surface amplitude, using a single grid. Later, this procedure was extended to accommodate larger amplitudes, based on sliding grid zones. The sheared grid method implemented in EulerlNavier-Stokes-based aeroelastic code ENS AERO was successfully applied to active control design by industry. Recently there are several papers that present results for oscillating control surface using Reynolds Averaged Navier-Stokes (RANS) equations. References 9 and 10 report 2-D cases by filling gaps with overset grids. Reference 9 compares integrated forces with the experiment at low oscillating frequencies whereas Ref. 10 reports parametric studies but with no validation. Reference II reports results for a 3D case by modeling the gap region with a deformed grid and compares force results with the experiment only at the mid-span of flap. In Ref. II grid is deformed to match the control surface deflections at the section where the measurements are made. However, there is no indication in Ref. II that the gaps are explicitly modeled as in Ref. 6. Computations using overset grids are reported in Ref. 12 for a case by adding moving control surface to an existing blade but with no validation either with an experiment or another computation.
Development of an information platform for new grid users in the biomedical field.
Skrowny, Daniela; Dickmann, Frank; Löhnhardt, Benjamin; Knoch, Tobias A; Sax, Ulrich
2010-01-01
Bringing new users into grids is a top priority for all grid initiatives and one of the most challenging tasks. Especially in life sciences it is essential to have a certain amount of users to establish a critical mass for a sustainable grid and give feedback back to the technological middleware layer. Based on the presumable lack of grid IT knowledge it is notably more arduous to satisfy user demands although here the requirements are especially demanding. Therefore, the development of an information- and learning platform could support the efforts of grid experts to guide new users. By providing a platform about grid technology and their feasibilities for users of the community of biomedicine potential, users could be supported using the high potential of their discipline.
Institutional Support | Grid Modernization | NREL
the challenges posed by grid modernization. Photo of two people standing in front of a display showing results from a grid study. The demand for objective technical assistance and information on grid related to grid modernization and increasing deployment of distributed energy and renewable resources. As
Distribution Grid Integration Unit Cost Database | Solar Research | NREL
Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional
The power grid monitoring promotion of Liaoning December 14th accident
NASA Astrophysics Data System (ADS)
Zhou, Zhi; Gao, Ziji; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Wang, Mingkai; Qu, Zhi; Sun, Chenguang
2018-02-01
This paper introduces the main responsibilities of power grid monitoring and the accident of Liaoning Power Grid 500kV Xujia transformer substation at December 14th, 2016. This paper analyzes the problems exposed in this accident from the aspects of abnormal information judgment, fault information collection, auxiliary video monitoring, online monitoring of substation equipment, puts forward the corresponding improvement methods and summarizes the methods of improving the professional level of power grid equipment monitoring.
Planning for robust reserve networks using uncertainty analysis
Moilanen, A.; Runge, M.C.; Elith, Jane; Tyre, A.; Carmel, Y.; Fegraus, E.; Wintle, B.A.; Burgman, M.; Ben-Haim, Y.
2006-01-01
Planning land-use for biodiversity conservation frequently involves computer-assisted reserve selection algorithms. Typically such algorithms operate on matrices of species presence?absence in sites, or on species-specific distributions of model predicted probabilities of occurrence in grid cells. There are practically always errors in input data?erroneous species presence?absence data, structural and parametric uncertainty in predictive habitat models, and lack of correspondence between temporal presence and long-run persistence. Despite these uncertainties, typical reserve selection methods proceed as if there is no uncertainty in the data or models. Having two conservation options of apparently equal biological value, one would prefer the option whose value is relatively insensitive to errors in planning inputs. In this work we show how uncertainty analysis for reserve planning can be implemented within a framework of information-gap decision theory, generating reserve designs that are robust to uncertainty. Consideration of uncertainty involves modifications to the typical objective functions used in reserve selection. Search for robust-optimal reserve structures can still be implemented via typical reserve selection optimization techniques, including stepwise heuristics, integer-programming and stochastic global search.
Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)
NASA Astrophysics Data System (ADS)
Hsu, Charles; Szu, Harold
2014-05-01
Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.
Grid Enabled Geospatial Catalogue Web Service
NASA Technical Reports Server (NTRS)
Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush
2004-01-01
Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.
Grids for Dummies: Featuring Earth Science Data Mining Application
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2002-01-01
This viewgraph presentation discusses the concept and advantages of linking computers together into data grids, an emerging technology for managing information across institutions, and potential users of data grids. The logistics of access to a grid, including the use of the World Wide Web to access grids, and security concerns are also discussed. The potential usefulness of data grids to the earth science community is also discussed, as well as the Global Grid Forum, and other efforts to establish standards for data grids.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a pressure based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution and turbulence model are two primary factors that influence the accuracy of the base flowfield prediction.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Wang, Guobao; Qi, Jinyi
2010-03-07
Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.
NASA Astrophysics Data System (ADS)
Dore, C.; Murphy, M.
2013-02-01
This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.
NASA Astrophysics Data System (ADS)
Gentry, D.; Amador, E. S.; Cable, M. L.; Cantrell, T.; Chaudry, N.; Duca, Z. A.; Jacobsen, M. B.; Kirby, J.; McCaig, H. C.; Murukesan, G.; Rader, E.; Cullen, T.; Rennie, V.; Schwieterman, E. W.; Stevens, A. H.; Sutton, S. A.; Tan, G.; Yin, C.; Cullen, D.; Geppert, W.; Stockton, A. M.
2017-12-01
Studies in planetary analogue sites correlating remote imagery, mineralogy, and biomarker assay results help predict biomarker distribution and preservation. The FELDSPAR team has conducted five expeditions (2012-2017) to Icelandic Mars analogue sites with an increasingly refined battery of physicochemical measurements and biomarker assays. Two additional expeditions are planned; here we report intermediate results.The biomarker assays performed represent a diversity of potential biomarker types: ATP, cell counts, qPCR with domain-level primers, and DNA content. Mineralogical, chemical, and physical measurements and observations include temperature, pH, moisture content, and Raman, near-IR reflectance, and X-ray fluorescence spectra. Sites are geologically recent basaltic lava flows (Fimmvörðuháls, Eldfell, Holuhraun) and barren basaltic sand plains (Mælifellssandur, Dyngjusandur). All samples were 'homogeneous' at the 1 m to 1 km scale in apparent color, morphology, and grain size.[1]Sample locations were arranged in hierarchically nested grids at 10 cm, 1 m, 10 m, 100 m, and >1 km scales. Several measures of spatial distribution and variability were derived: unbiased sample variance, F- and pairwise t-tests with Bonferroni correction, and the non-parametric H- and u-tests. All assay results, including preliminary mineralogical information in the form of notable spectral bands, were then tested for correlation using the non-parametric Spearman's rank test.[2] For Fimmvörðuháls, four years of data were also examined for temporal trends.Biomarker quantification (other than cell count) was generally well correlated, although all assays showed notable variability even at the smallest examined spatial scale. Pairwise comparisons proved to be the most intuitive measure of variability; non-parametric characterization indicated trends at the >100 m scale, but required more replicates than were feasible at smaller scales. Future work will integrate additional mineralogical measurements and more specialized modeling. [1] Amador, E. S. et al. (2015) Planet. Space Sci., 106 1-10. [2] Gentry, D. M. et al. (2017) Astrobio., in press.
Spaceflight Operations Services Grid (SOSG) Project
NASA Technical Reports Server (NTRS)
Bradford, Robert; Lisotta, Anthony
2004-01-01
The motivation, goals, and objectives of the Space Operations Services Grid Project (SOSG) are covered in this viewgraph presentation. The goals and objectives of SOSG include: 1) Developing a grid-enabled prototype providing Space-based ground operations end user services through a collaborative effort between NASA, academia, and industry to assess the technical and cost feasibility of implementation of Grid technologies in the Space Operations arena; 2) Provide to space operations organizations and processes, through a single secure portal(s), access to all the information technology (Grid and Web based) services necessary for program/project development, operations and the ultimate creation of new processes, information and knowledge.
Medvigy, David; Moorcroft, Paul R
2012-01-19
Terrestrial biosphere models are important tools for diagnosing both the current state of the terrestrial carbon cycle and forecasting terrestrial ecosystem responses to global change. While there are a number of ongoing assessments of the short-term predictive capabilities of terrestrial biosphere models using flux-tower measurements, to date there have been relatively few assessments of their ability to predict longer term, decadal-scale biomass dynamics. Here, we present the results of a regional-scale evaluation of the Ecosystem Demography version 2 (ED2)-structured terrestrial biosphere model, evaluating the model's predictions against forest inventory measurements for the northeast USA and Quebec from 1985 to 1995. Simulations were conducted using a default parametrization, which used parameter values from the literature, and a constrained model parametrization, which had been developed by constraining the model's predictions against 2 years of measurements from a single site, Harvard Forest (42.5° N, 72.1° W). The analysis shows that the constrained model parametrization offered marked improvements over the default model formulation, capturing large-scale variation in patterns of biomass dynamics despite marked differences in climate forcing, land-use history and species-composition across the region. These results imply that data-constrained parametrizations of structured biosphere models such as ED2 can be successfully used for regional-scale ecosystem prediction and forecasting. We also assess the model's ability to capture sub-grid scale heterogeneity in the dynamics of biomass growth and mortality of different sizes and types of trees, and then discuss the implications of these analyses for further reducing the remaining biases in the model's predictions.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
78 FR 22846 - Smart Grid Advisory Committee Meeting Cancellation
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Smart Grid Advisory... Commerce. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Smart Grid Advisory Committee... INFORMATION CONTACT: Mr. Cuong Nguyen, Smart Grid and Cyber-Physical Systems Program Office, National...
Ricotta, Carlo
2003-01-01
Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.
System design and implementation of digital-image processing using computational grids
NASA Astrophysics Data System (ADS)
Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping
2005-06-01
As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.
GridWise Standards Mapping Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosquet, Mia L.
''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis uponmore » which this vision must build.« less
Surfer: An Extensible Pull-Based Framework for Resource Selection and Ranking
NASA Technical Reports Server (NTRS)
Zolano, Paul Z.
2004-01-01
Grid computing aims to connect large numbers of geographically and organizationally distributed resources to increase computational power; resource utilization, and resource accessibility. In order to effectively utilize grids, users need to be connected to the best available resources at any given time. As grids are in constant flux, users cannot be expected to keep up with the configuration and status of the grid, thus they must be provided with automatic resource brokering for selecting and ranking resources meeting constraints and preferences they specify. This paper presents a new OGSI-compliant resource selection and ranking framework called Surfer that has been implemented as part of NASA's Information Power Grid (IPG) project. Surfer is highly extensible and may be integrated into any grid environment by adding information providers knowledgeable about that environment.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
NASA Astrophysics Data System (ADS)
Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.
2016-12-01
Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.
Model selection criterion in survival analysis
NASA Astrophysics Data System (ADS)
Karabey, Uǧur; Tutkun, Nihal Ata
2017-07-01
Survival analysis deals with time until occurrence of an event of interest such as death, recurrence of an illness, the failure of an equipment or divorce. There are various survival models with semi-parametric or parametric approaches used in medical, natural or social sciences. The decision on the most appropriate model for the data is an important point of the analysis. In literature Akaike information criteria or Bayesian information criteria are used to select among nested models. In this study,the behavior of these information criterion is discussed for a real data set.
NASA Astrophysics Data System (ADS)
Samsinar, Riza; Suseno, Jatmiko Endro; Widodo, Catur Edi
2018-02-01
The distribution network is the closest power grid to the customer Electric service providers such as PT. PLN. The dispatching center of power grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. Specific methods for online analytics information systems resulting from data warehouse processing with OLAP are chart and query reporting. The information in the form of chart reporting consists of the load distribution chart based on the repetition of time, distribution chart on the area, the substation region chart and the electric load usage chart. The results of the OLAP process show the development of electric load distribution, as well as the analysis of information on the load of electric power consumption and become an alternative in presenting information related to peak load.
Towards a Global Service Registry for the World-Wide LHC Computing Grid
NASA Astrophysics Data System (ADS)
Field, Laurence; Alandes Pradillo, Maria; Di Girolamo, Alessandro
2014-06-01
The World-Wide LHC Computing Grid encompasses a set of heterogeneous information systems; from central portals such as the Open Science Grid's Information Management System and the Grid Operations Centre Database, to the WLCG information system, where the information sources are the Grid services themselves. Providing a consistent view of the information, which involves synchronising all these informations systems, is a challenging activity that has lead the LHC virtual organisations to create their own configuration databases. This experience, whereby each virtual organisation's configuration database interfaces with multiple information systems, has resulted in the duplication of effort, especially relating to the use of manual checks for the handling of inconsistencies. The Global Service Registry aims to address this issue by providing a centralised service that aggregates information from multiple information systems. It shows both information on registered resources (i.e. what should be there) and available resources (i.e. what is there). The main purpose is to simplify the synchronisation of the virtual organisation's own configuration databases, which are used for job submission and data management, through the provision of a single interface for obtaining all the information. By centralising the information, automated consistency and validation checks can be performed to improve the overall quality of information provided. Although internally the GLUE 2.0 information model is used for the purpose of integration, the Global Service Registry in not dependent on any particular information model for ingestion or dissemination. The intention is to allow the virtual organisation's configuration databases to be decoupled from the underlying information systems in a transparent way and hence simplify any possible future migration due to the evolution of those systems. This paper presents the Global Service Registry architecture, its advantages compared to the current situation and how it can support the evolution of information systems.
Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras
NASA Astrophysics Data System (ADS)
He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.
NASA Astrophysics Data System (ADS)
Li, Xin; Rooney, William D.; Várallyay, Csanád G.; Gahramanov, Seymur; Muldoon, Leslie L.; Goodman, James A.; Tagge, Ian J.; Selzer, Audrey H.; Pike, Martin M.; Neuwelt, Edward A.; Springer, Charles S.
2010-10-01
The accurate mapping of the tumor blood volume (TBV) fraction ( vb) is a highly desired imaging biometric goal. It is commonly thought that achieving this is difficult, if not impossible, when small molecule contrast reagents (CRs) are used for the T1-weighted (Dynamic-Contrast-Enhanced) DCE-MRI technique. This is because angiogenic malignant tumor vessels allow facile CR extravasation. Here, a three-site equilibrium water exchange model is applied to DCE-MRI data from the cerebrally-implanted rat brain U87 glioma, a tumor exhibiting rapid CR extravasation. Analyses of segments of the (and the entire) DCE data time-course with this "shutter-speed" pharmacokinetic model, which admits finite water exchange kinetics, allow TBV estimation from the first-pass segment. Pairwise parameter determinances were tested with grid searches of 2D parametric error surfaces. Tumor blood volume ( vb), as well as ve (the extracellular, extravascular space volume fraction), and Ktrans (a CR extravasation rate measure) parametric maps are presented. The role of the Patlak Plot in DCE-MRI is also considered.
DNA binding sites characterization by means of Rényi entropy measures on nucleotide transitions.
Perera, Alexandre; Vallverdu, Montserrat; Claria, Francesc; Soria, José Manuel; Caminal, Pere
2006-01-01
In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measure such as Renyi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency based Renyi measures. Results are reported in this manuscript comparing transition frequencies (i.e. dinucelotides) and base frequencies for Shannon and parametric Renyi for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that, for the evaluated datasets, the information provided by both approaches is not redundant, as they evolve differently under increasing Renyi orders.
Uniformity on the grid via a configuration framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Igor V Terekhov et al.
2003-03-11
As Grid permeates modern computing, Grid solutions continue to emerge and take shape. The actual Grid development projects continue to provide higher-level services that evolve in functionality and operate with application-level concepts which are often specific to the virtual organizations that use them. Physically, however, grids are comprised of sites whose resources are diverse and seldom project readily onto a grid's set of concepts. In practice, this also creates problems for site administrators who actually instantiate grid services. In this paper, we present a flexible, uniform framework to configure a grid site and its facilities, and otherwise describe the resourcesmore » and services it offers. We start from a site configuration and instantiate services for resource advertisement, monitoring and data handling; we also apply our framework to hosting environment creation. We use our ideas in the Information Management part of the SAM-Grid project, a grid system which will deliver petabyte-scale data to the hundreds of users. Our users are High Energy Physics experimenters who are scattered worldwide across dozens of institutions and always use facilities that are shared with other experiments as well as other grids. Our implementation represents information in the XML format and includes tools written in XQuery and XSLT.« less
Advances in Chimera Grid Tools for Multi-Body Dynamics Simulations and Script Creation
NASA Technical Reports Server (NTRS)
Chan, William M.
2004-01-01
This viewgraph presentation contains information about (1) Framework for multi-body dynamics - Geometry Manipulation Protocol (GMP), (2) Simulation procedure using Chimera Grid Tools (CGT) and OVERFLOW-2 (3) Further recent developments in Chimera Grid Tools OVERGRID, Grid modules, Script library and (4) Future work.
Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
NASA Astrophysics Data System (ADS)
Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano
Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.
Emission & Generation Resource Integrated Database (eGRID)
The Emissions & Generation Resource Integrated Database (eGRID) is an integrated source of data on environmental characteristics of electric power generation. Twelve federal databases are represented by eGRID, which provides air emission and resource mix information for thousands of power plants and generating companies. eGRID allows direct comparison of the environmental attributes of electricity from different plants, companies, States, or regions of the power grid.
Grid Data and Tools | Grid Modernization | NREL
technologies and strategies, including renewable resource data sets and models of the electric power system . Renewable Resource Data A library of resource information to inform the design of efficient, integrated
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration
2014-06-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
NASA Astrophysics Data System (ADS)
Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing
2017-02-01
As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.
Direct Estimation of Kinetic Parametric Images for Dynamic PET
Wang, Guobao; Qi, Jinyi
2013-01-01
Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500
MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data
NASA Astrophysics Data System (ADS)
Key, Kerry
2016-10-01
This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data balancing normalization weights for the joint inversion of two or more data sets encourages the inversion to fit each data type equally well. A synthetic joint inversion of marine CSEM and MT data illustrates the algorithm's performance and parallel scaling on up to 480 processing cores. CSEM inversion of data from the Middle America Trench offshore Nicaragua demonstrates a real world application. The source code and MATLAB interface tools are freely available at http://mare2dem.ucsd.edu.
A Simple XML Producer-Consumer Protocol
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
There are many different projects from government, academia, and industry that provide services for delivering events in distributed environments. The problem with these event services is that they are not general enough to support all uses and they speak different protocols so that they cannot interoperate. We require such interoperability when we, for example, wish to analyze the performance of an application in a distributed environment. Such an analysis might require performance information from the application, computer systems, networks, and scientific instruments. In this work we propose and evaluate a standard XML-based protocol for the transmission of events in distributed systems. One recent trend in government and academic research is the development and deployment of computational grids. Computational grids are large-scale distributed systems that typically consist of high-performance compute, storage, and networking resources. Examples of such computational grids are the DOE Science Grid, the NASA Information Power Grid (IPG), and the NSF Partnerships for Advanced Computing Infrastructure (PACIs). The major effort to deploy these grids is in the area of developing the software services to allow users to execute applications on these large and diverse sets of resources. These services include security, execution of remote applications, managing remote data, access to information about resources and services, and so on. There are several toolkits for providing these services such as Globus, Legion, and Condor. As part of these efforts to develop computational grids, the Global Grid Forum is working to standardize the protocols and APIs used by various grid services. This standardization will allow interoperability between the client and server software of the toolkits that are providing the grid services. The goal of the Performance Working Group of the Grid Forum is to standardize protocols and representations related to the storage and distribution of performance data. These standard protocols and representations must support tasks such as profiling parallel applications, monitoring the status of computers and networks, and monitoring the performance of services provided by a computational grid. This paper describes a proposed protocol and data representation for the exchange of events in a distributed system. The protocol exchanges messages formatted in XML and it can be layered atop any low-level communication protocol such as TCP or UDP Further, we describe Java and C++ implementations of this protocol and discuss their performance. The next section will provide some further background information. Section 3 describes the main communication patterns of our protocol. Section 4 describes how we represent events and related information using XML. Section 5 describes our protocol and Section 6 discusses the performance of two implementations of the protocol. Finally, an appendix provides the XML Schema definition of our protocol and event information.
Autonomous satellite navigation with the Global Positioning System
NASA Technical Reports Server (NTRS)
Fuchs, A. J.; Wooden, W. H., II; Long, A. C.
1977-01-01
This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
3D tracking of laparoscopic instruments using statistical and geometric modeling.
Wolf, Rémi; Duchateau, Josselin; Cinquin, Philippe; Voros, Sandrine
2011-01-01
During a laparoscopic surgery, the endoscope can be manipulated by an assistant or a robot. Several teams have worked on the tracking of surgical instruments, based on methods ranging from the development of specific devices to image processing methods. We propose to exploit the instruments' insertion points, which are fixed on the patients abdominal cavity, as a geometric constraint for the localization of the instruments. A simple geometric model of a laparoscopic instrument is described, as well as a parametrization that exploits a spherical geometric grid, which offers attracting homogeneity and isotropy properties. The general architecture of our proposed approach is based on the probabilistic Condensation algorithm.
Twelve Principles for Green Energy Storage in Grid Applications.
Arbabzadeh, Maryam; Johnson, Jeremiah X; Keoleian, Gregory A; Rasmussen, Paul G; Thompson, Levi T
2016-01-19
The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent
2018-03-01
In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.
Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars
NASA Astrophysics Data System (ADS)
Narayanan Nampy, Sreenivas
Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
Implementing quantum optics with parametrically driven superconducting circuits
NASA Astrophysics Data System (ADS)
Aumentado, Jose
Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.
Rotational-translational fourier imaging system
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
This invention has the ability to create Fourier-based images with only two grid pairs. The two grid pairs are manipulated in a manner that allows (1) a first grid pair to provide multiple real components of the Fourier-based image and (2) a second grid pair to provide multiple imaginary components of the Fourier-based image. The novelty of this invention resides in the use of only two grid pairs to provide the same imaging information that has been traditionally collected with multiple grid pairs.
An Analysis of Security and Privacy Issues in Smart Grid Software Architectures on Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Kumbhare, Alok; Cao, Baohua
2011-07-09
Power utilities globally are increasingly upgrading to Smart Grids that use bi-directional communication with the consumer to enable an information-driven approach to distributed energy management. Clouds offer features well suited for Smart Grid software platforms and applications, such as elastic resources and shared services. However, the security and privacy concerns inherent in an information rich Smart Grid environment are further exacerbated by their deployment on Clouds. Here, we present an analysis of security and privacy issues in a Smart Grids software architecture operating on different Cloud environments, in the form of a taxonomy. We use the Los Angeles Smart Gridmore » Project that is underway in the largest U.S. municipal utility to drive this analysis that will benefit both Cloud practitioners targeting Smart Grid applications, and Cloud researchers investigating security and privacy.« less
Anisotropic encoding of three-dimensional space by place cells and grid cells
Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.
2011-01-01
The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Experimental realization of a feedback optical parametric amplifier with four-wave mixing
NASA Astrophysics Data System (ADS)
Pan, Xiaozhou; Chen, Hui; Wei, Tianxiang; Zhang, Jun; Marino, Alberto M.; Treps, Nicolas; Glasser, Ryan T.; Jing, Jietai
2018-04-01
Optical parametric amplifiers (OPAs) play a fundamental role in the generation of quantum correlation for quantum information processing and quantum metrology. In order to increase the communication fidelity of the quantum information protocol and the measurement precision of quantum metrology, it requires a high degree of quantum correlation. In this Rapid Communication we report a feedback optical parametric amplifier that employs a four-wave mixing (FWM) process as the underlying OPA and a beam splitter as the feedback controller. We first construct a theoretical model for this feedback-based FWM process and experimentally study the effect of the feedback control on the quantum properties of the system. Specifically, we find that the quantum correlation between the output fields can be enhanced by tuning the strength of the feedback.
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
NASA Technical Reports Server (NTRS)
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
Constructing a Community Response Grid (CRG): The Dublin, Ohio Case Study
ERIC Educational Resources Information Center
Freund, John F., III.
2012-01-01
During an emergency, information availability is critical to preserving life and minimizing damages. During the emergency response, however, information may not be available to those who need it. A community response grid (CRG) can help ameliorate this lack of availability by allowing people to document and distribute emergency information to…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... Smart Grid: Data Access, Third Party Use, and Privacy AGENCY: Department of Energy. ACTION: Notice of... information from smart meters, historical consumption data, and pricing and billing information. DOE will hold... electronic form--including real-time information from smart meters, historical consumption data, and pricing...
NASA Astrophysics Data System (ADS)
O'Brien, E.
2017-12-01
We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.
NASA Astrophysics Data System (ADS)
Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide
2017-12-01
This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.
High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative (SUNGRIN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeker, Rick; Steurer, Mischa; Faruque, MD Omar
The report provides results from the Sunshine State Solar Grid Initiative (SUNGRIN) high penetration solar PV deployment project led by Florida State University’s (FSU) Center for Advanced Power Systems (CAPS). FSU CAPS and industry and university partners have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation. SUNGRIN has made significant contributions in the development of simulation-assisted techniques, tools, insight and understanding associated with solar PV effects on electric power system (EPS) operation and the evaluation of mitigation options for maintaining reliable operation. An important element of the project was themore » partnership and participation of six major Florida utilities and the Florida Reliability Coordinating Council (FRCC). Utilities provided details and data associated with actual distribution circuits having high-penetration PV to use as case studies. The project also conducted foundational work supporting future investigations of effects at the transmission / bulk power system level. In the final phase of the project, four open-use models with built-in case studies were developed and released, along with synthetic solar PV data sets, and tools and techniques for model reduction and in-depth parametric studies of solar PV impact on distribution circuits. Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation.« less
NASA Astrophysics Data System (ADS)
Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus
2018-05-01
In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.
Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?
NASA Astrophysics Data System (ADS)
Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna
2012-10-01
Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).
Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung
2014-10-01
Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
The chi-square test of independence.
McHugh, Mary L
2013-01-01
The Chi-square statistic is a non-parametric (distribution free) tool designed to analyze group differences when the dependent variable is measured at a nominal level. Like all non-parametric statistics, the Chi-square is robust with respect to the distribution of the data. Specifically, it does not require equality of variances among the study groups or homoscedasticity in the data. It permits evaluation of both dichotomous independent variables, and of multiple group studies. Unlike many other non-parametric and some parametric statistics, the calculations needed to compute the Chi-square provide considerable information about how each of the groups performed in the study. This richness of detail allows the researcher to understand the results and thus to derive more detailed information from this statistic than from many others. The Chi-square is a significance statistic, and should be followed with a strength statistic. The Cramer's V is the most common strength test used to test the data when a significant Chi-square result has been obtained. Advantages of the Chi-square include its robustness with respect to distribution of the data, its ease of computation, the detailed information that can be derived from the test, its use in studies for which parametric assumptions cannot be met, and its flexibility in handling data from both two group and multiple group studies. Limitations include its sample size requirements, difficulty of interpretation when there are large numbers of categories (20 or more) in the independent or dependent variables, and tendency of the Cramer's V to produce relative low correlation measures, even for highly significant results.
SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.
2017-12-01
SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.
NASA Astrophysics Data System (ADS)
Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania
2017-03-01
Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.
Model Adaptation in Parametric Space for POD-Galerkin Models
NASA Astrophysics Data System (ADS)
Gao, Haotian; Wei, Mingjun
2017-11-01
The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.
Using Computing and Data Grids for Large-Scale Science and Engineering
NASA Technical Reports Server (NTRS)
Johnston, William E.
2001-01-01
We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Improving Grid Resilience through Informed Decision-making (IGRID)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Laurie; Stamber, Kevin L.; Jeffers, Robert Fredric
The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for themore » foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.« less
NASA Astrophysics Data System (ADS)
van Tuyet, Dao; Tuan, Ngo Anh; van Lang, Tran
Grid computing has been an increasing topic in recent years. It attracts the attention of many scientists from many fields. As a result, many Grid systems have been built for serving people's demands. At present, many tools for developing the Grid systems such as Globus, gLite, Unicore still developed incessantly. Especially, gLite - the Grid Middleware - was developed by the Europe Community scientific in recent years. Constant growth of Grid technology opened the way for new opportunities in term of information and data exchange in a secure and collaborative context. These new opportunities can be exploited to offer physicians new telemedicine services in order to improve their collaborative capacities. Our platform gives physicians an easy method to use telemedicine environment to manage and share patient's information (such as electronic medical record, images formatted DICOM) between remote locations. This paper presents the Grid Infrastructure based on gLite; some main components of gLite; the challenge scenario in which new applications can be developed to improve collaborative work between scientists; the process of deploying Hospital Open software Platform for E-health (HOPE) on the Grid.
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk
2015-01-01
Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.
NASA Technical Reports Server (NTRS)
Shyam, Vikram
2010-01-01
A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.
A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid
NASA Technical Reports Server (NTRS)
Lau, Shing-hon
2011-01-01
America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.
NASA Astrophysics Data System (ADS)
Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.
2013-12-01
Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation type data from the European Space Agency (ESA) GlobCover Project, and 30 arc-sec Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation data from the ESA GlobCarbon Project. Simulations are carried out for the Metropolitan Area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers with depths of 0.01 and 1.0 m are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering the period from 6 to 7 September 2007 are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, topographic and land-use databases and grid resolution. Our comparisons show overall good agreement between simulated and observed data and also indicate that the low resolution of the 30 arc-sec soil database from United States Geological Survey, the soil moisture and skin temperature initial conditions assimilated from the GFS analyses and the synoptic forcing on the lateral boundaries of the finer grids may affect an adequate spatial description of the meteorological variables.
Semantic web data warehousing for caGrid.
McCusker, James P; Phillips, Joshua A; González Beltrán, Alejandra; Finkelstein, Anthony; Krauthammer, Michael
2009-10-01
The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.
DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.
Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P
2008-06-01
In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Yi; Jiang, Huaiguang; Zhang, Yingchen
In this paper, a big data visualization platform is designed to discover the hidden useful knowledge for smart grid (SG) operation, control and situation awareness. The spawn of smart sensors at both grid side and customer side can provide large volume of heterogeneous data that collect information in all time spectrums. Extracting useful knowledge from this big-data poll is still challenging. In this paper, the Apache Spark, an open source cluster computing framework, is used to process the big-data to effectively discover the hidden knowledge. A high-speed communication architecture utilizing the Open System Interconnection (OSI) model is designed to transmitmore » the data to a visualization platform. This visualization platform uses Google Earth, a global geographic information system (GIS) to link the geological information with the SG knowledge and visualize the information in user defined fashion. The University of Denver's campus grid is used as a SG test bench and several demonstrations are presented for the proposed platform.« less
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
Use of Fuzzy Logic Systems for Assessment of Primary Faults
NASA Astrophysics Data System (ADS)
Petrović, Ivica; Jozsa, Lajos; Baus, Zoran
2015-09-01
In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...
2017-07-06
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
NASA Astrophysics Data System (ADS)
Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.
2014-08-01
Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation-type data from the European Space Agency (ESA) GlobCover project, and 30 arc-sec leaf area index and fraction of absorbed photosynthetically active radiation data from the ESA GlobCarbon project. Simulations are carried out for the metropolitan area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering three periods of time are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, grid resolution, topographic and land-use databases. Our comparisons show overall good agreement between simulated and observational data, mainly for the potential temperature and the wind speed fields, and clearly indicate that the use of high-resolution databases improves significantly our ability to predict the local atmospheric circulation.
NASA Technical Reports Server (NTRS)
Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.
2015-01-01
The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.
NASA Technical Reports Server (NTRS)
Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.
2015-01-01
The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.
Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less
Smart Grid Legislative and Regulatory Policies and Case Studies
2011-01-01
In recent years, a number of U.S. states have adopted or are considering smart grid related laws, regulations, and voluntary or mandatory requirements. At the same time, the number of smart grid pilot projects has been increasing rapidly. The Energy Information Administration (EIA) commissioned SAIC to research the development of smart grid in the United States and abroad. The research produced several documents that will help guide EIA as it considers how best to track smart grid developments.
A Debugger for Computational Grid Applications
NASA Technical Reports Server (NTRS)
Hood, Robert; Jost, Gabriele; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of a debugger for computational grid applications. Details are given on NAS parallel tools groups (including parallelization support tools, evaluation of various parallelization strategies, and distributed and aggregated computing), debugger dependencies, scalability, initial implementation, the process grid, and information on Globus.
Neural Mechanisms of Attention
1993-05-21
of Attention 39 The Element Superiority Effect : Attention? 46 Animal Models of Attention Deficit 47 Conditioned Attention Theory 50 2 ATTENTION AND...fails to obtain the necessary quantitative information about the effects of parametric manipulations on the dissociation, or the parametric results...neuroscience endeavor as described here. If simultaneously psychologists ignore the brain arid neuroscientists ignore the mind, no effective translation
Tools and Techniques for Measuring and Improving Grid Performance
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Frumkin, M.; Smith, W.; VanderWijngaart, R.; Wong, P.; Biegel, Bryan (Technical Monitor)
2001-01-01
This viewgraph presentation provides information on NASA's geographically dispersed computing resources, and the various methods by which the disparate technologies are integrated within a nationwide computational grid. Many large-scale science and engineering projects are accomplished through the interaction of people, heterogeneous computing resources, information systems and instruments at different locations. The overall goal is to facilitate the routine interactions of these resources to reduce the time spent in design cycles, particularly for NASA's mission critical projects. The IPG (Information Power Grid) seeks to implement NASA's diverse computing resources in a fashion similar to the way in which electric power is made available.
Information Power Grid Posters
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
2003-01-01
This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameme, Dan Selorm Kwami; Guttromson, Ross
This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selectionmore » within the simulated network.« less
Enabling Efficient Intelligence Analysis in Degraded Environments
2013-06-01
Magnets Grid widget for multidimensional information exploration ; and a record browser of Visual Summary Cards widget for fast visual identification of...evolution analysis; a Magnets Grid widget for multi- dimensional information exploration ; and a record browser of Visual Summary Cards widget for fast...attention and inattentional blindness. It also explores and develops various techniques to represent information in a salient way and provide efficient
Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group
NASA Astrophysics Data System (ADS)
Mazzetti, Paolo
2010-05-01
In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an integration on existing solutions. More specifically, the Open Geospatial Consortium (OGC) Web Services (OWS) specifications play a fundamental role in geospatial information sharing (e.g. in INSPIRE Implementing Rules, GEOSS architecture, GMES Services, etc.). On the Grid side, the gLite middleware, developed in the European EGEE (Enabling Grids for E-sciencE) Projects, is widely spread in Europe and beyond, proving its high scalability and it is one of the middleware chosen for the future European Grid Infrastructure (EGI) initiative. Therefore the convergence between OWS and gLite technologies would be desirable for a seamless access to the Grid capabilities through OWS-compliant systems. Anyway, to achieve this harmonization there are some obstacles to overcome. Firstly, a semantics mismatch must be addressed: gLite handle low-level (e.g. close to the machine) concepts like "file", "data", "instruments", "job", etc., while geo-information services handle higher-level (closer to the human) concepts like "coverage", "observation", "measurement", "model", etc. Secondly, an architectural mismatch must be addressed: OWS implements a Web Service-Oriented-Architecture which is stateless, synchronous and with no embedded security (which is demanded to other specs), while gLite implements the Grid paradigm in an architecture which is stateful, asynchronous (even not fully event-based) and with strong embedded security (based on the VO paradigm). In recent years many initiatives and projects have worked out possible approaches for implementing Grid-enabled OWSs. Just to mention some: (i) in 2007 the OGC has signed a Memorandum of Understanding with the Open Grid Forum, "a community of users, developers, and vendors leading the global standardization effort for grid computing."; (ii) the OGC identified "WPS Profiles - Conflation; and Grid processing" as one of the tasks in the Geo Processing Workflow theme of the OWS Phase 6 (OWS-6); (iii) several national, European and international projects investigated different aspects of this integration, developing demonstrators and Proof-of-Concepts; In this context, "gLite enablement of OpenGeospatial Web Services" (G-OWS) is an initiative started in 2008 by the European CYCLOPS, GENESI-DR, and DORII Projects Consortia in order to collect/coordinate experiences on the enablement of OWS on top of the gLite middleware [GOWS]. Currently G-OWS counts ten member organizations from Europe and beyond, and four European Projects involved. It broadened its scope to the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Its operational objectives are the following: i) to contribute to the OGC-OGF initiative; ii) to release a reference implementation as standard gLite APIs (under the gLite software license); iii) to release a reference model (including procedures and guidelines) for OWS Grid-ification, as far as gLite is concerned; iv) to foster and promote the formation of consortiums for participation to projects/initiatives aimed at building Grid-enabled SDIs To achieve this objectives G-OWS bases its activities on two main guiding principles: a) the adoption of a service-oriented architecture based on the information modelling approach, and b) standardization as a means of achieving interoperability (i.e. adoption of standards from ISO TC211, OGC OWS, OGF). In the first year of activity G-OWS has designed a general architectural framework stemming from the FP6 CYCLOPS studies and enriched by the outcomes of other projects and initiatives involved (i.e. FP7 GENESI-DR, FP7 DORII, AIST GeoGrid, etc.). Some proof-of-concepts have been developed to demonstrate the flexibility and scalability of such architectural framework. The G-OWS WG developed implementations of gLite-enabled Web Coverage Service (WCS) and Web Processing Service (WPS), and an implementation of a Shibboleth authentication for gLite-enabled OWS in order to evaluate the possible integration of Web and Grid security models. The presentation will aim to communicate the G-OWS organization, activities, future plans and means to involve the ESSI community. References [Berners-Lee 1996] T. Berners-Lee, "WWW: Past, present, and future". IEEE Computer, 29(10), Oct. 1996, pp. 69-77. [Foster 2001] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid. The International Journal ofHigh Performance Computing Applications", 15(3):200-222, Fall 2001 [GOWS] G-OWS WG, https://www.g-ows.org/, accessed: 15 January 2010
Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data
George, Brandon; Aban, Inmaculada
2014-01-01
Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
NASA Astrophysics Data System (ADS)
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.
Effects of Nonequilibrium Chemistry and Darcy-Forchheimer Pyrolysis Flow for Charring Ablator
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.
2013-01-01
The fully implicit ablation and thermal response code simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid.This work describes new modeling capabilities that are added to a special version of code. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Two groups of parametric studies of the phenolic impregnated carbon ablator are performed. In the first group, an Orion flight environment for a proposed lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results indicate that the presence of chemical nonequilibrium pyrolysis gas flow does not significantly alter the in-depth thermal response performance predicted using the chemical equilibrium gas model.
PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shiyuan; Huang, Jianhua Z.; Long, James
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequencymore » parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.« less
Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid
Jones, John W.; Price, Susan D.
2007-01-01
INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the conceptual design of the EDEN grid spatial parameters and cell attribute-table content.
A tesselated probabilistic representation for spatial robot perception and navigation
NASA Technical Reports Server (NTRS)
Elfes, Alberto
1989-01-01
The ability to recover robust spatial descriptions from sensory information and to efficiently utilize these descriptions in appropriate planning and problem-solving activities are crucial requirements for the development of more powerful robotic systems. Traditional approaches to sensor interpretation, with their emphasis on geometric models, are of limited use for autonomous mobile robots operating in and exploring unknown and unstructured environments. Here, researchers present a new approach to robot perception that addresses such scenarios using a probabilistic tesselated representation of spatial information called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that maintains stochastic estimates of the occupancy state of each cell in the grid. The cell estimates are obtained by interpreting incoming range readings using probabilistic models that capture the uncertainty in the spatial information provided by the sensor. A Bayesian estimation procedure allows the incremental updating of the map using readings taken from several sensors over multiple points of view. An overview of the Occupancy Grid framework is given, and its application to a number of problems in mobile robot mapping and navigation are illustrated. It is argued that a number of robotic problem-solving activities can be performed directly on the Occupancy Grid representation. Some parallels are drawn between operations on Occupancy Grids and related image processing operations.
Applying Statistical Models and Parametric Distance Measures for Music Similarity Search
NASA Astrophysics Data System (ADS)
Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph
Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.
NASA Astrophysics Data System (ADS)
Meneguz, Elena; Thomson, David; Witham, Claire; Kusmierczyk-Michulec, Jolanta
2015-04-01
NAME is a Lagrangian atmospheric dispersion model used by the Met Office to predict the dispersion of both natural and man-made contaminants in the atmosphere, e.g. volcanic ash, radioactive particles and chemical species. Atmospheric convection is responsible for transport and mixing of air resulting in a large exchange of heat and energy above the boundary layer. Although convection can transport material through the whole troposphere, convective clouds have a small horizontal length scale (of the order of few kilometres). Therefore, for large-scale transport the horizontal scale on which the convection exists is below the global NWP resolution used as input to NAME and convection must be parametrized. Prior to the work presented here, the enhanced vertical mixing generated by non-resolved convection was reproduced by randomly redistributing Lagrangian particles between the cloud base and cloud top with probability equal to 1/25th of the NWP predicted convective cloud fraction. Such a scheme is essentially diffusive and it does not make optimal use of all the information provided by the driving meteorological model. To make up for these shortcomings and make the parametrization more physically based, the convection scheme has been recently revised. The resulting version, presented in this paper, is now based on the balance equation between upward, entrainment and detrainment fluxes. In particular, upward mass fluxes are calculated with empirical formulas derived from Cloud Resolving Models and using the NWP convective precipitation diagnostic as closure. The fluxes are used to estimate how many particles entrain, move upward and detrain. Lastly, the scheme is completed by applying a compensating subsidence flux. The performance of the updated convection scheme is benchmarked against available observational data of passive tracers. In particular, radioxenon is a noble gas that can undergo significant long range transport: this study makes use of observations of the isotope 133Xe available at International Monitoring System stations around the South Pacific Ocean. In addition, timeseries of modelled output concentrations obtained using NAME on a grid of 25 km size are compared with those obtained with FLEXPART, another well-known atmospheric dispersion model used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) and other scientific communities. Findings are discussed and discrepancies investigated.
Kinsey, Katharine; Firth, Jill; Elwyn, Glyn; Edwards, Adrian; Brain, Katherine; Marrin, Katy; Nye, Alan; Wood, Fiona
2017-12-01
Patient decision support tools have been developed as a means of providing accurate and accessible information in order for patients to make informed decisions about their care. Option Grids ™ are a type of decision support tool specifically designed to be used during clinical encounters. To explore patients' views of the Option Grid encounter tool used in clinical consultations with physiotherapists, in comparison with usual care, within a patient population who are likely to be disadvantaged by age and low health literacy. Semi-structured interviews with 72 patients (36 who had been given an Option Grid in their consultation and 36 who had not). Thematic analysis explored patients' understanding of treatment options, perceptions of involvement, and readability and utility of the Option Grid. Interviews suggested that the Option Grid facilitated more detailed discussion about the risks and benefits of a wider range of treatment options for osteoarthritis of the knee. Participants indicated that the Option Grid was clear and aided their understanding of a structured progression of the options as their condition advanced, although it was not clear whether the Option Grid facilitated greater engagement in shared decision making. The Option Grid for osteoarthritis of the knee was well received by patient participants who reported that it helped them to understand their options, and made the notion of choice explicit. Use of Option Grids should be considered within routine consultations. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
Kwf-Grid workflow management system for Earth science applications
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.
2009-04-01
In this paper, we present workflow management tool for Earth science applications in EGEE. The workflow management tool was originally developed within K-wf Grid project for GT4 middleware and has many advanced features like semi-automatic workflow composition, user-friendly GUI for managing workflows, knowledge management. In EGEE, we are porting the workflow management tool to gLite middleware for Earth science applications K-wf Grid workflow management system was developed within "Knowledge-based Workflow System for Grid Applications" under the 6th Framework Programme. The workflow mangement system intended to - semi-automatically compose a workflow of Grid services, - execute the composed workflow application in a Grid computing environment, - monitor the performance of the Grid infrastructure and the Grid applications, - analyze the resulting monitoring information, - capture the knowledge that is contained in the information by means of intelligent agents, - and finally to reuse the joined knowledge gathered from all participating users in a collaborative way in order to efficiently construct workflows for new Grid applications. Kwf Grid workflow engines can support different types of jobs (e.g. GRAM job, web services) in a workflow. New class of gLite job has been added to the system, allows system to manage and execute gLite jobs in EGEE infrastructure. The GUI has been adapted to the requirements of EGEE users, new credential management servlet is added to portal. Porting K-wf Grid workflow management system to gLite would allow EGEE users to use the system and benefit from its avanced features. The system is primarly tested and evaluated with applications from ES clusters.
The Grid as a healthcare provision tool.
Hernández, V; Blanquer, I
2005-01-01
This paper presents a survey on HealthGrid technologies, describing the current status of Grid and eHealth and analyzing them in the medium-term future. The objective is to analyze the key points, barriers and driving forces for the take-up of HealthGrids. The article considers the procedures from other Grid disciplines such as high energy physics or biomolecular engineering and discusses the differences with respect to healthcare. It analyzes the status of the basic technology, the needs of the eHealth environment and the successes of current projects in health and other relevant disciplines. Information and communication technology (ICT) in healthcare is a promising area for the use of the Grid. There are many driving forces that are fostering the application of the secure, pervasive, ubiquitous and transparent access to information and computing resources that Grid technologies can provide. However, there are many barriers that must be solved. Many technical problems that arise in eHealth (standardization of data, federation of databases, content-based knowledge extraction, and management of personal data ...) can be solved with Grid technologies. The article presents the development of successful and demonstrative applications as the key for the take-up of HealthGrids, where short-term future medical applications will surely be biocomputing-oriented, and the future of Grid technologies on medical imaging seems promising. Finally, exploitation of HealthGrid is analyzed considering the curve of the adoption of ICT solutions and the definition of business models, which are far more complex than in other e-business technologies such ASP.
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.
Review of power sources for Alaska DOT & PF road weather information systems (RWIS) : phase I.
DOT National Transportation Integrated Search
2014-06-01
This report documents the findings related to a review of power sources for six off-grid Road Weather Information Systems (RWIS) in : Alaska. Various power sources were reviewed as a means of reliably operating the off-grid RWIS sites throughout the ...
75 FR 42727 - Implementing the National Broadband Plan; Comment Period Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
..., state, and private entities seek to develop Smart Grid technologies. The second RFI requested information on the evolving needs of electric utilities as Smart Grid technologies are more broadly deployed... accept reply comments, data, and information regarding the National Broadband Plan RFI: Data Access and...
Towards Effective Clustering Techniques for the Analysis of Electric Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh
2013-11-30
Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques onmore » two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.« less
NASA Astrophysics Data System (ADS)
Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino
2017-03-01
Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.
Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar
Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Semantic web data warehousing for caGrid
McCusker, James P; Phillips, Joshua A; Beltrán, Alejandra González; Finkelstein, Anthony; Krauthammer, Michael
2009-01-01
The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG® Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges. PMID:19796399
The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...
Association rule mining on grid monitoring data to detect error sources
NASA Astrophysics Data System (ADS)
Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin
2010-04-01
Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.
Organizing Space Shuttle parametric data for maintainability
NASA Technical Reports Server (NTRS)
Angier, R. C.
1983-01-01
A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.
NASA Astrophysics Data System (ADS)
Liu, Xuan
Power grid is one of the most critical infrastructures in a nation and could suffer a variety of cyber attacks. With the development of Smart Grid, false data injection attack has recently attracted wide research interest. This thesis proposes a false data attack model with incomplete network information and develops optimal attack strategies for attacking load measurements and the real-time topology of a power grid. The impacts of false data on the economic and reliable operations of power systems are quantitatively analyzed in this thesis. To mitigate the risk of cyber attacks, a distributed protection strategies are also developed. It has been shown that an attacker can design false data to avoid being detected by the control center if the network information of a power grid is known to the attacker. In practice, however, it is very hard or even impossible for an attacker to obtain all network information of a power grid. In this thesis, we propose a local load redistribution attacking model based on incomplete network information and show that an attacker only needs to obtain the network information of the local attacking region to inject false data into smart meters in the local region without being detected by the state estimator. A heuristic algorithm is developed to determine a feasible attacking region by obtaining reduced network information. This thesis investigates the impacts of false data on the operations of power systems. It has been shown that false data can be designed by an attacker to: 1) mask the real-time topology of a power grid; 2) overload a transmission line; 3) disturb the line outage detection based on PMU data. To mitigate the risk of cyber attacks, this thesis proposes a new protection strategy, which intends to mitigate the damage effects of false data injection attacks by protecting a small set of critical measurements. To further reduce the computation complexity, a mixed integer linear programming approach is also proposed to separate the power grid into several subnetworks, then distributed protection strategy is applied to each subnetwork.
NASA Astrophysics Data System (ADS)
Corbett, Jacqueline Marie
Enabled by advanced communication and information technologies, the smart grid represents a major transformation for the electricity sector. Vast quantities of data and two-way communications abilities create the potential for a flexible, data-driven, multi-directional supply and consumption network well equipped to meet the challenges of the next century. For electricity service providers ("utilities"), the smart grid provides opportunities for improved business practices and new business models; however, a transformation of such magnitude is not without risks. Three related studies are conducted to explore the implications of the smart grid on utilities' demand-side activities. An initial conceptual framework, based on organizational information processing theory, suggests that utilities' performance depends on the fit between the information processing requirements and capacities associated with a given demand-side activity. Using secondary data and multiple regression analyses, the first study finds, consistent with OIPT, a positive relationship between utilities' advanced meter deployments and demand-side management performance. However, it also finds that meters with only data collection capacities are associated with lower performance, suggesting the presence of information waste causing operational inefficiencies. In the second study, interviews with industry participants provide partial support for the initial conceptual model, new insights are gained with respect to information processing fit and information waste, and "big data" is identified as a central theme of the smart grid. To derive richer theoretical insights, the third study employs a grounded theory approach examining the experience of one successful utility in detail. Based on interviews and documentary data, the paradox of dynamic stability emerges as an essential enabler of utilities' performance in the smart grid environment. Within this context, the frames of opportunity, control, and data limitation interact to support dynamic stability and contribute to innovation within tradition. The main contributions of this thesis include theoretical extensions to OIPT and the development of an emergent model of dynamic stability in relation to big data. The thesis also adds to the green IS literature and identifies important practical implications for utilities as they endeavour to bring the smart grid to reality.
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
Evidences of Significant Nonstationarity in Precipitation Extremes over Urbanizing Areas in India
NASA Astrophysics Data System (ADS)
Singh, J.; H, V.; Karmakar, S.; Ghosh, S.
2014-12-01
The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the analytically perceivable impacts of climate change, urbanization and concomitant land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which inturn effects the policy and decision-making. Past studies provided sufficient evidences on changes in the characteristics of Indian monsoon rainfall extremes and further it has been attributed to climate change and urbanization, which indicates the presence of significant nonstationary in the Indian monsoon extremes. Therefore, a comprehensive nonstationary frequency analysis must be conducted all over India to obtain realistic return periods. The present study aims to conduct a nonstationary frequency analysis of the precipitation extremes over India at 1o resolution for a period of 1901-2004, with the implementation of the Generalized Additive Model for Location, Scale and Shape (GAMLSS) parameters. A cluster of 74 GAMLSS models has been developed by considering nonstationary in different combinations of distribution parameters and regression techniques (families of parametric polynomials and nonparametric/smoothing cubic spline), which overcomes the limitations of the previous studies. Further, for identification of urban, urbanizing and rural grids, an population density data has been utilized. The results showed the significant differences in the stationary and nonstationary return periods for the urbanizing grids, when compared to urbanized and rural grids. The results give implications of presence of nonstationary in the precipitation extremes more prominently in urbanizing areas compare to urbanized and rural areas.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
A secure and efficiently searchable health information architecture.
Yasnoff, William A
2016-06-01
Patient-centric repositories of health records are an important component of health information infrastructure. However, patient information in a single repository is potentially vulnerable to loss of the entire dataset from a single unauthorized intrusion. A new health record storage architecture, the personal grid, eliminates this risk by separately storing and encrypting each person's record. The tradeoff for this improved security is that a personal grid repository must be sequentially searched since each record must be individually accessed and decrypted. To allow reasonable search times for large numbers of records, parallel processing with hundreds (or even thousands) of on-demand virtual servers (now available in cloud computing environments) is used. Estimated search times for a 10 million record personal grid using 500 servers vary from 7 to 33min depending on the complexity of the query. Since extremely rapid searching is not a critical requirement of health information infrastructure, the personal grid may provide a practical and useful alternative architecture that eliminates the large-scale security vulnerabilities of traditional databases by sacrificing unnecessary searching speed. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Madeleine, Jean-Baptiste; Cheruy, Frédérique; Gallée, Hubert; Bazile, Eric; Lefebvre, Marie-Pierre; Van de Wiel, Bas J. H.
2017-04-01
In a General Circulation Model (GCM), the turbulent mixing parametrization of the atmospheric boundary layer (ABL) over the Antarctic Plateau is critical since it affects the continental scale temperature inversion, the katabatic winds and finally the Southern Hemisphere circulation. The aim of this study is to evaluate the representation of the Antarctic Plateau ABL in the Laboratoire de Météorologie Dynamique-Zoom (LMDZ) GCM, the atmospheric component of the IPSL Earth System Model in preparation for the sixth Coupled Models Intercomparison Project. We carry out 1D simulations on the fourth Gewex Atmospheric Boundary Layers Study (GABLS4) case, and 3D simulations with the 'zooming capability' of the horizontal grid and with nudging. Simulations are evaluated and validated using in-situ measurements obtained at Dome C, East Antarctic Plateau, and satellite data. Sensitivity tests to surface parameters, vertical grid and turbulent mixing parametrizations led to significant improvements of the model and to a new configuration better adapted for Antarctic conditions. In particular, we point out the need to remove minimum turbulence thresholds to correctly reproduce very steep temperature and wind speed gradients in the stable ABL. We then assess the ability of the GCM to represent the two distinct stable ABL regimes and very strong near-surface temperature inversions, which are fascinating and critical features of the Dome C climate. This leads us to investigate the competition between radiative and turbulent coupling between the ABL and the snow surface in the model. Our results show that the new configuration of LMDZ reproduces reasonnably well the Dome C climatology and it is able to model strong temperature inversions and radiatively-dominated ABL. However, they also reveal a strong sensitivity of the modeling of the different regimes to the radiative scheme and vertical resolution. The present work finally hints at future developments to better and more physically represent the polar ABL in a GCM.
Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models
NASA Astrophysics Data System (ADS)
Xu, Shiming
2015-04-01
We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.
Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.
2002-07-01
Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained frommore » operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... Requirements of Electric Utilities To Inform Federal Smart Grid Policy AGENCY: Department of Energy. ACTION..., but not limited to, the requirements of the Smart Grid (75 FR 26206). DOE also sought to collect... the types of networks and communications services that may be used for grid modernization...
Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.
George, Brandon; Aban, Inmaculada
2015-01-15
Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.
Modelling the spatial distribution of SO2 and NOx emissions in Ireland.
de Kluizenaar, Y; Aherne, J; Farrell, E P
2001-01-01
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
2010-01-01
Background Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. Results We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. Conclusions The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to the positional constraints. For a fair comparison, we also apply our proposed method without positional constraints. This comparison shows that these results contain less crossings than those of the spring embedder algorithm. We also compared layouts of the proposed algorithm with and without compartment update and verified that latter can reach better local optima. PMID:20565884
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
Sowter, Julie; Astin, Felicity; Dye, Louise; Marshall, Paul; Knapp, Peter
2016-06-01
To assess the quality, readability and coverage of website information about herbal remedies for menopausal symptoms. A purposive sample of commercial and non-commercial websites was assessed for quality (DISCERN), readability (SMOG) and information coverage. Non-parametric and parametric tests were used to explain the variability of these factors across types of websites and to assess associations between website quality and information coverage. 39 sites were assessed. Median quality and information coverage scores were 44/80 and 11/30 respectively. The median readability score was 18.7, similar to UK broadsheets. Commercial websites scored significantly lower on quality (p=0.014), but there were no statistical differences for information coverage or readability. There was a significant positive correlation between information quality and coverage scores irrespective of website provider (r=0.69, p<0.001, n=39). Overall website quality and information coverage are poor and the required reading level high. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taft, Jeffrey D.; Becker-Dippmann, Angela S.
2015-08-01
This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
Patched-grid calculations with the Euler and Navier-Stokes equations: Theory and applications
NASA Technical Reports Server (NTRS)
Rai, M. M.
1986-01-01
A patched-grid approach is one in which the flow region of interest is divided into subregions which are then discretized independently using existing grid generator. The equations of motion are integrated in each subregion in conjunction with patch-boundary schemes which allow proper information transfer across interfaces that separate subregions. The patched-grid approach greatly simplifies the treatment of complex geometries and also the addition of grid points to selected regions of the flow. A conservative patch-boundary condition that can be used with explicit, implicit factored and implicit relaxation schemes is described. Several example calculations that demonstrate the capabilities of the patched-grid scheme are also included.
Preparing and Analyzing Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.;
2004-01-01
SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.
Guided-mode resonance nanophotonics in materially sparse architectures
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Niraula, Manoj; Yoon, Jae W.; Ko, Yeong H.; Lee, Kyu J.
2016-03-01
The guided-mode resonance (GMR) concept refers to lateral quasi-guided waveguide modes induced in periodic layers. Whereas these effects have been known for a long time, new attributes and innovations continue to appear. Here, we review some recent progress in this field with emphasis on sparse, or minimal, device embodiments. We discuss properties of wideband resonant reflectors designed with gratings in which the grating ridges are matched to an identical material to eliminate local reflections and phase changes. This critical interface therefore possesses zero refractive-index contrast; hence we call them "zero-contrast gratings." Applying this architecture, we present single-layer, wideband reflectors that are robust under experimentally realistic parametric variations. We introduce a new class of reflectors and polarizers fashioned with dielectric nanowire grids that are mostly empty space. Computed results predict high reflection and attendant polarization extinction for these sparse lattices. Experimental verification with Si nanowire grids yields ~200-nm-wide band of high reflection for one polarization state and free transmission of the orthogonal state. Finally, we present bandpass filters using all-dielectric resonant gratings. We design, fabricate, and test nanostructured single layer filters exhibiting high efficiency and sub-nanometer-wide passbands surrounded by 100-nm-wide stopbands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence ismore » ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.« less
NASA Astrophysics Data System (ADS)
Wang, Qing; Zhao, Xinyu; Ihme, Matthias
2017-11-01
Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).
Analysis of Flowfields over Four-Engine DC-X Rockets
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cornelison, Joni
1996-01-01
The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.
Basagni, Benedetta; Luzzatti, Claudio; Navarrete, Eduardo; Caputo, Marina; Scrocco, Gessica; Damora, Alessio; Giunchi, Laura; Gemignani, Paola; Caiazzo, Annarita; Gambini, Maria Grazia; Avesani, Renato; Mancuso, Mauro; Trojano, Luigi; De Tanti, Antonio
2017-04-01
Verbal reasoning is a complex, multicomponent function, which involves activation of functional processes and neural circuits distributed in both brain hemispheres. Thus, this ability is often impaired after brain injury. The aim of the present study is to describe the construction of a new verbal reasoning test (VRT) for patients with brain injury and to provide normative values in a sample of healthy Italian participants. Three hundred and eighty healthy Italian subjects (193 women and 187 men) of different ages (range 16-75 years) and educational level (primary school to postgraduate degree) underwent the VRT. VRT is composed of seven subtests, investigating seven different domains. Multiple linear regression analysis revealed a significant effect of age and education on the participants' performance in terms of both VRT total score and all seven subtest scores. No gender effect was found. A correction grid for raw scores was built from the linear equation derived from the scores. Inferential cut-off scores were estimated using a non-parametric technique, and equivalent scores were computed. We also provided a grid for the correction of results by z scores.
Numerical studies of film formation in context of steel coating
NASA Astrophysics Data System (ADS)
Aniszewski, Wojciech; Zaleski, Stephane; Popinet, Stephane
2017-11-01
In this work, we present a detailed example of numerical study of film formation in the context of metal coating. Liquid metal is drawn from a reservoir onto a retracting solid sheet, forming a coating film characterized by phenomena such as longitudinal thickness variation (in 3D) or waves akin to that predicted by Kapitza and Kapitza (visible in two dimensions as well). While the industry standard configuration for Zinc coating is marked by coexistence of medium Capillary number (Ca = 0.03) and film Reynolds number above 1000, we present also parametric studies in order to establish more clearly to what degree does the numerical method influence film regimes obtained in the target configuration. The simulations have been performed using Basilisk, a grid-adapting, strongly optimized code derived from Gerris . Mesh adaptation allows for arbitrary precision in relevant regions such as the contact line or the meniscus, while a coarse grid is applied elsewhere. This adaptation strategy, as the results indicate, is the only realistic approach for numerical method to cover the wide range of necessary scales from the predicted film thickness (hundreds of microns) to the domain size (meters).
The Theory and Application of Privacy-preserving Computation
2015-03-26
which rejected the deployment of smart meters due to privacy concerns of the fine-grained information reporting necessary for the smart grid . Yet...there are clear benefits of the smart grid that are lost when smart metering is not available. This is true of many applications which require sensitive...31 4.1 Smart Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1.1 Motivation
1991-01-01
Foundation FYDP ......... Five Year Defense Plan FSI ............ Fog Stability Index 17 G G ................ gravity, giga- GISM ......... Gridded ...Global Circulation Model GOES-TAP GOES imagery processing & dissemination system GCS .......... grid course GOFS ........ Global Ocean Flux Study GD...Analysis Support System Complex Systems GRID .......... Global Resource Information Data -Base GEMAG ..... geomagnetic GRIST..... grazing-incidence solar
Multiple-grid convergence acceleration of viscous and inviscid flow computations
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1983-01-01
A multiple-grid algorithm for use in efficiently obtaining steady solution to the Euler and Navier-Stokes equations is presented. The convergence of a simple, explicit fine-grid solution procedure is accelerated on a sequence of successively coarser grids by a coarse-grid information propagation method which rapidly eliminates transients from the computational domain. This use of multiple-gridding to increase the convergence rate results in substantially reduced work requirements for the numerical solution of a wide range of flow problems. Computational results are presented for subsonic and transonic inviscid flows and for laminar and turbulent, attached and separated, subsonic viscous flows. Work reduction factors as large as eight, in comparison to the basic fine-grid algorithm, were obtained. Possibilities for further performance improvement are discussed.
Tsulukidze, Maka; Grande, Stuart W; Gionfriddo, Michael R
2015-07-01
To assess the feasibility of Option Grids(®)for facilitating shared decision making (SDM) in simulated clinical consultations and explore clinicians' views on their practicability. We used mixed methods approach to analyze clinical consultations using the Observer OPTION instrument and thematic analysis for follow-up interviews with clinicians. Clinicians achieved high scores on information sharing and low scores on preference elicitation and integration. Four themes were identified: (1) Barriers affect practicability of Option Grids(®); (2) Option Grids(®) facilitate the SDM process; (3) Clinicians are aware of the gaps in their practice of SDM; (4) Training and ongoing feedback on the optimal use of Option Grids(®) are necessary. Use of Option Grids(®) by clinicians with background knowledge in SDM did not facilitate optimal levels of competency on the SDM core concepts of preference elicitation and integration. Future research must evaluate the impact of training on the use of Option Grids(®), and explore how best to help clinicians bridge the gap between knowledge and action. Clinicians proficiently imparting information in simulations struggled to elicit and integrate patient preferences - understanding this gap and developing strategies to close it are the next steps for implementing SDM into clinical practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nonlinear PET parametric image reconstruction with MRI information using kernel method
NASA Astrophysics Data System (ADS)
Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi
2017-03-01
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
A grid for a precise analysis of daily activities.
Wojtasik, V; Olivier, C; Lekeu, F; Quittre, A; Adam, S; Salmon, E
2010-01-01
Assessment of daily living activities is essential in patients with Alzheimer's disease. Most current tools quantitatively assess overall ability but provide little qualitative information on individual difficulties. Only a few tools allow therapists to evaluate stereotyped activities and record different types of errors. We capitalised on the Kitchen Activity Assessment to design a widely applicable analysis grid that provides both qualitative and quantitative data on activity performance. A cooking activity was videotaped in 15 patients with dementia and assessed according to the different steps in the execution of the task. The evaluations obtained with our grid showed good correlations between raters, between versions of the grid and between sessions. Moreover, the degree of independence obtained with our analysis of the task correlated with the Kitchen Activity Assessment score and with a global score of cognitive functioning. We conclude that assessment of a daily living activity with this analysis grid is reproducible and relatively independent of the therapist, and thus provides quantitative and qualitative information useful for both evaluating and caring for demented patients.
Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping
2008-10-15
We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less
Numerical investigation of hypersonic exhaust plume/afterbody flow fields
NASA Astrophysics Data System (ADS)
Edwards, T. A.
An upwind, implicit Navier-Stokes computer program has been applied to hypersonic exhaust plume/afterbody flowfields. The sensitivity of gross thrust to operating conditions has been assessed through parametric variations. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. Results show that, for moderately underexpanded jets, the afterbody force varies linearly with the nozzle exit pressure. Exhaust gases with low isentropic exponents (gamma) were found to contribute up to 25 percent more afterbody force than high-gamma exhaust gases. Modifying the nozzle geometry influenced the exhaust plume development, which had a significant effect on the afterbody force. Grid density, while important to resolving the initial plume/afterbody interaction, had only a minor impact on the resultant afterbody force.
Improvements of the particle-in-cell code EUTERPE for petascaling machines
NASA Astrophysics Data System (ADS)
Sáez, Xavier; Soba, Alejandro; Sánchez, Edilberto; Kleiber, Ralf; Castejón, Francisco; Cela, José M.
2011-09-01
In the present work we report some performance measures and computational improvements recently carried out using the gyrokinetic code EUTERPE (Jost, 2000 [1] and Jost et al., 1999 [2]), which is based on the general particle-in-cell (PIC) method. The scalability of the code has been studied for up to sixty thousand processing elements and some steps towards a complete hybridization of the code were made. As a numerical example, non-linear simulations of Ion Temperature Gradient (ITG) instabilities have been carried out in screw-pinch geometry and the results are compared with earlier works. A parametric study of the influence of variables (step size of the time integrator, number of markers, grid size) on the quality of the simulation is presented.
Simulation of Etching in Chlorine Discharges Using an Integrated Feature Evolution-Plasma Model
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)
2002-01-01
To better utilize its vast collection of heterogeneous resources that are geographically distributed across the United States, NASA is constructing a computational grid called the Information Power Grid (IPG). This paper describes various tools and techniques that we are developing to measure and improve the performance of a broad class of NASA applications when run on the IPG. In particular, we are investigating the areas of grid benchmarking, grid monitoring, user-level application scheduling, and decentralized system-level scheduling.
NASA Astrophysics Data System (ADS)
Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.
2018-05-01
Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng
2015-02-23
Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less
e-Science and its implications.
Hey, Tony; Trefethen, Anne
2003-08-15
After a definition of e-science and the Grid, the paper begins with an overview of the technological context of Grid developments. NASA's Information Power Grid is described as an early example of a 'prototype production Grid'. The discussion of e-science and the Grid is then set in the context of the UK e-Science Programme and is illustrated with reference to some UK e-science projects in science, engineering and medicine. The Open Standards approach to Grid middleware adopted by the community in the Global Grid Forum is described and compared with community-based standardization processes used for the Internet, MPI, Linux and the Web. Some implications of the imminent data deluge that will arise from the new generation of e-science experiments in terms of archiving and curation are then considered. The paper concludes with remarks about social and technological issues posed by Grid-enabled 'collaboratories' in both scientific and commercial contexts.
Parallel Proximity Detection for Computer Simulation
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)
1997-01-01
The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.
Parallel Proximity Detection for Computer Simulations
NASA Technical Reports Server (NTRS)
Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)
1998-01-01
The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.
The Overgrid Interface for Computational Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.
Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.
Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman
2010-08-07
We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.
Comparison of thawing and freezing dark energy parametrizations
NASA Astrophysics Data System (ADS)
Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.
2016-05-01
Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Today, increasing numbers of intermittent generation sources (e.g., wind and photovoltaic) and new mobile intermittent loads (e.g., electric vehicles) can significantly affect traditional utility business practices and operations. At the same time, a growing number of technologies and devices, from appliances to lighting systems, are being deployed at consumer premises that have more sophisticated controls and information that remain underused for anything beyond basic building equipment operations. The intersection of these two drivers is an untapped opportunity and underused resource that, if appropriately configured and realized in open standards, can provide significant energy efficiency and commensurate savings on utility bills,more » enhanced and lower cost reliability to utilities, and national economic benefits in the creation of new markets, sectors, and businesses being fueled by the seamless coordination of energy and information through device and technology interoperability. Or, as the Quadrennial Energy Review puts it, “A plethora of both consumer-level and grid-level devices are either in the market, under development, or at the conceptual stage. When tied together through the information technology that is increasingly being deployed on electric utilities’ distribution grids, they can be an important enabling part of the emerging grid of the future. However, what is missing is the ability for all of these devices to coordinate and communicate their operations with the grid, and among themselves, in a common language — an open standard.” In this paper, we define interoperability as the ability to exchange actionable information between two or more systems within a home or building, or across and within organizational boundaries. Interoperability relies on the shared meaning of the exchanged information, with agreed-upon expectations and consequences, for the response to the information exchange.« less
Modern Grid Initiative Distribution Taxonomy Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin P.; Chen, Yousu; Chassin, David P.
2008-11-01
This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies ismore » the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.« less
Parametric Architecture in the Urban Space
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Kowalski, Karol G.
2017-10-01
The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-02-01
In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land-ocean distribution is present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M
This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less
NASA Astrophysics Data System (ADS)
Abderrahim, Iheb
Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.
NASA Astrophysics Data System (ADS)
Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.
2009-09-01
Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.
Evaluation of Two Energy Balance Closure Parametrizations
NASA Astrophysics Data System (ADS)
Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias
2014-05-01
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
Accessing Wind Tunnels From NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Becker, Jeff; Biegel, Bryan (Technical Monitor)
2002-01-01
The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Development of Corrections for Biomass Burning Effects in Version 2 of GEWEX/SRB Algorithm
NASA Technical Reports Server (NTRS)
Pinker, Rachel T.; Laszlo, I.; Dicus, Dennis L. (Technical Monitor)
1999-01-01
The objectives of this project were: (1) To incorporate into an existing version of the University of Maryland Surface Radiation Budget (SRB) model, optical parameters of forest fire aerosols, using best available information, as well as optical properties of other aerosols, identified as significant. (2) To run the model on regional scales with the new parametrization and information on forest fire occurrence and plume advection, as available from NASA LARC, and test improvements in inferring surface fluxes against daily values of measured fluxes. (3) Develop strategy how to incorporate the new parametrization on global scale and how to transfer modified model to NASA LARC.
An Evaluation of Alternative Designs for a Grid Information Service
NASA Technical Reports Server (NTRS)
Smith, Warren; Waheed, Abdul; Meyers, David; Yan, Jerry; Kwak, Dochan (Technical Monitor)
2001-01-01
The Globus information service wasn't working well. There were many updates of data from Globus daemons which saturated the single server and users couldn't retrieve information. We created a second server for NASA and Alliance. Things were great on that server, but a bit slow on the other server. We needed to know exactly how the information service was being used. What were the best servers and configurations? This viewgraph presentation gives an overview of the evaluation of alternative designs for a Grid Information Service. Details are given on the workload characterization, methodology used, and the performance evaluation.
NASA Astrophysics Data System (ADS)
Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli
2014-05-01
Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.
NASA Astrophysics Data System (ADS)
Alstone, Peter Michael
This work explores the intersections of information technology and off-grid electricity deployment in the developing world with focus on a key instance: the emergence of pay-as-you-go (PAYG) solar household-scale energy systems. It is grounded in detailed field study by my research team in Kenya between 2013-2014 that included primary data collection across the solar supply chain from global businesses through national and local distribution and to the end-users. We supplement the information with business process and national survey data to develop a detailed view of the markets, technology systems, and individuals who interact within those frameworks. The findings are presented in this dissertation as a series of four chapters with introductory, bridging, and synthesis material between them. The first chapter, Decentralized Energy Systems for Clean Electricity Access, presents a global view of the emerging off-grid power sector. Long-run trends in technology create "a unique moment in history" for closing the gap between global population and access to electricity, which has stubbornly held at 1-2 billion people without power since the initiation of the electric utility business model in the late 1800's. We show the potential for widespread near-term adoption of off-grid solar, which could lead to ten times less inequality in access and also ten times lower household-level climate impacts. Decentralized power systems that replace fuel-based incumbent lighting can advance the causes of climate stabilization, economic and social freedom and human health. Chapters two and three are focused on market and institutional dynamics present circa 2014 in for off-grid solar with a focus on the Kenya market. Chapter 2, "Off-grid Power and Connectivity", presents our findings related to the widespread influence of information technology across the supply chain for solar and in PAYG approaches. Using digital financing and embedded payment verification technology, PAYG businesses can help overcome key barriers to adoption of off-grid energy systems. The framework provides financing (or energy service payment structures) for users of off-grid solar, and we show is also instrumental for building trust in off-grid solar technology, facilitating supply chain coordination, and creating mechanisms and incentives for after-sales service. Chapter 3, Quality Communication, delves into detail on the information channels (both incumbent and ICT-based) that link retailers with regional and global markets for solar goods. In it we uncover the linked structure of physical distribution networks and the pathway for information about product characteristics (including, critically, the quality of products). The work shows that a few key decisions about product purchasing at the wholesale level, in places like Nairobi (the capital city for Kenya) create the bulk of the choice set for retail buyers, and show how targeting those wholesale purchasers is critically important for ensuring good-quality products are available. Chapter 4, the last in this dissertation, is titled Off-grid solar energy services enabled and evaluated through information technology and presents an analytic framework for using remote monitoring data from PAYG systems to assess the joint technological and behavioral drivers for energy access through solar home systems. Using large-scale (n ~ 1,000) data from a large PAYG business in Kenya (M-KOPA), we show that people tend to co-optimize between the quantity and reliability of service, using 55% of the energy technically possible but with only 5% system down time. Half of the users move their solar panel frequently (in response to concerns about theft, for the most part) and these users experienced 20% lower energy service quantities. The findings illustrate the implications of key trends for off-grid power: evolving system component technology architectures, opportunities for improved support to markets, and the use of background data from business and technology systems. (Abstract shortened by ProQuest.).
Workshop on Grid Generation and Related Areas
NASA Technical Reports Server (NTRS)
1992-01-01
A collection of papers given at the Workshop on Grid Generation and Related Areas is presented. The purpose of this workshop was to assemble engineers and scientists who are currently working on grid generation for computational fluid dynamics (CFD), surface modeling, and related areas. The objectives were to provide an informal forum on grid generation and related topics, to assess user experience, to identify needs, and to help promote synergy among engineers and scientists working in this area. The workshop consisted of four sessions representative of grid generation and surface modeling research and application within NASA LeRC. Each session contained presentations and an open discussion period.
Three-photon states in nonlinear crystal superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonosyan, D. A.; Kryuchkyan, G. Yu.; Institute for Physical Researches, National Academy of Sciences Ashtarak-2, 0203 Ashtarak
2011-04-15
It has been a longstanding goal in quantum optics to realize controllable sources generating joint multiphoton states, particularly photon triplet with arbitrary spectral characteristics. We demonstrate that such sources can be realized via cascaded parametric down-conversion (PDC) in superlattice structures of nonlinear and linear segments. We consider a scheme that involves two parametric processes--{omega}{sub 0{yields}{omega}1}+{omega}{sub 2}, {omega}{sub 2{yields}{omega}1}+{omega}{sub 1} under pulsed pump--and investigate the spontaneous creation of a photon triplet as well as the generation of high-intensity mode in intracavity three-photon splitting. We show the preparation of Greenberger-Horne-Zeilinger polarization-entangled states in cascaded type-II and type-I PDC in the framework ofmore » considering the dual-grid structure that involves two periodically poled crystals. We demonstrate the method of compensation of the dispersive effects in nonlinear segments by appropriately chosen linear dispersive segments of superlattice for preparation of the heralded joint states of two polarized photons. In the case of intracavity three-photon splitting, we concentrate on the investigation of photon-number distributions, third-order photon-number correlation function, as well as the Wigner functions. These quantities are observed both for short interaction time intervals and the over-transient regime, when dissipative effects are essential.« less
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-03-27
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
NASA Astrophysics Data System (ADS)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
2017-06-01
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.
A computational examination of directional stability for smooth and chined forebodies at high-alpha
NASA Technical Reports Server (NTRS)
Ravi, Ramakrishnan; Mason, William H.
1992-01-01
Computational Fluid Dynamics (CFD) has been used to study aircraft forebody flowfields at low-speed, angle-of-attack conditions with sideslip. The purpose is to define forebody geometries which provide good directional stability characteristics under these conditions. The flows over the experimentally investigated F-5A forebody and chine type configuration, previously computed by the authors, were recomputed with better grid topology and resolution. The results were obtained using a modified version of CFL3D (developed at NASA Langley) to solve either the Euler equations or the Reynolds equations employing the Baldwin-Lomax turbulence model with the Degani-Schiff modification to account for massive crossflow separation. Based on the results, it is concluded that current CFD methods can be used to investigate the aerodynamic characteristics of forebodies to achieve desirable high angle-of-attack characteristics. An analytically defined generic forebody model is described, and a parametric study of various forebody shapes was then conducted to determine which shapes promote a positive contribution to directional stability at high angle-of-attack. An unconventional approach for presenting the results is used to illustrate how the positive contribution arises. Based on the results of this initial parametric study, some guidelines for aerodynamic design to promote positive directional stability are presented.
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.
2011-01-01
The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.
A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO 2-CH 4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this paper, we present a set ofmore » fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. Finally, the mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.« less
A solution-adaptive hybrid-grid method for the unsteady analysis of turbomachinery
NASA Technical Reports Server (NTRS)
Mathur, Sanjay R.; Madavan, Nateri K.; Rajagopalan, R. G.
1993-01-01
A solution-adaptive method for the time-accurate analysis of two-dimensional flows in turbomachinery is described. The method employs a hybrid structured-unstructured zonal grid topology in conjunction with appropriate modeling equations and solution techniques in each zone. The viscous flow region in the immediate vicinity of the airfoils is resolved on structured O-type grids while the rest of the domain is discretized using an unstructured mesh of triangular cells. Implicit, third-order accurate, upwind solutions of the Navier-Stokes equations are obtained in the inner regions. In the outer regions, the Euler equations are solved using an explicit upwind scheme that incorporates a second-order reconstruction procedure. An efficient and robust grid adaptation strategy, including both grid refinement and coarsening capabilities, is developed for the unstructured grid regions. Grid adaptation is also employed to facilitate information transfer at the interfaces between unstructured grids in relative motion. Results for grid adaptation to various features pertinent to turbomachinery flows are presented. Good comparisons between the present results and experimental measurements and earlier structured-grid results are obtained.
caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oster, S.; Langella, S.; Hastings, S.
To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL:
Master Software Requirements Specification
NASA Technical Reports Server (NTRS)
Hu, Chaumin
2003-01-01
A basic function of a computational grid such as the NASA Information Power Grid (IPG) is to allow users to execute applications on remote computer systems. The Globus Resource Allocation Manager (GRAM) provides this functionality in the IPG and many other grids at this time. While the functionality provided by GRAM clients is adequate, GRAM does not support useful features such as staging several sets of files, running more than one executable in a single job submission, and maintaining historical information about execution operations. This specification is intended to provide the environmental and software functional requirements for the IPG Job Manager V2.0 being developed by AMTI for NASA.
BOREAS Regional Soils Data in Raster Format and AEAC Projection
NASA Technical Reports Server (NTRS)
Monette, Bryan; Knapp, David; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor)
2000-01-01
This data set was gridded by BOREAS Information System (BORIS) Staff from a vector data set received from the Canadian Soil Information System (CanSIS). The original data came in two parts that covered Saskatchewan and Manitoba. The data were gridded and merged into one data set of 84 files covering the BOREAS region. The data were gridded into the AEAC projection. Because the mapping of the two provinces was done separately in the original vector data, there may be discontinuities in some of the soil layers because of different interpretations of certain soil properties. The data are stored in binary, image format files.
Analysis of survival in breast cancer patients by using different parametric models
NASA Astrophysics Data System (ADS)
Enera Amran, Syahila; Asrul Afendi Abdullah, M.; Kek, Sie Long; Afiqah Muhamad Jamil, Siti
2017-09-01
In biomedical applications or clinical trials, right censoring was often arising when studying the time to event data. In this case, some individuals are still alive at the end of the study or lost to follow up at a certain time. It is an important issue to handle the censoring data in order to prevent any bias information in the analysis. Therefore, this study was carried out to analyze the right censoring data with three different parametric models; exponential model, Weibull model and log-logistic models. Data of breast cancer patients from Hospital Sultan Ismail, Johor Bahru from 30 December 2008 until 15 February 2017 was used in this study to illustrate the right censoring data. Besides, the covariates included in this study are the time of breast cancer infection patients survive t, age of each patients X1 and treatment given to the patients X2 . In order to determine the best parametric models in analysing survival of breast cancer patients, the performance of each model was compare based on Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and log-likelihood value using statistical software R. When analysing the breast cancer data, all three distributions were shown consistency of data with the line graph of cumulative hazard function resembles a straight line going through the origin. As the result, log-logistic model was the best fitted parametric model compared with exponential and Weibull model since it has the smallest value in AIC and BIC, also the biggest value in log-likelihood.
2013-07-05
This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between
mantisGRID: a grid platform for DICOM medical images management in Colombia and Latin America.
Garcia Ruiz, Manuel; Garcia Chaves, Alvin; Ruiz Ibañez, Carlos; Gutierrez Mazo, Jorge Mario; Ramirez Giraldo, Juan Carlos; Pelaez Echavarria, Alejandro; Valencia Diaz, Edison; Pelaez Restrepo, Gustavo; Montoya Munera, Edwin Nelson; Garcia Loaiza, Bernardo; Gomez Gonzalez, Sebastian
2011-04-01
This paper presents the mantisGRID project, an interinstitutional initiative from Colombian medical and academic centers aiming to provide medical grid services for Colombia and Latin America. The mantisGRID is a GRID platform, based on open source grid infrastructure that provides the necessary services to access and exchange medical images and associated information following digital imaging and communications in medicine (DICOM) and health level 7 standards. The paper focuses first on the data abstraction architecture, which is achieved via Open Grid Services Architecture Data Access and Integration (OGSA-DAI) services and supported by the Globus Toolkit. The grid currently uses a 30-Mb bandwidth of the Colombian High Technology Academic Network, RENATA, connected to Internet 2. It also includes a discussion on the relational database created to handle the DICOM objects that were represented using Extensible Markup Language Schema documents, as well as other features implemented such as data security, user authentication, and patient confidentiality. Grid performance was tested using the three current operative nodes and the results demonstrated comparable query times between the mantisGRID (OGSA-DAI) and Distributed mySQL databases, especially for a large number of records.
The agent-based spatial information semantic grid
NASA Astrophysics Data System (ADS)
Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren
2006-10-01
Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.
Abstract Machines for Polymorphous Computing
2007-12-01
s/ /s/ MARK NOVAK WARREN H. DEBANY, Jr. Work Unit Manager Technical Advisor, Information Grid Division Information...models and LLCs have been developed for Raw, MONARCH [18][19], TRIPS [20][21], and Smart Memories [22][23]. These research projects were conducted...used here. In our approach on Raw, two key concepts are used to fully leverage the Raw architecture [34]. First, the tile grid is viewed as a
Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmhan, Yogesh; Agarwal, Vaibhav; Aman, Saim
2012-05-16
Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic, distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart Power Meters, that is being deployed across the transmission and distribution network of electric grids. These sensors provide utilities with improved situation awareness on near-realtime electricity usage by individual consumers, and the power quality and stability of the transmission network.
Information Power Grid (IPG) Tutorial 2003
NASA Technical Reports Server (NTRS)
Meyers, George
2003-01-01
For NASA and the general community today Grid middleware: a) provides tools to access/use data sources (databases, instruments, ...); b) provides tools to access computing (unique and generic); c) Is an enabler of large scale collaboration. Dynamically responding to needs is a key selling point of a grid. Independent resources can be joined as appropriate to solve a problem. Provide tools to enable the building of a frameworks for application. Provide value added service to the NASA user base for utilizing resources on the grid in new and more efficient ways. Provides tools for development of Frameworks.
Estimating scatter in cone beam CT with striped ratio grids: A preliminary investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Scott, E-mail: sshsieh@stanford.edu
2016-09-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. Conventional antiscatter grids reject scatter at an efficiency that is constant or slowly varying over the surface of the grid. A striped ratio antiscatter grid, composed of stripes that alternate between high and low grid ratio, could be used instead. Such a striped ratio grid would reduce scatter-to-primary ratio as a conventional grid would, but more importantly, the signal discontinuities at the boundaries of stripes can be used to estimate local scatter content. Methods: Signal discontinuities provide information on scatter, but are contaminated by variation in primary radiation.more » A nonlinear image processing algorithm is used to estimate the scatter content in the presence of primary variation. We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid. These two scans are processed together to mimic a striped ratio grid. This represents a best case limit of the striped ratio grid, in that the extent of grid ratio modulation is very high and the scatter contrast is maximized. Results: In a uniform cylinder, the striped ratio grid virtually eliminates cupping. Artifacts from scatter are improved in an anthropomorphic phantom. Some banding artifacts are induced by the striped ratio grid. Conclusions: Striped ratio grids could be a simple and effective evolution of conventional antiscatter grids. Construction and validation of a physical prototype remains an important future step.« less
OxfordGrid: a web interface for pairwise comparative map views.
Yang, Hongyu; Gingle, Alan R
2005-12-01
OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
Numerical investigation of dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Li, Jing
1997-12-01
A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in further understanding the ozone generation and pollution control process in a dielectric barrier discharge.
Advanced Computing Architectures for Cognitive Processing
2009-07-01
Evolution ................................................................................. 20 Figure 9: Logic diagram smart block-based neuron...48 Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.
2016-06-25
Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the security and resilience of the electric power grid. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be difficult, as the statistical basis needed to directly estimate the probabilities and consequences of their occurrence does not exist. Because risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact, low-frequency events (HILFs) ismore » essential. Insights from such a model indicate where resources are most rationally and effectively expended. A risk-informed realization of designing and maintaining a grid resilient to HILFs will demand consideration of a spectrum of hazards/threats to infrastructure integrity, an understanding of their likelihoods of occurrence, treatment of the fragilities of critical assets to the stressors induced by such events, and through modeling grid network topology, the extent of damage associated with these scenarios. The model resulting from integration of these elements will allow sensitivity assessments based on optional risk management strategies, such as alternative pooling, staging and logistic strategies, and emergency contingency planning. This study is focused on the development of an end-to-end HILF risk-assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision-makers across numerous stakeholder groups in directing resources optimally towards the management of risks to operational continuity.« less
Shearing-induced asymmetry in entorhinal grid cells.
Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I
2015-02-12
Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Follen, Gregory J.; Gutierrez, Richard; Foster, Ian; Ginsburg, Brian; Larsson, Olle; Martin, Stuart; Tuecke, Steven; Woodford, David
2000-01-01
This paper describes a project to evaluate the feasibility of combining Grid and Numerical Propulsion System Simulation (NPSS) technologies, with a view to leveraging the numerous advantages of commodity technologies in a high-performance Grid environment. A team from the NASA Glenn Research Center and Argonne National Laboratory has been studying three problems: a desktop-controlled parameter study using Excel (Microsoft Corporation); a multicomponent application using ADPAC, NPSS, and a controller program-, and an aviation safety application running about 100 jobs in near real time. The team has successfully demonstrated (1) a Common-Object- Request-Broker-Architecture- (CORBA-) to-Globus resource manager gateway that allows CORBA remote procedure calls to be used to control the submission and execution of programs on workstations and massively parallel computers, (2) a gateway from the CORBA Trader service to the Grid information service, and (3) a preliminary integration of CORBA and Grid security mechanisms. We have applied these technologies to two applications related to NPSS, namely a parameter study and a multicomponent simulation.
Research on the architecture and key technologies of SIG
NASA Astrophysics Data System (ADS)
Fu, Zhongliang; Meng, Qingxiang; Huang, Yan; Liu, Shufan
2007-06-01
Along with the development of computer network, Grid has become one of the hottest issues of researches on sharing and cooperation of Internet resources throughout the world. This paper illustrates a new architecture of SIG-a five-hierarchy architecture (including Data Collecting Layer, Grid Layer, Service Layer, Application Layer and Client Layer) of SIG from the traditional three hierarchies (only including resource layer, service layer and client layer). In the paper, the author proposes a new mixed network mode of Spatial Information Grid which integrates CAG (Certificate Authority of Grid) and P2P (Peer to Peer) in the Grid Layer, besides, the author discusses some key technologies of SIG and analysis the functions of these key technologies.
USA National Phenology Network gridded products documentation
Crimmins, Theresa M.; Marsh, R. Lee; Switzer, Jeff R.; Crimmins, Michael A.; Gerst, Katharine L.; Rosemartin, Alyssa H.; Weltzin, Jake F.
2017-02-23
The goals of the USA National Phenology Network (USA-NPN, www.usanpn.org) are to advance science, inform decisions, and communicate and connect with the public regarding phenology and species’ responses to environmental variation and climate change. The USA-NPN seeks to facilitate informed ecosystem stewardship and management by providing phenological information freely and openly. One way the USA-NPN is endeavoring to accomplish these goals is by providing data and data products in a wide range of formats, including gridded real-time, short-term forecasted, and historical maps of phenological events, patterns and trends. This document describes the suite of gridded phenologically relevant data products produced and provided by the USA National Phenology Network, which can be accessed at www.usanpn.org/data/phenology_maps and also through web services at geoserver.usanpn.org/geoserver/wms?request=GetCapabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk
The core vision of the smart grid concept is the realization of reliable two-way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-grid GOOSE messages with IEC-61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma M.; Hendrix, Val; Chertkov, Michael
This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper wemore » consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis are becoming significant, with more data and multi-objective concerns. Efficient applications of analysis and the machine learning field are being considered in the loop.« less
A Robust and Resilient Network Design Paradigm for Region-Based Faults Inflicted by WMD Attack
2016-04-01
MEASUREMENTS FOR GRID MONITORING AND CONTROL AGAINST POSSIBLE WMD ATTACKS We investigated big data processing of PMU measurements for grid monitoring and...control against possible WMD attacks. Big data processing and analytics of synchrophasor measurements, collected from multiple locations of power grids...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming
2014-04-01
technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming...attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence... wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for
Mazzotta, Laura; Cozzani, Mauro; Mutinelli, Sabrina; Castaldo, Attilio; Silvestrini-Biavati, Armando
2013-01-01
Objectives. To build a 3D parametric model to detect shape and volume of dental roots, from a panoramic radiograph (PAN) of the patient. Materials and Methods. A PAN and a cone beam computed tomography (CBCT) of a patient were acquired. For each tooth, various parameters were considered (coronal and root lengths and widths): these were measured from the CBCT and from the PAN. Measures were compared to evaluate the accuracy level of PAN measurements. By using a CAD software, parametric models of an incisor and of a molar were constructed employing B-spline curves and free-form surfaces. PAN measures of teeth 2.1 and 3.6 were assigned to the parametric models; the same two teeth were segmented from CBCT. The two models were superimposed to assess the accuracy of the parametric model. Results. PAN measures resulted to be accurate and comparable with all other measurements. From model superimposition the maximum error resulted was 1.1 mm on the incisor crown and 2 mm on the molar furcation. Conclusion. This study shows that it is possible to build a 3D parametric model starting from 2D information with a clinically valid accuracy level. This can ultimately lead to a crown-root movement simulation. PMID:23554814
Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging.
Wong, C Y; Geller, E B; Chen, E Q; MacIntyre, W J; Morris, H H; Raja, S; Saha, G B; Lüders, H O; Cook, S A; Go, R T
1996-07-01
PET is useful in the presurgical evaluation of temporal lobe epilepsy. The purpose of this retrospective study is to assess the clinical use of statistical parametric imaging in predicting surgical outcome. Interictal 18FDG-PET scans in 17 patients with surgically-treated temporal lobe epilepsy (Group A-13 seizure-free, group B = 4 not seizure-free at 6 mo) were transformed into statistical parametric imaging, with each pixel representing a z-score value by using the mean and s.d. of count distribution in each individual patient, for both visual and quantitative analysis. Mean z-scores were significantly more negative in anterolateral (AL) and mesial (M) regions on the operated side than the nonoperated side in group A (AL: p < 0.00005, M: p = 0.0097), but not in group B (AL: p = 0.46, M: p = 0.08). Statistical parametric imaging correctly lateralized 16 out of 17 patients. Only the AL region, however, was significant in predicting surgical outcome (F = 29.03, p < 0.00005). Using a cut-off z-score value of -1.5, statistical parametric imaging correctly classified 92% of temporal lobes from group A and 88% of those from Group B. The preliminary results indicate that statistical parametric imaging provides both clinically useful information for lateralization in temporal lobe epilepsy and a reliable predictive indicator of clinical outcome following surgical treatment.
NASA Astrophysics Data System (ADS)
Olafsen, L. J.; Olafsen, J. S.; Eaves, I. K.
2018-06-01
We report on an experimental investigation of the time-dependent spatial intensity distribution of near-infrared idler pulses from an optical parametric oscillator measured using an infrared (IR) camera, in contrast to beam profiles obtained using traditional knife-edge techniques. Comparisons show the information gained by utilizing the thermal camera provides more detail than the spatially- or time-averaged measurements from a knife-edge profile. Synchronization, averaging, and thresholding techniques are applied to enhance the images acquired. The additional information obtained can improve the process by which semiconductor devices and other IR lasers are characterized for their beam quality and output response and thereby result in IR devices with higher performance.
Simplifying the circuit of Josephson parametric converters
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Electric Propulsion Performance from Geo-transfer to Geosynchronous Orbits
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Carpenter, Christian B.
2007-01-01
For near-Earth application, solar electric propulsion advocates have focused on Low Earth Orbit (LEO) to Geosynchronous (GEO) low-thrust transfers because of the significant improvement in capability over chemical alternatives. While the performance gain attained from starting with a lower orbit is large, there are also increased transfer times and radiation exposure risk that has hindered the commercial advocacy for electric propulsion stages. An incremental step towards electric propulsion stages is the use of integrated solar electric propulsion systems (SEPS) for GTO to GEO transfer. Thorough analyses of electric propulsion systems options and performance are presented. Results are based on existing or near-term capabilities of Arcjets, Hall thrusters, and Gridded Ion engines. Parametric analyses based on "rubber" thruster and launch site metrics are also provided.
Metal radomes for reduced RCS performance
NASA Astrophysics Data System (ADS)
Wahid, M.; Morris, S. B.
A frequency selective surface (FSS) comprising a square grid and a hexagonal array of disks is proposed as a means of reducing the Radar Cross Section (RCS) of a radar bay over a wide (2 GHz to 14.6 GHz) frequency bandwidth. Results are presented in terms of transmission loss for an 'A'-type sandwich radome consisting of two FSS layers for normal and non-normal incidence. A single FSS layer on a GRP flat panel is also considered. Good agreement is found between the predicted and measured results. The proposed FSS shows good performance and is relatively insensitive to angle of incidence between 3.8 GHz and 10.1 GHz. Predicted Insertion Phase Delay (IPD) and cross-polar performances are also given. Parametric studies have indicated the versatility of the proposed structure.
Josephson parametric converter saturation and higher order effects
NASA Astrophysics Data System (ADS)
Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.
2017-11-01
Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.
WE-EF-207-10: Striped Ratio Grids: A New Concept for Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S
2015-06-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. We propose the “striped ratio grid,” an anti-scatter grid with alternating stripes of high scatter rejection (attained, for example, by high grid ratio) and low scatter rejection. To minimize artifacts, stripes are oriented parallel to the direction of the ramp filter. Signal discontinuities at the boundaries between stripes provide information on local scatter content, although these discontinuities are contaminated by variation in primary radiation. Methods: We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid, andmore » processed them together to mimic a striped ratio grid. Two phantoms were scanned with the emulated striped ratio grid and compared with a conventional anti-scatter grid and a fan-beam acquisition, which served as ground truth. A nonlinear image processing algorithm was developed to mitigate the problem of primary variation. Results: The emulated striped ratio grid reduced scatter more effectively than the conventional grid alone. Contrast is thereby improved in projection imaging. In CT imaging, cupping is markedly reduced. Artifacts introduced by the striped ratio grid appear to be minimal. Conclusion: Striped ratio grids could be a simple and effective evolution of conventional anti-scatter grids. Unlike several other approaches currently under investigation for scatter management, striped ratio grids require minimal computation, little new hardware (at least for systems which already use removable grids) and impose few assumptions on the nature of the object being scanned.« less
The linear transformation model with frailties for the analysis of item response times.
Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A
2013-02-01
The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.
Smart Grid Communications Security Project, U.S. Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Frank
There were four groups that worked on this project in different areas related to Smart Girds and Security. They included faculty and students from electric computer and energy engineering, law, business and sociology. The results of the work are summarized in a verity of reports, papers and thesis. A major report to the Governor of Colorado’s energy office with contributions from all the groups working on this project is given bellow. Smart Grid Deployment in Colorado: Challenges and Opportunities, Report to Colorado Governor’s Energy Office and Colorado Smart Grid Task Force(2010) (Kevin Doran, Frank Barnes, and Puneet Pasrich, eds.) Thismore » report includes information on the state of the grid cyber security, privacy, energy storage and grid stability, workforce development, consumer behavior with respect to the smart grid and safety issues.« less
An Analysis of Performance Enhancement Techniques for Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, J. J.; Biswas, R.; Potsdam, M.; Strawn, R. C.; Biegel, Bryan (Technical Monitor)
2002-01-01
The overset grid methodology has significantly reduced time-to-solution of high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement techniques on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machine. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
Unlocking the potential of the smart grid
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
The smart grid refers to describe a next-generation electrical power system that is typified by the increased use of Information and Communication Technologies (ICT) in the whole delivery electrical energy process. The generation, delivery and consumption energy, all the steps for power transmission and distribution make the smart grid a complex system. The question is if the amount, diversity, and uses of such data put the smart grid in the category of Big Data applications, followed by the natural question of what is the true value of such data. In this paper an initial answer to this question is provided, the current state of data generation of the Polish grid is analyzed, and a future realistic scenario is illustrated. The analysis shows that the amount of data generated in smart grid is comparable to some of Big Data system examples.
Bayesian hierarchical functional data analysis via contaminated informative priors.
Scarpa, Bruno; Dunson, David B
2009-09-01
A variety of flexible approaches have been proposed for functional data analysis, allowing both the mean curve and the distribution about the mean to be unknown. Such methods are most useful when there is limited prior information. Motivated by applications to modeling of temperature curves in the menstrual cycle, this article proposes a flexible approach for incorporating prior information in semiparametric Bayesian analyses of hierarchical functional data. The proposed approach is based on specifying the distribution of functions as a mixture of a parametric hierarchical model and a nonparametric contamination. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. In the motivating application, the contamination component allows unanticipated curve shapes in unhealthy menstrual cycles. Methods are developed for posterior computation, and the approach is applied to data from a European fecundability study.
A policy system for Grid Management and Monitoring
NASA Astrophysics Data System (ADS)
Stagni, Federico; Santinelli, Roberto; LHCb Collaboration
2011-12-01
Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resoures are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.
Bower, Hannah; Andersson, Therese M-L; Crowther, Michael J; Dickman, Paul W; Lambe, Mats; Lambert, Paul C
2018-04-01
Expected or reference mortality rates are commonly used in the calculation of measures such as relative survival in population-based cancer survival studies and standardized mortality ratios. These expected rates are usually presented according to age, sex, and calendar year. In certain situations, stratification of expected rates by other factors is required to avoid potential bias if interest lies in quantifying measures according to such factors as, for example, socioeconomic status. If data are not available on a population level, information from a control population could be used to adjust expected rates. We have presented two approaches for adjusting expected mortality rates using information from a control population: a Poisson generalized linear model and a flexible parametric survival model. We used a control group from BCBaSe-a register-based, matched breast cancer cohort in Sweden with diagnoses between 1992 and 2012-to illustrate the two methods using socioeconomic status as a risk factor of interest. Results showed that Poisson and flexible parametric survival approaches estimate similar adjusted mortality rates according to socioeconomic status. Additional uncertainty involved in the methods to estimate stratified, expected mortality rates described in this study can be accounted for using a parametric bootstrap, but this might make little difference if using a large control population.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
Estimation of option-implied risk-neutral into real-world density by using calibration function
NASA Astrophysics Data System (ADS)
Bahaludin, Hafizah; Abdullah, Mimi Hafizah
2017-04-01
Option prices contain crucial information that can be used as a reflection of future development of an underlying assets' price. The main objective of this study is to extract the risk-neutral density (RND) and the risk-world density (RWD) of option prices. A volatility function technique is applied by using a fourth order polynomial interpolation to obtain the RNDs. Then, a calibration function is used to convert the RNDs into RWDs. There are two types of calibration function which are parametric and non-parametric calibrations. The density is extracted from the Dow Jones Industrial Average (DJIA) index options with a one month constant maturity from January 2009 until December 2015. The performance of RNDs and RWDs extracted are evaluated by using a density forecasting test. This study found out that the RWDs obtain can provide an accurate information regarding the price of the underlying asset in future compared to that of the RNDs. In addition, empirical evidence suggests that RWDs from a non-parametric calibration has a better accuracy than other densities.
Pixel-based parametric source depth map for Cerenkov luminescence imaging
NASA Astrophysics Data System (ADS)
Altabella, L.; Boschi, F.; Spinelli, A. E.
2016-01-01
Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.
Paul, Sarbajit; Chang, Junghwan
2017-01-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension. PMID:28671580
Paul, Sarbajit; Chang, Junghwan
2017-07-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.
Adaptive Suction and Blowing for Twin-Tail Buffet Control
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Yang, Zhi
1999-01-01
Adaptive active flow control for twin-tail buffet alleviation is investigated. The concept behind this technique is to place control ports on the tail outer and inner surfaces with flow suction or blowing applied through these ports in order to minimize the pressure difference across the tail. The suction or blowing volume flow rate from each port is proportional to the pressure difference across the tail at this location. A parametric study of the effects of the number and location of these ports on the buffet response is carried out. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, using a dynamic multi-block grid structure. The computational model is pitched at 30 deg angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span. Comparison of the time history and power spectral density responses of the tails for various distributions of the control ports are presented and discussed.
Black hole feeding and feedback: the physics inside the `sub-grid'
NASA Astrophysics Data System (ADS)
Negri, A.; Volonteri, M.
2017-05-01
Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.
Sail Plan Configuration Optimization for a Modern Clipper Ship
NASA Astrophysics Data System (ADS)
Gerritsen, Margot; Doyle, Tyler; Iaccarino, Gianluca; Moin, Parviz
2002-11-01
We investigate the use of gradient-based and evolutionary algorithms for sail shape optimization. We present preliminary results for the optimization of sheeting angles for the rig of the future three-masted clipper yacht Maltese Falcon. This yacht will be equipped with square-rigged masts made up of yards of circular arc cross sections. This design is especially attractive for megayachts because it provides a large sail area while maintaining aerodynamic and structural efficiency. The rig remains almost rigid in a large range of wind conditions and therefore a simple geometrical model can be constructed without accounting for the true flying shape. The sheeting angle optimization studies are performed using both gradient-based cost function minimization and evolutionary algorithms. The fluid flow is modeled by the Reynolds-averaged Navier-Stokes equations with the Spallart-Allmaras turbulence model. Unstructured non-conforming grids are used to increase robustness and computational efficiency. The optimization process is automated by integrating the system components (geometry construction, grid generation, flow solver, force calculator, optimization). We compare the optimization results to those done previously by user-controlled parametric studies using simple cost functions and user intuition. We also investigate the effectiveness of various cost functions in the optimization (driving force maximization, ratio of driving force to heeling force maximization).
Boundary Conditions for Scalar (Co)Variances over Heterogeneous Surfaces
NASA Astrophysics Data System (ADS)
Machulskaya, Ekaterina; Mironov, Dmitrii
2018-05-01
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin-Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.
A grid-embedding transonic flow analysis computer program for wing/nacelle configurations
NASA Technical Reports Server (NTRS)
Atta, E. H.; Vadyak, J.
1983-01-01
An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.
caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909
caGrid 1.0: an enterprise Grid infrastructure for biomedical research.
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.
High-resolution wavefront reconstruction using the frozen flow hypothesis
NASA Astrophysics Data System (ADS)
Liu, Xuewen; Liang, Yonghui; Liu, Jin; Xu, Jieping
2017-10-01
This paper describes an approach to reconstructing wavefronts on finer grid using the frozen flow hypothesis (FFH), which exploits spatial and temporal correlations between consecutive wavefront sensor (WFS) frames. Under the assumption of FFH, slope data from WFS can be connected to a finer, composite slope grid using translation and down sampling, and elements in transformation matrices are determined by wind information. Frames of slopes are then combined and slopes on finer grid are reconstructed by solving a sparse, large-scale, ill-posed least squares problem. By using reconstructed finer slope data and adopting Fried geometry of WFS, high-resolution wavefronts are then reconstructed. The results show that this method is robust even with detector noise and wind information inaccuracy, and under bad seeing conditions, high-frequency information in wavefronts can be recovered more accurately compared with when correlations in WFS frames are ignored.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... good example of an enabling Smart Grid technology that can empower both utilities and consumers to... Information and Communication Technologies (ICT) sector by integrating broadband into the developing Smart...'s years [[Page 26204
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz
2007-01-01
NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.
NASA Astrophysics Data System (ADS)
Baiya, Evanson G.
New energy technologies that provide real-time visibility of the electricity grid's performance, along with the ability to address unusual events in the grid and allow consumers to manage their energy use, are being developed in the United States. Primary drivers for the new technologies include the growing energy demand, tightening environmental regulations, aging electricity infrastructure, and rising consumer demand to become more involved in managing individual energy usage. In the literature and in practice, it is unclear if, and to what extent, residential consumers will adopt smart grid technologies. The purpose of this quantitative study was to examine the relationships between demographic characteristics, perceptions, and the likelihood of adopting smart grid technologies among residential energy consumers. The results of a 31-item survey were analyzed for differences within the Idaho consumers and compared against national consumers. Analysis of variance was used to examine possible differences between the dependent variable of likeliness to adopt smart grid technologies and the independent variables of age, gender, residential ownership, and residential location. No differences were found among Idaho consumers in their likeliness to adopt smart grid technologies. An independent sample t-test was used to examine possible differences between the two groups of Idaho consumers and national consumers in their level of interest in receiving detailed feedback information on energy usage, the added convenience of the smart grid, renewable energy, the willingness to pay for infrastructure costs, and the likeliness to adopt smart grid technologies. The level of interest in receiving detailed feedback information on energy usage was significantly different between the two groups (t = 3.11, p = .0023), while the other variables were similar. The study contributes to technology adoption research regarding specific consumer perceptions and provides a framework that estimates the likeliness of adopting smart grid technologies by residential consumers. The study findings could assist public utility managers and technology adoption researchers as they develop strategies to enable wide-scale adoption of smart grid technologies as a solution to the energy problem. Future research should be conducted among commercial and industrial energy consumers to further validate the findings and conclusions of this research.
Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.
Crăciun, Cora
2014-08-01
CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.
The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S
2015-10-05
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex
Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.
2015-01-01
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719
Resilience Metrics for the Electric Power System: A Performance-Based Approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Castillo, Andrea R; Silva-Monroy, Cesar Augusto
Grid resilience is a concept related to a power system's ability to continue operating and delivering power even in the event that low probability, high-consequence disruptions such as hurricanes, earthquakes, and cyber-attacks occur. Grid resilience objectives focus on managing and, ideally, minimizing potential consequences that occur as a result of these disruptions. Currently, no formal grid resilience definitions, metrics, or analysis methods have been universally accepted. This document describes an effort to develop and describe grid resilience metrics and analysis methods. The metrics and methods described herein extend upon the Resilience Analysis Process (RAP) developed by Watson et al. formore » the 2015 Quadrennial Energy Review. The extension allows for both outputs from system models and for historical data to serve as the basis for creating grid resilience metrics and informing grid resilience planning and response decision-making. This document describes the grid resilience metrics and analysis methods. Demonstration of the metrics and methods is shown through a set of illustrative use cases.« less
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
Functional group placement in protein binding sites: a comparison of GRID and MCSS
NASA Astrophysics Data System (ADS)
Bitetti-Putzer, Ryan; Joseph-McCarthy, Diane; Hogle, James M.; Karplus, Martin
2001-10-01
One approach to combinatorial ligand design begins by determining optimal locations (i.e., local potential energy minima) for functional groups in the binding site of a target macromolecule. MCSS and GRID are two methods, based on significantly different algorithms, which are used for this purpose. A comparison of the two methods for the same functional groups is reported. Calculations were performed for nonpolar and polar functional groups in the internal hydrophobic pocket of the poliovirus capsid protein, and on the binding surface of the src SH3 domain. The two approaches are shown to agree qualitatively; i.e., the global characteristics of the functional group maps generated by MCSS and GRID are similar. However, there are significant differences in the relative interaction energies of the two sets of minima, a consequence of the different functional form used to evaluate polar interactions (electrostatics and hydrogen bonding) in the two methods. The single sphere representation used by GRID affords only positional information, supplemented by the identification of hydrogen bonding interactions. By contrast, the multi-atom representation of most MCSS groups yields in both positional and orientational information. The two methods are most similar for small functional groups, while for larger functional groups MCSS yields results consistent with GRID but superior in detail. These results are in accord with the somewhat different purposes for which the two methods were developed. GRID has been used mainly to introduce functionalities at specific positions in lead compounds, in which case the orientation is predetermined by the structure of the latter. The orientational information provided by MCSS is important for its use in the de novo design of large, multi-functional ligands, as well as for improving lead compounds.
Custom Sky-Image Mosaics from NASA's Information Power Grid
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David
2005-01-01
yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user
Satellite gravity gradient grids for geophysics
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-01-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan
The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less
Smart Grid Status and Metrics Report Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.
A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papersmore » covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.« less
LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle
NASA Astrophysics Data System (ADS)
Hughes, Hunter Douglas
This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated using the nonlinear flexible hypersonic model for both the velocity tracking and altitude tracking cases. Both of these cases were subject to a ramp input and a multi-step input both with and without perturbation in the model. The results of the simulation show that the tracking state follows the command signal successfully though the perturbed system does show some higher frequency characteristics in the non-tracking states. It was discovered that there is an issue with integral windup when switching takes place in the controller, so an algorithm was implemented to reset the integration of the error on the tracking state when the switch takes place. It was also seen that there was a decline in altitude when tracking velocity, and a large change in velocity that occurred during altitude tracking. These results lead to the decision to include a unity gain regulation state on velocity for the altitude tracking and the altitude for the velocity tracking during the output feedback control synthesis. The procedure for synthesizing an output feedback H infinity LPV controller for the hypersonic vehicle is also discussed in this dissertation. The output feedback design looked at velocity tracking and altitude tracking with rigid body motion variables for both the exible and rigid body hypersonic vehicle models. As with the full state feedback controller, a parametric study was conducted on each of these controllers to determine the number of gridding points in the parameter space and the parameter variation rate limits in the system. The parametric study reveals a 7x7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.1 200]T is preferable for both the velocity tracking and altitude tracking cases with both the exible and rigid body assumptions. The resulting Hinfinity robust performances were gamma = 113:2146 for the exible body velocity tracking case, gamma = 83.6931 for the rigid body velocity tracking case, gamma = 107:2043 for the exible body altitude tracking case, and gamma = 97:7403 for the rigid body altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. The results of this analysis show that there is a larger difference in the response of the Hinfinity LPV controller and the Hinfinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the Hinfinity LPV controller was applied to the exible nonlinear plant model. The rigid body controllers were applied to the exible plant model to see if the exible nature of the vehicle could be treated as a perturbation to the system. Additionally, there were simulations run both with and without sensor noise and parametric uncertainty. The results of simulation show that the rigid body controller is able to successfully apply to the exible body model for the velocity tracking case, but is unable to stabilize the altitude tracking case. It was also seen that the system is able to track the command signal while minimizing the variations seen in the altitude for the velocity tracking case and in the velocity during the altitude tracking case. Additionally, there was no obvious effect of perturbations in the system on the tracking state or secondary regulation state. There were high frequency responses associated with the other perturbed states.
[Research on tumor information grid framework].
Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing
2013-10-01
In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life.
A new service-oriented grid-based method for AIoT application and implementation
NASA Astrophysics Data System (ADS)
Zou, Yiqin; Quan, Li
2017-07-01
The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.
A Review on Development Practice of Smart Grid Technology in China
NASA Astrophysics Data System (ADS)
Han, Liu; Chen, Wei; Zhuang, Bo; Shen, Hongming
2017-05-01
Smart grid has become an inexorable trend of energy and economy development worldwide. Since the development of smart grid was put forward in China in 2009, we have obtained abundant research results and practical experiences as well as extensive attention from international community in this field. This paper reviews the key technologies and demonstration projects on new energy connection forecasts; energy storage; smart substations; disaster prevention and reduction for power transmission lines; flexible DC transmission; distribution automation; distributed generation access and micro grid; smart power consumption; the comprehensive demonstration of power distribution and utilization; smart power dispatching and control systems; and the communication networks and information platforms of China, systematically, on the basis of 5 fields, i.e., renewable energy integration, smart power transmission and transformation, smart power distribution and consumption, smart power dispatching and control systems and information and communication platforms. Meanwhile, it also analyzes and compares with the developmental level of similar technologies abroad, providing an outlook on the future development trends of various technologies.
GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids
Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.
2015-01-01
GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.
2018-01-01
Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.
SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less
The Challenges of Defense Support of Civil Authorities and Homeland Defense in the Cyber Domain
2013-05-20
Information Grid ( GIG ) against a cyber attack has taken the forefront in national level discussions. The U.S. homeland’s assumed sanctuary against...other U.S. government agencies and key operators within the private sector to detect, deter, prevent, and thwart exploitation of CIKR and the GIG ...CIKR) and the Global Information Grid ( GIG ) against a cyber attack has taken the forefront in national level discussions. The U.S. homeland’s
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
NASA Technical Reports Server (NTRS)
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2012-01-01
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.
NASA Astrophysics Data System (ADS)
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Network Coding Opportunities for Wireless Grids Formed by Mobile Devices
NASA Astrophysics Data System (ADS)
Nielsen, Karsten Fyhn; Madsen, Tatiana K.; Fitzek, Frank H. P.
Wireless grids have potential in sharing communication, computa-tional and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices.
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Experiences of engineering Grid-based medical software.
Estrella, F; Hauer, T; McClatchey, R; Odeh, M; Rogulin, D; Solomonides, T
2007-08-01
Grid-based technologies are emerging as potential solutions for managing and collaborating distributed resources in the biomedical domain. Few examples exist, however, of successful implementations of Grid-enabled medical systems and even fewer have been deployed for evaluation in practice. The objective of this paper is to evaluate the use in clinical practice of a Grid-based imaging prototype and to establish directions for engineering future medical Grid developments and their subsequent deployment. The MammoGrid project has deployed a prototype system for clinicians using the Grid as its information infrastructure. To assist in the specification of the system requirements (and for the first time in healthgrid applications), use-case modelling has been carried out in close collaboration with clinicians and radiologists who had no prior experience of this modelling technique. A critical qualitative and, where possible, quantitative analysis of the MammoGrid prototype is presented leading to a set of recommendations from the delivery of the first deployed Grid-based medical imaging application. We report critically on the application of software engineering techniques in the specification and implementation of the MammoGrid project and show that use-case modelling is a suitable vehicle for representing medical requirements and for communicating effectively with the clinical community. This paper also discusses the practical advantages and limitations of applying the Grid to real-life clinical applications and presents the consequent lessons learned. The work presented in this paper demonstrates that given suitable commitment from collaborating radiologists it is practical to deploy in practice medical imaging analysis applications using the Grid but that standardization in and stability of the Grid software is a necessary pre-requisite for successful healthgrids. The MammoGrid prototype has therefore paved the way for further advanced Grid-based deployments in the medical and biomedical domains.
Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo
2007-11-01
The stationary grid commonly used with a digital x-ray detector causes a moiré interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moiré such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moiré pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moiré pattern, particularly the line frequency and displacement. The frequency of the moiré pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moiré frequency. The frequency of the moiré pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moiré-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moiré pattern were investigated.
Breton, Vincent; Dean, Kevin; Solomonides, Tony; Blanquer, I; Hernandez, V; Medico, E; Maglaveras, N; Benkner, S; Lonsdale, G; Lloyd, S; Hassan, K; McClatchey, R; Miguet, S; Montagnat, J; Pennec, X; De Neve, W; De Wagter, C; Heeren, G; Maigne, L; Nozaki, K; Taillet, M; Bilofsky, H; Ziegler, R; Hoffman, M; Jones, C; Cannataro, M; Veltri, P; Aloisio, G; Fiore, S; Mirto, M; Chouvarda, I; Koutkias, V; Malousi, A; Lopez, V; Oliveira, I; Sanchez, J P; Martin-Sanchez, F; De Moor, G; Claerhout, B; Herveg, J A M
2005-01-01
Over the last four years, a community of researchers working on Grid and High Performance Computing technologies started discussing the barriers and opportunities that grid technologies must face and exploit for the development of health-related applications. This interest lead to the first Healthgrid conference, held in Lyon, France, on January 16th-17th, 2003, with the focus of creating increased awareness about the possibilities and advantages linked to the deployment of grid technologies in health, ultimately targeting the creation of a European/international grid infrastructure for health. The topics of this conference converged with the position of the eHealth division of the European Commission, whose mandate from the Lisbon Meeting was "To develop an intelligent environment that enables ubiquitous management of citizens' health status, and to assist health professionals in coping with some major challenges, risk management and the integration into clinical practice of advances in health knowledge." In this context "Health" involves not only clinical procedures but covers the whole range of information from molecular level (genetic and proteomic information) over cells and tissues, to the individual and finally the population level (social healthcare). Grid technology offers the opportunity to create a common working backbone for all different members of this large "health family" and will hopefully lead to an increased awareness and interoperability among disciplines. The first HealthGrid conference led to the creation of the Healthgrid association, a non-profit research association legally incorporated in France but formed from the broad community of European researchers and institutions sharing expertise in health grids. After the second Healthgrid conference, held in Clermont-Ferrand on January 29th-30th, 2004, the need for a "white paper" on the current status and prospective of health grids was raised. Over fifty experts from different areas of grid technologies, eHealth applications and the medical world were invited to contribute to the preparation of this document.
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
NASA Astrophysics Data System (ADS)
Ludwig, M.; Herbst, G.; Rieke-Zapp, D.; Rosenbauer, R.; Rutishauser, S.; Zellweger, A.
2013-02-01
Consecrated in 1297 as the monastery church of the four years earlier founded St. Catherine's monastery, the Gothic Church of St. Catherine was largely destroyed in a devastating bombing raid on January 2nd 1945. To counteract the process of disintegration, the departments of geo-information and lower monument protection authority of the City of Nuremburg decided to getting done a three dimensional building model of the Church of St. Catherine's. A heterogeneous set of data was used for preparation of a parametric architectural model. In effect the modeling of historic buildings can profit from the so called BIM method (Building Information Modeling), as the necessary structuring of the basic data renders it into very sustainable information. The resulting model is perfectly suited to deliver a vivid impression of the interior and exterior of this former mendicant orders' church to present observers.
Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging
NASA Astrophysics Data System (ADS)
Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-04-01
The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.
Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging
Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.
2014-01-01
The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402
NASA Astrophysics Data System (ADS)
Choi, Hon-Chit; Wen, Lingfeng; Eberl, Stefan; Feng, Dagan
2006-03-01
Dynamic Single Photon Emission Computed Tomography (SPECT) has the potential to quantitatively estimate physiological parameters by fitting compartment models to the tracer kinetics. The generalized linear least square method (GLLS) is an efficient method to estimate unbiased kinetic parameters and parametric images. However, due to the low sensitivity of SPECT, noisy data can cause voxel-wise parameter estimation by GLLS to fail. Fuzzy C-Mean (FCM) clustering and modified FCM, which also utilizes information from the immediate neighboring voxels, are proposed to improve the voxel-wise parameter estimation of GLLS. Monte Carlo simulations were performed to generate dynamic SPECT data with different noise levels and processed by general and modified FCM clustering. Parametric images were estimated by Logan and Yokoi graphical analysis and GLLS. The influx rate (K I), volume of distribution (V d) were estimated for the cerebellum, thalamus and frontal cortex. Our results show that (1) FCM reduces the bias and improves the reliability of parameter estimates for noisy data, (2) GLLS provides estimates of micro parameters (K I-k 4) as well as macro parameters, such as volume of distribution (Vd) and binding potential (BP I & BP II) and (3) FCM clustering incorporating neighboring voxel information does not improve the parameter estimates, but improves noise in the parametric images. These findings indicated that it is desirable for pre-segmentation with traditional FCM clustering to generate voxel-wise parametric images with GLLS from dynamic SPECT data.
Conservative zonal schemes for patched grids in 2 and 3 dimensions
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.
1987-01-01
The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H; Kong, V; Jin, J
Purpose: A synchronized moving grid (SMOG) has been proposed to reduce scatter and lag artifacts in cone beam computed tomography (CBCT). However, information is missing in each projection because certain areas are blocked by the grid. A previous solution to this issue is acquiring 2 complimentary projections at each position, which increases scanning time. This study reports our first Result using an inter-projection sensor fusion (IPSF) method to estimate missing projection in our prototype SMOG-based CBCT system. Methods: An in-house SMOG assembling with a 1:1 grid of 3 mm gap has been installed in a CBCT benchtop. The grid movesmore » back and forth in a 3-mm amplitude and up-to 20-Hz frequency. A control program in LabView synchronizes the grid motion with the platform rotation and x-ray firing so that the grid patterns for any two neighboring projections are complimentary. A Catphan was scanned with 360 projections. After scatter correction, the IPSF algorithm was applied to estimate missing signal for each projection using the information from the 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct CBCT images. The CBCTs were compared to those reconstructed using normal projections without applying the SMOG system. Results: The SMOG-IPSF method may reduce image dose by half due to the blocked radiation by the grid. The method almost completely removed scatter related artifacts, such as the cupping artifacts. The evaluation of line pair patterns in the CatPhan suggested that the spatial resolution degradation was minimal. Conclusion: The SMOG-IPSF is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less
Shi, J Q; Wang, B; Will, E J; West, R M
2012-11-20
We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.
Deterministic Walks with Choice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.
2014-01-10
This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.
Prendre des notes: Une histoire de grille (Taking Notes: A Matter of Grids).
ERIC Educational Resources Information Center
Ghenet-Hottois, Michele
1991-01-01
A method used to help translators develop skill in understanding texts uses a grid for organizing information before it is translated into another language. The technique, which can also be used simply for notetaking, is illustrated with a text in French. (MSE)
Power Grid Data Analysis with R and Hadoop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Gibson, Tara D.; Kleese van Dam, Kerstin
This book chapter presents an approach to analysis of large-scale time-series sensor information based on our experience with power grid data. We use the R-Hadoop Integrated Programming Environment (RHIPE) to analyze a 2TB data set and present code and results for this analysis.
Salciarini, D.; Godt, J.W.; Savage, W.Z.; Conversini, P.; Baum, R.L.; Michael, J.A.
2006-01-01
We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.
Investigating the possibility of a turning point in the dark energy equation of state
NASA Astrophysics Data System (ADS)
Hu, YaZhou; Li, Miao; Li, XiaoDong; Zhang, ZhenHui
2014-08-01
We investigate a second order parabolic parametrization, w( a) = w t + w a ( a t - a)2, which is a direct characterization of a possible turning in w. The cosmological consequence of this parametrization is explored by using the observational data of the SNLS3 type Ia supernovae sample, the CMB measurements from WMAP9 and Planck, the Hubble parameter measurement from HST, and the baryon acoustic oscillation (BAO) measurements from 6dFGS, BOSS DR11 and improved WiggleZ. We found the existence of a turning point in w at a ˜ 0.7 is favored at 1 σ CL. In the epoch 0.55 < a < 0.9, w < -1 is favored at 1 σ CL, and this significance increases near a = 0.8, reaching a 2 σ CL. The parabolic parametrization achieve equivalent performance to the ΛCDM and Chevallier-Polarski-Linder (CPL) models when the Akaike information criterion was used to assess them. Our analysis shows the value of considering high order parametrizations when studying the cosmological constraints on w.
A Parametric Oscillator Experiment for Undergraduates
NASA Astrophysics Data System (ADS)
Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay
We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.
NASA Astrophysics Data System (ADS)
Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.
Transient analysis of a thermal storage unit involving a phase change material
NASA Technical Reports Server (NTRS)
Griggs, E. I.; Pitts, D. R.; Humphries, W. R.
1974-01-01
The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.
Varma, N K; Kushwaha, R; Beydoun, A; Williams, W J; Drury, I
1997-10-01
The purpose of this paper is to compare the morphological features of interictal epileptiform discharges (IED) in patients with benign epilepsy of childhood with centrotemporal spikes to IED of those with symptomatic localization related epilepsies using information theory. Three patients from each clinical group were selected. Two-second epochs centered at the peak negativity of the sharp waves were analyzed from a referential montage during stage I sleep. The epochs from the two groups were compared using parametric and information theory analysis. Information analysis determined the likelihood of correctly identifying the clinical group based on the IED. Standard parametric, morphological and spectral analyses were also performed. We found no significant difference in the morphology of the sharp wave between the two groups. The after-going slow wave contained the greatest information that separated the two groups. This result was supported by morphological and spectral differences in the after-going slow wave. Greater distinguishing information is held in the after-going slow wave than the sharp wave for the identification of clinical groups. Information analysis may assist in differentiating clinical syndromes from EEG signals.
Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie
1991-10-01
total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice
Theory and Application of DNA Histogram Analysis.
ERIC Educational Resources Information Center
Bagwell, Charles Bruce
The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…
5th Annual Earth System Grid Federation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The purpose of the Fifth Annual Earth System Grid Federation (ESGF) Face-to-Face (F2F) Conference was to present the most recent information on the state of ESGF’s software stack and to identify and address the data needs and gaps for the climate and weather communities that ESGF supports.
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Lewis, Timothy A.
2016-01-01
A loss-of-separation (LOS) is said to occur when two aircraft are spatially too close to one another. A LOS is the fundamental unsafe event to be avoided in air traffic management and conflict detection (CD) is the function that attempts to predict these LOS events. In general, the effectiveness of conflict detection relates to the overall safety and performance of an air traffic management concept. An abstract, parametric analysis was conducted to investigate the impact of surveillance quality, level of intent information, and quality of intent information on conflict detection performance. The data collected in this analysis can be used to estimate the conflict detection performance under alternative future scenarios or alternative allocations of the conflict detection function, based on the quality of the surveillance and intent information under those conditions.Alternatively, this data could also be used to estimate the surveillance and intent information quality required to achieve some desired CD performance as part of the design of a new separation assurance system.
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
Human Factors for Situation Assessment in Grid Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guttromson, Ross T.; Schur, Anne; Greitzer, Frank L.
2007-08-08
Executive Summary Despite advances in technology, power system operators must assimilate overwhelming amounts of data to keep the grid operating. Analyses of recent blackouts have clearly demonstrated the need to enhance the operator’s situation awareness (SA). The long-term objective of this research is to integrate valuable technologies into the grid operator environment that support decision making under normal and abnormal operating conditions and remove non-technical barriers to enable the optimum use of these technologies by individuals working alone and as a team. More specifically, the research aims to identify methods and principles to increase SA of grid operators in themore » context of system conditions that are representative or common across many operating entities and develop operationally relevant experimental methods for studying technologies and operational practices which contribute to SA. With increasing complexity and interconnectivity of the grid, the scope and complexity of situation awareness have grown. New paradigms are needed to guide research and tool development aimed to enhance and improve operations. In reviewing related research, operating practices, systems, and tools, the present study established a taxonomy that provides a perspective on research and development surrounding power grid situation awareness and clarifies the field of human factors/SA for grid operations. Information sources that we used to identify critical factors underlying SA included interviews with experienced operational personnel, available historical summaries and transcripts of abnormal conditions and outages (e.g., the August 14, 2003 blackout), scientific literature, and operational policies/procedures and other documentation. Our analysis of August 2003 blackout transcripts and interviews adopted a different perspective than previous analyses of this material, and we complemented this analysis with additional interviews. Based on our analysis and a broad literature review, we advocate a new perspective on SA in terms of sensemaking, also called situated or ecological decision making, where the focus of the investigation is to understand why the decision maker(s) experienced the situation the way they did, or why what they saw made sense to them at the time. This perspective is distinct from the traditional branch of human factors research in the field which focuses more on ergonomics and the transactional relationship between the human operator and the systems. Consistent with our findings from the literature review, we recognized an over-arching need to focus SA research on issues surrounding the concept of shared knowledge; e.g., awareness of what is happening in adjacent areas as well as one’s own area of responsibility. Major findings were: a) Inadequate communication/information sharing is pervasive, b) Information is available, but not used. Many tools and mechanisms exist for operators to build awareness of the physical grid system, yet the transcripts reveal that they still need to call and exchange information with operators of neighboring areas to improve or validate their SA. The specific types of information that they request are quite predictable and, in most cases, cover information that could be available to both operators and reliability coordinators through readily available displays or other data sources, c) Shared Knowledge is Required on Operations/Actions as Well as Physical Status. In an ideal, technologically and organizationally perfect world, every control room and every reliability coordinator may have access to complete data across all regional control areas and yet, there would still be reason for the operators to call each other to gain and improve their SA of power grid operations, and d) Situation Awareness as sensemaking and shared knowledge.« less
Valentine, Matthew J; Porter, Susan; Chapwanya, Aspinas; Callanan, John J
2016-01-01
Case summary This case describes a young non-pregnant cat that presented with uterine prolapse in association with an unusual diffuse, polypoid, fibrosing perimetritis and parametritis. Following ovariohysterectomy the cat recovered fully. No intra-abdominal complications were seen on ultrasound examination 3 months postsurgery. At the time of writing, the cat remains healthy. Relevance and novel information Uterine prolapse in the cat is relatively rare and usually associated with the periparturient period. Inflammatory polypoid perimetritis and parametritis have not previously been documented in cats, and in dogs have only been reported in association with the administration of oestrogenic compounds. The polypoid inflammation affecting the uterus and parametrium may have contributed to increased laxity of the uterine ligaments and predisposed to the development of uterine prolapse. PMID:28491407
Keeping nurses at work: a duration analysis.
Holmås, Tor Helge
2002-09-01
A shortage of nurses is currently a problem in several countries, and an important question is therefore how one can increase the supply of nursing labour. In this paper, we focus on the issue of nurses leaving the public health sector by utilising a unique data set containing information on both the supply and demand side of the market. To describe the exit rate from the health sector we apply a semi-parametric hazard rate model. In the estimations, we correct for unobserved heterogeneity by both a parametric (Gamma) and a non-parametric approach. We find that both wages and working conditions have an impact on nurses' decision to quit. Furthermore, failing to correct for the fact that nurses' income partly consists of compensation for inconvenient working hours results in a considerable downward bias of the wage effect. Copyright 2002 John Wiley & Sons, Ltd.
Control of entanglement dynamics in a system of three coupled quantum oscillators.
Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Meucci, R; Roversi, J A; Arecchi, F T
2017-08-30
Dynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.
Privacy protection for HealthGrid applications.
Claerhout, B; De Moor, G J E
2005-01-01
This contribution aims at introducing the problem of privacy protection in e-Health and at describing a number of existing privacy enhancing techniques (PETs). The recognition that privacy constitutes a fundamental right is gradually entering public awareness. Because healthcare-related data are susceptible to being abused for many obvious reasons, public apprehension about privacy has focused on medical data. Public authorities have become convinced of the need to enforce privacy protection and make considerable efforts for promoting through privacy protection legislation the deployment of PETs. Based on the study of the specific features of Grid technology, ways in which PET services could be integrated in the HealthGrid are being analyzed. Grid technology aims at removing barriers between local and remote resources. The privacy and legal issues raised by the HealthGrid are caused by the transparent interchange and processing of sensitive medical information. PET technology has already proven its usefulness for privacy protection in health-related marketing and research data collection. While this paper does not describe market-ready solutions for privacy protection in the HealthGrid, it puts forward several cases in which the Grid may benefit from PETs. Early integration of privacy protection services into the HealthGrid can lead to a synergy that is beneficial for the development of the HealthGrid itself.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve
Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Tamil Nadu is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M; Palchak, Joseph D; Ehlen, Annaliese K
This chapter on Andhra Pradesh is one of six state chapters included in Appendix C of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study). The objective of the state chapters is to provide modeling assumptions, results, and next steps to use and improve the model specific to each state. The model has inherent uncertainties, particularly in how the intrastate transmission network and RE generation projects will develop (e.g., locations, capacities). The model also does not include information on contracts or must-run status of particular plantsmore » for reliability purposes. By providing details on the higher spatial resolution model of 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. II - Regional Study' (the Regional Study), which better represents the impact of congestion on least-cost scheduling and dispatch, provides a deeper understanding of the relationship among renewable energy (RE) location, transmission, and system flexibility with regard to RE integration, compared to 'Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid, Vol. I - National Study.'« less
DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.
2010-03-01
Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
An improved resource management model based on MDS
NASA Astrophysics Data System (ADS)
Yuan, Man; Sun, Changying; Li, Pengfei; Sun, Yongdong; He, Rui
2005-11-01
GRID technology provides a kind of convenient method for managing GRID resources. This service is so-called monitoring, discovering service. This method is proposed by Globus Alliance, in this GRID environment, all kinds of resources, such as computational resources, storage resources and other resources can be organized by MDS specifications. However, this MDS is a theory framework, particularly, in a small world intranet, in the case of limit of resources, the MDS has its own limitation. Based on MDS, an improved light method for managing corporation computational resources and storage resources is proposed in intranet(IMDS). Firstly, in MDS, all kinds of resource description information is stored in LDAP, it is well known although LDAP is a light directory access protocol, in practice, programmers rarely master how to access and store resource information into LDAP store, in such way, it limits MDS to be used. So, in intranet, these resources' description information can be stored in RDBMS, programmers and users can access this information by standard SQL. Secondly, in MDS, how to monitor all kinds of resources in GRID is not transparent for programmers and users. In such way, it limits its application scope, in general, resource monitoring method base on SNMP is widely employed in intranet, therefore, a kind of resource monitoring method based on SNMP is integrated into MDS. Finally, all kinds of resources in the intranet can be described by XML, and all kinds of resources' description information is stored in RDBMS, such as MySql, and retrieved by standard SQL, dynamic information for all kinds of resources can be sent to resource storage by SNMP, A prototype resource description, monitoring is designed and implemented in intranet.
Information in a Network of Neuronal Cells: Effect of Cell Density and Short-Term Depression
Onesto, Valentina; Cosentino, Carlo; Di Fabrizio, Enzo; Cesarelli, Mario; Amato, Francesco; Gentile, Francesco
2016-01-01
Neurons are specialized, electrically excitable cells which use electrical to chemical signals to transmit and elaborate information. Understanding how the cooperation of a great many of neurons in a grid may modify and perhaps improve the information quality, in contrast to few neurons in isolation, is critical for the rational design of cell-materials interfaces for applications in regenerative medicine, tissue engineering, and personalized lab-on-a-chips. In the present paper, we couple an integrate-and-fire model with information theory variables to analyse the extent of information in a network of nerve cells. We provide an estimate of the information in the network in bits as a function of cell density and short-term depression time. In the model, neurons are connected through a Delaunay triangulation of not-intersecting edges; in doing so, the number of connecting synapses per neuron is approximately constant to reproduce the early time of network development in planar neural cell cultures. In simulations where the number of nodes is varied, we observe an optimal value of cell density for which information in the grid is maximized. In simulations in which the posttransmission latency time is varied, we observe that information increases as the latency time decreases and, for specific configurations of the grid, it is largely enhanced in a resonance effect. PMID:27403421
From the grid to the smart grid, topologically
NASA Astrophysics Data System (ADS)
Pagani, Giuliano Andrea; Aiello, Marco
2016-05-01
In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.
NASA Astrophysics Data System (ADS)
Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean
2010-05-01
Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients across scales. We also focus on the likely gains of future inversions of finite-frequency seismic data using a sparsity promoting penalty in combination with our new wavelet approach.
NASA Astrophysics Data System (ADS)
Rebolledo Coy, M. A.; Villanueva, O. M. B.; Bartz-Beielstein, T.; Ribbe, L.
2017-12-01
Rainfall measurement plays an important role on the understanding and modeling of the water cycle. However, the assessment of scarce data regions using common rain gauge information, cannot be done using a straightforward approach. Some of the main problems concerning rainfall assessment are; the lack of a sufficiently dense grid of ground stations in extensive areas and the unstable spatial accuracy of the Satellite Rainfall Estimates (SREs). Following previous works on SREs analysis and bias-correction, we generate an ensemble model that corrects the bias error on a seasonal and yearly basis using six different state-of-the-art SREs (TRMM 3B42RT, TRMM 3B42v7, PERSIANN-CDR, CHIRPSv2, CMORPH and MSWEPv1.2) in a point-to-pixel approach for the studied period (2003-2015). Three different basins; Magdalena in Colombia, Imperial in Chile and Paraiba do Sul in Brazil are evaluated. Using Gaussian process regression and Bayesian robust regression we model the behavior of the ground stations and evaluate its goodness-of-fit by using the modified Kling-Gupta efficiency (KGE'). Following this evaluation, the models are re-fitted by taking into account the error distribution in each point and the corresponding KGE' is evaluated again. Both models were specified using the probabilistic language STAN. To improve the efficiency of the Gaussian model a clustering of the data was implemented. We also compared the performance of both models in term of uncertainty and stability against the raw input concluding that both models represent better the study areas. The results show that the error displays an exponential behavior for days where precipitation was present, this allows the models to be corrected according to the observed rainfall values. The seasonal evaluations also show improved performance in relation to the yearly evaluations. The use of bias-corrected SREs for hydrologic purposes in scarce data regions is highly recommended in order to merge the punctual values from the ground measurements and the spatial distribution of rainfall from the satellite estimates.
Real Time Monitor of Grid job executions
NASA Astrophysics Data System (ADS)
Colling, D. J.; Martyniak, J.; McGough, A. S.; Křenek, A.; Sitera, J.; Mulač, M.; Dvořák, F.
2010-04-01
In this paper we describe the architecture and operation of the Real Time Monitor (RTM), developed by the Grid team in the HEP group at Imperial College London. This is arguably the most popular dissemination tool within the EGEE [1] Grid. Having been used, on many occasions including GridFest and LHC inauguration events held at CERN in October 2008. The RTM gathers information from EGEE sites hosting Logging and Bookkeeping (LB) services. Information is cached locally at a dedicated server at Imperial College London and made available for clients to use in near real time. The system consists of three main components: the RTM server, enquirer and an apache Web Server which is queried by clients. The RTM server queries the LB servers at fixed time intervals, collecting job related information and storing this in a local database. Job related data includes not only job state (i.e. Scheduled, Waiting, Running or Done) along with timing information but also other attributes such as Virtual Organization and Computing Element (CE) queue - if known. The job data stored in the RTM database is read by the enquirer every minute and converted to an XML format which is stored on a Web Server. This decouples the RTM server database from the client removing the bottleneck problem caused by many clients simultaneously accessing the database. This information can be visualized through either a 2D or 3D Java based client with live job data either being overlaid on to a 2 dimensional map of the world or rendered in 3 dimensions over a globe map using OpenGL.
RCS of fundamental scatterers in the HF band by wire-grid modelling
NASA Astrophysics Data System (ADS)
Trueman, C. W.; Kubina, S. J.
To extract the maximum information from the return of a radar target such as an aircraft, the target's scattering properties must be well known. Wire grid modeling allows a detailed representation of the surface of a complex scatterer such as an aircraft, in the frequency range where the aircraft size is comparable to a wavelength. A moment method analysis determines the currents on the wires of the grid including the interactions between all parts of the structure. Wire grid models of fundamental scatterers (plates, strips, cubes, and spheres) of sizes comparable to the wavelength in the 2-30 MHz range are analyzed. The study of the radar cross section (RCS) of wire grids in comparison with measured RCS data helps to establish guidelines for building wire grid models, specifying such parameters as where to locate wires, how short the segments must be, and what radius to use. The guidelines so developed can then be applied to build wire grid models of much more complex bodies such as aircraft with much greater confidence.
Thundercloud: Domain specific information security training for the smart grid
NASA Astrophysics Data System (ADS)
Stites, Joseph
In this paper, we describe a cloud-based virtual smart grid test bed: ThunderCloud, which is intended to be used for domain-specific security training applicable to the smart grid environment. The test bed consists of virtual machines connected using a virtual internal network. ThunderCloud is remotely accessible, allowing students to undergo educational exercises online. We also describe a series of practical exercises that we have developed for providing the domain-specific training using ThunderCloud. The training exercises and attacks are designed to be realistic and to reflect known vulnerabilities and attacks reported in the smart grid environment. We were able to use ThunderCloud to offer practical domain-specific security training for smart grid environment to computer science students at little or no cost to the department and no risk to any real networks or systems.
NASA Astrophysics Data System (ADS)
Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie
2017-03-01
Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.
Grid Stability Awareness System (GSAS) Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuerborn, Scott; Ma, Jian; Black, Clifton
The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less
Methods and apparatus of analyzing electrical power grid data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.
mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants frameworkmore » is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.« less
Parametric modelling of cost data in medical studies.
Nixon, R M; Thompson, S G
2004-04-30
The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice. Copyright 2004 John Wiley & Sons, Ltd.
Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter
2009-06-21
Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez
2014-01-01
Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179
A stand-alone tidal prediction application for mobile devices
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Han; Fan, Ren-Ye; Yang, Yi-Chung
2017-04-01
It is essential for people conducting fishing, leisure, or research activities at the coasts to have timely and handy tidal information. Although tidal information can be found easily on the internet or using mobile device applications, this information is all applicable for only certain specific locations, not anywhere on the coast, and they need an internet connection. We have developed an application for Android devices, which allows the user to obtain hourly tidal height anywhere on the coast for the next 24 hours without having to have any internet connection. All the necessary information needed for the tidal height calculation is stored in the application. To develop this application, we first simulate tides in the Taiwan Sea using the hydrodynamic model (MIKE21 HD) developed by the DHI. The simulation domain covers the whole coast of Taiwan and the surrounding seas with a grid size of 1 km by 1 km. This grid size allows us to calculate tides with high spatial resolution. The boundary conditions for the simulation domain were obtained from the Tidal Model Driver of the Oregon State University, using its tidal constants of eight constituents: M2, S2, N2, K2, K1, O1, P1, and Q1. The simulation calculates tides for 183 days so that the tidal constants for the above eight constituents of each water grid can be extracted by harmonic analysis. Using the calculated tidal constants, we can predict the tides in each grid of our simulation domain, which is useful when one needs the tidal information for any location in the Taiwan Sea. However, for the mobile application, we only store the eight tidal constants for the water grids on the coast. Once the user activates the application, it reads the longitude and latitude from the GPS sensor in the mobile device and finds the nearest coastal grid which has our tidal constants. Then, the application calculates tidal height variation based on the harmonic analysis. The application also allows the user to input location and time to obtain tides for any historic or future dates for the input location. The predicted tides have been verified with the historic tidal records of certain tidal stations. The verification shows that the tides predicted by the application match the measured record well.
SPAGETTA, a Gridded Weather Generator: Calibration, Validation and its Use for Future Climate
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Rotach, Mathias W.; Huth, Radan
2017-04-01
Spagetta is a new (started in 2016) stochastic multi-site multi-variate weather generator (WG). It can produce realistic synthetic daily (or monthly, or annual) weather series representing both present and future climate conditions at multiple sites (grids or stations irregularly distributed in space). The generator, whose model is based on the Wilks' (1999) multi-site extension of the parametric (Richardson's type) single site M&Rfi generator, may be run in two modes: In the first mode, it is run as a classical generator, which is calibrated in the first step using weather data from multiple sites, and only then it may produce arbitrarily long synthetic time series mimicking the spatial and temporal structure of the calibration weather data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. In the second mode, the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the surface weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying autoregressive model, which produces the multi-site weather series. In the latter mode of operation, the user is allowed to prescribe the spatially varying trend, which is superimposed to the values produced by the generator; this feature has been implemented for use in developing the methodology for assessing significance of trends in multi-site weather series (for more details see another EGU-2017 contribution: Huth and Dubrovsky, 2017, Evaluating collective significance of climatic trends: A comparison of methods on synthetic data; EGU2017-4993). This contribution will focus on the first (classical) mode. The poster will present (a) model of the generator, (b) results of the validation tests made in terms of the spatial hot/cold/dry/wet spells, and (c) results of the pilot climate change impact experiment, in which (i) the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and then (ii) the effect on the above spatial validation indices derived from the synthetic series produced by the modified WG is analysed. In this experiment, the generator is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulation (taken from the CORDEX database).
Cartograms Facilitate Communication of Climate Change Risks and Responsibilities
NASA Astrophysics Data System (ADS)
Döll, Petra
2017-12-01
Communication of climate change (CC) risks is challenging, in particular if global-scale spatially resolved quantitative information is to be conveyed. Typically, visualization of CC risks, which arise from the combination of hazard, exposure and vulnerability, is confined to showing only the hazards in the form of global thematic maps. This paper explores the potential of contiguous value-by-area cartograms, that is, distorted density-equalizing maps, for improving communication of CC risks and the countries' differentiated responsibilities for CC. Two global-scale cartogram sets visualize, as an example, groundwater-related CC risks in 0.5° grid cells, another one the correlation of (cumulative) fossil-fuel carbon dioxide emissions with the countries' population and gross domestic product. Viewers of the latter set visually recognize the lack of global equity and that the countries' wealth has been built on harmful emissions. I recommend that CC risks are communicated by bivariate gridded cartograms showing the hazard in color and population, or a combination of population and a vulnerability indicator, by distortion of grid cells. Gridded cartograms are also appropriate for visualizing the availability of natural resources to humans. For communicating complex information, sets of cartograms should be carefully designed instead of presenting single cartograms. Inclusion of a conventionally distorted map enhances the viewers' capability to take up the information represented by distortion. Empirical studies about the capability of global cartograms to convey complex information and to trigger moral emotions should be conducted, with a special focus on risk communication.
Evaluation of Statistical Methodologies Used in U. S. Army Ordnance and Explosive Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrouchov, G
2000-02-14
Oak Ridge National Laboratory was tasked by the U.S. Army Engineering and Support Center (Huntsville, AL) to evaluate the mathematical basis of existing software tools used to assist the Army with the characterization of sites potentially contaminated with unexploded ordnance (UXO). These software tools are collectively known as SiteStats/GridStats. The first purpose of the software is to guide sampling of underground anomalies to estimate a site's UXO density. The second purpose is to delineate areas of homogeneous UXO density that can be used in the formulation of response actions. It was found that SiteStats/GridStats does adequately guide the sampling somore » that the UXO density estimator for a sector is unbiased. However, the software's techniques for delineation of homogeneous areas perform less well than visual inspection, which is frequently used to override the software in the overall sectorization methodology. The main problems with the software lie in the criteria used to detect nonhomogeneity and those used to recommend the number of homogeneous subareas. SiteStats/GridStats is not a decision-making tool in the classical sense. Although it does provide information to decision makers, it does not require a decision based on that information. SiteStats/GridStats provides information that is supplemented by visual inspections, land-use plans, and risk estimates prior to making any decisions. Although the sector UXO density estimator is unbiased regardless of UXO density variation within a sector, its variability increases with increased sector density variation. For this reason, the current practice of visual inspection of individual sampled grid densities (as provided by Site-Stats/GridStats) is necessary to ensure approximate homogeneity, particularly at sites with medium to high UXO density. Together with Site-Stats/GridStats override capabilities, this provides a sufficient mechanism for homogeneous sectorization and thus yields representative UXO density estimates. Objections raised by various parties to the use of a numerical ''discriminator'' in SiteStats/GridStats were likely because of the fact that the concerned statistical technique is customarily applied for a different purpose and because of poor documentation. The ''discriminator'', in Site-Stats/GridStats is a ''tuning parameter'' for the sampling process, and it affects the precision of the grid density estimates through changes in required sample size. It is recommended that sector characterization in terms of a map showing contour lines of constant UXO density with an expressed uncertainty or confidence level is a better basis for remediation decisions than a sector UXO density point estimate. A number of spatial density estimation techniques could be adapted to the UXO density estimation problem.« less
Using Taxonomic Indexing Trees to Efficiently Retrieve SCORM-Compliant Documents in e-Learning Grids
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung
2008-01-01
With the flourishing development of e-Learning, more and more SCORM-compliant teaching materials are developed by institutes and individuals in different sites. In addition, the e-Learning grid is emerging as an infrastructure to enhance traditional e-Learning systems. Therefore, information retrieval schemes supporting SCORM-compliant documents…
Energy Systems Integration News | Energy Systems Integration Facility |
Grid Modernization Project Informed by ESIF Research The Hawaii Public Utilities Commission approved on (HECO) to upgrade its five island power grids. The plan describes the scope and estimated cost to update the energy networks of Hawaiian Electric, Maui Electric, and Hawaii Electric Light in the next five
A Job Monitoring and Accounting Tool for the LSF Batch System
NASA Astrophysics Data System (ADS)
Sarkar, Subir; Taneja, Sonia
2011-12-01
This paper presents a web based job monitoring and group-and-user accounting tool for the LSF Batch System. The user oriented job monitoring displays a simple and compact quasi real-time overview of the batch farm for both local and Grid jobs. For Grid jobs the Distinguished Name (DN) of the Grid users is shown. The overview monitor provides the most up-to-date status of a batch farm at any time. The accounting tool works with the LSF accounting log files. The accounting information is shown for a few pre-defined time periods by default. However, one can also compute the same information for any arbitrary time window. The tool already proved to be an extremely useful means to validate more extensive accounting tools available in the Grid world. Several sites have already been using the present tool and more sites running the LSF batch system have shown interest. We shall discuss the various aspects that make the tool essential for site administrators and end-users alike and outline the current status of development as well as future plans.
Construction of Gridded Daily Weather Data and its Use in Central-European Agroclimatic Study
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Trnka, M.; Skalak, P.
2013-12-01
The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series, interpolated, and then modified according to the GCM- or RCM-based climate change scenarios. The present contribution, in which the parametric daily weather generator M&Rfi is linked to the high-resolution RCM output (ALADIN-Climate/CZ model) and GCM-based climate change scenarios, consists of two parts: The first part focuses on a methodology. Firstly, the gridded WG representing the baseline climate is created by merging information from observations and high resolution RCM outputs. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with RCM-simulated weather series vs. spatially scarcer observations. To represent the future climate, the WG parameters are modified according to the 'WG-friendly' climate change scenarios. These scenarios are defined in terms of changes in WG parameters and include - apart from changes in the means - changes in WG parameters, which represent the additional characteristics of the weather series (e.g. probability of wet day occurrence and lag-1 autocorrelation of daily mean temperature). The WG-friendly scenarios for the present experiment are based on comparison of future vs baseline surface weather series simulated by GCMs from a CMIP3 database. The second part will present results of climate change impact study based on an above methodology applied to Central Europe. The changes in selected climatic (focusing on the extreme precipitation and temperature characteristics) and agroclimatic (including number of days during vegetation season with heat and drought stresses) characteristics will be analysed. In discussing the results, the emphasis will be put on 'added value' of various aspects of above methodology (e.g. inclusion of changes in 'advanced' WG parameters into the climate change scenarios). Acknowledgements: The present experiment is made within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), and VALUE (COST ES 1102 action).
NASA Astrophysics Data System (ADS)
Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie
2009-10-01
Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.
Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y
2016-07-26
One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago
2014-07-15
Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.
NASA Technical Reports Server (NTRS)
Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick;
2001-01-01
A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Gridded Model Information Support System (GMISS) is a data base management system for selected Regional Oxidant Model (ROM) input data and species concentrations produced by gridded photochemical air pollution models. The Model Concentration Data Retrieval Subsystem allows State and local air pollution control agencies to retrieve these hourly data for use in support of their regulatory programs. These hourly data may be used to calculate initial and boundary conditions for the Empirical Kinetics Modeling Approach (EKMA). They may be used for other modeling application needs as well as to support evaluation of regional emission controls strategies. Both temporal andmore » spatial subsets of the data may be retrieved. The document describes how to invoke and execute the Model Concentration Data Retrieval Subsystem using the full screen menus.« less
Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi
1998-01-01
Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.
Dennis, Robin L.; Schwede, Donna B.; Bash, Jesse O.; Pleim, Jon E.; Walker, John T.; Foley, Kristen M.
2013-01-01
Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent. PMID:23713122
Optimal Energy Management for Microgrids
NASA Astrophysics Data System (ADS)
Zhao, Zheng
Microgrid is a recent novel concept in part of the development of smart grid. A microgrid is a low voltage and small scale network containing both distributed energy resources (DERs) and load demands. Clean energy is encouraged to be used in a microgrid for economic and sustainable reasons. A microgrid can have two operational modes, the stand-alone mode and grid-connected mode. In this research, a day-ahead optimal energy management for a microgrid under both operational modes is studied. The objective of the optimization model is to minimize fuel cost, improve energy utilization efficiency and reduce gas emissions by scheduling generations of DERs in each hour on the next day. Considering the dynamic performance of battery as Energy Storage System (ESS), the model is featured as a multi-objectives and multi-parametric programming constrained by dynamic programming, which is proposed to be solved by using the Advanced Dynamic Programming (ADP) method. Then, factors influencing the battery life are studied and included in the model in order to obtain an optimal usage pattern of battery and reduce the correlated cost. Moreover, since wind and solar generation is a stochastic process affected by weather changes, the proposed optimization model is performed hourly to track the weather changes. Simulation results are compared with the day-ahead energy management model. At last, conclusions are presented and future research in microgrid energy management is discussed.
LEOPARD: A grid-based dispersion relation solver for arbitrary gyrotropic distributions
NASA Astrophysics Data System (ADS)
Astfalk, Patrick; Jenko, Frank
2017-01-01
Particle velocity distributions measured in collisionless space plasmas often show strong deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in space plasma environments such as the solar wind or Earth's magnetosphere is still mainly carried out using dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks. Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a first application of that kind.
Dennis, Robin L; Schwede, Donna B; Bash, Jesse O; Pleim, Jon E; Walker, John T; Foley, Kristen M
2013-07-05
Reactive nitrogen (Nr) is removed by surface fluxes (air-surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air-surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1-4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent.
WebGIS based on semantic grid model and web services
NASA Astrophysics Data System (ADS)
Zhang, WangFei; Yue, CaiRong; Gao, JianGuo
2009-10-01
As the combination point of the network technology and GIS technology, WebGIS has got the fast development in recent years. With the restriction of Web and the characteristics of GIS, traditional WebGIS has some prominent problems existing in development. For example, it can't accomplish the interoperability of heterogeneous spatial databases; it can't accomplish the data access of cross-platform. With the appearance of Web Service and Grid technology, there appeared great change in field of WebGIS. Web Service provided an interface which can give information of different site the ability of data sharing and inter communication. The goal of Grid technology was to make the internet to a large and super computer, with this computer we can efficiently implement the overall sharing of computing resources, storage resource, data resource, information resource, knowledge resources and experts resources. But to WebGIS, we only implement the physically connection of data and information and these is far from the enough. Because of the different understanding of the world, following different professional regulations, different policies and different habits, the experts in different field will get different end when they observed the same geographic phenomenon and the semantic heterogeneity produced. Since these there are large differences to the same concept in different field. If we use the WebGIS without considering of the semantic heterogeneity, we will answer the questions users proposed wrongly or we can't answer the questions users proposed. To solve this problem, this paper put forward and experienced an effective method of combing semantic grid and Web Services technology to develop WebGIS. In this paper, we studied the method to construct ontology and the method to combine Grid technology and Web Services and with the detailed analysis of computing characteristics and application model in the distribution of data, we designed the WebGIS query system driven by ontology based on Grid technology and Web Services.
A multimode electromechanical parametric resonator array
Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2014-01-01
Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349
Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R; Tikhonova, Olga V; Boyd, Robert W; Leuchs, Gerd; Chekhova, Maria V
2016-10-28
Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narrow band of the frequency spectrum to be exponentially amplified by high-gain parametric amplification. The frequency spectrum is thereby narrowed from (56.5±0.1) to (1.22±0.02) THz and, in doing so, the number of frequency modes is reduced from approximately 50 to 1.82±0.02. Moreover, this method provides control and flexibility over the spectrum of the generated light through the timing of the pump.
Latest astronomical constraints on some non-linear parametric dark energy models
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
CheckDen, a program to compute quantum molecular properties on spatial grids.
Pacios, Luis F; Fernandez, Alberto
2009-09-01
CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin
2013-01-01
Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less
NASA Astrophysics Data System (ADS)
Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei
2017-03-01
The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
Sharing Data and Analytical Resources Securely in a Biomedical Research Grid Environment
Langella, Stephen; Hastings, Shannon; Oster, Scott; Pan, Tony; Sharma, Ashish; Permar, Justin; Ervin, David; Cambazoglu, B. Barla; Kurc, Tahsin; Saltz, Joel
2008-01-01
Objectives To develop a security infrastructure to support controlled and secure access to data and analytical resources in a biomedical research Grid environment, while facilitating resource sharing among collaborators. Design A Grid security infrastructure, called Grid Authentication and Authorization with Reliably Distributed Services (GAARDS), is developed as a key architecture component of the NCI-funded cancer Biomedical Informatics Grid (caBIG™). The GAARDS is designed to support in a distributed environment 1) efficient provisioning and federation of user identities and credentials; 2) group-based access control support with which resource providers can enforce policies based on community accepted groups and local groups; and 3) management of a trust fabric so that policies can be enforced based on required levels of assurance. Measurements GAARDS is implemented as a suite of Grid services and administrative tools. It provides three core services: Dorian for management and federation of user identities, Grid Trust Service for maintaining and provisioning a federated trust fabric within the Grid environment, and Grid Grouper for enforcing authorization policies based on both local and Grid-level groups. Results The GAARDS infrastructure is available as a stand-alone system and as a component of the caGrid infrastructure. More information about GAARDS can be accessed at http://www.cagrid.org. Conclusions GAARDS provides a comprehensive system to address the security challenges associated with environments in which resources may be located at different sites, requests to access the resources may cross institutional boundaries, and user credentials are created, managed, revoked dynamically in a de-centralized manner. PMID:18308979
SoilGrids250m: Global gridded soil information based on machine learning
Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. PMID:28207752
Kim, Sun; Chatr-aryamontri, Andrew; Chang, Christie S.; Oughtred, Rose; Rust, Jennifer; Wilbur, W. John; Comeau, Donald C.; Dolinski, Kara; Tyers, Mike
2017-01-01
A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein–protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future uses of the BioC-BioGRID corpus are detailed in this report. Database URL: http://bioc.sourceforge.net/BioC-BioGRID.html PMID:28077563
SoilGrids250m: Global gridded soil information based on machine learning.
Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas
2017-01-01
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
The BioGRID interaction database: 2013 update.
Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie; Rust, Jennifer; Livstone, Michael; Oughtred, Rose; Dolinski, Kara; Tyers, Mike
2013-01-01
The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.
Improved grid-noise removal in single-frame digital moiré 3D shape measurement
NASA Astrophysics Data System (ADS)
Mohammadi, Fatemeh; Kofman, Jonathan
2016-11-01
A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2004-01-01
Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid services discovered using semantic grid technology. As required, high-end computational resources could be drawn from available grid resource pools. Using grid technology, this confluence of data, services and computational resources could easily be harnessed to transform data from many different sources into a desired product that is delivered to a user's workstation or to a web portal though which it could be accessed by its intended audience.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam
2018-03-01
We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.
Sensor Transmission Power Schedule for Smart Grids
NASA Astrophysics Data System (ADS)
Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.
2017-11-01
Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.; ...
2017-08-25
The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less
Near real-time traffic routing
NASA Technical Reports Server (NTRS)
Yang, Chaowei (Inventor); Xie, Jibo (Inventor); Zhou, Bin (Inventor); Cao, Ying (Inventor)
2012-01-01
A near real-time physical transportation network routing system comprising: a traffic simulation computing grid and a dynamic traffic routing service computing grid. The traffic simulator produces traffic network travel time predictions for a physical transportation network using a traffic simulation model and common input data. The physical transportation network is divided into a multiple sections. Each section has a primary zone and a buffer zone. The traffic simulation computing grid includes multiple of traffic simulation computing nodes. The common input data includes static network characteristics, an origin-destination data table, dynamic traffic information data and historical traffic data. The dynamic traffic routing service computing grid includes multiple dynamic traffic routing computing nodes and generates traffic route(s) using the traffic network travel time predictions.
A Petri Net model for distributed energy system
NASA Astrophysics Data System (ADS)
Konopko, Joanna
2015-12-01
Electrical networks need to evolve to become more intelligent, more flexible and less costly. The smart grid is the next generation power energy, uses two-way flows of electricity and information to create a distributed automated energy delivery network. Building a comprehensive smart grid is a challenge for system protection, optimization and energy efficient. Proper modeling and analysis is needed to build an extensive distributed energy system and intelligent electricity infrastructure. In this paper, the whole model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The simulation of created model is also explored. The simulation of the model has allowed the analysis of how close the behavior of the model is to the usage of the real smart grid.
Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation
NASA Astrophysics Data System (ADS)
Anisenkov, A. V.
2018-03-01
In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Uncertainty in determining extreme precipitation thresholds
NASA Astrophysics Data System (ADS)
Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili
2013-10-01
Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.
Impact of the 2017 Solar Eclipse on Smart Grid
NASA Astrophysics Data System (ADS)
Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.
2017-12-01
With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.
Towards the generation of a parametric foot model using principal component analysis: A pilot study.
Scarton, Alessandra; Sawacha, Zimi; Cobelli, Claudio; Li, Xinshan
2016-06-01
There have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate. The development of parametric models by means of the Principle Component Analysis (PCA) represents an appealing solution. In this study PCA has been applied to the feet of a small cohort of diabetic and healthy subjects, in order to evaluate the possibility of developing parametric foot models, and to use them to identify variations and similarities between the two populations. Both the skin and the first metatarsal bones have been examined. Besides the reduced sample of subjects considered in the analysis, results demonstrated that the method adopted herein constitutes a first step towards the realization of a parametric foot models for biomechanical analysis. Furthermore the study showed that the methodology can successfully describe features in the foot, and evaluate differences in the shape of healthy and diabetic subjects. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng
2017-05-01
Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.
NASA Technical Reports Server (NTRS)
Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.
1993-01-01
Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.