Sample records for parametric regression models

  1. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  2. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  3. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  4. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  5. Parametric regression model for survival data: Weibull regression model as an example

    PubMed Central

    2016-01-01

    Weibull regression model is one of the most popular forms of parametric regression model that it provides estimate of baseline hazard function, as well as coefficients for covariates. Because of technical difficulties, Weibull regression model is seldom used in medical literature as compared to the semi-parametric proportional hazard model. To make clinical investigators familiar with Weibull regression model, this article introduces some basic knowledge on Weibull regression model and then illustrates how to fit the model with R software. The SurvRegCensCov package is useful in converting estimated coefficients to clinical relevant statistics such as hazard ratio (HR) and event time ratio (ETR). Model adequacy can be assessed by inspecting Kaplan-Meier curves stratified by categorical variable. The eha package provides an alternative method to model Weibull regression model. The check.dist() function helps to assess goodness-of-fit of the model. Variable selection is based on the importance of a covariate, which can be tested using anova() function. Alternatively, backward elimination starting from a full model is an efficient way for model development. Visualization of Weibull regression model after model development is interesting that it provides another way to report your findings. PMID:28149846

  6. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  7. An EM-based semi-parametric mixture model approach to the regression analysis of competing-risks data.

    PubMed

    Ng, S K; McLachlan, G J

    2003-04-15

    We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.

  8. Simulation of parametric model towards the fixed covariate of right censored lung cancer data

    NASA Astrophysics Data System (ADS)

    Afiqah Muhamad Jamil, Siti; Asrul Affendi Abdullah, M.; Kek, Sie Long; Ridwan Olaniran, Oyebayo; Enera Amran, Syahila

    2017-09-01

    In this study, simulation procedure was applied to measure the fixed covariate of right censored data by using parametric survival model. The scale and shape parameter were modified to differentiate the analysis of parametric regression survival model. Statistically, the biases, mean biases and the coverage probability were used in this analysis. Consequently, different sample sizes were employed to distinguish the impact of parametric regression model towards right censored data with 50, 100, 150 and 200 number of sample. R-statistical software was utilised to develop the coding simulation with right censored data. Besides, the final model of right censored simulation was compared with the right censored lung cancer data in Malaysia. It was found that different values of shape and scale parameter with different sample size, help to improve the simulation strategy for right censored data and Weibull regression survival model is suitable fit towards the simulation of survival of lung cancer patients data in Malaysia.

  9. Application of Semiparametric Spline Regression Model in Analyzing Factors that In uence Population Density in Central Java

    NASA Astrophysics Data System (ADS)

    Sumantari, Y. D.; Slamet, I.; Sugiyanto

    2017-06-01

    Semiparametric regression is a statistical analysis method that consists of parametric and nonparametric regression. There are various approach techniques in nonparametric regression. One of the approach techniques is spline. Central Java is one of the most densely populated province in Indonesia. Population density in this province can be modeled by semiparametric regression because it consists of parametric and nonparametric component. Therefore, the purpose of this paper is to determine the factors that in uence population density in Central Java using the semiparametric spline regression model. The result shows that the factors which in uence population density in Central Java is Family Planning (FP) active participants and district minimum wage.

  10. Comparison of Survival Models for Analyzing Prognostic Factors in Gastric Cancer Patients

    PubMed

    Habibi, Danial; Rafiei, Mohammad; Chehrei, Ali; Shayan, Zahra; Tafaqodi, Soheil

    2018-03-27

    Objective: There are a number of models for determining risk factors for survival of patients with gastric cancer. This study was conducted to select the model showing the best fit with available data. Methods: Cox regression and parametric models (Exponential, Weibull, Gompertz, Log normal, Log logistic and Generalized Gamma) were utilized in unadjusted and adjusted forms to detect factors influencing mortality of patients. Comparisons were made with Akaike Information Criterion (AIC) by using STATA 13 and R 3.1.3 softwares. Results: The results of this study indicated that all parametric models outperform the Cox regression model. The Log normal, Log logistic and Generalized Gamma provided the best performance in terms of AIC values (179.2, 179.4 and 181.1, respectively). On unadjusted analysis, the results of the Cox regression and parametric models indicated stage, grade, largest diameter of metastatic nest, largest diameter of LM, number of involved lymph nodes and the largest ratio of metastatic nests to lymph nodes, to be variables influencing the survival of patients with gastric cancer. On adjusted analysis, according to the best model (log normal), grade was found as the significant variable. Conclusion: The results suggested that all parametric models outperform the Cox model. The log normal model provides the best fit and is a good substitute for Cox regression. Creative Commons Attribution License

  11. Bayesian Unimodal Density Regression for Causal Inference

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2011-01-01

    Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…

  12. Benchmark dose analysis via nonparametric regression modeling

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057

  13. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  14. A Bayesian goodness of fit test and semiparametric generalization of logistic regression with measurement data.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J; Hanson, Timothy E

    2013-06-01

    Logistic regression is a popular tool for risk analysis in medical and population health science. With continuous response data, it is common to create a dichotomous outcome for logistic regression analysis by specifying a threshold for positivity. Fitting a linear regression to the nondichotomized response variable assuming a logistic sampling model for the data has been empirically shown to yield more efficient estimates of odds ratios than ordinary logistic regression of the dichotomized endpoint. We illustrate that risk inference is not robust to departures from the parametric logistic distribution. Moreover, the model assumption of proportional odds is generally not satisfied when the condition of a logistic distribution for the data is violated, leading to biased inference from a parametric logistic analysis. We develop novel Bayesian semiparametric methodology for testing goodness of fit of parametric logistic regression with continuous measurement data. The testing procedures hold for any cutoff threshold and our approach simultaneously provides the ability to perform semiparametric risk estimation. Bayes factors are calculated using the Savage-Dickey ratio for testing the null hypothesis of logistic regression versus a semiparametric generalization. We propose a fully Bayesian and a computationally efficient empirical Bayesian approach to testing, and we present methods for semiparametric estimation of risks, relative risks, and odds ratios when parametric logistic regression fails. Theoretical results establish the consistency of the empirical Bayes test. Results from simulated data show that the proposed approach provides accurate inference irrespective of whether parametric assumptions hold or not. Evaluation of risk factors for obesity shows that different inferences are derived from an analysis of a real data set when deviations from a logistic distribution are permissible in a flexible semiparametric framework. © 2013, The International Biometric Society.

  15. Modeling absolute differences in life expectancy with a censored skew-normal regression approach

    PubMed Central

    Clough-Gorr, Kerri; Zwahlen, Marcel

    2015-01-01

    Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest. PMID:26339544

  16. A new approach to correct the QT interval for changes in heart rate using a nonparametric regression model in beagle dogs.

    PubMed

    Watanabe, Hiroyuki; Miyazaki, Hiroyasu

    2006-01-01

    Over- and/or under-correction of QT intervals for changes in heart rate may lead to misleading conclusions and/or masking the potential of a drug to prolong the QT interval. This study examines a nonparametric regression model (Loess Smoother) to adjust the QT interval for differences in heart rate, with an improved fitness over a wide range of heart rates. 240 sets of (QT, RR) observations collected from each of 8 conscious and non-treated beagle dogs were used as the materials for investigation. The fitness of the nonparametric regression model to the QT-RR relationship was compared with four models (individual linear regression, common linear regression, and Bazett's and Fridericia's correlation models) with reference to Akaike's Information Criterion (AIC). Residuals were visually assessed. The bias-corrected AIC of the nonparametric regression model was the best of the models examined in this study. Although the parametric models did not fit, the nonparametric regression model improved the fitting at both fast and slow heart rates. The nonparametric regression model is the more flexible method compared with the parametric method. The mathematical fit for linear regression models was unsatisfactory at both fast and slow heart rates, while the nonparametric regression model showed significant improvement at all heart rates in beagle dogs.

  17. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data

    PubMed Central

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2012-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976

  18. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    PubMed

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  19. Regional vertical total electron content (VTEC) modeling together with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS)

    NASA Astrophysics Data System (ADS)

    Durmaz, Murat; Karslioglu, Mahmut Onur

    2015-04-01

    There are various global and regional methods that have been proposed for the modeling of ionospheric vertical total electron content (VTEC). Global distribution of VTEC is usually modeled by spherical harmonic expansions, while tensor products of compactly supported univariate B-splines can be used for regional modeling. In these empirical parametric models, the coefficients of the basis functions as well as differential code biases (DCBs) of satellites and receivers can be treated as unknown parameters which can be estimated from geometry-free linear combinations of global positioning system observables. In this work we propose a new semi-parametric multivariate adaptive regression B-splines (SP-BMARS) method for the regional modeling of VTEC together with satellite and receiver DCBs, where the parametric part of the model is related to the DCBs as fixed parameters and the non-parametric part adaptively models the spatio-temporal distribution of VTEC. The latter is based on multivariate adaptive regression B-splines which is a non-parametric modeling technique making use of compactly supported B-spline basis functions that are generated from the observations automatically. This algorithm takes advantage of an adaptive scale-by-scale model building strategy that searches for best-fitting B-splines to the data at each scale. The VTEC maps generated from the proposed method are compared numerically and visually with the global ionosphere maps (GIMs) which are provided by the Center for Orbit Determination in Europe (CODE). The VTEC values from SP-BMARS and CODE GIMs are also compared with VTEC values obtained through calibration using local ionospheric model. The estimated satellite and receiver DCBs from the SP-BMARS model are compared with the CODE distributed DCBs. The results show that the SP-BMARS algorithm can be used to estimate satellite and receiver DCBs while adaptively and flexibly modeling the daily regional VTEC.

  20. Using Multivariate Adaptive Regression Spline and Artificial Neural Network to Simulate Urbanization in Mumbai, India

    NASA Astrophysics Data System (ADS)

    Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.

    2015-12-01

    Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.

  1. Rank-preserving regression: a more robust rank regression model against outliers.

    PubMed

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A Parametric Regression of the Cost of Base Realignment Action (COBRA) Model

    DTIC Science & Technology

    1993-09-20

    Douglas D. Hardman , Captain, USAF Michael S. Nelson, Captain, USAF AFIT/GEE/ENS/93S-03 93 P’ 8 143 Approved for public release, distribution unlimited 93... Hardman CLASS: GEE 93S Captain Michael Nelson TITLE: A Parametric Regression of the Cost of Base Realignment Action (COBRA) Model DEFENSE DATE: 20...Science in Engineering and Environmental Management Douglas D. Hardman , B.S.E.E. Michael S. Nelson, B.S.C.E Captain, USAF Captain, USAF September 1993

  3. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Comparison of Cox's Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000-2012.

    PubMed

    Adelian, R; Jamali, J; Zare, N; Ayatollahi, S M T; Pooladfar, G R; Roustaei, N

    2015-01-01

    Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. To compare Cox's regression model with parametric models for determining the independent factors for predicting adults' and pediatrics' survival after liver transplantation. This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Parametric regression model is a good alternative for the Cox's regression model.

  5. Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2016-01-01

    Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

  6. A parametric ribcage geometry model accounting for variations among the adult population.

    PubMed

    Wang, Yulong; Cao, Libo; Bai, Zhonghao; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2016-09-06

    The objective of this study is to develop a parametric ribcage model that can account for morphological variations among the adult population. Ribcage geometries, including 12 pair of ribs, sternum, and thoracic spine, were collected from CT scans of 101 adult subjects through image segmentation, landmark identification (1016 for each subject), symmetry adjustment, and template mesh mapping (26,180 elements for each subject). Generalized procrustes analysis (GPA), principal component analysis (PCA), and regression analysis were used to develop a parametric ribcage model, which can predict nodal locations of the template mesh according to age, sex, height, and body mass index (BMI). Two regression models, a quadratic model for estimating the ribcage size and a linear model for estimating the ribcage shape, were developed. The results showed that the ribcage size was dominated by the height (p=0.000) and age-sex-interaction (p=0.007) and the ribcage shape was significantly affected by the age (p=0.0005), sex (p=0.0002), height (p=0.0064) and BMI (p=0.0000). Along with proper assignment of cortical bone thickness, material properties and failure properties, this parametric ribcage model can directly serve as the mesh of finite element ribcage models for quantifying effects of human characteristics on thoracic injury risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS

    EPA Science Inventory

    We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...

  8. Comparison of Cox’s Regression Model and Parametric Models in Evaluating the Prognostic Factors for Survival after Liver Transplantation in Shiraz during 2000–2012

    PubMed Central

    Adelian, R.; Jamali, J.; Zare, N.; Ayatollahi, S. M. T.; Pooladfar, G. R.; Roustaei, N.

    2015-01-01

    Background: Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. Objective: To compare Cox’s regression model with parametric models for determining the independent factors for predicting adults’ and pediatrics’ survival after liver transplantation. Method: This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Result: Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Conclusion: Parametric regression model is a good alternative for the Cox’s regression model. PMID:26306158

  9. Using Parametric Cost Models to Estimate Engineering and Installation Costs of Selected Electronic Communications Systems

    DTIC Science & Technology

    1994-09-01

    Institute of Technology, Wright- Patterson AFB OH, January 1994. 4. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 5...Technology, Wright-Patterson AFB OH 5 April 1994. 29. Neter, John and others. Applied Linear Regression Models. Boston: Irwin, 1989. 30. Office of

  10. The analysis of incontinence episodes and other count data in patients with overactive bladder by Poisson and negative binomial regression.

    PubMed

    Martina, R; Kay, R; van Maanen, R; Ridder, A

    2015-01-01

    Clinical studies in overactive bladder have traditionally used analysis of covariance or nonparametric methods to analyse the number of incontinence episodes and other count data. It is known that if the underlying distributional assumptions of a particular parametric method do not hold, an alternative parametric method may be more efficient than a nonparametric one, which makes no assumptions regarding the underlying distribution of the data. Therefore, there are advantages in using methods based on the Poisson distribution or extensions of that method, which incorporate specific features that provide a modelling framework for count data. One challenge with count data is overdispersion, but methods are available that can account for this through the introduction of random effect terms in the modelling, and it is this modelling framework that leads to the negative binomial distribution. These models can also provide clinicians with a clearer and more appropriate interpretation of treatment effects in terms of rate ratios. In this paper, the previously used parametric and non-parametric approaches are contrasted with those based on Poisson regression and various extensions in trials evaluating solifenacin and mirabegron in patients with overactive bladder. In these applications, negative binomial models are seen to fit the data well. Copyright © 2014 John Wiley & Sons, Ltd.

  11. A comparative study between nonlinear regression and nonparametric approaches for modelling Phalaris paradoxa seedling emergence

    USDA-ARS?s Scientific Manuscript database

    Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...

  12. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  13. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    PubMed

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  14. Estimation of variance in Cox's regression model with shared gamma frailties.

    PubMed

    Andersen, P K; Klein, J P; Knudsen, K M; Tabanera y Palacios, R

    1997-12-01

    The Cox regression model with a shared frailty factor allows for unobserved heterogeneity or for statistical dependence between the observed survival times. Estimation in this model when the frailties are assumed to follow a gamma distribution is reviewed, and we address the problem of obtaining variance estimates for regression coefficients, frailty parameter, and cumulative baseline hazards using the observed nonparametric information matrix. A number of examples are given comparing this approach with fully parametric inference in models with piecewise constant baseline hazards.

  15. Approximating prediction uncertainty for random forest regression models

    Treesearch

    John W. Coulston; Christine E. Blinn; Valerie A. Thomas; Randolph H. Wynne

    2016-01-01

    Machine learning approaches such as random forest have increased for the spatial modeling and mapping of continuous variables. Random forest is a non-parametric ensemble approach, and unlike traditional regression approaches there is no direct quantification of prediction error. Understanding prediction uncertainty is important when using model-based continuous maps as...

  16. A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs.

    PubMed

    Jones, Andrew M; Lomas, James; Moore, Peter T; Rice, Nigel

    2016-10-01

    We conduct a quasi-Monte-Carlo comparison of the recent developments in parametric and semiparametric regression methods for healthcare costs, both against each other and against standard practice. The population of English National Health Service hospital in-patient episodes for the financial year 2007-2008 (summed for each patient) is randomly divided into two equally sized subpopulations to form an estimation set and a validation set. Evaluating out-of-sample using the validation set, a conditional density approximation estimator shows considerable promise in forecasting conditional means, performing best for accuracy of forecasting and among the best four for bias and goodness of fit. The best performing model for bias is linear regression with square-root-transformed dependent variables, whereas a generalized linear model with square-root link function and Poisson distribution performs best in terms of goodness of fit. Commonly used models utilizing a log-link are shown to perform badly relative to other models considered in our comparison.

  17. Analyzing degradation data with a random effects spline regression model

    DOE PAGES

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    2017-03-17

    This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.

  18. Analyzing degradation data with a random effects spline regression model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    This study proposes using a random effects spline regression model to analyze degradation data. Spline regression avoids having to specify a parametric function for the true degradation of an item. A distribution for the spline regression coefficients captures the variation of the true degradation curves from item to item. We illustrate the proposed methodology with a real example using a Bayesian approach. The Bayesian approach allows prediction of degradation of a population over time and estimation of reliability is easy to perform.

  19. Semiparametric regression during 2003–2007*

    PubMed Central

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2010-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800

  20. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  1. Non-linear auto-regressive models for cross-frequency coupling in neural time series

    PubMed Central

    Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre

    2017-01-01

    We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989

  2. Injury risk functions based on population-based finite element model responses: Application to femurs under dynamic three-point bending.

    PubMed

    Park, Gwansik; Forman, Jason; Kim, Taewung; Panzer, Matthew B; Crandall, Jeff R

    2018-02-28

    The goal of this study was to explore a framework for developing injury risk functions (IRFs) in a bottom-up approach based on responses of parametrically variable finite element (FE) models representing exemplar populations. First, a parametric femur modeling tool was developed and validated using a subject-specific (SS)-FE modeling approach. Second, principal component analysis and regression were used to identify parametric geometric descriptors of the human femur and the distribution of those factors for 3 target occupant sizes (5th, 50th, and 95th percentile males). Third, distributions of material parameters of cortical bone were obtained from the literature for 3 target occupant ages (25, 50, and 75 years) using regression analysis. A Monte Carlo method was then implemented to generate populations of FE models of the femur for target occupants, using a parametric femur modeling tool. Simulations were conducted with each of these models under 3-point dynamic bending. Finally, model-based IRFs were developed using logistic regression analysis, based on the moment at fracture observed in the FE simulation. In total, 100 femur FE models incorporating the variation in the population of interest were generated, and 500,000 moments at fracture were observed (applying 5,000 ultimate strains for each synthesized 100 femur FE models) for each target occupant characteristics. Using the proposed framework on this study, the model-based IRFs for 3 target male occupant sizes (5th, 50th, and 95th percentiles) and ages (25, 50, and 75 years) were developed. The model-based IRF was located in the 95% confidence interval of the test-based IRF for the range of 15 to 70% injury risks. The 95% confidence interval of the developed IRF was almost in line with the mean curve due to a large number of data points. The framework proposed in this study would be beneficial for developing the IRFs in a bottom-up manner, whose range of variabilities is informed by the population-based FE model responses. Specifically, this method mitigates the uncertainties in applying empirical scaling and may improve IRF fidelity when a limited number of experimental specimens are available.

  3. Survival Data and Regression Models

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.

  4. Semiparametric time varying coefficient model for matched case-crossover studies.

    PubMed

    Ortega-Villa, Ana Maria; Kim, Inyoung; Kim, H

    2017-03-15

    In matched case-crossover studies, it is generally accepted that the covariates on which a case and associated controls are matched cannot exert a confounding effect on independent predictors included in the conditional logistic regression model. This is because any stratum effect is removed by the conditioning on the fixed number of sets of the case and controls in the stratum. Hence, the conditional logistic regression model is not able to detect any effects associated with the matching covariates by stratum. However, some matching covariates such as time often play an important role as an effect modification leading to incorrect statistical estimation and prediction. Therefore, we propose three approaches to evaluate effect modification by time. The first is a parametric approach, the second is a semiparametric penalized approach, and the third is a semiparametric Bayesian approach. Our parametric approach is a two-stage method, which uses conditional logistic regression in the first stage and then estimates polynomial regression in the second stage. Our semiparametric penalized and Bayesian approaches are one-stage approaches developed by using regression splines. Our semiparametric one stage approach allows us to not only detect the parametric relationship between the predictor and binary outcomes, but also evaluate nonparametric relationships between the predictor and time. We demonstrate the advantage of our semiparametric one-stage approaches using both a simulation study and an epidemiological example of a 1-4 bi-directional case-crossover study of childhood aseptic meningitis with drinking water turbidity. We also provide statistical inference for the semiparametric Bayesian approach using Bayes Factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    NASA Astrophysics Data System (ADS)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  6. Semi-parametric regression model for survival data: graphical visualization with R

    PubMed Central

    2016-01-01

    Cox proportional hazards model is a semi-parametric model that leaves its baseline hazard function unspecified. The rationale to use Cox proportional hazards model is that (I) the underlying form of hazard function is stringent and unrealistic, and (II) researchers are only interested in estimation of how the hazard changes with covariate (relative hazard). Cox regression model can be easily fit with coxph() function in survival package. Stratified Cox model may be used for covariate that violates the proportional hazards assumption. The relative importance of covariates in population can be examined with the rankhazard package in R. Hazard ratio curves for continuous covariates can be visualized using smoothHR package. This curve helps to better understand the effects that each continuous covariate has on the outcome. Population attributable fraction is a classic quantity in epidemiology to evaluate the impact of risk factor on the occurrence of event in the population. In survival analysis, the adjusted/unadjusted attributable fraction can be plotted against survival time to obtain attributable fraction function. PMID:28090517

  7. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  8. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models.

  9. Bayesian semi-parametric analysis of Poisson change-point regression models: application to policy making in Cali, Colombia.

    PubMed

    Park, Taeyoung; Krafty, Robert T; Sánchez, Alvaro I

    2012-07-27

    A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the nonconstant pattern of a log baseline rate is modeled with a nonparametric step function, the resulting semi-parametric model involves a model component of varying dimension and thus requires a sophisticated varying-dimensional inference to obtain correct estimates of model parameters of fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art MCMC-type algorithm based on partial collapse. The proposed model and methods are used to investigate an association between daily homicide rates in Cali, Colombia and policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public.

  10. Self-organising mixture autoregressive model for non-stationary time series modelling.

    PubMed

    Ni, He; Yin, Hujun

    2008-12-01

    Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.

  11. PARAMETRIC AND NON PARAMETRIC (MARS: MULTIVARIATE ADDITIVE REGRESSION SPLINES) LOGISTIC REGRESSIONS FOR PREDICTION OF A DICHOTOMOUS RESPONSE VARIABLE WITH AN EXAMPLE FOR PRESENCE/ABSENCE OF AMPHIBIANS

    EPA Science Inventory

    The purpose of this report is to provide a reference manual that could be used by investigators for making informed use of logistic regression using two methods (standard logistic regression and MARS). The details for analyses of relationships between a dependent binary response ...

  12. Non-parametric directionality analysis - Extension for removal of a single common predictor and application to time series.

    PubMed

    Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob

    2016-08-01

    The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be; Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels; Shabbir, A.

    Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standardmore » least squares.« less

  14. A non-parametric consistency test of the ΛCDM model with Planck CMB data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamousa, Amir; Shafieloo, Arman; Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr

    Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation ofmore » the base ΛCDM model as cosmology's gold standard.« less

  15. Multivariate decoding of brain images using ordinal regression.

    PubMed

    Doyle, O M; Ashburner, J; Zelaya, F O; Williams, S C R; Mehta, M A; Marquand, A F

    2013-11-01

    Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Copyright © 2013. Published by Elsevier Inc.

  16. Variable selection and model choice in geoadditive regression models.

    PubMed

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  17. Parametric Human Body Reconstruction Based on Sparse Key Points.

    PubMed

    Cheng, Ke-Li; Tong, Ruo-Feng; Tang, Min; Qian, Jing-Ye; Sarkis, Michel

    2016-11-01

    We propose an automatic parametric human body reconstruction algorithm which can efficiently construct a model using a single Kinect sensor. A user needs to stand still in front of the sensor for a couple of seconds to measure the range data. The user's body shape and pose will then be automatically constructed in several seconds. Traditional methods optimize dense correspondences between range data and meshes. In contrast, our proposed scheme relies on sparse key points for the reconstruction. It employs regression to find the corresponding key points between the scanned range data and some annotated training data. We design two kinds of feature descriptors as well as corresponding regression stages to make the regression robust and accurate. Our scheme follows with dense refinement where a pre-factorization method is applied to improve the computational efficiency. Compared with other methods, our scheme achieves similar reconstruction accuracy but significantly reduces runtime.

  18. A gentle introduction to quantile regression for ecologists

    USGS Publications Warehouse

    Cade, B.S.; Noon, B.R.

    2003-01-01

    Quantile regression is a way to estimate the conditional quantiles of a response variable distribution in the linear model that provides a more complete view of possible causal relationships between variables in ecological processes. Typically, all the factors that affect ecological processes are not measured and included in the statistical models used to investigate relationships between variables associated with those processes. As a consequence, there may be a weak or no predictive relationship between the mean of the response variable (y) distribution and the measured predictive factors (X). Yet there may be stronger, useful predictive relationships with other parts of the response variable distribution. This primer relates quantile regression estimates to prediction intervals in parametric error distribution regression models (eg least squares), and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of the estimates for homogeneous and heterogeneous regression models.

  19. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  20. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.

    PubMed

    Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah

    2016-01-01

    One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  1. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    PubMed

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  2. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  3. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most updated information and newly added models. PMID:21546994

  4. Comparative study of some robust statistical methods: weighted, parametric, and nonparametric linear regression of HPLC convoluted peak responses using internal standard method in drug bioavailability studies.

    PubMed

    Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Ragab, Marwa A A

    2013-05-01

    This manuscript discusses the application and the comparison between three statistical regression methods for handling data: parametric, nonparametric, and weighted regression (WR). These data were obtained from different chemometric methods applied to the high-performance liquid chromatography response data using the internal standard method. This was performed on a model drug Acyclovir which was analyzed in human plasma with the use of ganciclovir as internal standard. In vivo study was also performed. Derivative treatment of chromatographic response ratio data was followed by convolution of the resulting derivative curves using 8-points sin x i polynomials (discrete Fourier functions). This work studies and also compares the application of WR method and Theil's method, a nonparametric regression (NPR) method with the least squares parametric regression (LSPR) method, which is considered the de facto standard method used for regression. When the assumption of homoscedasticity is not met for analytical data, a simple and effective way to counteract the great influence of the high concentrations on the fitted regression line is to use WR method. WR was found to be superior to the method of LSPR as the former assumes that the y-direction error in the calibration curve will increase as x increases. Theil's NPR method was also found to be superior to the method of LSPR as the former assumes that errors could occur in both x- and y-directions and that might not be normally distributed. Most of the results showed a significant improvement in the precision and accuracy on applying WR and NPR methods relative to LSPR.

  5. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  6. Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment.

    ERIC Educational Resources Information Center

    Habing, Brian

    2001-01-01

    Discusses ideas underlying nonparametric regression and the parametric bootstrap with an overview of their application to item response theory and the assessment of local dependence. Illustrates the use of the method in assessing local dependence that varies with examinee trait levels. (SLD)

  7. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    USGS Publications Warehouse

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.

  8. Parametric Method Performance for Dynamic 3'-Deoxy-3'-18F-Fluorothymidine PET/CT in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Carcinoma Patients Before and During Therapy.

    PubMed

    Kramer, Gerbrand Maria; Frings, Virginie; Heijtel, Dennis; Smit, E F; Hoekstra, Otto S; Boellaard, Ronald

    2017-06-01

    The objective of this study was to validate several parametric methods for quantification of 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) PET in advanced-stage non-small cell lung carcinoma (NSCLC) patients with an activating epidermal growth factor receptor mutation who were treated with gefitinib or erlotinib. Furthermore, we evaluated the impact of noise on accuracy and precision of the parametric analyses of dynamic 18 F-FLT PET/CT to assess the robustness of these methods. Methods : Ten NSCLC patients underwent dynamic 18 F-FLT PET/CT at baseline and 7 and 28 d after the start of treatment. Parametric images were generated using plasma input Logan graphic analysis and 2 basis functions-based methods: a 2-tissue-compartment basis function model (BFM) and spectral analysis (SA). Whole-tumor-averaged parametric pharmacokinetic parameters were compared with those obtained by nonlinear regression of the tumor time-activity curve using a reversible 2-tissue-compartment model with blood volume fraction. In addition, 2 statistically equivalent datasets were generated by countwise splitting the original list-mode data, each containing 50% of the total counts. Both new datasets were reconstructed, and parametric pharmacokinetic parameters were compared between the 2 replicates and the original data. Results: After the settings of each parametric method were optimized, distribution volumes (V T ) obtained with Logan graphic analysis, BFM, and SA all correlated well with those derived using nonlinear regression at baseline and during therapy ( R 2 ≥ 0.94; intraclass correlation coefficient > 0.97). SA-based V T images were most robust to increased noise on a voxel-level (repeatability coefficient, 16% vs. >26%). Yet BFM generated the most accurate K 1 values ( R 2 = 0.94; intraclass correlation coefficient, 0.96). Parametric K 1 data showed a larger variability in general; however, no differences were found in robustness between methods (repeatability coefficient, 80%-84%). Conclusion: Both BFM and SA can generate quantitatively accurate parametric 18 F-FLT V T images in NSCLC patients before and during therapy. SA was more robust to noise, yet BFM provided more accurate parametric K 1 data. We therefore recommend BFM as the preferred parametric method for analysis of dynamic 18 F-FLT PET/CT studies; however, SA can also be used. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Quality Quandaries: Predicting a Population of Curves

    DOE PAGES

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    2017-12-19

    We present a random effects spline regression model based on splines that provides an integrated approach for analyzing functional data, i.e., curves, when the shape of the curves is not parametrically specified. An analysis using this model is presented that makes inferences about a population of curves as well as features of the curves.

  10. Quality Quandaries: Predicting a Population of Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, Michael Lynn; Hamada, Michael Scott; Weaver, Brian Phillip

    We present a random effects spline regression model based on splines that provides an integrated approach for analyzing functional data, i.e., curves, when the shape of the curves is not parametrically specified. An analysis using this model is presented that makes inferences about a population of curves as well as features of the curves.

  11. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    PubMed

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  12. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    PubMed Central

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  13. Logistic quantile regression provides improved estimates for bounded avian counts: a case study of California Spotted Owl fledgling production

    Treesearch

    Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane

    2017-01-01

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical...

  14. Quantifying discrimination of Framingham risk functions with different survival C statistics.

    PubMed

    Pencina, Michael J; D'Agostino, Ralph B; Song, Linye

    2012-07-10

    Cardiovascular risk prediction functions offer an important diagnostic tool for clinicians and patients themselves. They are usually constructed with the use of parametric or semi-parametric survival regression models. It is essential to be able to evaluate the performance of these models, preferably with summaries that offer natural and intuitive interpretations. The concept of discrimination, popular in the logistic regression context, has been extended to survival analysis. However, the extension is not unique. In this paper, we define discrimination in survival analysis as the model's ability to separate those with longer event-free survival from those with shorter event-free survival within some time horizon of interest. This definition remains consistent with that used in logistic regression, in the sense that it assesses how well the model-based predictions match the observed data. Practical and conceptual examples and numerical simulations are employed to examine four C statistics proposed in the literature to evaluate the performance of survival models. We observe that they differ in the numerical values and aspects of discrimination that they capture. We conclude that the index proposed by Harrell is the most appropriate to capture discrimination described by the above definition. We suggest researchers report which C statistic they are using, provide a rationale for their selection, and be aware that comparing different indices across studies may not be meaningful. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.

    ERIC Educational Resources Information Center

    Vidal, Sherry

    Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…

  16. Variable Selection for Nonparametric Quantile Regression via Smoothing Spline AN OVA

    PubMed Central

    Lin, Chen-Yen; Bondell, Howard; Zhang, Hao Helen; Zou, Hui

    2014-01-01

    Quantile regression provides a more thorough view of the effect of covariates on a response. Nonparametric quantile regression has become a viable alternative to avoid restrictive parametric assumption. The problem of variable selection for quantile regression is challenging, since important variables can influence various quantiles in different ways. We tackle the problem via regularization in the context of smoothing spline ANOVA models. The proposed sparse nonparametric quantile regression (SNQR) can identify important variables and provide flexible estimates for quantiles. Our numerical study suggests the promising performance of the new procedure in variable selection and function estimation. Supplementary materials for this article are available online. PMID:24554792

  17. Vector autoregressive models: A Gini approach

    NASA Astrophysics Data System (ADS)

    Mussard, Stéphane; Ndiaye, Oumar Hamady

    2018-02-01

    In this paper, it is proven that the usual VAR models may be performed in the Gini sense, that is, on a ℓ1 metric space. The Gini regression is robust to outliers. As a consequence, when data are contaminated by extreme values, we show that semi-parametric VAR-Gini regressions may be used to obtain robust estimators. The inference about the estimators is made with the ℓ1 norm. Also, impulse response functions and Gini decompositions for prevision errors are introduced. Finally, Granger's causality tests are properly derived based on U-statistics.

  18. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  19. Regression analysis of informative current status data with the additive hazards model.

    PubMed

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  20. Conditional parametric models for storm sewer runoff

    NASA Astrophysics Data System (ADS)

    Jonsdottir, H.; Nielsen, H. Aa; Madsen, H.; Eliasson, J.; Palsson, O. P.; Nielsen, M. K.

    2007-05-01

    The method of conditional parametric modeling is introduced for flow prediction in a sewage system. It is a well-known fact that in hydrological modeling the response (runoff) to input (precipitation) varies depending on soil moisture and several other factors. Consequently, nonlinear input-output models are needed. The model formulation described in this paper is similar to the traditional linear models like final impulse response (FIR) and autoregressive exogenous (ARX) except that the parameters vary as a function of some external variables. The parameter variation is modeled by local lines, using kernels for local linear regression. As such, the method might be referred to as a nearest neighbor method. The results achieved in this study were compared to results from the conventional linear methods, FIR and ARX. The increase in the coefficient of determination is substantial. Furthermore, the new approach conserves the mass balance better. Hence this new approach looks promising for various hydrological models and analysis.

  1. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  2. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  3. Linkage mapping of beta 2 EEG waves via non-parametric regression.

    PubMed

    Ghosh, Saurabh; Begleiter, Henri; Porjesz, Bernice; Chorlian, David B; Edenberg, Howard J; Foroud, Tatiana; Goate, Alison; Reich, Theodore

    2003-04-01

    Parametric linkage methods for analyzing quantitative trait loci are sensitive to violations in trait distributional assumptions. Non-parametric methods are relatively more robust. In this article, we modify the non-parametric regression procedure proposed by Ghosh and Majumder [2000: Am J Hum Genet 66:1046-1061] to map Beta 2 EEG waves using genome-wide data generated in the COGA project. Significant linkage findings are obtained on chromosomes 1, 4, 5, and 15 with findings at multiple regions on chromosomes 4 and 15. We analyze the data both with and without incorporating alcoholism as a covariate. We also test for epistatic interactions between regions of the genome exhibiting significant linkage with the EEG phenotypes and find evidence of epistatic interactions between a region each on chromosome 1 and chromosome 4 with one region on chromosome 15. While regressing out the effect of alcoholism does not affect the linkage findings, the epistatic interactions become statistically insignificant. Copyright 2003 Wiley-Liss, Inc.

  4. Whole-genome regression and prediction methods applied to plant and animal breeding.

    PubMed

    de Los Campos, Gustavo; Hickey, John M; Pong-Wong, Ricardo; Daetwyler, Hans D; Calus, Mario P L

    2013-02-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.

  5. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    PubMed Central

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  6. Cost Estimation of Naval Ship Acquisition.

    DTIC Science & Technology

    1983-12-01

    one a 9-sub- system model , the other a single total cost model . The models were developed using the linear least squares regression tech- nique with...to Linear Statistical Models , McGraw-Hill, 1961. 11. Helmer, F. T., Bibliography on Pricing Methodology and Cost Estimating, Dept. of Economics and...SUPPI.EMSaTARY NOTES IS. KWRo" (Cowaft. en tever aide of ..aesep M’ Idab~t 6 Week ONNa.) Cost estimation; Acquisition; Parametric cost estimate; linear

  7. Comparative Performance Evaluation of Rainfall-runoff Models, Six of Black-box Type and One of Conceptual Type, From The Galway Flow Forecasting System (gffs) Package, Applied On Two Irish Catchments

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.

    The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.

  8. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru.

    PubMed

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.

  9. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru

    PubMed Central

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657

  10. Variable selection for distribution-free models for longitudinal zero-inflated count responses.

    PubMed

    Chen, Tian; Wu, Pan; Tang, Wan; Zhang, Hui; Feng, Changyong; Kowalski, Jeanne; Tu, Xin M

    2016-07-20

    Zero-inflated count outcomes arise quite often in research and practice. Parametric models such as the zero-inflated Poisson and zero-inflated negative binomial are widely used to model such responses. Like most parametric models, they are quite sensitive to departures from assumed distributions. Recently, new approaches have been proposed to provide distribution-free, or semi-parametric, alternatives. These methods extend the generalized estimating equations to provide robust inference for population mixtures defined by zero-inflated count outcomes. In this paper, we propose methods to extend smoothly clipped absolute deviation (SCAD)-based variable selection methods to these new models. Variable selection has been gaining popularity in modern clinical research studies, as determining differential treatment effects of interventions for different subgroups has become the norm, rather the exception, in the era of patent-centered outcome research. Such moderation analysis in general creates many explanatory variables in regression analysis, and the advantages of SCAD-based methods over their traditional counterparts render them a great choice for addressing this important and timely issues in clinical research. We illustrate the proposed approach with both simulated and real study data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Regression analysis of current-status data: an application to breast-feeding.

    PubMed

    Grummer-strawn, L M

    1993-09-01

    "Although techniques for calculating mean survival time from current-status data are well known, their use in multiple regression models is somewhat troublesome. Using data on current breast-feeding behavior, this article considers a number of techniques that have been suggested in the literature, including parametric, nonparametric, and semiparametric models as well as the application of standard schedules. Models are tested in both proportional-odds and proportional-hazards frameworks....I fit [the] models to current status data on breast-feeding from the Demographic and Health Survey (DHS) in six countries: two African (Mali and Ondo State, Nigeria), two Asian (Indonesia and Sri Lanka), and two Latin American (Colombia and Peru)." excerpt

  12. Establishment of Biological Reference Intervals and Reference Curve for Urea by Exploratory Parametric and Non-Parametric Quantile Regression Models.

    PubMed

    Sarkar, Rajarshi

    2013-07-01

    The validity of the entire renal function tests as a diagnostic tool depends substantially on the Biological Reference Interval (BRI) of urea. Establishment of BRI of urea is difficult partly because exclusion criteria for selection of reference data are quite rigid and partly due to the compartmentalization considerations regarding age and sex of the reference individuals. Moreover, construction of Biological Reference Curve (BRC) of urea is imperative to highlight the partitioning requirements. This a priori study examines the data collected by measuring serum urea of 3202 age and sex matched individuals, aged between 1 and 80 years, by a kinetic UV Urease/GLDH method on a Roche Cobas 6000 auto-analyzer. Mann-Whitney U test of the reference data confirmed the partitioning requirement by both age and sex. Further statistical analysis revealed the incompatibility of the data for a proposed parametric model. Hence the data was non-parametrically analysed. BRI was found to be identical for both sexes till the 2(nd) decade, and the BRI for males increased progressively 6(th) decade onwards. Four non-parametric models were postulated for construction of BRC: Gaussian kernel, double kernel, local mean and local constant, of which the last one generated the best-fitting curves. Clinical decision making should become easier and diagnostic implications of renal function tests should become more meaningful if this BRI is followed and the BRC is used as a desktop tool in conjunction with similar data for serum creatinine.

  13. Parametric system identification of catamaran for improving controller design

    NASA Astrophysics Data System (ADS)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  14. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  15. Logistic regression model for diagnosis of transition zone prostate cancer on multi-parametric MRI.

    PubMed

    Dikaios, Nikolaos; Alkalbani, Jokha; Sidhu, Harbir Singh; Fujiwara, Taiki; Abd-Alazeez, Mohamed; Kirkham, Alex; Allen, Clare; Ahmed, Hashim; Emberton, Mark; Freeman, Alex; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit

    2015-02-01

    We aimed to develop logistic regression (LR) models for classifying prostate cancer within the transition zone on multi-parametric magnetic resonance imaging (mp-MRI). One hundred and fifty-five patients (training cohort, 70 patients; temporal validation cohort, 85 patients) underwent mp-MRI and transperineal-template-prostate-mapping (TPM) biopsy. Positive cores were classified by cancer definitions: (1) any-cancer; (2) definition-1 [≥Gleason 4 + 3 or ≥ 6 mm cancer core length (CCL)] [high risk significant]; and (3) definition-2 (≥Gleason 3 + 4 or ≥ 4 mm CCL) cancer [intermediate-high risk significant]. For each, logistic-regression mp-MRI models were derived from the training cohort and validated internally and with the temporal cohort. Sensitivity/specificity and the area under the receiver operating characteristic (ROC-AUC) curve were calculated. LR model performance was compared to radiologists' performance. Twenty-eight of 70 patients from the training cohort, and 25/85 patients from the temporal validation cohort had significant cancer on TPM. The ROC-AUC of the LR model for classification of cancer was 0.73/0.67 at internal/temporal validation. The radiologist A/B ROC-AUC was 0.65/0.74 (temporal cohort). For patients scored by radiologists as Prostate Imaging Reporting and Data System (Pi-RADS) score 3, sensitivity/specificity of radiologist A 'best guess' and LR model was 0.14/0.54 and 0.71/0.61, respectively; and radiologist B 'best guess' and LR model was 0.40/0.34 and 0.50/0.76, respectively. LR models can improve classification of Pi-RADS score 3 lesions similar to experienced radiologists. • MRI helps find prostate cancer in the anterior of the gland • Logistic regression models based on mp-MRI can classify prostate cancer • Computers can help confirm cancer in areas doctors are uncertain about.

  16. An overall strategy based on regression models to estimate relative survival and model the effects of prognostic factors in cancer survival studies.

    PubMed

    Remontet, L; Bossard, N; Belot, A; Estève, J

    2007-05-10

    Relative survival provides a measure of the proportion of patients dying from the disease under study without requiring the knowledge of the cause of death. We propose an overall strategy based on regression models to estimate the relative survival and model the effects of potential prognostic factors. The baseline hazard was modelled until 10 years follow-up using parametric continuous functions. Six models including cubic regression splines were considered and the Akaike Information Criterion was used to select the final model. This approach yielded smooth and reliable estimates of mortality hazard and allowed us to deal with sparse data taking into account all the available information. Splines were also used to model simultaneously non-linear effects of continuous covariates and time-dependent hazard ratios. This led to a graphical representation of the hazard ratio that can be useful for clinical interpretation. Estimates of these models were obtained by likelihood maximization. We showed that these estimates could be also obtained using standard algorithms for Poisson regression. Copyright 2006 John Wiley & Sons, Ltd.

  17. Efficient Regressions via Optimally Combining Quantile Information*

    PubMed Central

    Zhao, Zhibiao; Xiao, Zhijie

    2014-01-01

    We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481

  18. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    PubMed

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

  1. Parametric Methods for Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A

    2017-03-01

    In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  2. Multilevel covariance regression with correlated random effects in the mean and variance structure.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2017-09-01

    Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Locally-Based Kernal PLS Smoothing to Non-Parametric Regression Curve Fitting

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Korsmeyer, David (Technical Monitor)

    2002-01-01

    We present a novel smoothing approach to non-parametric regression curve fitting. This is based on kernel partial least squares (PLS) regression in reproducing kernel Hilbert space. It is our concern to apply the methodology for smoothing experimental data where some level of knowledge about the approximate shape, local inhomogeneities or points where the desired function changes its curvature is known a priori or can be derived based on the observed noisy data. We propose locally-based kernel PLS regression that extends the previous kernel PLS methodology by incorporating this knowledge. We compare our approach with existing smoothing splines, hybrid adaptive splines and wavelet shrinkage techniques on two generated data sets.

  4. An application of quantile random forests for predictive mapping of forest attributes

    Treesearch

    E.A. Freeman; G.G. Moisen

    2015-01-01

    Increasingly, random forest models are used in predictive mapping of forest attributes. Traditional random forests output the mean prediction from the random trees. Quantile regression forests (QRF) is an extension of random forests developed by Nicolai Meinshausen that provides non-parametric estimates of the median predicted value as well as prediction quantiles. It...

  5. New analysis methods to push the boundaries of diagnostic techniques in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Lungaroni, M.; Murari, A.; Peluso, E.; Gelfusa, M.; Malizia, A.; Vega, J.; Talebzadeh, S.; Gaudio, P.

    2016-04-01

    In the last years, new and more sophisticated measurements have been at the basis of the major progress in various disciplines related to the environment, such as remote sensing and thermonuclear fusion. To maximize the effectiveness of the measurements, new data analysis techniques are required. First data processing tasks, such as filtering and fitting, are of primary importance, since they can have a strong influence on the rest of the analysis. Even if Support Vector Regression is a method devised and refined at the end of the 90s, a systematic comparison with more traditional non parametric regression methods has never been reported. In this paper, a series of systematic tests is described, which indicates how SVR is a very competitive method of non-parametric regression that can usefully complement and often outperform more consolidated approaches. The performance of Support Vector Regression as a method of filtering is investigated first, comparing it with the most popular alternative techniques. Then Support Vector Regression is applied to the problem of non-parametric regression to analyse Lidar surveys for the environments measurement of particulate matter due to wildfires. The proposed approach has given very positive results and provides new perspectives to the interpretation of the data.

  6. Parametric Net Influx Rate Images of 68Ga-DOTATOC and 68Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast.

    PubMed

    Ilan, Ezgi; Sandström, Mattias; Velikyan, Irina; Sundin, Anders; Eriksson, Barbro; Lubberink, Mark

    2017-05-01

    68 Ga-DOTATOC and 68 Ga-DOTATATE are radiolabeled somatostatin analogs used for the diagnosis of somatostatin receptor-expressing neuroendocrine tumors (NETs), and SUV measurements are suggested for treatment monitoring. However, changes in net influx rate ( K i ) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing K i at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric K i images by comparison to volume of interest (VOI)-based methods and to assess image contrast in terms of tumor-to-liver ratio. Methods: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h after injection of 68 Ga-DOTATOC and 68 Ga-DOTATATE on consecutive days. Parametric K i images were computed using a basis function method (BFM) implementation of the 2-tissue-irreversible-compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor K i values were determined for 50% isocontour VOIs and compared with K i values based on nonlinear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and K i images, and tumor-to-liver ratios were calculated to evaluate image contrast. Correlation ( R 2 ) and agreement between VOI-based and parametric K i values were assessed using regression and Bland-Altman analysis. Results: The R 2 between NLR-based and parametric image-based (BFM) tumor K i values was 0.98 (slope, 0.81) and 0.97 (slope, 0.88) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. For Patlak analysis, the R 2 between NLR-based and parametric-based (Patlak) tumor K i was 0.95 (slope, 0.71) and 0.92 (slope, 0.74) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. There was no bias between NLR and parametric-based K i values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric BFM K i images and 2.3 and 3.0 times in the Patlak images than in the whole-body images for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. Conclusion: A high R 2 and agreement between NLR- and parametric-based K i values was found, showing that K i images are quantitatively accurate. In addition, tumor-to-liver contrast was superior in the parametric K i images compared with whole-body images for both 68 Ga-DOTATOC and 68 Ga DOTATATE. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. A Strategy for a Parametric Flood Insurance Using Proxies

    NASA Astrophysics Data System (ADS)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  8. Mixture models for undiagnosed prevalent disease and interval-censored incident disease: applications to a cohort assembled from electronic health records.

    PubMed

    Cheung, Li C; Pan, Qing; Hyun, Noorie; Schiffman, Mark; Fetterman, Barbara; Castle, Philip E; Lorey, Thomas; Katki, Hormuzd A

    2017-09-30

    For cost-effectiveness and efficiency, many large-scale general-purpose cohort studies are being assembled within large health-care providers who use electronic health records. Two key features of such data are that incident disease is interval-censored between irregular visits and there can be pre-existing (prevalent) disease. Because prevalent disease is not always immediately diagnosed, some disease diagnosed at later visits are actually undiagnosed prevalent disease. We consider prevalent disease as a point mass at time zero for clinical applications where there is no interest in time of prevalent disease onset. We demonstrate that the naive Kaplan-Meier cumulative risk estimator underestimates risks at early time points and overestimates later risks. We propose a general family of mixture models for undiagnosed prevalent disease and interval-censored incident disease that we call prevalence-incidence models. Parameters for parametric prevalence-incidence models, such as the logistic regression and Weibull survival (logistic-Weibull) model, are estimated by direct likelihood maximization or by EM algorithm. Non-parametric methods are proposed to calculate cumulative risks for cases without covariates. We compare naive Kaplan-Meier, logistic-Weibull, and non-parametric estimates of cumulative risk in the cervical cancer screening program at Kaiser Permanente Northern California. Kaplan-Meier provided poor estimates while the logistic-Weibull model was a close fit to the non-parametric. Our findings support our use of logistic-Weibull models to develop the risk estimates that underlie current US risk-based cervical cancer screening guidelines. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  9. Variable-Domain Functional Regression for Modeling ICU Data.

    PubMed

    Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M

    2014-12-01

    We introduce a class of scalar-on-function regression models with subject-specific functional predictor domains. The fundamental idea is to consider a bivariate functional parameter that depends both on the functional argument and on the width of the functional predictor domain. Both parametric and nonparametric models are introduced to fit the functional coefficient. The nonparametric model is theoretically and practically invariant to functional support transformation, or support registration. Methods were motivated by and applied to a study of association between daily measures of the Intensive Care Unit (ICU) Sequential Organ Failure Assessment (SOFA) score and two outcomes: in-hospital mortality, and physical impairment at hospital discharge among survivors. Methods are generally applicable to a large number of new studies that record a continuous variables over unequal domains.

  10. Assessing the performance of eight real-time updating models and procedures for the Brosna River

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Bhattarai, K. P.; Shamseldin, A. Y.

    2005-10-01

    The flow forecasting performance of eight updating models, incorporated in the Galway River Flow Modelling and Forecasting System (GFMFS), was assessed using daily data (rainfall, evaporation and discharge) of the Irish Brosna catchment (1207 km2), considering their one to six days lead-time discharge forecasts. The Perfect Forecast of Input over the Forecast Lead-time scenario was adopted, where required, in place of actual rainfall forecasts. The eight updating models were: (i) the standard linear Auto-Regressive (AR) model, applied to the forecast errors (residuals) of a simulation (non-updating) rainfall-runoff model; (ii) the Neural Network Updating (NNU) model, also using such residuals as input; (iii) the Linear Transfer Function (LTF) model, applied to the simulated and the recently observed discharges; (iv) the Non-linear Auto-Regressive eXogenous-Input Model (NARXM), also a neural network-type structure, but having wide options of using recently observed values of one or more of the three data series, together with non-updated simulated outflows, as inputs; (v) the Parametric Simple Linear Model (PSLM), of LTF-type, using recent rainfall and observed discharge data; (vi) the Parametric Linear perturbation Model (PLPM), also of LTF-type, using recent rainfall and observed discharge data, (vii) n-AR, an AR model applied to the observed discharge series only, as a naïve updating model; and (viii) n-NARXM, a naive form of the NARXM, using only the observed discharge data, excluding exogenous inputs. The five GFMFS simulation (non-updating) models used were the non-parametric and parametric forms of the Simple Linear Model and of the Linear Perturbation Model, the Linearly-Varying Gain Factor Model, the Artificial Neural Network Model, and the conceptual Soil Moisture Accounting and Routing (SMAR) model. As the SMAR model performance was found to be the best among these models, in terms of the Nash-Sutcliffe R2 value, both in calibration and in verification, the simulated outflows of this model only were selected for the subsequent exercise of producing updated discharge forecasts. All the eight forms of updating models for producing lead-time discharge forecasts were found to be capable of producing relatively good lead-1 (1-day ahead) forecasts, with R2 values almost 90% or above. However, for higher lead time forecasts, only three updating models, viz., NARXM, LTF, and NNU, were found to be suitable, with lead-6 values of R2 about 90% or higher. Graphical comparisons were made of the lead-time forecasts for the two largest floods, one in the calibration period and the other in the verification period.

  11. Goodness-Of-Fit Test for Nonparametric Regression Models: Smoothing Spline ANOVA Models as Example.

    PubMed

    Teran Hidalgo, Sebastian J; Wu, Michael C; Engel, Stephanie M; Kosorok, Michael R

    2018-06-01

    Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counter-parts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to smoothing spline ANOVA models. The test can consider two sources of lack-of-fit: whether covariates that are not currently in the model need to be included, and whether the current model fits the data well. The proposed method derives estimated residuals from the model. Then, statistical dependence is assessed between the estimated residuals and the covariates using the HSIC. If dependence exists, the model does not capture all the variability in the outcome associated with the covariates, otherwise the model fits the data well. The bootstrap is used to obtain p-values. Application of the method is demonstrated with a neonatal mental development data analysis. We demonstrate correct type I error as well as power performance through simulations.

  12. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test

    PubMed Central

    Zhao, Ni; Chen, Jun; Carroll, Ian M.; Ringel-Kulka, Tamar; Epstein, Michael P.; Zhou, Hua; Zhou, Jin J.; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C.

    2015-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. “Optimal” MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468

  13. Least Squares Procedures.

    ERIC Educational Resources Information Center

    Hester, Yvette

    Least squares methods are sophisticated mathematical curve fitting procedures used in all classical parametric methods. The linear least squares approximation is most often associated with finding the "line of best fit" or the regression line. Since all statistical analyses are correlational and all classical parametric methods are least…

  14. Bayesian Nonparametric Inference – Why and How

    PubMed Central

    Müller, Peter; Mitra, Riten

    2013-01-01

    We review inference under models with nonparametric Bayesian (BNP) priors. The discussion follows a set of examples for some common inference problems. The examples are chosen to highlight problems that are challenging for standard parametric inference. We discuss inference for density estimation, clustering, regression and for mixed effects models with random effects distributions. While we focus on arguing for the need for the flexibility of BNP models, we also review some of the more commonly used BNP models, thus hopefully answering a bit of both questions, why and how to use BNP. PMID:24368932

  15. Testing in semiparametric models with interaction, with applications to gene-environment interactions.

    PubMed

    Maity, Arnab; Carroll, Raymond J; Mammen, Enno; Chatterjee, Nilanjan

    2009-01-01

    Motivated from the problem of testing for genetic effects on complex traits in the presence of gene-environment interaction, we develop score tests in general semiparametric regression problems that involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-parametrically modelled covariates. We find that the score test in this type of model, as recently developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of functions which are defined as solutions of integral equations, making implementation difficult and computationally taxing. We develop profiled score statistics which are unbiased and asymptotically efficient and can be performed by using standard bandwidth selection methods. In addition, to overcome the difficulty of solving functional equations, we give easy interpretations of the target functions, which in turn allow us to develop estimation procedures that can be easily implemented by using standard computational methods. We present simulation studies to evaluate type I error and power of the method proposed compared with a naive test that does not consider interaction. Finally, we illustrate our methodology by analysing data from a case-control study of colorectal adenoma that was designed to investigate the association between colorectal adenoma and the candidate gene NAT2 in relation to smoking history.

  16. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  17. Improved model of the retardance in citric acid coated ferrofluids using stepwise regression

    NASA Astrophysics Data System (ADS)

    Lin, J. F.; Qiu, X. R.

    2017-06-01

    Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.

  18. The relationship between multilevel models and non-parametric multilevel mixture models: Discrete approximation of intraclass correlation, random coefficient distributions, and residual heteroscedasticity.

    PubMed

    Rights, Jason D; Sterba, Sonya K

    2016-11-01

    Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.

  19. CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions

    EPA Pesticide Factsheets

    Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.

  20. Modeling gene expression measurement error: a quasi-likelihood approach

    PubMed Central

    Strimmer, Korbinian

    2003-01-01

    Background Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution) or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale). Results Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood). Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic) variance structure of the data. As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye) effects. Conclusions The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also improved the power of tests to identify differential expression. PMID:12659637

  1. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  2. RBF kernel based support vector regression to estimate the blood volume and heart rate responses during hemodialysis.

    PubMed

    Javed, Faizan; Chan, Gregory S H; Savkin, Andrey V; Middleton, Paul M; Malouf, Philip; Steel, Elizabeth; Mackie, James; Lovell, Nigel H

    2009-01-01

    This paper uses non-linear support vector regression (SVR) to model the blood volume and heart rate (HR) responses in 9 hemodynamically stable kidney failure patients during hemodialysis. Using radial bias function (RBF) kernels the non-parametric models of relative blood volume (RBV) change with time as well as percentage change in HR with respect to RBV were obtained. The e-insensitivity based loss function was used for SVR modeling. Selection of the design parameters which includes capacity (C), insensitivity region (e) and the RBF kernel parameter (sigma) was made based on a grid search approach and the selected models were cross-validated using the average mean square error (AMSE) calculated from testing data based on a k-fold cross-validation technique. Linear regression was also applied to fit the curves and the AMSE was calculated for comparison with SVR. For the model based on RBV with time, SVR gave a lower AMSE for both training (AMSE=1.5) as well as testing data (AMSE=1.4) compared to linear regression (AMSE=1.8 and 1.5). SVR also provided a better fit for HR with RBV for both training as well as testing data (AMSE=15.8 and 16.4) compared to linear regression (AMSE=25.2 and 20.1).

  3. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  4. Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models.

    PubMed

    Garcia, Tanya P; Ma, Yanyuan

    2017-10-01

    We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.

  5. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  6. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  7. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows.

    PubMed

    Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G

    2011-10-31

    We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.

  8. Mathematical model of optical signals emitted by electrical discharges occuring in electroinsulating oil

    NASA Astrophysics Data System (ADS)

    Kozioł, Michał

    2017-10-01

    The article presents a parametric model describing the registered distributions spectrum of optical radiation emitted by electrical discharges generated in the systems: the needle- needle, the needleplate and in the system for surface discharges. Generation of electrical discharges and registration of the emitted radiation was carried out in three different electrical insulating oils: fabric new, operated (used) and operated with air bubbles. For registration of optical spectra in the range of ultraviolet, visible and near infrared a high resolution spectrophotometer was. The proposed mathematical model was developed in a regression procedure using gauss-sigmoid type function. The dependent variable was the intensity of the recorded optical signals. In order to estimate the optimal parameters of the model an evolutionary algorithm was used. The optimization procedure was performed in Matlab environment. For determination of the matching quality of theoretical parameters of the regression function to the empirical data determination coefficient R2 was applied.

  9. Confidence limits for data mining models of options prices

    NASA Astrophysics Data System (ADS)

    Healy, J. V.; Dixon, M.; Read, B. J.; Cai, F. F.

    2004-12-01

    Non-parametric methods such as artificial neural nets can successfully model prices of financial options, out-performing the Black-Scholes analytic model (Eur. Phys. J. B 27 (2002) 219). However, the accuracy of such approaches is usually expressed only by a global fitting/error measure. This paper describes a robust method for determining prediction intervals for models derived by non-linear regression. We have demonstrated it by application to a standard synthetic example (29th Annual Conference of the IEEE Industrial Electronics Society, Special Session on Intelligent Systems, pp. 1926-1931). The method is used here to obtain prediction intervals for option prices using market data for LIFFE “ESX” FTSE 100 index options ( http://www.liffe.com/liffedata/contracts/month_onmonth.xls). We avoid special neural net architectures and use standard regression procedures to determine local error bars. The method is appropriate for target data with non constant variance (or volatility).

  10. [Multivariate Adaptive Regression Splines (MARS), an alternative for the analysis of time series].

    PubMed

    Vanegas, Jairo; Vásquez, Fabián

    Multivariate Adaptive Regression Splines (MARS) is a non-parametric modelling method that extends the linear model, incorporating nonlinearities and interactions between variables. It is a flexible tool that automates the construction of predictive models: selecting relevant variables, transforming the predictor variables, processing missing values and preventing overshooting using a self-test. It is also able to predict, taking into account structural factors that might influence the outcome variable, thereby generating hypothetical models. The end result could identify relevant cut-off points in data series. It is rarely used in health, so it is proposed as a tool for the evaluation of relevant public health indicators. For demonstrative purposes, data series regarding the mortality of children under 5 years of age in Costa Rica were used, comprising the period 1978-2008. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Variable selection in a flexible parametric mixture cure model with interval-censored data.

    PubMed

    Scolas, Sylvie; El Ghouch, Anouar; Legrand, Catherine; Oulhaj, Abderrahim

    2016-03-30

    In standard survival analysis, it is generally assumed that every individual will experience someday the event of interest. However, this is not always the case, as some individuals may not be susceptible to this event. Also, in medical studies, it is frequent that patients come to scheduled interviews and that the time to the event is only known to occur between two visits. That is, the data are interval-censored with a cure fraction. Variable selection in such a setting is of outstanding interest. Covariates impacting the survival are not necessarily the same as those impacting the probability to experience the event. The objective of this paper is to develop a parametric but flexible statistical model to analyze data that are interval-censored and include a fraction of cured individuals when the number of potential covariates may be large. We use the parametric mixture cure model with an accelerated failure time regression model for the survival, along with the extended generalized gamma for the error term. To overcome the issue of non-stable and non-continuous variable selection procedures, we extend the adaptive LASSO to our model. By means of simulation studies, we show good performance of our method and discuss the behavior of estimates with varying cure and censoring proportion. Lastly, our proposed method is illustrated with a real dataset studying the time until conversion to mild cognitive impairment, a possible precursor of Alzheimer's disease. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  12. A probabilistic strategy for parametric catastrophe insurance

    NASA Astrophysics Data System (ADS)

    Figueiredo, Rui; Martina, Mario; Stephenson, David; Youngman, Benjamin

    2017-04-01

    Economic losses due to natural hazards have shown an upward trend since 1980, which is expected to continue. Recent years have seen a growing worldwide commitment towards the reduction of disaster losses. This requires effective management of disaster risk at all levels, a part of which involves reducing financial vulnerability to disasters ex-ante, ensuring that necessary resources will be available following such events. One way to achieve this is through risk transfer instruments. These can be based on different types of triggers, which determine the conditions under which payouts are made after an event. This study focuses on parametric triggers, where payouts are determined by the occurrence of an event exceeding specified physical parameters at a given location, or at multiple locations, or over a region. This type of product offers a number of important advantages, and its adoption is increasing. The main drawback of parametric triggers is their susceptibility to basis risk, which arises when there is a mismatch between triggered payouts and the occurrence of loss events. This is unavoidable in said programmes, as their calibration is based on models containing a number of different sources of uncertainty. Thus, a deterministic definition of the loss event triggering parameters appears flawed. However, often for simplicity, this is the way in which most parametric models tend to be developed. This study therefore presents an innovative probabilistic strategy for parametric catastrophe insurance. It is advantageous as it recognizes uncertainties and minimizes basis risk while maintaining a simple and transparent procedure. A logistic regression model is constructed here to represent the occurrence of loss events based on certain loss index variables, obtained through the transformation of input environmental variables. Flood-related losses due to rainfall are studied. The resulting model is able, for any given day, to issue probabilities of occurrence of loss events. Due to the nature of parametric programmes, it is still necessary to clearly define when a payout is due or not, and so a decision threshold probability above which a loss event is considered to occur must be set, effectively converting the issued probabilities into deterministic binary outcomes. Model skill and value are evaluated over the range of possible threshold probabilities, with the objective of defining the optimal one. The predictive ability of the model is assessed. In terms of value assessment, a decision model is proposed, allowing users to quantify monetarily their expected expenses when different combinations of model event triggering and actual event occurrence take place, directly tackling the problem of basis risk.

  13. One-dimensional statistical parametric mapping in Python.

    PubMed

    Pataky, Todd C

    2012-01-01

    Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.

  14. Symbolic Regression for the Estimation of Transfer Functions of Hydrological Models

    NASA Astrophysics Data System (ADS)

    Klotz, D.; Herrnegger, M.; Schulz, K.

    2017-11-01

    Current concepts for parameter regionalization of spatially distributed rainfall-runoff models rely on the a priori definition of transfer functions that globally map land surface characteristics (such as soil texture, land use, and digital elevation) into the model parameter space. However, these transfer functions are often chosen ad hoc or derived from small-scale experiments. This study proposes and tests an approach for inferring the structure and parametrization of possible transfer functions from runoff data to potentially circumvent these difficulties. The concept uses context-free grammars to generate possible proposition for transfer functions. The resulting structure can then be parametrized with classical optimization techniques. Several virtual experiments are performed to examine the potential for an appropriate estimation of transfer function, all of them using a very simple conceptual rainfall-runoff model with data from the Austrian Mur catchment. The results suggest that a priori defined transfer functions are in general well identifiable by the method. However, the deduction process might be inhibited, e.g., by noise in the runoff observation data, often leading to transfer function estimates of lower structural complexity.

  15. Estimating restricted mean treatment effects with stacked survival models

    PubMed Central

    Wey, Andrew; Vock, David M.; Connett, John; Rudser, Kyle

    2016-01-01

    The difference in restricted mean survival times between two groups is a clinically relevant summary measure. With observational data, there may be imbalances in confounding variables between the two groups. One approach to account for such imbalances is estimating a covariate-adjusted restricted mean difference by modeling the covariate-adjusted survival distribution, and then marginalizing over the covariate distribution. Since the estimator for the restricted mean difference is defined by the estimator for the covariate-adjusted survival distribution, it is natural to expect that a better estimator of the covariate-adjusted survival distribution is associated with a better estimator of the restricted mean difference. We therefore propose estimating restricted mean differences with stacked survival models. Stacked survival models estimate a weighted average of several survival models by minimizing predicted error. By including a range of parametric, semi-parametric, and non-parametric models, stacked survival models can robustly estimate a covariate-adjusted survival distribution and, therefore, the restricted mean treatment effect in a wide range of scenarios. We demonstrate through a simulation study that better performance of the covariate-adjusted survival distribution often leads to better mean-squared error of the restricted mean difference although there are notable exceptions. In addition, we demonstrate that the proposed estimator can perform nearly as well as Cox regression when the proportional hazards assumption is satisfied and significantly better when proportional hazards is violated. Finally, the proposed estimator is illustrated with data from the United Network for Organ Sharing to evaluate post-lung transplant survival between large and small-volume centers. PMID:26934835

  16. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  17. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  18. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  19. An Empirical Model Building Criterion Based on Prediction with Applications in Parametric Cost Estimation.

    DTIC Science & Technology

    1980-08-01

    varia- ble is denoted by 7, the total sum of squares of deviations from that mean is defined by n - SSTO - (-Y) (2.6) iul and the regression sum of...squares by SSR - SSTO - SSE (2.7) II 14 A selection criterion is a rule according to which a certain model out of the 2p possible models is labeled "best...dis- cussed next. 1. The R2 Criterion The coefficient of determination is defined by R2 . 1 - SSE/ SSTO . (2.8) It is clear that R is the proportion of

  20. Cox regression analysis with missing covariates via nonparametric multiple imputation.

    PubMed

    Hsu, Chiu-Hsieh; Yu, Mandi

    2018-01-01

    We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.

  1. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    NASA Astrophysics Data System (ADS)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  2. Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modeling and hypothesis testing

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2007-01-01

    Analysis of low concentrations of trace contaminants in environmental media often results in left-censored data that are below some limit of analytical precision. Interpretation of values becomes complicated when there are multiple detection limits in the data-perhaps as a result of changing analytical precision over time. Parametric and semi-parametric methods, such as maximum likelihood estimation and robust regression on order statistics, can be employed to model distributions of multiply censored data and provide estimates of summary statistics. However, these methods are based on assumptions about the underlying distribution of data. Nonparametric methods provide an alternative that does not require such assumptions. A standard nonparametric method for estimating summary statistics of multiply-censored data is the Kaplan-Meier (K-M) method. This method has seen widespread usage in the medical sciences within a general framework termed "survival analysis" where it is employed with right-censored time-to-failure data. However, K-M methods are equally valid for the left-censored data common in the geosciences. Our S-language software provides an analytical framework based on K-M methods that is tailored to the needs of the earth and environmental sciences community. This includes routines for the generation of empirical cumulative distribution functions, prediction or exceedance probabilities, and related confidence limits computation. Additionally, our software contains K-M-based routines for nonparametric hypothesis testing among an unlimited number of grouping variables. A primary characteristic of K-M methods is that they do not perform extrapolation and interpolation. Thus, these routines cannot be used to model statistics beyond the observed data range or when linear interpolation is desired. For such applications, the aforementioned parametric and semi-parametric methods must be used.

  3. Parametric Coding of the Size and Clutter of Natural Scenes in the Human Brain

    PubMed Central

    Park, Soojin; Konkle, Talia; Oliva, Aude

    2015-01-01

    Estimating the size of a space and its degree of clutter are effortless and ubiquitous tasks of moving agents in a natural environment. Here, we examine how regions along the occipital–temporal lobe respond to pictures of indoor real-world scenes that parametrically vary in their physical “size” (the spatial extent of a space bounded by walls) and functional “clutter” (the organization and quantity of objects that fill up the space). Using a linear regression model on multivoxel pattern activity across regions of interest, we find evidence that both properties of size and clutter are represented in the patterns of parahippocampal cortex, while the retrosplenial cortex activity patterns are predominantly sensitive to the size of a space, rather than the degree of clutter. Parametric whole-brain analyses confirmed these results. Importantly, this size and clutter information was represented in a way that generalized across different semantic categories. These data provide support for a property-based representation of spaces, distributed across multiple scene-selective regions of the cerebral cortex. PMID:24436318

  4. A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes

    USGS Publications Warehouse

    Eskelson, Bianca N.I.; Hagar, Joan; Temesgen, Hailemariam

    2012-01-01

    Snags (standing dead trees) are an essential structural component of forests. Because wildlife use of snags depends on size and decay stage, snag density estimation without any information about snag quality attributes is of little value for wildlife management decision makers. Little work has been done to develop models that allow multivariate estimation of snag density by snag quality class. Using climate, topography, Landsat TM data, stand age and forest type collected for 2356 forested Forest Inventory and Analysis plots in western Washington and western Oregon, we evaluated two multivariate techniques for their abilities to estimate density of snags by three decay classes. The density of live trees and snags in three decay classes (D1: recently dead, little decay; D2: decay, without top, some branches and bark missing; D3: extensive decay, missing bark and most branches) with diameter at breast height (DBH) ≥ 12.7 cm was estimated using a nonparametric random forest nearest neighbor imputation technique (RF) and a parametric two-stage model (QPORD), for which the number of trees per hectare was estimated with a Quasipoisson model in the first stage and the probability of belonging to a tree status class (live, D1, D2, D3) was estimated with an ordinal regression model in the second stage. The presence of large snags with DBH ≥ 50 cm was predicted using a logistic regression and RF imputation. Because of the more homogenous conditions on private forest lands, snag density by decay class was predicted with higher accuracies on private forest lands than on public lands, while presence of large snags was more accurately predicted on public lands, owing to the higher prevalence of large snags on public lands. RF outperformed the QPORD model in terms of percent accurate predictions, while QPORD provided smaller root mean square errors in predicting snag density by decay class. The logistic regression model achieved more accurate presence/absence classification of large snags than the RF imputation approach. Adjusting the decision threshold to account for unequal size for presence and absence classes is more straightforward for the logistic regression than for the RF imputation approach. Overall, model accuracies were poor in this study, which can be attributed to the poor predictive quality of the explanatory variables and the large range of forest types and geographic conditions observed in the data.

  5. Prediction du profil de durete de l'acier AISI 4340 traite thermiquement au laser

    NASA Astrophysics Data System (ADS)

    Maamri, Ilyes

    Les traitements thermiques de surfaces sont des procedes qui visent a conferer au coeur et a la surface des pieces mecaniques des proprietes differentes. Ils permettent d'ameliorer la resistance a l'usure et a la fatigue en durcissant les zones critiques superficielles par des apports thermiques courts et localises. Parmi les procedes qui se distinguent par leur capacite en terme de puissance surfacique, le traitement thermique de surface au laser offre des cycles thermiques rapides, localises et precis tout en limitant les risques de deformations indesirables. Les proprietes mecaniques de la zone durcie obtenue par ce procede dependent des proprietes physicochimiques du materiau a traiter et de plusieurs parametres du procede. Pour etre en mesure d'exploiter adequatement les ressources qu'offre ce procede, il est necessaire de developper des strategies permettant de controler et regler les parametres de maniere a produire avec precision les caracteristiques desirees pour la surface durcie sans recourir au classique long et couteux processus essai-erreur. L'objectif du projet consiste donc a developper des modeles pour predire le profil de durete dans le cas de traitement thermique de pieces en acier AISI 4340. Pour comprendre le comportement du procede et evaluer les effets des differents parametres sur la qualite du traitement, une etude de sensibilite a ete menee en se basant sur une planification experimentale structuree combinee a des techniques d'analyse statistiques eprouvees. Les resultats de cette etude ont permis l'identification des variables les plus pertinentes a exploiter pour la modelisation. Suite a cette analyse et dans le but d'elaborer un premier modele, deux techniques de modelisation ont ete considerees, soient la regression multiple et les reseaux de neurones. Les deux techniques ont conduit a des modeles de qualite acceptable avec une precision d'environ 90%. Pour ameliorer les performances des modeles a base de reseaux de neurones, deux nouvelles approches basees sur la caracterisation geometrique du profil de durete ont ete considerees. Contrairement aux premiers modeles predisant le profil de durete en fonction des parametres du procede, les nouveaux modeles combinent les memes parametres avec les attributs geometriques du profil de durete pour refleter la qualite du traitement. Les modeles obtenus montrent que cette strategie conduit a des resultats tres prometteurs.

  6. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  7. Improving mass-univariate analysis of neuroimaging data by modelling important unknown covariates: Application to Epigenome-Wide Association Studies.

    PubMed

    Guillaume, Bryan; Wang, Changqing; Poh, Joann; Shen, Mo Jun; Ong, Mei Lyn; Tan, Pei Fang; Karnani, Neerja; Meaney, Michael; Qiu, Anqi

    2018-06-01

    Statistical inference on neuroimaging data is often conducted using a mass-univariate model, equivalent to fitting a linear model at every voxel with a known set of covariates. Due to the large number of linear models, it is challenging to check if the selection of covariates is appropriate and to modify this selection adequately. The use of standard diagnostics, such as residual plotting, is clearly not practical for neuroimaging data. However, the selection of covariates is crucial for linear regression to ensure valid statistical inference. In particular, the mean model of regression needs to be reasonably well specified. Unfortunately, this issue is often overlooked in the field of neuroimaging. This study aims to adopt the existing Confounder Adjusted Testing and Estimation (CATE) approach and to extend it for use with neuroimaging data. We propose a modification of CATE that can yield valid statistical inferences using Principal Component Analysis (PCA) estimators instead of Maximum Likelihood (ML) estimators. We then propose a non-parametric hypothesis testing procedure that can improve upon parametric testing. Monte Carlo simulations show that the modification of CATE allows for more accurate modelling of neuroimaging data and can in turn yield a better control of False Positive Rate (FPR) and Family-Wise Error Rate (FWER). We demonstrate its application to an Epigenome-Wide Association Study (EWAS) on neonatal brain imaging and umbilical cord DNA methylation data obtained as part of a longitudinal cohort study. Software for this CATE study is freely available at http://www.bioeng.nus.edu.sg/cfa/Imaging_Genetics2.html. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. [The short-term effects of air pollution on mortality. The results of the EMECAM project in the city of Vigo, 1991-94. Estudio Multicéntrico Español sobre la Relación entre la Contaminación Atmosférica y la Mortalidad].

    PubMed

    Taracido Trunk, M; Figueiras, A; Castro Lareo, I

    1999-01-01

    In the Autonomous Region of Galicia, no study has been made of the impacts of air pollution on human health, despite the fact that several of its major cities have moderate levels of pollution. Therefore, we have considered the need of making this study in the city of Vigo. The main objective of this analysis is that of analyzing the short-term impact of air pollution on the daily death rate for all reasons in the city of Vigo throughout the 1991-1994 period, by using the procedure for analysis set out as part of the EMECAM Project. The daily fluctuations in the number of deaths for all causes with the exception of the external ones are listed with the daily fluctuations of sulfur dioxide and particles using Poisson regression models. A non-parametric model is also used in order to better control the confusion variables. Using the Poisson regression model, no significant relationships have been found to exist between the pollutants and the death rate. In the non-parametric model, a relationship was found between the concentration of particles on the day immediately prior to the date of death and the death rate, an effect which remains unchanged on including the autoregressive terms. Particle-based air pollution is a health risk despite the average levels of this pollutant falling within the air quality guideline levels in the city of Vigo.

  9. Profile local linear estimation of generalized semiparametric regression model for longitudinal data.

    PubMed

    Sun, Yanqing; Sun, Liuquan; Zhou, Jie

    2013-07-01

    This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.

  10. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  11. Multiple QSAR models, pharmacophore pattern and molecular docking analysis for anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues

    NASA Astrophysics Data System (ADS)

    Masand, Vijay H.; El-Sayed, Nahed N. E.; Bambole, Mukesh U.; Quazi, Syed A.

    2018-04-01

    Multiple discrete quantitative structure-activity relationships (QSARs) models were constructed for the anticancer activity of α, β-unsaturated carbonyl-based compounds, oxime and oxime ether analogues with a variety of substituents like sbnd Br, sbnd OH, -OMe, etc. at different positions. A big pool of descriptors was considered for QSAR model building. Genetic algorithm (GA), available in QSARINS-Chem, was executed to choose optimum number and set of descriptors to create the multi-linear regression equations for a dataset of sixty-nine compounds. The newly developed five parametric models were subjected to exhaustive internal and external validation along with Y-scrambling using QSARINS-Chem, according to the OECD principles for QSAR model validation. The models were built using easily interpretable descriptors and accepted after confirming statistically robustness with high external predictive ability. The five parametric models were found to have R2 = 0.80 to 0.86, R2ex = 0.75 to 0.84, and CCCex = 0.85 to 0.90. The models indicate that frequency of nitrogen and oxygen atoms separated by five bonds from each other and internal electronic environment of the molecule have correlation with the anticancer activity.

  12. Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.

    PubMed

    Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A

    2017-01-01

    The association between maternal age of onset of dementia and amyloid deposition (measured by in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of interest. In a regression model for amyloid, special methods are required due to the random right censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed methods to address the problem of censoring due to assay limit of detection, but not random censoring. We propose imputation methods and a survival regression method that do not require parametric assumptions about the distribution of the censored covariate. Existing imputation methods address missing covariates, but not right censored covariates. In simulation studies, we compare these methods to the simple, but inefficient complete case analysis, and to thresholding approaches. We apply the methods to the Alzheimer's study.

  13. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  14. Likert scales, levels of measurement and the "laws" of statistics.

    PubMed

    Norman, Geoff

    2010-12-01

    Reviewers of research reports frequently criticize the choice of statistical methods. While some of these criticisms are well-founded, frequently the use of various parametric methods such as analysis of variance, regression, correlation are faulted because: (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. In this paper, I dissect these arguments, and show that many studies, dating back to the 1930s consistently show that parametric statistics are robust with respect to violations of these assumptions. Hence, challenges like those above are unfounded, and parametric methods can be utilized without concern for "getting the wrong answer".

  15. A Comparison between the Use of Beta Weights and Structure Coefficients in Interpreting Regression Results

    ERIC Educational Resources Information Center

    Tong, Fuhui

    2006-01-01

    Background: An extensive body of researches has favored the use of regression over other parametric analyses that are based on OVA. In case of noteworthy regression results, researchers tend to explore magnitude of beta weights for the respective predictors. Purpose: The purpose of this paper is to examine both beta weights and structure…

  16. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298

  17. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.

  18. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Semiparametric Estimation of the Impacts of Longitudinal Interventions on Adolescent Obesity using Targeted Maximum-Likelihood: Accessible Estimation with the ltmle Package

    PubMed Central

    Decker, Anna L.; Hubbard, Alan; Crespi, Catherine M.; Seto, Edmund Y.W.; Wang, May C.

    2015-01-01

    While child and adolescent obesity is a serious public health concern, few studies have utilized parameters based on the causal inference literature to examine the potential impacts of early intervention. The purpose of this analysis was to estimate the causal effects of early interventions to improve physical activity and diet during adolescence on body mass index (BMI), a measure of adiposity, using improved techniques. The most widespread statistical method in studies of child and adolescent obesity is multi-variable regression, with the parameter of interest being the coefficient on the variable of interest. This approach does not appropriately adjust for time-dependent confounding, and the modeling assumptions may not always be met. An alternative parameter to estimate is one motivated by the causal inference literature, which can be interpreted as the mean change in the outcome under interventions to set the exposure of interest. The underlying data-generating distribution, upon which the estimator is based, can be estimated via a parametric or semi-parametric approach. Using data from the National Heart, Lung, and Blood Institute Growth and Health Study, a 10-year prospective cohort study of adolescent girls, we estimated the longitudinal impact of physical activity and diet interventions on 10-year BMI z-scores via a parameter motivated by the causal inference literature, using both parametric and semi-parametric estimation approaches. The parameters of interest were estimated with a recently released R package, ltmle, for estimating means based upon general longitudinal treatment regimes. We found that early, sustained intervention on total calories had a greater impact than a physical activity intervention or non-sustained interventions. Multivariable linear regression yielded inflated effect estimates compared to estimates based on targeted maximum-likelihood estimation and data-adaptive super learning. Our analysis demonstrates that sophisticated, optimal semiparametric estimation of longitudinal treatment-specific means via ltmle provides an incredibly powerful, yet easy-to-use tool, removing impediments for putting theory into practice. PMID:26046009

  20. Hyperbolic and semi-parametric models in finance

    NASA Astrophysics Data System (ADS)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  1. Trends and associated uncertainty in the global mean temperature record

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; Moyer, E. J.; Stein, M.

    2016-12-01

    Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.

  2. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model.

    PubMed

    Austin, Peter C

    2018-01-01

    The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.

  3. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model

    PubMed Central

    Austin, Peter C.

    2017-01-01

    The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest. PMID:29321694

  4. Alternative evaluation metrics for risk adjustment methods.

    PubMed

    Park, Sungchul; Basu, Anirban

    2018-06-01

    Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.

  5. On the Bias-Amplifying Effect of Near Instruments in Observational Studies

    ERIC Educational Resources Information Center

    Steiner, Peter M.; Kim, Yongnam

    2014-01-01

    In contrast to randomized experiments, the estimation of unbiased treatment effects from observational data requires an analysis that conditions on all confounding covariates. Conditioning on covariates can be done via standard parametric regression techniques or nonparametric matching like propensity score (PS) matching. The regression or…

  6. Spatio-Temporal Regression Based Clustering of Precipitation Extremes in a Presence of Systematically Missing Covariates

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Martius, Olivia; Horenko, Illia

    2017-04-01

    Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.

  7. Improved estimation of parametric images of cerebral glucose metabolic rate from dynamic FDG-PET using volume-wise principle component analysis

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqian; Tian, Jie; Chen, Zhe

    2010-03-01

    Parametric images can represent both spatial distribution and quantification of the biological and physiological parameters of tracer kinetics. The linear least square (LLS) method is a well-estimated linear regression method for generating parametric images by fitting compartment models with good computational efficiency. However, bias exists in LLS-based parameter estimates, owing to the noise present in tissue time activity curves (TTACs) that propagates as correlated error in the LLS linearized equations. To address this problem, a volume-wise principal component analysis (PCA) based method is proposed. In this method, firstly dynamic PET data are properly pre-transformed to standardize noise variance as PCA is a data driven technique and can not itself separate signals from noise. Secondly, the volume-wise PCA is applied on PET data. The signals can be mostly represented by the first few principle components (PC) and the noise is left in the subsequent PCs. Then the noise-reduced data are obtained using the first few PCs by applying 'inverse PCA'. It should also be transformed back according to the pre-transformation method used in the first step to maintain the scale of the original data set. Finally, the obtained new data set is used to generate parametric images using the linear least squares (LLS) estimation method. Compared with other noise-removal method, the proposed method can achieve high statistical reliability in the generated parametric images. The effectiveness of the method is demonstrated both with computer simulation and with clinical dynamic FDG PET study.

  8. Estimating current and future streamflow characteristics at ungaged sites, central and eastern Montana, with application to evaluating effects of climate change on fish populations

    USGS Publications Warehouse

    Sando, Roy; Chase, Katherine J.

    2017-03-23

    A common statistical procedure for estimating streamflow statistics at ungaged locations is to develop a relational model between streamflow and drainage basin characteristics at gaged locations using least squares regression analysis; however, least squares regression methods are parametric and make constraining assumptions about the data distribution. The random forest regression method provides an alternative nonparametric method for estimating streamflow characteristics at ungaged sites and requires that the data meet fewer statistical conditions than least squares regression methods.Random forest regression analysis was used to develop predictive models for 89 streamflow characteristics using Precipitation-Runoff Modeling System simulated streamflow data and drainage basin characteristics at 179 sites in central and eastern Montana. The predictive models were developed from streamflow data simulated for current (baseline, water years 1982–99) conditions and three future periods (water years 2021–38, 2046–63, and 2071–88) under three different climate-change scenarios. These predictive models were then used to predict streamflow characteristics for baseline conditions and three future periods at 1,707 fish sampling sites in central and eastern Montana. The average root mean square error for all predictive models was about 50 percent. When streamflow predictions at 23 fish sampling sites were compared to nearby locations with simulated data, the mean relative percent difference was about 43 percent. When predictions were compared to streamflow data recorded at 21 U.S. Geological Survey streamflow-gaging stations outside of the calibration basins, the average mean absolute percent error was about 73 percent.

  9. NASA's X-Plane Database and Parametric Cost Model v 2.0

    NASA Technical Reports Server (NTRS)

    Sterk, Steve; Ogluin, Anthony; Greenberg, Marc

    2016-01-01

    The NASA Armstrong Cost Engineering Team with technical assistance from NASA HQ (SID)has gone through the full process in developing new CERs from Version #1 to Version #2 CERs. We took a step backward and reexamined all of the data collected, such as dependent and independent variables, cost, dry weight, length, wingspan, manned versus unmanned, altitude, Mach number, thrust, and skin. We used a well- known statistical analysis tool called CO$TAT instead of using "R" multiple linear or the "Regression" tool found in Microsoft Excel(TradeMark). We setup an "array of data" by adding 21" dummy variables;" we analyzed the standard error (SE) and then determined the "best fit." We have parametrically priced-out several future X-planes and compared our results to those of other resources. More work needs to be done in getting "accurate and traceable cost data" from historical X-plane records!

  10. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression

    PubMed Central

    Jiang, Feng; Han, Ji-zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods. PMID:29623088

  11. A Cross-Domain Collaborative Filtering Algorithm Based on Feature Construction and Locally Weighted Linear Regression.

    PubMed

    Yu, Xu; Lin, Jun-Yu; Jiang, Feng; Du, Jun-Wei; Han, Ji-Zhong

    2018-01-01

    Cross-domain collaborative filtering (CDCF) solves the sparsity problem by transferring rating knowledge from auxiliary domains. Obviously, different auxiliary domains have different importance to the target domain. However, previous works cannot evaluate effectively the significance of different auxiliary domains. To overcome this drawback, we propose a cross-domain collaborative filtering algorithm based on Feature Construction and Locally Weighted Linear Regression (FCLWLR). We first construct features in different domains and use these features to represent different auxiliary domains. Thus the weight computation across different domains can be converted as the weight computation across different features. Then we combine the features in the target domain and in the auxiliary domains together and convert the cross-domain recommendation problem into a regression problem. Finally, we employ a Locally Weighted Linear Regression (LWLR) model to solve the regression problem. As LWLR is a nonparametric regression method, it can effectively avoid underfitting or overfitting problem occurring in parametric regression methods. We conduct extensive experiments to show that the proposed FCLWLR algorithm is effective in addressing the data sparsity problem by transferring the useful knowledge from the auxiliary domains, as compared to many state-of-the-art single-domain or cross-domain CF methods.

  12. R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival, Regression and Classification

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326

  13. A generalized partially linear mean-covariance regression model for longitudinal proportional data, with applications to the analysis of quality of life data from cancer clinical trials.

    PubMed

    Zheng, Xueying; Qin, Guoyou; Tu, Dongsheng

    2017-05-30

    Motivated by the analysis of quality of life data from a clinical trial on early breast cancer, we propose in this paper a generalized partially linear mean-covariance regression model for longitudinal proportional data, which are bounded in a closed interval. Cholesky decomposition of the covariance matrix for within-subject responses and generalized estimation equations are used to estimate unknown parameters and the nonlinear function in the model. Simulation studies are performed to evaluate the performance of the proposed estimation procedures. Our new model is also applied to analyze the data from the cancer clinical trial that motivated this research. In comparison with available models in the literature, the proposed model does not require specific parametric assumptions on the density function of the longitudinal responses and the probability function of the boundary values and can capture dynamic changes of time or other interested variables on both mean and covariance of the correlated proportional responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Estimating the mean and standard deviation of environmental data with below detection limit observations: Considering highly skewed data and model misspecification.

    PubMed

    Shoari, Niloofar; Dubé, Jean-Sébastien; Chenouri, Shoja'eddin

    2015-11-01

    In environmental studies, concentration measurements frequently fall below detection limits of measuring instruments, resulting in left-censored data. Some studies employ parametric methods such as the maximum likelihood estimator (MLE), robust regression on order statistic (rROS), and gamma regression on order statistic (GROS), while others suggest a non-parametric approach, the Kaplan-Meier method (KM). Using examples of real data from a soil characterization study in Montreal, we highlight the need for additional investigations that aim at unifying the existing literature. A number of studies have examined this issue; however, those considering data skewness and model misspecification are rare. These aspects are investigated in this paper through simulations. Among other findings, results show that for low skewed data, the performance of different statistical methods is comparable, regardless of the censoring percentage and sample size. For highly skewed data, the performance of the MLE method under lognormal and Weibull distributions is questionable; particularly, when the sample size is small or censoring percentage is high. In such conditions, MLE under gamma distribution, rROS, GROS, and KM are less sensitive to skewness. Related to model misspecification, MLE based on lognormal and Weibull distributions provides poor estimates when the true distribution of data is misspecified. However, the methods of rROS, GROS, and MLE under gamma distribution are generally robust to model misspecifications regardless of skewness, sample size, and censoring percentage. Since the characteristics of environmental data (e.g., type of distribution and skewness) are unknown a priori, we suggest using MLE based on gamma distribution, rROS and GROS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  16. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  17. Stratification for the propensity score compared with linear regression techniques to assess the effect of treatment or exposure.

    PubMed

    Senn, Stephen; Graf, Erika; Caputo, Angelika

    2007-12-30

    Stratifying and matching by the propensity score are increasingly popular approaches to deal with confounding in medical studies investigating effects of a treatment or exposure. A more traditional alternative technique is the direct adjustment for confounding in regression models. This paper discusses fundamental differences between the two approaches, with a focus on linear regression and propensity score stratification, and identifies points to be considered for an adequate comparison. The treatment estimators are examined for unbiasedness and efficiency. This is illustrated in an application to real data and supplemented by an investigation on properties of the estimators for a range of underlying linear models. We demonstrate that in specific circumstances the propensity score estimator is identical to the effect estimated from a full linear model, even if it is built on coarser covariate strata than the linear model. As a consequence the coarsening property of the propensity score-adjustment for a one-dimensional confounder instead of a high-dimensional covariate-may be viewed as a way to implement a pre-specified, richly parametrized linear model. We conclude that the propensity score estimator inherits the potential for overfitting and that care should be taken to restrict covariates to those relevant for outcome. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  19. Regression models to predict hip joint centers in pathological hip population.

    PubMed

    Mantovani, Giulia; Ng, K C Geoffrey; Lamontagne, Mario

    2016-02-01

    The purpose was to investigate the validity of Harrington's and Davis's hip joint center (HJC) regression equations on a population affected by a hip deformity, (i.e., femoroacetabular impingement). Sixty-seven participants (21 healthy controls, 46 with a cam-type deformity) underwent pelvic CT imaging. Relevant bony landmarks and geometric HJCs were digitized from the images, and skin thickness was measured for the anterior and posterior superior iliac spines. Non-parametric statistical and Bland-Altman tests analyzed differences between the predicted HJC (from regression equations) and the actual HJC (from CT images). The error from Davis's model (25.0 ± 6.7 mm) was larger than Harrington's (12.3 ± 5.9 mm, p<0.001). There were no differences between groups, thus, studies on femoroacetabular impingement can implement conventional regression models. Measured skin thickness was 9.7 ± 7.0mm and 19.6 ± 10.9 mm for the anterior and posterior bony landmarks, respectively, and correlated with body mass index. Skin thickness estimates can be considered to reduce the systematic error introduced by surface markers. New adult-specific regression equations were developed from the CT dataset, with the hypothesis that they could provide better estimates when tuned to a larger adult-specific dataset. The linear models were validated on external datasets and using leave-one-out cross-validation techniques; Prediction errors were comparable to those of Harrington's model, despite the adult-specific population and the larger sample size, thus, prediction accuracy obtained from these parameters could not be improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. An Empirical Study of Eight Nonparametric Tests in Hierarchical Regression.

    ERIC Educational Resources Information Center

    Harwell, Michael; Serlin, Ronald C.

    When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests. However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for complex experimental designs and analyses, such as factorial designs and multiple regression analyses,…

  1. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  2. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  3. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  4. Parametric study and performance analysis of hybrid rocket motors with double-tube configuration

    NASA Astrophysics Data System (ADS)

    Yu, Nanjia; Zhao, Bo; Lorente, Arnau Pons; Wang, Jue

    2017-03-01

    The practical implementation of hybrid rocket motors has historically been hampered by the slow regression rate of the solid fuel. In recent years, the research on advanced injector designs has achieved notable results in the enhancement of the regression rate and combustion efficiency of hybrid rockets. Following this path, this work studies a new configuration called double-tube characterized by injecting the gaseous oxidizer through a head end injector and an inner tube with injector holes distributed along the motor longitudinal axis. This design has demonstrated a significant potential for improving the performance of hybrid rockets by means of a better mixing of the species achieved through a customized injection of the oxidizer. Indeed, the CFD analysis of the double-tube configuration has revealed that this design may increase the regression rate over 50% with respect to the same motor with a conventional axial showerhead injector. However, in order to fully exploit the advantages of the double-tube concept, it is necessary to acquire a deeper understanding of the influence of the different design parameters in the overall performance. In this way, a parametric study is carried out taking into account the variation of the oxidizer mass flux rate, the ratio of oxidizer mass flow rate injected through the inner tube to the total oxidizer mass flow rate, and injection angle. The data for the analysis have been gathered from a large series of three-dimensional numerical simulations that considered the changes in the design parameters. The propellant combination adopted consists of gaseous oxygen as oxidizer and high-density polyethylene as solid fuel. Furthermore, the numerical model comprises Navier-Stokes equations, k-ε turbulence model, eddy-dissipation combustion model and solid-fuel pyrolysis, which is computed through user-defined functions. This numerical model was previously validated by analyzing the computational and experimental results obtained for conventional hybrid rocket designs. In addition, a performance analysis is conducted in order to evaluate the influence in the performance provoked by the possible growth of the diameter of the inner fuel grain holes during the motor operation. The latter phenomenon is known as burn through holes. Finally, after a statistical analysis of the data, a regression rate expression as a function of the design parameters is obtained.

  5. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.

    PubMed

    Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A

    2015-01-15

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets

    PubMed Central

    Gruber, Susan; Logan, Roger W.; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A.

    2014-01-01

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V -fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. PMID:25316152

  7. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  8. Value of Information Analysis for Time-lapse Seismic Data by Simulation-Regression

    NASA Astrophysics Data System (ADS)

    Dutta, G.; Mukerji, T.; Eidsvik, J.

    2016-12-01

    A novel method to estimate the Value of Information (VOI) of time-lapse seismic data in the context of reservoir development is proposed. VOI is a decision analytic metric quantifying the incremental value that would be created by collecting information prior to making a decision under uncertainty. The VOI has to be computed before collecting the information and can be used to justify its collection. Previous work on estimating the VOI of geophysical data has involved explicit approximation of the posterior distribution of reservoir properties given the data and then evaluating the prospect values for that posterior distribution of reservoir properties. Here, we propose to directly estimate the prospect values given the data by building a statistical relationship between them using regression. Various regression techniques such as Partial Least Squares Regression (PLSR), Multivariate Adaptive Regression Splines (MARS) and k-Nearest Neighbors (k-NN) are used to estimate the VOI, and the results compared. For a univariate Gaussian case, the VOI obtained from simulation-regression has been shown to be close to the analytical solution. Estimating VOI by simulation-regression is much less computationally expensive since the posterior distribution of reservoir properties given each possible dataset need not be modeled and the prospect values need not be evaluated for each such posterior distribution of reservoir properties. This method is flexible, since it does not require rigid model specification of posterior but rather fits conditional expectations non-parametrically from samples of values and data.

  9. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  10. Research on simplified parametric finite element model of automobile frontal crash

    NASA Astrophysics Data System (ADS)

    Wu, Linan; Zhang, Xin; Yang, Changhai

    2018-05-01

    The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.

  11. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Non-parametric causality detection: An application to social media and financial data

    NASA Astrophysics Data System (ADS)

    Tsapeli, Fani; Musolesi, Mirco; Tino, Peter

    2017-10-01

    According to behavioral finance, stock market returns are influenced by emotional, social and psychological factors. Several recent works support this theory by providing evidence of correlation between stock market prices and collective sentiment indexes measured using social media data. However, a pure correlation analysis is not sufficient to prove that stock market returns are influenced by such emotional factors since both stock market prices and collective sentiment may be driven by a third unmeasured factor. Controlling for factors that could influence the study by applying multivariate regression models is challenging given the complexity of stock market data. False assumptions about the linearity or non-linearity of the model and inaccuracies on model specification may result in misleading conclusions. In this work, we propose a novel framework for causal inference that does not require any assumption about a particular parametric form of the model expressing statistical relationships among the variables of the study and can effectively control a large number of observed factors. We apply our method in order to estimate the causal impact that information posted in social media may have on stock market returns of four big companies. Our results indicate that social media data not only correlate with stock market returns but also influence them.

  13. Interrelationships between fish tissue mercury concentrations and water quality for South Dakota natural lakes and impoundments

    USGS Publications Warehouse

    Chipps, Steven R.; Stetler, Larry; Stone, James J.; McCutcheon, Cindy M.

    2011-01-01

    The purpose of this study was to determine whether water quality parameters commonly associated with primary productivity may be used to predict the susceptibility of a specific water body to exceed proposed fish consumption advisory limitation of 0.3 mg kg−1. South Dakota currently has nine lakes and impoundments that exceed fish tissue mercury advisory limits of 1.0 mg kg−1 total mercury, far exceeding US Environmental Protection Agency and Food and Drug Administration 0.3 mg kg−1 consumption criteria. Previous studies suggest that increased aquatic productivity may mitigate the effects of biological production and subsequent uptake of methyl mercury through bio-dilution; however, it is uncertain whether these trends may exist within highly alkaline and highly productive aquatic conditions common to South Dakota lakes and impoundments. Water quality parameters and fish tissue mercury data for northern pike and walleye were collected and assessed using existing South Dakota Department of Environment and Natural Resources and Game Fish and Parks data. The data was initially screened using both parametric linear regression and non-parametric Mann–Whitney rank sum comparisons and further assessed using binary logistic regression and stepwise logistic regression methodology. Three separate phosphorus measurements (total, total dissolved, and Trophic State Index) and pH were determined to significantly correlate with increased mercury concentrations for the northern pike-in-impoundments model. However, phosphorus surprisingly was not a strong predictor for the remaining scenarios modeled. For the northern pike-in-natural lakes models, alkalinity was the most significant water quality parameter predicting increased mercury concentrations. Mercury concentrations for the walleye-in-natural lakes models were further influenced by pH and alkalinity. The water quality and fish tissue mercury interrelationships determined within this study suggest aquatic productivity, and consequential eutrophication processes appear to be reasonable indicators of fish tissue mercury susceptibility for aquatic conditions common to South Dakota and highlight the continuing need to minimize eutrophication through effective watershed management strategies.

  14. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  15. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  16. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.

  17. Parametric optimization of multiple quality characteristics in laser cutting of Inconel-718 by using hybrid approach of multiple regression analysis and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Shrivastava, Prashant Kumar; Pandey, Arun Kumar

    2018-06-01

    Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.

  18. Combustion Processes in Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Venkateswaran,S.; Merkle, C. L.

    1996-01-01

    In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or regression rates as a function of the head-end oxidizer mass flux, G=rho(e)U(e), and the chamber pressure. Furthermore, computation of the full slab burner configuration has also been obtained for various stages of the burn. Comparisons with available experimental data from small scale tests conducted by General Dynamics-Thiokol-Rocketdyne suggest reasonable agreement in the predicted regression rates. Future work will include: (1) a model for soot generation in the flame for more quantitative radiative transfer modelling, (2) a parametric study of combustion efficiency, and (3) transient calculations to help determine the possible mechanisms responsible for combustion instability in hybrid rocket motors.

  19. Application of Multi-task Lasso Regression in the Stellar Parametrization

    NASA Astrophysics Data System (ADS)

    Chang, L. N.; Zhang, P. A.

    2015-01-01

    The multi-task learning approaches have attracted the increasing attention in the fields of machine learning, computer vision, and artificial intelligence. By utilizing the correlations in tasks, learning multiple related tasks simultaneously is better than learning each task independently. An efficient multi-task Lasso (Least Absolute Shrinkage Selection and Operator) regression algorithm is proposed in this paper to estimate the physical parameters of stellar spectra. It not only makes different physical parameters share the common features, but also can effectively preserve their own peculiar features. Experiments were done based on the ELODIE data simulated with the stellar atmospheric simulation model, and on the SDSS data released by the American large survey Sloan. The precision of the model is better than those of the methods in the related literature, especially for the acceleration of gravity (lg g) and the chemical abundance ([Fe/H]). In the experiments, we changed the resolution of the spectrum, and applied the noises with different signal-to-noise ratio (SNR) to the spectrum, so as to illustrate the stability of the model. The results show that the model is influenced by both the resolution and the noise. But the influence of the noise is larger than that of the resolution. In general, the multi-task Lasso regression algorithm is easy to operate, has a strong stability, and also can improve the overall accuracy of the model.

  20. Bayesian structured additive regression modeling of epidemic data: application to cholera

    PubMed Central

    2012-01-01

    Background A significant interest in spatial epidemiology lies in identifying associated risk factors which enhances the risk of infection. Most studies, however, make no, or limited use of the spatial structure of the data, as well as possible nonlinear effects of the risk factors. Methods We develop a Bayesian Structured Additive Regression model for cholera epidemic data. Model estimation and inference is based on fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. The model is applied to cholera epidemic data in the Kumasi Metropolis, Ghana. Proximity to refuse dumps, density of refuse dumps, and proximity to potential cholera reservoirs were modeled as continuous functions; presence of slum settlers and population density were modeled as fixed effects, whereas spatial references to the communities were modeled as structured and unstructured spatial effects. Results We observe that the risk of cholera is associated with slum settlements and high population density. The risk of cholera is equal and lower for communities with fewer refuse dumps, but variable and higher for communities with more refuse dumps. The risk is also lower for communities distant from refuse dumps and potential cholera reservoirs. The results also indicate distinct spatial variation in the risk of cholera infection. Conclusion The study highlights the usefulness of Bayesian semi-parametric regression model analyzing public health data. These findings could serve as novel information to help health planners and policy makers in making effective decisions to control or prevent cholera epidemics. PMID:22866662

  1. Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Albert

    2005-01-01

    Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…

  2. Revisiting the Distance Duality Relation using a non-parametric regression method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha

    2016-07-01

    The interdependence of luminosity distance, D {sub L} and angular diameter distance, D {sub A} given by the distance duality relation (DDR) is very significant in observational cosmology. It is very closely tied with the temperature-redshift relation of Cosmic Microwave Background (CMB) radiation. Any deviation from η( z )≡ D {sub L} / D {sub A} (1+ z ){sup 2} =1 indicates a possible emergence of new physics. Our aim in this work is to check the consistency of these relations using a non-parametric regression method namely, LOESS with SIMEX. This technique avoids dependency on the cosmological model and worksmore » with a minimal set of assumptions. Further, to analyze the efficiency of the methodology, we simulate a dataset of 020 points of η ( z ) data based on a phenomenological model η( z )= (1+ z ){sup ε}. The error on the simulated data points is obtained by using the temperature of CMB radiation at various redshifts. For testing the distance duality relation, we use the JLA SNe Ia data for luminosity distances, while the angular diameter distances are obtained from radio galaxies datasets. Since the DDR is linked with CMB temperature-redshift relation, therefore we also use the CMB temperature data to reconstruct η ( z ). It is important to note that with CMB data, we are able to study the evolution of DDR upto a very high redshift z = 2.418. In this analysis, we find no evidence of deviation from η=1 within a 1σ region in the entire redshift range used in this analysis (0 < z ≤ 2.418).« less

  3. The linear transformation model with frailties for the analysis of item response times.

    PubMed

    Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A

    2013-02-01

    The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.

  4. Bayesian nonparametric regression with varying residual density

    PubMed Central

    Pati, Debdeep; Dunson, David B.

    2013-01-01

    We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and symmetrized PSB (sPSB) location-scale mixtures. Both priors restrict the residual density to be symmetric about zero, with the sPSB prior more flexible in allowing multimodal densities. We provide sufficient conditions to ensure strong posterior consistency in estimating the regression function under the sPSB prior, generalizing existing theory focused on parametric residual distributions. The PSB and sPSB priors are generalized to allow residual densities to change nonparametrically with predictors through incorporating Gaussian processes in the stick-breaking components. This leads to a robust Bayesian regression procedure that automatically down-weights outliers and influential observations in a locally-adaptive manner. Posterior computation relies on an efficient data augmentation exact block Gibbs sampler. The methods are illustrated using simulated and real data applications. PMID:24465053

  5. Is the maturity of hospitals' quality improvement systems associated with measures of quality and patient safety?

    PubMed Central

    2011-01-01

    Background Previous research addressed the development of a classification scheme for quality improvement systems in European hospitals. In this study we explore associations between the 'maturity' of the hospitals' quality improvement system and clinical outcomes. Methods The maturity classification scheme was developed based on survey results from 389 hospitals in eight European countries. We matched the hospitals from the Spanish sample (113 hospitals) with those hospitals participating in a nation-wide, voluntary hospital performance initiative. We then compared sample distributions and explored associations between the 'maturity' of the hospitals' quality improvement system and a range of composite outcomes measures, such as adjusted hospital-wide mortality, -readmission, -complication and -length of stay indices. Statistical analysis includes bivariate correlations for parametrically and non-parametrically distributed data, multiple robust regression models and bootstrapping techniques to obtain confidence-intervals for the correlation and regression estimates. Results Overall, 43 hospitals were included. Compared to the original sample of 113, this sample was characterized by a higher representation of university hospitals. Maturity of the quality improvement system was similar, although the matched sample showed less variability. Analysis of associations between the quality improvement system and hospital-wide outcomes suggests significant correlations for the indicator adjusted hospital complications, borderline significance for adjusted hospital readmissions and non-significance for the adjusted hospital mortality and length of stay indicators. These results are confirmed by the bootstrap estimates of the robust regression model after adjusting for hospital characteristics. Conclusions We assessed associations between hospitals' quality improvement systems and clinical outcomes. From this data it seems that having a more developed quality improvement system is associated with lower rates of adjusted hospital complications. A number of methodological and logistic hurdles remain to link hospital quality improvement systems to outcomes. Further research should aim at identifying the latent dimensions of quality improvement systems that predict quality and safety outcomes. Such research would add pertinent knowledge regarding the implementation of organizational strategies related with quality of care outcomes. PMID:22185479

  6. On the validation of cloud parametrization schemes in numerical atmospheric models with satellite data from ISCCP

    NASA Astrophysics Data System (ADS)

    Meinke, I.

    2003-04-01

    A new method is presented to validate cloud parametrization schemes in numerical atmospheric models with satellite data of scanning radiometers. This method is applied to the regional atmospheric model HRM (High Resolution Regional Model) using satellite data from ISCCP (International Satellite Cloud Climatology Project). Due to the limited reliability of former validations there has been a need for developing a new validation method: Up to now differences between simulated and measured cloud properties are mostly declared as deficiencies of the cloud parametrization scheme without further investigation. Other uncertainties connected with the model or with the measurements have not been taken into account. Therefore changes in the cloud parametrization scheme based on such kind of validations might not be realistic. The new method estimates uncertainties of the model and the measurements. Criteria for comparisons of simulated and measured data are derived to localize deficiencies in the model. For a better specification of these deficiencies simulated clouds are classified regarding their parametrization. With this classification the localized model deficiencies are allocated to a certain parametrization scheme. Applying this method to the regional model HRM the quality of forecasting cloud properties is estimated in detail. The overestimation of simulated clouds in low emissivity heights especially during the night is localized as model deficiency. This is caused by subscale cloudiness. As the simulation of subscale clouds in the regional model HRM is described by a relative humidity parametrization these deficiencies are connected with this parameterization.

  7. Non-Parametric Blur Map Regression for Depth of Field Extension.

    PubMed

    D'Andres, Laurent; Salvador, Jordi; Kochale, Axel; Susstrunk, Sabine

    2016-04-01

    Real camera systems have a limited depth of field (DOF) which may cause an image to be degraded due to visible misfocus or too shallow DOF. In this paper, we present a blind deblurring pipeline able to restore such images by slightly extending their DOF and recovering sharpness in regions slightly out of focus. To address this severely ill-posed problem, our algorithm relies first on the estimation of the spatially varying defocus blur. Drawing on local frequency image features, a machine learning approach based on the recently introduced regression tree fields is used to train a model able to regress a coherent defocus blur map of the image, labeling each pixel by the scale of a defocus point spread function. A non-blind spatially varying deblurring algorithm is then used to properly extend the DOF of the image. The good performance of our algorithm is assessed both quantitatively, using realistic ground truth data obtained with a novel approach based on a plenoptic camera, and qualitatively with real images.

  8. Robust Machine Learning Variable Importance Analyses of Medical Conditions for Health Care Spending.

    PubMed

    Rose, Sherri

    2018-03-11

    To propose nonparametric double robust machine learning in variable importance analyses of medical conditions for health spending. 2011-2012 Truven MarketScan database. I evaluate how much more, on average, commercially insured enrollees with each of 26 of the most prevalent medical conditions cost per year after controlling for demographics and other medical conditions. This is accomplished within the nonparametric targeted learning framework, which incorporates ensemble machine learning. Previous literature studying the impact of medical conditions on health care spending has almost exclusively focused on parametric risk adjustment; thus, I compare my approach to parametric regression. My results demonstrate that multiple sclerosis, congestive heart failure, severe cancers, major depression and bipolar disorders, and chronic hepatitis are the most costly medical conditions on average per individual. These findings differed from those obtained using parametric regression. The literature may be underestimating the spending contributions of several medical conditions, which is a potentially critical oversight. If current methods are not capturing the true incremental effect of medical conditions, undesirable incentives related to care may remain. Further work is needed to directly study these issues in the context of federal formulas. © Health Research and Educational Trust.

  9. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  10. A New Hybrid-Multiscale SSA Prediction of Non-Stationary Time Series

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2016-02-01

    Singular spectral analysis (SSA) is a non-parametric method used in the prediction of non-stationary time series. It has two parameters, which are difficult to determine and very sensitive to their values. Since, SSA is a deterministic-based method, it does not give good results when the time series is contaminated with a high noise level and correlated noise. Therefore, we introduce a novel method to handle these problems. It is based on the prediction of non-decimated wavelet (NDW) signals by SSA and then, prediction of residuals by wavelet regression. The advantages of our method are the automatic determination of parameters and taking account of the stochastic structure of time series. As shown through the simulated and real data, we obtain better results than SSA, a non-parametric wavelet regression method and Holt-Winters method.

  11. A review of parametric approaches specific to aerodynamic design process

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li

    2018-04-01

    Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.

  12. An application in identifying high-risk populations in alternative tobacco product use utilizing logistic regression and CART: a heuristic comparison.

    PubMed

    Lei, Yang; Nollen, Nikki; Ahluwahlia, Jasjit S; Yu, Qing; Mayo, Matthew S

    2015-04-09

    Other forms of tobacco use are increasing in prevalence, yet most tobacco control efforts are aimed at cigarettes. In light of this, it is important to identify individuals who are using both cigarettes and alternative tobacco products (ATPs). Most previous studies have used regression models. We conducted a traditional logistic regression model and a classification and regression tree (CART) model to illustrate and discuss the added advantages of using CART in the setting of identifying high-risk subgroups of ATP users among cigarettes smokers. The data were collected from an online cross-sectional survey administered by Survey Sampling International between July 5, 2012 and August 15, 2012. Eligible participants self-identified as current smokers, African American, White, or Latino (of any race), were English-speaking, and were at least 25 years old. The study sample included 2,376 participants and was divided into independent training and validation samples for a hold out validation. Logistic regression and CART models were used to examine the important predictors of cigarettes + ATP users. The logistic regression model identified nine important factors: gender, age, race, nicotine dependence, buying cigarettes or borrowing, whether the price of cigarettes influences the brand purchased, whether the participants set limits on cigarettes per day, alcohol use scores, and discrimination frequencies. The C-index of the logistic regression model was 0.74, indicating good discriminatory capability. The model performed well in the validation cohort also with good discrimination (c-index = 0.73) and excellent calibration (R-square = 0.96 in the calibration regression). The parsimonious CART model identified gender, age, alcohol use score, race, and discrimination frequencies to be the most important factors. It also revealed interesting partial interactions. The c-index is 0.70 for the training sample and 0.69 for the validation sample. The misclassification rate was 0.342 for the training sample and 0.346 for the validation sample. The CART model was easier to interpret and discovered target populations that possess clinical significance. This study suggests that the non-parametric CART model is parsimonious, potentially easier to interpret, and provides additional information in identifying the subgroups at high risk of ATP use among cigarette smokers.

  13. Prevalence Incidence Mixture Models

    Cancer.gov

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  14. A parametric and non-parametric metamodeling approach for the bias-correction of Satellite Rainfall Estimates using rain gauge measurements. Cases of study: Magdalena Basin (Colombia), Imperial Basin (Chile) and Paraiba do Sul (Brazil).

    NASA Astrophysics Data System (ADS)

    Rebolledo Coy, M. A.; Villanueva, O. M. B.; Bartz-Beielstein, T.; Ribbe, L.

    2017-12-01

    Rainfall measurement plays an important role on the understanding and modeling of the water cycle. However, the assessment of scarce data regions using common rain gauge information, cannot be done using a straightforward approach. Some of the main problems concerning rainfall assessment are; the lack of a sufficiently dense grid of ground stations in extensive areas and the unstable spatial accuracy of the Satellite Rainfall Estimates (SREs). Following previous works on SREs analysis and bias-correction, we generate an ensemble model that corrects the bias error on a seasonal and yearly basis using six different state-of-the-art SREs (TRMM 3B42RT, TRMM 3B42v7, PERSIANN-CDR, CHIRPSv2, CMORPH and MSWEPv1.2) in a point-to-pixel approach for the studied period (2003-2015). Three different basins; Magdalena in Colombia, Imperial in Chile and Paraiba do Sul in Brazil are evaluated. Using Gaussian process regression and Bayesian robust regression we model the behavior of the ground stations and evaluate its goodness-of-fit by using the modified Kling-Gupta efficiency (KGE'). Following this evaluation, the models are re-fitted by taking into account the error distribution in each point and the corresponding KGE' is evaluated again. Both models were specified using the probabilistic language STAN. To improve the efficiency of the Gaussian model a clustering of the data was implemented. We also compared the performance of both models in term of uncertainty and stability against the raw input concluding that both models represent better the study areas. The results show that the error displays an exponential behavior for days where precipitation was present, this allows the models to be corrected according to the observed rainfall values. The seasonal evaluations also show improved performance in relation to the yearly evaluations. The use of bias-corrected SREs for hydrologic purposes in scarce data regions is highly recommended in order to merge the punctual values from the ground measurements and the spatial distribution of rainfall from the satellite estimates.

  15. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models.

    PubMed

    Andersson, Therese M L; Dickman, Paul W; Eloranta, Sandra; Lambert, Paul C

    2011-06-22

    When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. © 2011 Andersson et al; licensee BioMed Central Ltd.

  16. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models

    PubMed Central

    2011-01-01

    Background When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Methods Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. Results We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Conclusions Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. PMID:21696598

  17. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production, particularly of pastures and rangeland, which have implications for livestock and food security. Future work will delve deeper into the utility of satellite-derived PAR estimation for monitoring primary production in pasture and rangelands.

  18. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses.

    PubMed

    Seo, Seongho; Kim, Su Jin; Lee, Dong Soo; Lee, Jae Sung

    2014-10-01

    Tracer kinetic modeling in dynamic positron emission tomography (PET) has been widely used to investigate the characteristic distribution patterns or dysfunctions of neuroreceptors in brain diseases. Its practical goal has progressed from regional data quantification to parametric mapping that produces images of kinetic-model parameters by fully exploiting the spatiotemporal information in dynamic PET data. Graphical analysis (GA) is a major parametric mapping technique that is independent on any compartmental model configuration, robust to noise, and computationally efficient. In this paper, we provide an overview of recent advances in the parametric mapping of neuroreceptor binding based on GA methods. The associated basic concepts in tracer kinetic modeling are presented, including commonly-used compartment models and major parameters of interest. Technical details of GA approaches for reversible and irreversible radioligands are described, considering both plasma input and reference tissue input models. Their statistical properties are discussed in view of parametric imaging.

  19. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    PubMed

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  20. Predicting Market Impact Costs Using Nonparametric Machine Learning Models

    PubMed Central

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance. PMID:26926235

  1. First-Order Parametric Model of Reflectance Spectra for Dyed Fabrics

    DTIC Science & Technology

    2016-02-19

    Unclassified Unlimited 31 Daniel Aiken (202) 279-5293 Parametric modeling Inverse /direct analysis This report describes a first-order parametric model of...Appendix: Dielectric Response Functions for Dyes Obtained by Inverse Analysis ……………………………...…………………………………………………….19 1 First-Order Parametric...which provides for both their inverse and direct modeling1. The dyes considered contain spectral features that are of interest to the U.S. Navy for

  2. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  3. The Propensity Score Analytical Framework: An Overview and Institutional Research Example

    ERIC Educational Resources Information Center

    Herzog, Serge

    2014-01-01

    Estimating the effect of campus math tutoring support, this study demonstrates the use of propensity score weighted and matched-data analysis and examines the correspondence with results from parametric regression analysis.

  4. Nonparametric methods for doubly robust estimation of continuous treatment effects.

    PubMed

    Kennedy, Edward H; Ma, Zongming; McHugh, Matthew D; Small, Dylan S

    2017-09-01

    Continuous treatments (e.g., doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve, and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.

  5. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  6. Modified locally weighted--partial least squares regression improving clinical predictions from infrared spectra of human serum samples.

    PubMed

    Perez-Guaita, David; Kuligowski, Julia; Quintás, Guillermo; Garrigues, Salvador; Guardia, Miguel de la

    2013-03-30

    Locally weighted partial least squares regression (LW-PLSR) has been applied to the determination of four clinical parameters in human serum samples (total protein, triglyceride, glucose and urea contents) by Fourier transform infrared (FTIR) spectroscopy. Classical LW-PLSR models were constructed using different spectral regions. For the selection of parameters by LW-PLSR modeling, a multi-parametric study was carried out employing the minimum root-mean square error of cross validation (RMSCV) as objective function. In order to overcome the effect of strong matrix interferences on the predictive accuracy of LW-PLSR models, this work focuses on sample selection. Accordingly, a novel strategy for the development of local models is proposed. It was based on the use of: (i) principal component analysis (PCA) performed on an analyte specific spectral region for identifying most similar sample spectra and (ii) partial least squares regression (PLSR) constructed using the whole spectrum. Results found by using this strategy were compared to those provided by PLSR using the same spectral intervals as for LW-PLSR. Prediction errors found by both, classical and modified LW-PLSR improved those obtained by PLSR. Hence, both proposed approaches were useful for the determination of analytes present in a complex matrix as in the case of human serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study

    PubMed Central

    Shah, Anoop D.; Bartlett, Jonathan W.; Carpenter, James; Nicholas, Owen; Hemingway, Harry

    2014-01-01

    Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemiologic research. The “true” imputation model may contain nonlinearities which are not included in default imputation models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and interactions and does not require a particular regression model to be specified. We compared parametric MICE with a random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000 persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Records; 2001–2010) with complete data on all covariates. Variables were artificially made “missing at random,” and the bias and efficiency of parameter estimates obtained using different imputation methods were compared. Both MICE methods produced unbiased estimates of (log) hazard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was better. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in which some patients have missing data. PMID:24589914

  8. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study.

    PubMed

    Shah, Anoop D; Bartlett, Jonathan W; Carpenter, James; Nicholas, Owen; Hemingway, Harry

    2014-03-15

    Multivariate imputation by chained equations (MICE) is commonly used for imputing missing data in epidemiologic research. The "true" imputation model may contain nonlinearities which are not included in default imputation models. Random forest imputation is a machine learning technique which can accommodate nonlinearities and interactions and does not require a particular regression model to be specified. We compared parametric MICE with a random forest-based MICE algorithm in 2 simulation studies. The first study used 1,000 random samples of 2,000 persons drawn from the 10,128 stable angina patients in the CALIBER database (Cardiovascular Disease Research using Linked Bespoke Studies and Electronic Records; 2001-2010) with complete data on all covariates. Variables were artificially made "missing at random," and the bias and efficiency of parameter estimates obtained using different imputation methods were compared. Both MICE methods produced unbiased estimates of (log) hazard ratios, but random forest was more efficient and produced narrower confidence intervals. The second study used simulated data in which the partially observed variable depended on the fully observed variables in a nonlinear way. Parameter estimates were less biased using random forest MICE, and confidence interval coverage was better. This suggests that random forest imputation may be useful for imputing complex epidemiologic data sets in which some patients have missing data.

  9. STEP and STEPSPL: Computer programs for aerodynamic model structure determination and parameter estimation

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.

    1986-01-01

    The successful parametric modeling of the aerodynamics for an airplane operating at high angles of attack or sideslip is performed in two phases. First the aerodynamic model structure must be determined and second the associated aerodynamic parameters (stability and control derivatives) must be estimated for that model. The purpose of this paper is to document two versions of a stepwise regression computer program which were developed for the determination of airplane aerodynamic model structure and to provide two examples of their use on computer generated data. References are provided for the application of the programs to real flight data. The two computer programs that are the subject of this report, STEP and STEPSPL, are written in FORTRAN IV (ANSI l966) compatible with a CDC FTN4 compiler. Both programs are adaptations of a standard forward stepwise regression algorithm. The purpose of the adaptation is to facilitate the selection of a adequate mathematical model of the aerodynamic force and moment coefficients of an airplane from flight test data. The major difference between STEP and STEPSPL is in the basis for the model. The basis for the model in STEP is the standard polynomial Taylor's series expansion of the aerodynamic function about some steady-state trim condition. Program STEPSPL utilizes a set of spline basis functions.

  10. Non-parametric identification of multivariable systems: A local rational modeling approach with application to a vibration isolation benchmark

    NASA Astrophysics Data System (ADS)

    Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom

    2018-05-01

    Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.

  11. Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.

    PubMed

    Konietschke, Frank; Libiger, Ondrej; Hothorn, Ludwig A

    2012-01-01

    Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.

  12. Non-parametric model selection for subject-specific topological organization of resting-state functional connectivity.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J

    2011-06-01

    In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Analyzing spatial and temporal trends in Aboveground Biomass within the Acadian New England Forests using the complete Landsat Archive

    NASA Astrophysics Data System (ADS)

    Kilbride, J. B.; Fraver, S.; Ayrey, E.; Weiskittel, A.; Braaten, J.; Hughes, J. M.; Hayes, D. J.

    2017-12-01

    Forests within the New England states and Canadian Maritime provinces, here described as the Acadian New England (ANE) forests, have undergone substantial disturbances due to insect, fire, and anthropogenic factors. Through repeated satellite observations captures by USGS's Landsat program, 45 years of disturbance information can be incorporated into modeling efforts to better understand the spatial and temporal trends in forest above ground biomass (AGB). Using Google's Earth Engine, annual mosaics were developed for the ANE study area and then disturbance and recovery metrics were developed using the temporal segmentation algorithm VeRDET. Normalization procedures were developed to incorporate the Landsat Multispectral Scanner (MSS, 1972 - 1985) data alongside the modern era of Landsat Thematic Mapper (TM, 1984-2013), Enhanced Thematic Mapper plus (ETM+, 1999 - present), and Operational Land Imager (OLI, 2013- present) data products. This has enabled the creation of a dataset with an unprecedented spatial and temporal view of forest landscape change. Model training was performed using was the Forest Inventory Analysis (FIA) and New Brunswick Permanent Sample Plot data datasets. Modeling was performed using parametric techniques such as mixed effects models and non-parametric techniques such as k-NN imputation and generalized boosted regression. We compare the biomass estimate and model accuracy to other inventory and modeling studies produced within this study area. The spatial and temporal patterns of stock changes are analyzed against resource policy, land ownership changes, and forest management.

  14. Robust human body model injury prediction in simulated side impact crashes.

    PubMed

    Golman, Adam J; Danelson, Kerry A; Stitzel, Joel D

    2016-01-01

    This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.

  15. Reference Charts for Fetal Cerebellar Vermis Height: A Prospective Cross-Sectional Study of 10605 Fetuses

    PubMed Central

    Cignini, Pietro; Giorlandino, Maurizio; Brutti, Pierpaolo; Mangiafico, Lucia; Aloisi, Alessia; Giorlandino, Claudio

    2016-01-01

    Objective To establish reference charts for fetal cerebellar vermis height in an unselected population. Methods A prospective cross-sectional study between September 2009 and December 2014 was carried out at ALTAMEDICA Fetal–Maternal Medical Centre, Rome, Italy. Of 25203 fetal biometric measurements, 12167 (48%) measurements of the cerebellar vermis were available. After excluding 1562 (12.8%) measurements, a total of 10605 (87.2%) fetuses were considered and analyzed once only. Parametric and nonparametric quantile regression models were used for the statistical analysis. In order to evaluate the robustness of the proposed reference charts regarding various distributional assumptions on the ultrasound measurements at hand, we compared the gestational age-specific reference curves we produced through the statistical methods used. Normal mean height based on parametric and nonparametric methods were defined for each week of gestation and the regression equation expressing the height of the cerebellar vermis as a function of gestational age was calculated. Finally the correlation between dimension/gestation was measured. Results The mean height of the cerebellar vermis was 12.7mm (SD, 1.6mm; 95% confidence interval, 12.7–12.8mm). The regression equation expressing the height of the CV as a function of the gestational age was: height (mm) = -4.85+0.78 x gestational age. The correlation between dimension/gestation was expressed by the coefficient r = 0.87. Conclusion This is the first prospective cross-sectional study on fetal cerebellar vermis biometry with such a large sample size reported in literature. It is a detailed statistical survey and contains new centile-based reference charts for fetal height of cerebellar vermis measurements. PMID:26812238

  16. Parametric versus Cox's model: an illustrative analysis of divorce in Canada.

    PubMed

    Balakrishnan, T R; Rao, K V; Krotki, K J; Lapierre-adamcyk, E

    1988-06-01

    Recent demographic literature clearly recognizes the importance of survival modes in the analysis of cross-sectional event histories. Of the various survival models, Cox's (1972) partial parametric model has been very popular due to its simplicity, and readily available computer software for estimation, sometimes at the cost of precision and parsimony of the model. This paper focuses on parametric failure time models for event history analysis such as Weibell, lognormal, loglogistic, and exponential models. The authors also test the goodness of fit of these parametric models versus the Cox's proportional hazards model taking Kaplan-Meier estimate as base. As an illustration, the authors reanalyze the Canadian Fertility Survey data on 1st marriage dissolution with parametric models. Though these parametric model estimates were not very different from each other, there seemed to be a slightly better fit with loglogistic. When 8 covariates were used in the analysis, it was found that the coefficients were similar in the models, and the overall conclusions about the relative risks would not have been different. The findings reveal that in marriage dissolution, the differences according to demographic and socioeconomic characteristics may be far more important than is generally found in many studies. Therefore, one should not treat the population as homogeneous in analyzing survival probabilities of marriages, other than for cursory analysis of overall trends.

  17. Functional form diagnostics for Cox's proportional hazards model.

    PubMed

    León, Larry F; Tsai, Chih-Ling

    2004-03-01

    We propose a new type of residual and an easily computed functional form test for the Cox proportional hazards model. The proposed test is a modification of the omnibus test for testing the overall fit of a parametric regression model, developed by Stute, González Manteiga, and Presedo Quindimil (1998, Journal of the American Statistical Association93, 141-149), and is based on what we call censoring consistent residuals. In addition, we develop residual plots that can be used to identify the correct functional forms of covariates. We compare our test with the functional form test of Lin, Wei, and Ying (1993, Biometrika80, 557-572) in a simulation study. The practical application of the proposed residuals and functional form test is illustrated using both a simulated data set and a real data set.

  18. Estimation of railroad capacity using parametric methods.

    DOT National Transportation Integrated Search

    2013-12-01

    This paper reviews different methodologies used for railroad capacity estimation and presents a user-friendly method to measure capacity. The objective of this paper is to use multivariate regression analysis to develop a continuous relation of the d...

  19. Towards an Empirically Based Parametric Explosion Spectral Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, S R; Walter, W R; Ruppert, S

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any priormore » explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.« less

  20. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  1. Weibull mixture regression for marginal inference in zero-heavy continuous outcomes.

    PubMed

    Gebregziabher, Mulugeta; Voronca, Delia; Teklehaimanot, Abeba; Santa Ana, Elizabeth J

    2017-06-01

    Continuous outcomes with preponderance of zero values are ubiquitous in data that arise from biomedical studies, for example studies of addictive disorders. This is known to lead to violation of standard assumptions in parametric inference and enhances the risk of misleading conclusions unless managed properly. Two-part models are commonly used to deal with this problem. However, standard two-part models have limitations with respect to obtaining parameter estimates that have marginal interpretation of covariate effects which are important in many biomedical applications. Recently marginalized two-part models are proposed but their development is limited to log-normal and log-skew-normal distributions. Thus, in this paper, we propose a finite mixture approach, with Weibull mixture regression as a special case, to deal with the problem. We use extensive simulation study to assess the performance of the proposed model in finite samples and to make comparisons with other family of models via statistical information and mean squared error criteria. We demonstrate its application on real data from a randomized controlled trial of addictive disorders. Our results show that a two-component Weibull mixture model is preferred for modeling zero-heavy continuous data when the non-zero part are simulated from Weibull or similar distributions such as Gamma or truncated Gauss.

  2. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  3. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  4. Semiparametric Identification of Human Arm Dynamics for Flexible Control of a Functional Electrical Stimulation Neuroprosthesis

    PubMed Central

    Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.

    2016-01-01

    We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041

  5. Linear models: permutation methods

    USGS Publications Warehouse

    Cade, B.S.; Everitt, B.S.; Howell, D.C.

    2005-01-01

    Permutation tests (see Permutation Based Inference) for the linear model have applications in behavioral studies when traditional parametric assumptions about the error term in a linear model are not tenable. Improved validity of Type I error rates can be achieved with properly constructed permutation tests. Perhaps more importantly, increased statistical power, improved robustness to effects of outliers, and detection of alternative distributional differences can be achieved by coupling permutation inference with alternative linear model estimators. For example, it is well-known that estimates of the mean in linear model are extremely sensitive to even a single outlying value of the dependent variable compared to estimates of the median [7, 19]. Traditionally, linear modeling focused on estimating changes in the center of distributions (means or medians). However, quantile regression allows distributional changes to be estimated in all or any selected part of a distribution or responses, providing a more complete statistical picture that has relevance to many biological questions [6]...

  6. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting

    PubMed Central

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2015-01-01

    Summary The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function. PMID:27346982

  7. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.

    PubMed

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2016-06-01

    The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.

  8. seawaveQ: an R package providing a model and utilities for analyzing trends in chemical concentrations in streams with a seasonal wave (seawave) and adjustment for streamflow (Q) and other ancillary variables

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2013-01-01

    The seawaveQ R package fits a parametric regression model (seawaveQ) to pesticide concentration data from streamwater samples to assess variability and trends. The model incorporates the strong seasonality and high degree of censoring common in pesticide data and users can incorporate numerous ancillary variables, such as streamflow anomalies. The model is fitted to pesticide data using maximum likelihood methods for censored data and is robust in terms of pesticide, stream location, and degree of censoring of the concentration data. This R package standardizes this methodology for trend analysis, documents the code, and provides help and tutorial information, as well as providing additional utility functions for plotting pesticide and other chemical concentration data.

  9. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  10. The impact of parametrized convection on cloud feedback.

    PubMed

    Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming

    2015-11-13

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. © 2015 The Authors.

  11. The impact of parametrized convection on cloud feedback

    PubMed Central

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. PMID:26438278

  12. Application of Multi-task Lasso Regression in the Parametrization of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Chang, Li-Na; Zhang, Pei-Ai

    2015-07-01

    The multi-task learning approaches have attracted the increasing attention in the fields of machine learning, computer vision, and artificial intelligence. By utilizing the correlations in tasks, learning multiple related tasks simultaneously is better than learning each task independently. An efficient multi-task Lasso (Least Absolute Shrinkage Selection and Operator) regression algorithm is proposed in this paper to estimate the physical parameters of stellar spectra. It not only can obtain the information about the common features of the different physical parameters, but also can preserve effectively their own peculiar features. Experiments were done based on the ELODIE synthetic spectral data simulated with the stellar atmospheric model, and on the SDSS data released by the American large-scale survey Sloan. The estimation precision of our model is better than those of the methods in the related literature, especially for the estimates of the gravitational acceleration (lg g) and the chemical abundance ([Fe/H]). In the experiments we changed the spectral resolution, and applied the noises with different signal-to-noise ratios (SNRs) to the spectral data, so as to illustrate the stability of the model. The results show that the model is influenced by both the resolution and the noise. But the influence of the noise is larger than that of the resolution. In general, the multi-task Lasso regression algorithm is easy to operate, it has a strong stability, and can also improve the overall prediction accuracy of the model.

  13. The soil water characteristic as new class of closed-form parametric expressions for the flow duration curve

    NASA Astrophysics Data System (ADS)

    Sadegh, M.; Vrugt, J. A.; Gupta, H. V.; Xu, C.

    2016-04-01

    The flow duration curve is a signature catchment characteristic that depicts graphically the relationship between the exceedance probability of streamflow and its magnitude. This curve is relatively easy to create and interpret, and is used widely for hydrologic analysis, water quality management, and the design of hydroelectric power plants (among others). Several mathematical expressions have been proposed to mimic the FDC. Yet, these efforts have not been particularly successful, in large part because available functions are not flexible enough to portray accurately the functional shape of the FDC for a large range of catchments and contrasting hydrologic behaviors. Here, we extend the work of Vrugt and Sadegh (2013) and introduce several commonly used models of the soil water characteristic as new class of closed-form parametric expressions for the flow duration curve. These soil water retention functions are relatively simple to use, contain between two to three parameters, and mimic closely the empirical FDCs of 430 catchments of the MOPEX data set. We then relate the calibrated parameter values of these models to physical and climatological characteristics of the watershed using multivariate linear regression analysis, and evaluate the regionalization potential of our proposed models against those of the literature. If quality of fit is of main importance then the 3-parameter van Genuchten model is preferred, whereas the 2-parameter lognormal, 3-parameter GEV and generalized Pareto models show greater promise for regionalization.

  14. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment.

    PubMed

    Kilian, Reinhold; Matschinger, Herbert; Löeffler, Walter; Roick, Christiane; Angermeyer, Matthias C

    2002-03-01

    Transformation of the dependent cost variable is often used to solve the problems of heteroscedasticity and skewness in linear ordinary least square regression of health service cost data. However, transformation may cause difficulties in the interpretation of regression coefficients and the retransformation of predicted values. The study compares the advantages and disadvantages of different methods to estimate regression based cost functions using data on the annual costs of schizophrenia treatment. Annual costs of psychiatric service use and clinical and socio-demographic characteristics of the patients were assessed for a sample of 254 patients with a diagnosis of schizophrenia (ICD-10 F 20.0) living in Leipzig. The clinical characteristics of the participants were assessed by means of the BPRS 4.0, the GAF, and the CAN for service needs. Quality of life was measured by WHOQOL-BREF. A linear OLS regression model with non-parametric standard errors, a log-transformed OLS model and a generalized linear model with a log-link and a gamma distribution were used to estimate service costs. For the estimation of robust non-parametric standard errors, the variance estimator by White and a bootstrap estimator based on 2000 replications were employed. Models were evaluated by the comparison of the R2 and the root mean squared error (RMSE). RMSE of the log-transformed OLS model was computed with three different methods of bias-correction. The 95% confidence intervals for the differences between the RMSE were computed by means of bootstrapping. A split-sample-cross-validation procedure was used to forecast the costs for the one half of the sample on the basis of a regression equation computed for the other half of the sample. All three methods showed significant positive influences of psychiatric symptoms and met psychiatric service needs on service costs. Only the log- transformed OLS model showed a significant negative impact of age, and only the GLM shows a significant negative influences of employment status and partnership on costs. All three models provided a R2 of about.31. The Residuals of the linear OLS model revealed significant deviances from normality and homoscedasticity. The residuals of the log-transformed model are normally distributed but still heteroscedastic. The linear OLS model provided the lowest prediction error and the best forecast of the dependent cost variable. The log-transformed model provided the lowest RMSE if the heteroscedastic bias correction was used. The RMSE of the GLM with a log link and a gamma distribution was higher than those of the linear OLS model and the log-transformed OLS model. The difference between the RMSE of the linear OLS model and that of the log-transformed OLS model without bias correction was significant at the 95% level. As result of the cross-validation procedure, the linear OLS model provided the lowest RMSE followed by the log-transformed OLS model with a heteroscedastic bias correction. The GLM showed the weakest model fit again. None of the differences between the RMSE resulting form the cross- validation procedure were found to be significant. The comparison of the fit indices of the different regression models revealed that the linear OLS model provided a better fit than the log-transformed model and the GLM, but the differences between the models RMSE were not significant. Due to the small number of cases in the study the lack of significance does not sufficiently proof that the differences between the RSME for the different models are zero and the superiority of the linear OLS model can not be generalized. The lack of significant differences among the alternative estimators may reflect a lack of sample size adequate to detect important differences among the estimators employed. Further studies with larger case number are necessary to confirm the results. Specification of an adequate regression models requires a careful examination of the characteristics of the data. Estimation of standard errors and confidence intervals by nonparametric methods which are robust against deviations from the normal distribution and the homoscedasticity of residuals are suitable alternatives to the transformation of the skew distributed dependent variable. Further studies with more adequate case numbers are needed to confirm the results.

  15. Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program

    PubMed Central

    Tejada, Frederick R.; Lang, Lynn A.; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand

    2015-01-01

    Objective. To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Methods. Statistical analyses included two sample t tests, multiple regression and Pearson’s correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. Results. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Conclusion. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion. PMID:26430273

  16. Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program.

    PubMed

    Parmar, Jayesh R; Tejada, Frederick R; Lang, Lynn A; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand

    2015-08-25

    To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Statistical analyses included two sample t tests, multiple regression and Pearson's correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion.

  17. Construction of reactive potential energy surfaces with Gaussian process regression: active data selection

    NASA Astrophysics Data System (ADS)

    Guan, Yafu; Yang, Shuo; Zhang, Dong H.

    2018-04-01

    Gaussian process regression (GPR) is an efficient non-parametric method for constructing multi-dimensional potential energy surfaces (PESs) for polyatomic molecules. Since not only the posterior mean but also the posterior variance can be easily calculated, GPR provides a well-established model for active learning, through which PESs can be constructed more efficiently and accurately. We propose a strategy of active data selection for the construction of PESs with emphasis on low energy regions. Through three-dimensional (3D) example of H3, the validity of this strategy is verified. The PESs for two prototypically reactive systems, namely, H + H2O ↔ H2 + OH reaction and H + CH4 ↔ H2 + CH3 reaction are reconstructed. Only 920 and 4000 points are assembled to reconstruct these two PESs respectively. The accuracy of the GP PESs is not only tested by energy errors but also validated by quantum scattering calculations.

  18. Clinical and multiple gene expression variables in survival analysis of breast cancer: Analysis with the hypertabastic survival model

    PubMed Central

    2012-01-01

    Background We explore the benefits of applying a new proportional hazard model to analyze survival of breast cancer patients. As a parametric model, the hypertabastic survival model offers a closer fit to experimental data than Cox regression, and furthermore provides explicit survival and hazard functions which can be used as additional tools in the survival analysis. In addition, one of our main concerns is utilization of multiple gene expression variables. Our analysis treats the important issue of interaction of different gene signatures in the survival analysis. Methods The hypertabastic proportional hazards model was applied in survival analysis of breast cancer patients. This model was compared, using statistical measures of goodness of fit, with models based on the semi-parametric Cox proportional hazards model and the parametric log-logistic and Weibull models. The explicit functions for hazard and survival were then used to analyze the dynamic behavior of hazard and survival functions. Results The hypertabastic model provided the best fit among all the models considered. Use of multiple gene expression variables also provided a considerable improvement in the goodness of fit of the model, as compared to use of only one. By utilizing the explicit survival and hazard functions provided by the model, we were able to determine the magnitude of the maximum rate of increase in hazard, and the maximum rate of decrease in survival, as well as the times when these occurred. We explore the influence of each gene expression variable on these extrema. Furthermore, in the cases of continuous gene expression variables, represented by a measure of correlation, we were able to investigate the dynamics with respect to changes in gene expression. Conclusions We observed that use of three different gene signatures in the model provided a greater combined effect and allowed us to assess the relative importance of each in determination of outcome in this data set. These results point to the potential to combine gene signatures to a greater effect in cases where each gene signature represents some distinct aspect of the cancer biology. Furthermore we conclude that the hypertabastic survival models can be an effective survival analysis tool for breast cancer patients. PMID:23241496

  19. Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Komar, D. R.

    2011-01-01

    This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.

  20. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  1. Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Xin

    2011-09-01

    The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.

  2. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  3. From 2D to 3D: Construction of a 3D Parametric Model for Detection of Dental Roots Shape and Position from a Panoramic Radiograph—A Preliminary Report

    PubMed Central

    Mazzotta, Laura; Cozzani, Mauro; Mutinelli, Sabrina; Castaldo, Attilio; Silvestrini-Biavati, Armando

    2013-01-01

    Objectives. To build a 3D parametric model to detect shape and volume of dental roots, from a panoramic radiograph (PAN) of the patient. Materials and Methods. A PAN and a cone beam computed tomography (CBCT) of a patient were acquired. For each tooth, various parameters were considered (coronal and root lengths and widths): these were measured from the CBCT and from the PAN. Measures were compared to evaluate the accuracy level of PAN measurements. By using a CAD software, parametric models of an incisor and of a molar were constructed employing B-spline curves and free-form surfaces. PAN measures of teeth 2.1 and 3.6 were assigned to the parametric models; the same two teeth were segmented from CBCT. The two models were superimposed to assess the accuracy of the parametric model. Results. PAN measures resulted to be accurate and comparable with all other measurements. From model superimposition the maximum error resulted was 1.1 mm on the incisor crown and 2 mm on the molar furcation. Conclusion. This study shows that it is possible to build a 3D parametric model starting from 2D information with a clinically valid accuracy level. This can ultimately lead to a crown-root movement simulation. PMID:23554814

  4. Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. R.; Urban, N. M.

    2015-12-01

    Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.

  5. Sci—Fri PM: Topics — 06: The influence of regional dose sensitivity on salivary loss and recovery in the parotid gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, H; BC Cancer Agency, Surrey, B.C.; BC Cancer Agency, Vancouver, B.C.

    Purpose: The Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC 2010) survey of radiation dose-volume effects on salivary gland function has called for improved understanding of intragland dose sensitivity and the effectiveness of partial sparing in salivary glands. Regional dose susceptibility of sagittally- and coronally-sub-segmented parotid gland has been studied. Specifically, we examine whether individual consideration of sub-segments leads to improved prediction of xerostomia compared with whole parotid mean dose. Methods: Data from 102 patients treated for head-and-neck cancers at the BC Cancer Agency were used in this study. Whole mouth stimulated saliva was collected before (baseline), threemore » months, and one year after cessation of radiotherapy. Organ volumes were contoured using treatment planning CT images and sub-segmented into regional portions. Both non-parametric (local regression) and parametric (mean dose exponential fitting) methods were employed. A bootstrap technique was used for reliability estimation and cross-comparison. Results: Salivary loss is described well using non-parametric and mean dose models. Parametric fits suggest a significant distinction in dose response between medial-lateral and anterior-posterior aspects of the parotid (p<0.01). Least-squares and least-median squares estimates differ significantly (p<0.00001), indicating fits may be skewed by noise or outliers. Salivary recovery exhibits a weakly arched dose response: the highest recovery is seen at intermediate doses. Conclusions: Salivary function loss is strongly dose dependent. In contrast no useful dose dependence was observed for function recovery. Regional dose dependence was observed, but may have resulted from a bias in dose distributions.« less

  6. Comparison of thawing and freezing dark energy parametrizations

    NASA Astrophysics Data System (ADS)

    Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.

    2016-05-01

    Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.

  7. A modified temporal criterion to meta-optimize the extended Kalman filter for land cover classification of remotely sensed time series

    NASA Astrophysics Data System (ADS)

    Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.

    2018-05-01

    Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.

  8. A quantile count model of water depth constraints on Cape Sable seaside sparrows

    USGS Publications Warehouse

    Cade, B.S.; Dong, Q.

    2008-01-01

    1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.

  9. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  10. Mapping the Chevallier-Polarski-Linder parametrization onto physical dark energy Models

    NASA Astrophysics Data System (ADS)

    Scherrer, Robert J.

    2015-08-01

    We examine the Chevallier-Polarski-Linder (CPL) parametrization, in the context of quintessence and barotropic dark energy models, to determine the subset of such models to which it can provide a good fit. The CPL parametrization gives the equation of state parameter w for the dark energy as a linear function of the scale factor a , namely w =w0+wa(1 -a ). In the case of quintessence models, we find that over most of the w0, wa parameter space the CPL parametrization maps onto a fairly narrow form of behavior for the potential V (ϕ ), while a one-dimensional subset of parameter space, for which wa=κ (1 +w0) , with κ constant, corresponds to a wide range of functional forms for V (ϕ ). For barotropic models, we show that the functional dependence of the pressure on the density, up to a multiplicative constant, depends only on wi=wa+w0 and not on w0 and wa separately. Our results suggest that the CPL parametrization may not be optimal for testing either type of model.

  11. A general framework for parametric survival analysis.

    PubMed

    Crowther, Michael J; Lambert, Paul C

    2014-12-30

    Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.

  12. flexsurv: A Platform for Parametric Survival Modeling in R

    PubMed Central

    Jackson, Christopher H.

    2018-01-01

    flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modeled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package (Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. flexsurv also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the mstate package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. PMID:29593450

  13. Bayesian spatial analysis of childhood diseases in Zimbabwe.

    PubMed

    Tsiko, Rodney Godfrey

    2015-09-02

    Many sub-Saharan countries are confronted with persistently high levels of childhood morbidity and mortality because of the impact of a range of demographic, biological and social factors or situational events that directly precipitate ill health. In particular, under-five morbidity and mortality have increased in recent decades due to childhood diarrhoea, cough and fever. Understanding the geographic distribution of such diseases and their relationships to potential risk factors can be invaluable for cost effective intervention. Bayesian semi-parametric regression models were used to quantify the spatial risk of childhood diarrhoea, fever and cough, as well as associations between childhood diseases and a range of factors, after accounting for spatial correlation between neighbouring areas. Such semi-parametric regression models allow joint analysis of non-linear effects of continuous covariates, spatially structured variation, unstructured heterogeneity, and other fixed effects on childhood diseases. Modelling and inference made use of the fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulation techniques. The analysis was based on data derived from the 1999, 2005/6 and 2010/11 Zimbabwe Demographic and Health Surveys (ZDHS). The results suggest that until recently, sex of child had little or no significant association with childhood diseases. However, a higher proportion of male than female children within a given province had a significant association with childhood cough, fever and diarrhoea. Compared to their counterparts in rural areas, children raised in an urban setting had less exposure to cough, fever and diarrhoea across all the survey years with the exception of diarrhoea in 2010. In addition, the link between sanitation, parental education, antenatal care, vaccination and childhood diseases was found to be both intuitive and counterintuitive. Results also showed marked geographical differences in the prevalence of childhood diarrhoea, fever and cough. Across all the survey years Manicaland province reported the highest cases of childhood diseases. There is also clear evidence of significant high prevalence of childhood diseases in Mashonaland than in Matabeleland provinces.

  14. Estimation of retinal vessel caliber using model fitting and random forests

    NASA Astrophysics Data System (ADS)

    Araújo, Teresa; Mendonça, Ana Maria; Campilho, Aurélio

    2017-03-01

    Retinal vessel caliber changes are associated with several major diseases, such as diabetes and hypertension. These caliber changes can be evaluated using eye fundus images. However, the clinical assessment is tiresome and prone to errors, motivating the development of automatic methods. An automatic method based on vessel crosssection intensity profile model fitting for the estimation of vessel caliber in retinal images is herein proposed. First, vessels are segmented from the image, vessel centerlines are detected and individual segments are extracted and smoothed. Intensity profiles are extracted perpendicularly to the vessel, and the profile lengths are determined. Then, model fitting is applied to the smoothed profiles. A novel parametric model (DoG-L7) is used, consisting on a Difference-of-Gaussians multiplied by a line which is able to describe profile asymmetry. Finally, the parameters of the best-fit model are used for determining the vessel width through regression using ensembles of bagged regression trees with random sampling of the predictors (random forests). The method is evaluated on the REVIEW public dataset. A precision close to the observers is achieved, outperforming other state-of-the-art methods. The method is robust and reliable for width estimation in images with pathologies and artifacts, with performance independent of the range of diameters.

  15. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  16. The quantile regression approach to efficiency measurement: insights from Monte Carlo simulations.

    PubMed

    Liu, Chunping; Laporte, Audrey; Ferguson, Brian S

    2008-09-01

    In the health economics literature there is an ongoing debate over approaches used to estimate the efficiency of health systems at various levels, from the level of the individual hospital - or nursing home - up to that of the health system as a whole. The two most widely used approaches to evaluating the efficiency with which various units deliver care are non-parametric data envelopment analysis (DEA) and parametric stochastic frontier analysis (SFA). Productivity researchers tend to have very strong preferences over which methodology to use for efficiency estimation. In this paper, we use Monte Carlo simulation to compare the performance of DEA and SFA in terms of their ability to accurately estimate efficiency. We also evaluate quantile regression as a potential alternative approach. A Cobb-Douglas production function, random error terms and a technical inefficiency term with different distributions are used to calculate the observed output. The results, based on these experiments, suggest that neither DEA nor SFA can be regarded as clearly dominant, and that, depending on the quantile estimated, the quantile regression approach may be a useful addition to the armamentarium of methods for estimating technical efficiency.

  17. Model risk for European-style stock index options.

    PubMed

    Gençay, Ramazan; Gibson, Rajna

    2007-01-01

    In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.

  18. Simplified estimation of age-specific reference intervals for skewed data.

    PubMed

    Wright, E M; Royston, P

    1997-12-30

    Age-specific reference intervals are commonly used in medical screening and clinical practice, where interest lies in the detection of extreme values. Many different statistical approaches have been published on this topic. The advantages of a parametric method are that they necessarily produce smooth centile curves, the entire density is estimated and an explicit formula is available for the centiles. The method proposed here is a simplified version of a recent approach proposed by Royston and Wright. Basic transformations of the data and multiple regression techniques are combined to model the mean, standard deviation and skewness. Using these simple tools, which are implemented in almost all statistical computer packages, age-specific reference intervals may be obtained. The scope of the method is illustrated by fitting models to several real data sets and assessing each model using goodness-of-fit techniques.

  19. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  20. Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II

    NASA Astrophysics Data System (ADS)

    Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.

    2009-09-01

    Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.

  1. Leveraging prognostic baseline variables to gain precision in randomized trials

    PubMed Central

    Colantuoni, Elizabeth; Rosenblum, Michael

    2015-01-01

    We focus on estimating the average treatment effect in a randomized trial. If baseline variables are correlated with the outcome, then appropriately adjusting for these variables can improve precision. An example is the analysis of covariance (ANCOVA) estimator, which applies when the outcome is continuous, the quantity of interest is the difference in mean outcomes comparing treatment versus control, and a linear model with only main effects is used. ANCOVA is guaranteed to be at least as precise as the standard unadjusted estimator, asymptotically, under no parametric model assumptions and also is locally semiparametric efficient. Recently, several estimators have been developed that extend these desirable properties to more general settings that allow any real-valued outcome (e.g., binary or count), contrasts other than the difference in mean outcomes (such as the relative risk), and estimators based on a large class of generalized linear models (including logistic regression). To the best of our knowledge, we give the first simulation study in the context of randomized trials that compares these estimators. Furthermore, our simulations are not based on parametric models; instead, our simulations are based on resampling data from completed randomized trials in stroke and HIV in order to assess estimator performance in realistic scenarios. We provide practical guidance on when these estimators are likely to provide substantial precision gains and describe a quick assessment method that allows clinical investigators to determine whether these estimators could be useful in their specific trial contexts. PMID:25872751

  2. Gaussian process regression for forecasting battery state of health

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Osborne, Michael A.; Howey, David A.

    2017-07-01

    Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.

  3. Comparing of Cox model and parametric models in analysis of effective factors on event time of neuropathy in patients with type 2 diabetes.

    PubMed

    Kargarian-Marvasti, Sadegh; Rimaz, Shahnaz; Abolghasemi, Jamileh; Heydari, Iraj

    2017-01-01

    Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes. This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model ( P < 0.20) were entered into the multivariate Cox and parametric models ( P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS). Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy ( P < 0.05). According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.

  4. Estimating the expected value of partial perfect information in health economic evaluations using integrated nested Laplace approximation.

    PubMed

    Heath, Anna; Manolopoulou, Ioanna; Baio, Gianluca

    2016-10-15

    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the 'cost' of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process (GP) regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional GP, often substantially. We demonstrate that the EVPPI calculated using our method for GP regression is in line with the standard GP regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  5. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  6. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.

  7. Contribution of Submarine Groundwater on the Water-Food Nexus in Coastal Ecosystems: Effects on Biodiversity and Fishery Production

    NASA Astrophysics Data System (ADS)

    Shoji, J.; Sugimoto, R.; Honda, H.; Tominaga, O.; Taniguchi, M.

    2014-12-01

    In the past decade, machine-learning methods for empirical rainfall-runoff modeling have seen extensive development. However, the majority of research has focused on a small number of methods, such as artificial neural networks, while not considering other approaches for non-parametric regression that have been developed in recent years. These methods may be able to achieve comparable predictive accuracy to ANN's and more easily provide physical insights into the system of interest through evaluation of covariate influence. Additionally, these methods could provide a straightforward, computationally efficient way of evaluating climate change impacts in basins where data to support physical hydrologic models is limited. In this paper, we use multiple regression and machine-learning approaches to predict monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia. We find that generalized additive models, random forests, and cubist models achieve better predictive accuracy than ANNs in many basins assessed and are also able to outperform physical models developed for the same region. We discuss some challenges that could hinder the use of such models for climate impact assessment, such as biases resulting from model formulation and prediction under extreme climate conditions, and suggest methods for preventing and addressing these challenges. Finally, we demonstrate how predictor variable influence can be assessed to provide insights into the physical functioning of data-sparse watersheds.

  8. Semi-Automatic Modelling of Building FAÇADES with Shape Grammars Using Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2013-02-01

    This paper outlines a new approach for generating digital heritage models from laser scan or photogrammetric data using Historic Building Information Modelling (HBIM). HBIM is a plug-in for Building Information Modelling (BIM) software that uses parametric library objects and procedural modelling techniques to automate the modelling stage. The HBIM process involves a reverse engineering solution whereby parametric interactive objects representing architectural elements are mapped onto laser scan or photogrammetric survey data. A library of parametric architectural objects has been designed from historic manuscripts and architectural pattern books. These parametric objects were built using an embedded programming language within the ArchiCAD BIM software called Geometric Description Language (GDL). Procedural modelling techniques have been implemented with the same language to create a parametric building façade which automatically combines library objects based on architectural rules and proportions. Different configurations of the façade are controlled by user parameter adjustment. The automatically positioned elements of the façade can be subsequently refined using graphical editing while overlaying the model with orthographic imagery. Along with this semi-automatic method for generating façade models, manual plotting of library objects can also be used to generate a BIM model from survey data. After the 3D model has been completed conservation documents such as plans, sections, elevations and 3D views can be automatically generated for conservation projects.

  9. Z/sub n/ Baxter model: symmetries and the Belavin parametrization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richey, M.P.; Tracy, C.A.

    1986-02-01

    The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.

  10. Multi-parametric centrality method for graph network models

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei Evgenievich; Gorlushkina, Natalia Nikolaevna; Ivanova, Lubov Nikolaevna

    2018-04-01

    The graph model networks are investigated to determine centrality, weights and the significance of vertices. For centrality analysis appliesa typical method that includesany one of the properties of graph vertices. In graph theory, methods of analyzing centrality are used: in terms by degree, closeness, betweenness, radiality, eccentricity, page-rank, status, Katz and eigenvector. We have proposed a new method of multi-parametric centrality, which includes a number of basic properties of the network member. The mathematical model of multi-parametric centrality method is developed. Comparison of results for the presented method with the centrality methods is carried out. For evaluate the results for the multi-parametric centrality methodthe graph model with hundreds of vertices is analyzed. The comparative analysis showed the accuracy of presented method, includes simultaneously a number of basic properties of vertices.

  11. Applying Statistical Models and Parametric Distance Measures for Music Similarity Search

    NASA Astrophysics Data System (ADS)

    Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph

    Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.

  12. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  13. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    NASA Astrophysics Data System (ADS)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  14. Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ashe, Thomas L.; Otting, William D.

    1993-01-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  15. Bidirectional reflectance distribution function measurements and analysis of retroreflective materials.

    PubMed

    Belcour, Laurent; Pacanowski, Romain; Delahaie, Marion; Laville-Geay, Aude; Eupherte, Laure

    2014-12-01

    We compare the performance of various analytical retroreflecting bidirectional reflectance distribution function (BRDF) models to assess how they reproduce accurately measured data of retroreflecting materials. We introduce a new parametrization, the back vector parametrization, to analyze retroreflecting data, and we show that this parametrization better preserves the isotropy of data. Furthermore, we update existing BRDF models to improve the representation of retroreflective data.

  16. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  17. Validation of a Parametric Approach for 3d Fortification Modelling: Application to Scale Models

    NASA Astrophysics Data System (ADS)

    Jacquot, K.; Chevrier, C.; Halin, G.

    2013-02-01

    Parametric modelling approach applied to cultural heritage virtual representation is a field of research explored for years since it can address many limitations of digitising tools. For example, essential historical sources for fortification virtual reconstructions like plans-reliefs have several shortcomings when they are scanned. To overcome those problems, knowledge based-modelling can be used: knowledge models based on the analysis of theoretical literature of a specific domain such as bastioned fortification treatises can be the cornerstone of the creation of a parametric library of fortification components. Implemented in Grasshopper, these components are manually adjusted on the data available (i.e. 3D surveys of plans-reliefs or scanned maps). Most of the fortification area is now modelled and the question of accuracy assessment is raised. A specific method is used to evaluate the accuracy of the parametric components. The results of the assessment process will allow us to validate the parametric approach. The automation of the adjustment process can finally be planned. The virtual model of fortification is part of a larger project aimed at valorising and diffusing a very unique cultural heritage item: the collection of plans-reliefs. As such, knowledge models are precious assets when automation and semantic enhancements will be considered.

  18. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  19. A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data

    PubMed Central

    Jiang, Fei; Haneuse, Sebastien

    2016-01-01

    In the analysis of semi-competing risks data interest lies in estimation and inference with respect to a so-called non-terminal event, the observation of which is subject to a terminal event. Multi-state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non-terminal and terminal events specified, in part, by a unit-specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi-competing risks analysis that permit the non-parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi-parametric efficient score under the complete data setting and propose a non-parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small-sample operating characteristics evaluated via simulation. Although the proposed semi-parametric transformation model and non-parametric score imputation method are motivated by the analysis of semi-competing risks data, they are broadly applicable to any analysis of multivariate time-to-event outcomes in which a unit-specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer. PMID:28439147

  20. Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson--Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package PRIMsrc (Patient Rule Induction Method in Survival, Regression and Classification settings) is available on CRAN (Comprehensive R Archive Network) and GitHub. PMID:27034730

  1. Applying quantile regression for modeling equivalent property damage only crashes to identify accident blackspots.

    PubMed

    Washington, Simon; Haque, Md Mazharul; Oh, Jutaek; Lee, Dongmin

    2014-05-01

    Hot spot identification (HSID) aims to identify potential sites-roadway segments, intersections, crosswalks, interchanges, ramps, etc.-with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Formation of parametric images using mixed-effects models: a feasibility study.

    PubMed

    Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh

    2016-03-01

    Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Parametric modelling of cost data in medical studies.

    PubMed

    Nixon, R M; Thompson, S G

    2004-04-30

    The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice. Copyright 2004 John Wiley & Sons, Ltd.

  4. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    NASA Astrophysics Data System (ADS)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  5. Modeling the directivity of parametric loudspeaker

    NASA Astrophysics Data System (ADS)

    Shi, Chuang; Gan, Woon-Seng

    2012-09-01

    The emerging applications of the parametric loudspeaker, such as 3D audio, demands accurate directivity control at the audible frequency (i.e. the difference frequency). Though the delay-and-sum beamforming has been proven adequate to adjust the steering angles of the parametric loudspeaker, accurate prediction of the mainlobe and sidelobes remains a challenging problem. It is mainly because of the approximations that are used to derive the directivity of the difference frequency from the directivity of the primary frequency, and the mismatches between the theoretical directivity and the measured directivity caused by system errors incurred at different stages of the implementation. In this paper, we propose a directivity model of the parametric loudspeaker. The directivity model consists of two tuning vectors corresponding to the spacing error and the weight error for the primary frequency. The directivity model adopts a modified form of the product directivity principle for the difference frequency to further improve the modeling accuracy.

  6. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  7. Comparison of Weibull and Lognormal Cure Models with Cox in the Survival Analysis Of Breast Cancer Patients in Rafsanjan.

    PubMed

    Hoseini, Mina; Bahrampour, Abbas; Mirzaee, Moghaddameh

    2017-02-16

    Breast cancer is the most common cancer after lung cancer and the second cause of death. In this study we compared Weibull and Lognormal Cure Models with Cox regression on the survival of breast cancer. A cohort study. The current study retrospective cohort study was conducted on 140 patients referred to Ali Ibn Abitaleb Hospital, Rafsanjan southeastern Iran from 2001 to 2015 suffering from breast cancer. We determined and analyzed the effective survival causes by different models using STATA14. According to AIC, log-normal model was more consistent than Weibull. In the multivariable Lognormal model, the effective factors like smoking, second -hand smoking, drinking herbal tea and the last breast-feeding period were included. In addition, using Cox regression factors of significant were the disease grade, size of tumor and its metastasis (p-value<0.05). As Rafsanjan is surrounded by pistachio orchards and pesticides applied by farmers, people of this city are exposed to agricultural pesticides and its harmful consequences. The effect of the pesticide on breast cancer was studied and the results showed that the effect of pesticides on breast cancer was not in agreement with the models used in this study. Based on different methods for survival analysis, researchers can decide how they can reach a better conclusion. This comparison indicates the result of semi-parametric Cox method is closer to clinical experiences evidences.

  8. Prediction of skull fracture risk for children 0-9 months old through validated parametric finite element model and cadaver test reconstruction.

    PubMed

    Li, Zhigang; Liu, Weiguo; Zhang, Jinhuan; Hu, Jingwen

    2015-09-01

    Skull fracture is one of the most common pediatric traumas. However, injury assessment tools for predicting pediatric skull fracture risk is not well established mainly due to the lack of cadaver tests. Weber conducted 50 pediatric cadaver drop tests for forensic research on child abuse in the mid-1980s (Experimental studies of skull fractures in infants, Z Rechtsmed. 92: 87-94, 1984; Biomechanical fragility of the infant skull, Z Rechtsmed. 94: 93-101, 1985). To our knowledge, these studies contained the largest sample size among pediatric cadaver tests in the literature. However, the lack of injury measurements limited their direct application in investigating pediatric skull fracture risks. In this study, 50 pediatric cadaver tests from Weber's studies were reconstructed using a parametric pediatric head finite element (FE) model which were morphed into subjects with ages, head sizes/shapes, and skull thickness values that reported in the tests. The skull fracture risk curves for infants from 0 to 9 months old were developed based on the model-predicted head injury measures through logistic regression analysis. It was found that the model-predicted stress responses in the skull (maximal von Mises stress, maximal shear stress, and maximal first principal stress) were better predictors than global kinematic-based injury measures (peak head acceleration and head injury criterion (HIC)) in predicting pediatric skull fracture. This study demonstrated the feasibility of using age- and size/shape-appropriate head FE models to predict pediatric head injuries. Such models can account for the morphological variations among the subjects, which cannot be considered by a single FE human model.

  9. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  10. Improvements in Sensible Heat-Flux Parametrization in the High-Resolution Regional Model (HRM) Through the Modified Treatment of the Roughness Length for Heat

    NASA Astrophysics Data System (ADS)

    Anurose, T. J.; Subrahamanyam, D. Bala

    2013-06-01

    We discuss the impact of the differential treatment of the roughness lengths for momentum and heat (z_{0m} and z_{0h}) in the flux parametrization scheme of the high-resolution regional model (HRM) for a heterogeneous terrain centred around Thiruvananthapuram, India (8.5°N, 76.9°E). The magnitudes of sensible heat flux ( H) obtained from HRM simulations using the original parametrization scheme differed drastically from the concurrent in situ observations. With a view to improving the performance of this parametrization scheme, two distinct modifications are incorporated: (1) In the first method, a constant value of 100 is assigned to the z_{0m}/z_{0h} ratio; (2) and in the second approach, this ratio is treated as a function of time. Both these modifications in the HRM model showed significant improvements in the H simulations for Thiruvananthapuram and its adjoining regions. Results obtained from the present study provide a first-ever comparison of H simulations using the modified parametrization scheme in the HRM model with in situ observations for the Indian coastal region, and suggest a differential treatment of z_{0m} and z_{0h} in the flux parametrization scheme.

  11. An appraisal of statistical procedures used in derivation of reference intervals.

    PubMed

    Ichihara, Kiyoshi; Boyd, James C

    2010-11-01

    When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.

  12. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    PubMed

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Does Sentinel multi sensor data offer synergy in Improving Accuracy of Aboveground Biomass Estimate of Dense Tropical Forest? - Utility of Decision Tree Based Machine Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Ghosh, S. M.; Behera, M. D.

    2017-12-01

    Forest aboveground biomass (AGB) is an important factor for preparation of global policy making decisions to tackle the impact of climate change. Several previous studies has concluded that remote sensing methods are more suitable for estimating forest biomass on regional scale. Among all available remote sensing data and methods, Synthetic Aperture Radar (SAR) data in combination with decision tree based machine learning algorithms has shown better promise in estimating higher biomass values. There aren't many studies done for biomass estimation of dense Indian tropical forests with high biomass density. In this study aboveground biomass was estimated for two major tree species, Sal (Shorea robusta) and Teak (Tectona grandis), of Katerniaghat Wildlife Sanctuary, a tropical forest situated in northern India. Biomass was estimated by combining C-band SAR data from Sentinel-1A satellite, vegetation indices produced using Sentinel-2A data and ground inventory plots. Along with SAR backscatter value, SAR texture images were also used as input as earlier studies had found that image texture has a correlation with vegetation biomass. Decision tree based nonlinear machine learning algorithms were used in place of parametric regression models for establishing relationship between fields measured values and remotely sensed parameters. Using random forest model with a combination of vegetation indices with SAR backscatter as predictor variables shows best result for Sal forest, with a coefficient of determination value of 0.71 and a RMSE value of 105.027 t/ha. In teak forest also best result can be found in the same combination but for stochastic gradient boosted model with a coefficient of determination value of 0.6 and a RMSE value of 79.45 t/ha. These results are mostly better than the results of other studies done for similar kind of forests. This study shows that Sentinel series satellite data has exceptional capabilities in estimating dense forest AGB and machine learning algorithms are better means to do so than parametric regression models.

  14. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    PubMed

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  15. A numerical study on piezoelectric energy harvesting by combining transverse galloping and parametric instability phenomena

    NASA Astrophysics Data System (ADS)

    Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo

    2017-12-01

    This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.

  16. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    NASA Astrophysics Data System (ADS)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    Synthetic streamflow data generation involves the synthesis of likely streamflow patterns that are statistically indistinguishable from the observed streamflow data. The various kinds of stochastic models adopted for multi-season streamflow generation in hydrology are: i) parametric models which hypothesize the form of the periodic dependence structure and the distributional form a priori (examples are PAR, PARMA); disaggregation models that aim to preserve the correlation structure at the periodic level and the aggregated annual level; ii) Nonparametric models (examples are bootstrap/kernel based methods), which characterize the laws of chance, describing the stream flow process, without recourse to prior assumptions as to the form or structure of these laws; (k-nearest neighbor (k-NN), matched block bootstrap (MABB)); non-parametric disaggregation model. iii) Hybrid models which blend both parametric and non-parametric models advantageously to model the streamflows effectively. Despite many of these developments that have taken place in the field of stochastic modeling of streamflows over the last four decades, accurate prediction of the storage and the critical drought characteristics has been posing a persistent challenge to the stochastic modeler. This is partly because, usually, the stochastic streamflow model parameters are estimated by minimizing a statistically based objective function (such as maximum likelihood (MLE) or least squares (LS) estimation) and subsequently the efficacy of the models is being validated based on the accuracy of prediction of the estimates of the water-use characteristics, which requires large number of trial simulations and inspection of many plots and tables. Still accurate prediction of the storage and the critical drought characteristics may not be ensured. In this study a multi-objective optimization framework is proposed to find the optimal hybrid model (blend of a simple parametric model, PAR(1) model and matched block bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  17. Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Dereli, Tekin; Kumar, Suresh; Xu, Lixin

    2014-02-01

    The parametrizations q = q 0+ q 1 z and q = q 0+ q 1(1 - a/ a 0) (Chevallier-Polarski-Linder parametrization) of the deceleration parameter, which are linear in cosmic redshift z and scale factor a , have been frequently utilized in the literature to study the kinematics of the Universe. In this paper, we follow a strategy that leads to these two well-known parametrizations of the deceleration parameter as well as an additional new parametrization, q = q 0+ q 1(1 - t/ t 0), which is linear in cosmic time t. We study the features of this linearly time-varying deceleration parameter in contrast with the other two linear parametrizations. We investigate in detail the kinematics of the Universe by confronting the three models with the latest observational data. We further study the dynamics of the Universe by considering the linearly time-varying deceleration parameter model in comparison with the standard ΛCDM model. We also discuss the future of the Universe in the context of the models under consideration.

  18. Latent component-based gear tooth fault detection filter using advanced parametric modeling

    NASA Astrophysics Data System (ADS)

    Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.

    2009-10-01

    In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.

  19. Single-arm phase II trial design under parametric cure models.

    PubMed

    Wu, Jianrong

    2015-01-01

    The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Equilibrium Climate Sensitivity Obtained From Multimillennial Runs of Two GFDL Climate Models

    NASA Astrophysics Data System (ADS)

    Paynter, D.; Frölicher, T. L.; Horowitz, L. W.; Silvers, L. G.

    2018-02-01

    Equilibrium climate sensitivity (ECS), defined as the long-term change in global mean surface air temperature in response to doubling atmospheric CO2, is usually computed from short atmospheric simulations over a mixed layer ocean, or inferred using a linear regression over a short-time period of adjustment. We report the actual ECS from multimillenial simulations of two Geophysical Fluid Dynamics Laboratory (GFDL) general circulation models (GCMs), ESM2M, and CM3 of 3.3 K and 4.8 K, respectively. Both values are 1 K higher than estimates for the same models reported in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change obtained by regressing the Earth's energy imbalance against temperature. This underestimate is mainly due to changes in the climate feedback parameter (-α) within the first century after atmospheric CO2 has stabilized. For both GCMs it is possible to estimate ECS with linear regression to within 0.3 K by increasing CO2 at 1% per year to doubling and using years 51-350 after CO2 is constant. We show that changes in -α differ between the two GCMs and are strongly tied to the changes in both vertical velocity at 500 hPa (ω500) and estimated inversion strength that the GCMs experience during the progression toward the equilibrium. This suggests that while cloud physics parametrizations are important for determining the strength of -α, the substantially different atmospheric state resulting from a changed sea surface temperature pattern may be of equal importance.

  1. Impact of state updating and multi-parametric ensemble for streamflow hindcasting in European river basins

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.

    2015-12-01

    Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.

  2. Elastic full-waveform inversion and parametrization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-06-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.

  3. Modelling and multi-parametric control for delivery of anaesthetic agents.

    PubMed

    Dua, Pinky; Dua, Vivek; Pistikopoulos, Efstratios N

    2010-06-01

    This article presents model predictive controllers (MPCs) and multi-parametric model-based controllers for delivery of anaesthetic agents. The MPC can take into account constraints on drug delivery rates and state of the patient but requires solving an optimization problem at regular time intervals. The multi-parametric controller has all the advantages of the MPC and does not require repetitive solution of optimization problem for its implementation. This is achieved by obtaining the optimal drug delivery rates as a set of explicit functions of the state of the patient. The derivation of the controllers relies on using detailed models of the system. A compartmental model for the delivery of three drugs for anaesthesia is developed. The key feature of this model is that mean arterial pressure, cardiac output and unconsciousness of the patient can be simultaneously regulated. This is achieved by using three drugs: dopamine (DP), sodium nitroprusside (SNP) and isoflurane. A number of dynamic simulation experiments are carried out for the validation of the model. The model is then used for the design of model predictive and multi-parametric controllers, and the performance of the controllers is analyzed.

  4. Software Reliability 2002

    NASA Technical Reports Server (NTRS)

    Wallace, Dolores R.

    2003-01-01

    In FY01 we learned that hardware reliability models need substantial changes to account for differences in software, thus making software reliability measurements more effective, accurate, and easier to apply. These reliability models are generally based on familiar distributions or parametric methods. An obvious question is 'What new statistical and probability models can be developed using non-parametric and distribution-free methods instead of the traditional parametric method?" Two approaches to software reliability engineering appear somewhat promising. The first study, begin in FY01, is based in hardware reliability, a very well established science that has many aspects that can be applied to software. This research effort has investigated mathematical aspects of hardware reliability and has identified those applicable to software. Currently the research effort is applying and testing these approaches to software reliability measurement, These parametric models require much project data that may be difficult to apply and interpret. Projects at GSFC are often complex in both technology and schedules. Assessing and estimating reliability of the final system is extremely difficult when various subsystems are tested and completed long before others. Parametric and distribution free techniques may offer a new and accurate way of modeling failure time and other project data to provide earlier and more accurate estimates of system reliability.

  5. Quantifying parametric uncertainty in the Rothermel model

    Treesearch

    S. Goodrick

    2008-01-01

    The purpose of the present work is to quantify parametric uncertainty in the Rothermel wildland fire spreadmodel (implemented in software such as fire spread models in the United States. This model consists of a non-linear system of equations that relates environmentalvariables (input parameter groups...

  6. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  7. Parametric modeling studies of turbulent non-premixed jet flames with thin reaction zones

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2013-11-01

    The Sydney piloted jet flame series (Flames L, B, and M) feature thinner reaction zones and hence impose greater challenges to modeling than the Sanida Piloted jet flames (Flames D, E, and F). Recently, the Sydney flames received renewed interest due to these challenges. Several new modeling efforts have emerged. However, no systematic parametric modeling studies have been reported for the Sydney flames. A large set of modeling computations of the Sydney flames is presented here by using the coupled large eddy simulation (LES)/probability density function (PDF) method. Parametric studies are performed to gain insight into the model performance, its sensitivity and the effect of numerics.

  8. Parametric estimation for reinforced concrete relief shelter for Aceh cases

    NASA Astrophysics Data System (ADS)

    Atthaillah; Saputra, Eri; Iqbal, Muhammad

    2018-05-01

    This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.

  9. Diagnostic tools for nearest neighbors techniques when used with satellite imagery

    Treesearch

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....

  10. Geometric Model for a Parametric Study of the Blended-Wing-Body Airplane

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne; Smith, Robert E.; Sadrehaghighi, Ideen; Wiese, Micharl R.

    1996-01-01

    A parametric model is presented for the blended-wing-body airplane, one concept being proposed for the next generation of large subsonic transports. The model is defined in terms of a small set of parameters which facilitates analysis and optimization during the conceptual design process. The model is generated from a preliminary CAD geometry. From this geometry, airfoil cross sections are cut at selected locations and fitted with analytic curves. The airfoils are then used as boundaries for surfaces defined as the solution of partial differential equations. Both the airfoil curves and the surfaces are generated with free parameters selected to give a good representation of the original geometry. The original surface is compared with the parametric model, and solutions of the Euler equations for compressible flow are computed for both geometries. The parametric model is a good approximation of the CAD model and the computed solutions are qualitatively similar. An optimal NURBS approximation is constructed and can be used by a CAD model for further refinement or modification of the original geometry.

  11. Non-parametric wall model and methods of identifying boundary conditions for moments in gas flow equations

    NASA Astrophysics Data System (ADS)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent

    2018-03-01

    In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.

  12. Efficient logistic regression designs under an imperfect population identifier.

    PubMed

    Albert, Paul S; Liu, Aiyi; Nansel, Tonja

    2014-03-01

    Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. © 2013, The International Biometric Society.

  13. Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis.

    PubMed

    Falk, Carl F; Cai, Li

    2016-06-01

    We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.

  14. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  15. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2015-08-01

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  16. Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus.

    PubMed

    Jiang, Jin-Wu

    2015-08-07

    We propose parametrizing the Stillinger-Weber potential for covalent materials starting from the valence force-field model. All geometrical parameters in the Stillinger-Weber potential are determined analytically according to the equilibrium condition for each individual potential term, while the energy parameters are derived from the valence force-field model. This parametrization approach transfers the accuracy of the valence force field model to the Stillinger-Weber potential. Furthermore, the resulting Stilliinger-Weber potential supports stable molecular dynamics simulations, as each potential term is at an energy-minimum state separately at the equilibrium configuration. We employ this procedure to parametrize Stillinger-Weber potentials for single-layer MoS2 and black phosphorous. The obtained Stillinger-Weber potentials predict an accurate phonon spectrum and mechanical behaviors. We also provide input scripts of these Stillinger-Weber potentials used by publicly available simulation packages including GULP and LAMMPS.

  17. A gap-filling model for eddy covariance latent heat flux: Estimating evapotranspiration of a subtropical seasonal evergreen broad-leaved forest as an example

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ying; Chu, Chia-Ren; Li, Ming-Hsu

    2012-10-01

    SummaryIn this paper we present a semi-parametric multivariate gap-filling model for tower-based measurement of latent heat flux (LE). Two statistical techniques, the principal component analysis (PCA) and a nonlinear interpolation approach were integrated into this LE gap-filling model. The PCA was first used to resolve the multicollinearity relationships among various environmental variables, including radiation, soil moisture deficit, leaf area index, wind speed, etc. Two nonlinear interpolation methods, multiple regressions (MRS) and the K-nearest neighbors (KNNs) were examined with random selected flux gaps for both clear sky and nighttime/cloudy data to incorporate into this LE gap-filling model. Experimental results indicated that the KNN interpolation approach is able to provide consistent LE estimations while MRS presents over estimations during nighttime/cloudy. Rather than using empirical regression parameters, the KNN approach resolves the nonlinear relationship between the gap-filled LE flux and principal components with adaptive K values under different atmospheric states. The developed LE gap-filling model (PCA with KNN) works with a RMSE of 2.4 W m-2 (˜0.09 mm day-1) at a weekly time scale by adding 40% artificial flux gaps into original dataset. Annual evapotranspiration at this study site were estimated at 736 mm (1803 MJ) and 728 mm (1785 MJ) for year 2008 and 2009, respectively.

  18. Intravoxel Incoherent Motion MR Imaging in the Differentiation of Benign and Malignant Sinonasal Lesions: Comparison with Conventional Diffusion-Weighted MR Imaging.

    PubMed

    Xiao, Z; Tang, Z; Qiang, J; Wang, S; Qian, W; Zhong, Y; Wang, R; Wang, J; Wu, L; Tang, W; Zhang, Z

    2018-01-25

    Intravoxel incoherent motion is a promising method for the differentiation of sinonasal lesions. This study aimed to evaluate the value of intravoxel incoherent motion in the differentiation of benign and malignant sinonasal lesions and to compare the diagnostic performance of intravoxel incoherent motion with that of conventional DWI. One hundred thirty-one patients with histologically proved solid sinonasal lesions (56 benign and 75 malignant) who underwent conventional DWI and intravoxel incoherent motion were recruited in this study. The diffusion coefficient ( D ), pseudodiffusion coefficient ( D *), and perfusion fraction ( f ) values derived from intravoxel incoherent motion and ADC values derived from conventional DWI were measured and compared between the 2 groups using the Student t test. Receiver operating characteristic curve analysis, logistic regression analysis, and 10-fold cross-validation were performed to evaluate the diagnostic performance of single-parametric and multiparametric models. The mean ADC and D values were significantly lower in malignant sinonasal lesions than in benign sinonasal lesions (both P < .001). The mean f value was higher in malignant lesions than in benign lesions ( P = .003). Multiparametric models can significantly improve the cross-validated areas under the curve for the differentiation of sinonasal lesions compared with single-parametric models (all corrected P < .05 except the D value). The model of D + f provided a better diagnostic performance than the ADC value (corrected P < .001). Intravoxel incoherent motion appears to be a more effective MR imaging technique than conventional DWI in the differentiation of benign and malignant sinonasal lesions. © 2018 by American Journal of Neuroradiology.

  19. The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases.

    PubMed

    Heidema, A Geert; Boer, Jolanda M A; Nagelkerke, Nico; Mariman, Edwin C M; van der A, Daphne L; Feskens, Edith J M

    2006-04-21

    Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases.

  20. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  1. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  2. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    PubMed

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a function of iteration. Convergence of direct reconstruction was slow with uniform initialization; lower bias was achieved in fewer iterations by initializing with the filtered indirect iteration 1 images. For most parameters and regions evaluated, the direct method achieved the same or lower absolute bias at matched iteration as the indirect method, with 23%-65% lower noise. Additionally, the direct method gave better contrast between the perfusion defect and surrounding normal tissue than the indirect method. Gated parametric images from the human dataset had comparable relative performance of indirect and direct, in terms of mean parameter values per iteration. Changes in myocardial wall thickness and blood pool size across gates were readily visible in the gated parametric images, with higher contrast between myocardium and left ventricle blood pool in parametric images than gated SUV images. Direct reconstruction can produce parametric images with less noise than the indirect method, opening the potential utility of gated parametric imaging for perfusion PET. © 2017 American Association of Physicists in Medicine.

  3. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    PubMed

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness.

  4. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States

    PubMed Central

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. PMID:25101782

  5. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder.

    PubMed

    Arano, Ichiro; Sugimoto, Tomoyuki; Hamasaki, Toshimitsu; Ohno, Yuko

    2010-04-23

    Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest. In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse. The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder. We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.

  6. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-02-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  7. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    NASA Astrophysics Data System (ADS)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-07-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  8. Keeping data continuous when analyzing the prognostic impact of a tumor marker: an example with cathepsin D in breast cancer.

    PubMed

    Bossard, N; Descotes, F; Bremond, A G; Bobin, Y; De Saint Hilaire, P; Golfier, F; Awada, A; Mathevet, P M; Berrerd, L; Barbier, Y; Estève, J

    2003-11-01

    The prognostic value of cathepsin D has been recently recognized, but as many quantitative tumor markers, its clinical use remains unclear partly because of methodological issues in defining cut-off values. Guidelines have been proposed for analyzing quantitative prognostic factors, underlining the need for keeping data continuous, instead of categorizing them. Flexible approaches, parametric and non-parametric, have been proposed in order to improve the knowledge of the functional form relating a continuous factor to the risk. We studied the prognostic value of cathepsin D in a retrospective hospital cohort of 771 patients with breast cancer, and focused our overall survival analysis, based on the Cox regression, on two flexible approaches: smoothing splines and fractional polynomials. We also determined a cut-off value from the maximum likelihood estimate of a threshold model. These different approaches complemented each other for (1) identifying the functional form relating cathepsin D to the risk, and obtaining a cut-off value and (2) optimizing the adjustment for complex covariate like age at diagnosis in the final multivariate Cox model. We found a significant increase in the death rate, reaching 70% with a doubling of the level of cathepsin D, after the threshold of 37.5 pmol mg(-1). The proper prognostic impact of this marker could be confirmed and a methodology providing appropriate ways to use markers in clinical practice was proposed.

  9. The association between subclinical mastitis around calving and reproductive performance in grazing dairy cows.

    PubMed

    Villa-Arcila, N A; Sanchez, J; Ratto, M H; Rodriguez-Lecompte, J C; Duque-Madrid, P C; Sanchez-Arias, S; Ceballos-Marquez, A

    2017-10-01

    The objective of this study was to evaluate the effect of subclinical mastitis (SCM) on calving-to-first-service interval (CFS), calving-to-conception interval (CC), and on the number of services per conception (S/C) in grazing Holstein and Normande cows. Primiparous (n=43) and multiparous (n=165) cows were selected from five dairy herds. Two composite milk samples were aseptically collected from each cow at drying-off, and then every week during the first postpartum month. One sample was used for somatic cell count (SCC), and the other one for bacteriological analysis. Cows were followed up to 300 d after calving. Non-parametric and parametric survival models, and negative binomial regression were used to assess the association between SCM, evaluated by SCC and milk culture, and reproductive indices. Staphylococcus aureus, CNS, and Streptococcus uberis were the most frequent isolated pathogens. Subclinical mastitis in the first month of lactation was not associated with CFS; however, the CC interval was longer in cows with SCM compared to healthy cows, the former also had a higher number of S/C. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. On the concept of sloped motion for free-floating wave energy converters.

    PubMed

    Payne, Grégory S; Pascal, Rémy; Vaillant, Guillaume

    2015-10-08

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range.

  11. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  12. Choice Inconsistencies among the Elderly: Evidence from Plan Choice in the Medicare Part D Program: Reply

    PubMed Central

    ABALUCK, JASON

    2017-01-01

    We explore the in- and out- of sample robustness of tests for choice inconsistencies based on parameter restrictions in parametric models, focusing on tests proposed by Ketcham, Kuminoff and Powers (KKP). We argue that their non-parametric alternatives are inherently conservative with respect to detecting mistakes. We then show that our parametric model is robust to KKP’s suggested specification checks, and that comprehensive goodness of fit measures perform better with our model than the expected utility model. Finally, we explore the robustness of our 2011 results to alternative normative assumptions highlighting the role of brand fixed effects and unobservable characteristics. PMID:29170561

  13. Nonrelativistic approaches derived from point-coupling relativistic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lourenco, O.; Dutra, M.; Delfino, A.

    2010-03-15

    We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on new normalized spinor wave functions after small component reduction. These expansions give us energy density functionals that can be compared to their relativistic counterparts. We show that the agreement between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on the incompressibility of each model. We also show that the particular case A=B=0 (Walecka model) leads to the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme, up to order {rho}{sup 3}, leads to parametrizations for which {sigma}=1.

  14. CuBe: parametric modeling of 3D foveal shape using cubic Bézier

    PubMed Central

    Yadav, Sunil Kumar; Motamedi, Seyedamirhosein; Oberwahrenbrock, Timm; Oertel, Frederike Cosima; Polthier, Konrad; Paul, Friedemann; Kadas, Ella Maria; Brandt, Alexander U.

    2017-01-01

    Optical coherence tomography (OCT) allows three-dimensional (3D) imaging of the retina, and is commonly used for assessing pathological changes of fovea and macula in many diseases. Many neuroinflammatory conditions are known to cause modifications to the fovea shape. In this paper, we propose a method for parametric modeling of the foveal shape. Our method exploits invariant features of the macula from OCT data and applies a cubic Bézier polynomial along with a least square optimization to produce a best fit parametric model of the fovea. Additionally, we provide several parameters of the foveal shape based on the proposed 3D parametric modeling. Our quantitative and visual results show that the proposed model is not only able to reconstruct important features from the foveal shape, but also produces less error compared to the state-of-the-art methods. Finally, we apply the model in a comparison of healthy control eyes and eyes from patients with neuroinflammatory central nervous system disorders and optic neuritis, and show that several derived model parameters show significant differences between the two groups. PMID:28966857

  15. Model Adaptation in Parametric Space for POD-Galerkin Models

    NASA Astrophysics Data System (ADS)

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  16. Parametric, nonparametric and parametric modelling of a chaotic circuit time series

    NASA Astrophysics Data System (ADS)

    Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.

    2000-09-01

    The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.

  17. Revealing transient strain in geodetic data with Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Hines, T. T.; Hetland, E. A.

    2018-03-01

    Transient strain derived from global navigation satellite system (GNSS) data can be used to detect and understand geophysical processes such as slow slip events and post-seismic deformation. Here we propose using Gaussian process regression (GPR) as a tool for estimating transient strain from GNSS data. GPR is a non-parametric, Bayesian method for interpolating scattered data. In our approach, we assume a stochastic prior model for transient displacements. The prior describes how much we expect transient displacements to covary spatially and temporally. A posterior estimate of transient strain is obtained by differentiating the posterior transient displacements, which are formed by conditioning the prior with the GNSS data. As a demonstration, we use GPR to detect transient strain resulting from slow slip events in the Pacific Northwest. Maximum likelihood methods are used to constrain a prior model for transient displacements in this region. The temporal covariance of our prior model is described by a compact Wendland covariance function, which significantly reduces the computational burden that can be associated with GPR. Our results reveal the spatial and temporal evolution of strain from slow slip events. We verify that the transient strain estimated with GPR is in fact geophysical signal by comparing it to the seismic tremor that is associated with Pacific Northwest slow slip events.

  18. Analysis of Parametric Adaptive Signal Detection with Applications to Radars and Hyperspectral Imaging

    DTIC Science & Technology

    2010-02-01

    98 8.4.5 Training Screening ............................. .................................................................99 8.5 Experimental...associated with the proposed parametric model. Several im- portant issues are discussed, including model order selection, training screening , and time...parameters associated with the NS-AR model. In addition, we develop model order selection, training screening , and time-series based whitening and

  19. Evaluating effects of developmental education for college students using a regression discontinuity design.

    PubMed

    Moss, Brian G; Yeaton, William H

    2013-10-01

    Annually, American colleges and universities provide developmental education (DE) to millions of underprepared students; however, evaluation estimates of DE benefits have been mixed. Using a prototypic exemplar of DE, our primary objective was to investigate the utility of a replicative evaluative framework for assessing program effectiveness. Within the context of the regression discontinuity (RD) design, this research examined the effectiveness of a DE program for five, sequential cohorts of first-time college students. Discontinuity estimates were generated for individual terms and cumulatively, across terms. Participants were 3,589 first-time community college students. DE program effects were measured by contrasting both college-level English grades and a dichotomous measure of pass/fail, for DE and non-DE students. Parametric and nonparametric estimates of overall effect were positive for continuous and dichotomous measures of achievement (grade and pass/fail). The variability of program effects over time was determined by tracking results within individual terms and cumulatively, across terms. Applying this replication strategy, DE's overall impact was modest (an effect size of approximately .20) but quite consistent, based on parametric and nonparametric estimation approaches. A meta-analysis of five RD results yielded virtually the same estimate as the overall, parametric findings. Subset analysis, though tentative, suggested that males benefited more than females, while academic gains were comparable for different ethnicities. The cumulative, within-study comparison, replication approach offers considerable potential for the evaluation of new and existing policies, particularly when effects are relatively small, as is often the case in applied settings.

  20. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  1. Use of multiple regression models in the study of sandhopper orientation under natural conditions

    NASA Astrophysics Data System (ADS)

    Marchetti, Giovanni M.; Scapini, Felicita

    2003-10-01

    In sandhoppers (Amphipoda; Talitridae), typical dwellers of the supralittoral zone of sandy beaches, orientation with respect to the sun and landscape vision is adapted to the local direction of the shoreline. Variation of this behavioural adaptation can be related to the characteristics of the beach. Measures of orientation with respect to the shoreline direction can thus be made as a tool to assess beach stability versus changeability, once the sources of variation are correctly interpreted. Orientation of animals can be studied by statistical analysis of directions taken after release in nature. In this paper some new tools for exploring directional data are reviewed, with special emphasis on non-parametric smoothers and regression models. Results from a large study concerning one species of sandhoppers, Talitrus saltator (Montagu), from an exposed sandy beach in northeastern Tunisia are presented. Seasonal differences in orientation behaviour were shown with a higher scatter in autumn with respect to spring. The higher scatter shown in autumn depended both on intrinsic (sex) and external (climatic conditions and landscape visibility) factors and was related to the tendency of this species to migrate towards the dune anticipating winter conditions.

  2. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less

  3. Computation of the intensities of parametric holographic scattering patterns in photorefractive crystals.

    PubMed

    Schwalenberg, Simon

    2005-06-01

    The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.

  4. A convolution model for computing the far-field directivity of a parametric loudspeaker array.

    PubMed

    Shi, Chuang; Kajikawa, Yoshinobu

    2015-02-01

    This paper describes a method to compute the far-field directivity of a parametric loudspeaker array (PLA), whereby the steerable parametric loudspeaker can be implemented when phased array techniques are applied. The convolution of the product directivity and the Westervelt's directivity is suggested, substituting for the past practice of using the product directivity only. Computed directivity of a PLA using the proposed convolution model achieves significant improvement in agreement to measured directivity at a negligible computational cost.

  5. Machine Learning Based Evaluation of Reading and Writing Difficulties.

    PubMed

    Iwabuchi, Mamoru; Hirabayashi, Rumi; Nakamura, Kenryu; Dim, Nem Khan

    2017-01-01

    The possibility of auto evaluation of reading and writing difficulties was investigated using non-parametric machine learning (ML) regression technique for URAWSS (Understanding Reading and Writing Skills of Schoolchildren) [1] test data of 168 children of grade 1 - 9. The result showed that the ML had better prediction than the ordinary rule-based decision.

  6. Comparing Inference Approaches for RD Designs: A Reexamination of the Effect of Head Start on Child Mortality

    ERIC Educational Resources Information Center

    Cattaneo, Matias D.; Titiunik, Rocío; Vazquez-Bare, Gonzalo

    2017-01-01

    The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The most common inference approaches in RD designs employ "flexible" parametric and nonparametric local polynomial methods, which rely on extrapolation and large-sample approximations of conditional expectations…

  7. Revisiting dark energy models using differential ages of galaxies

    NASA Astrophysics Data System (ADS)

    Rani, Nisha; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Biesiada, Marek

    2017-03-01

    In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H0dt/dz and its derivative (H0d2t/dz2) using a model independent technique called non-parametric smoothing. Basically, dt/dz is the change in the age of the object as a function of redshift which is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H(z) data. Further, we calculate H0dt/dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H0dt/dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H0dt/dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z>= 0.3.

  8. Bayesian multivariate hierarchical transformation models for ROC analysis.

    PubMed

    O'Malley, A James; Zou, Kelly H

    2006-02-15

    A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.

  9. Bayesian multivariate hierarchical transformation models for ROC analysis

    PubMed Central

    O'Malley, A. James; Zou, Kelly H.

    2006-01-01

    SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836

  10. 40 CFR Appendix C to Part 75 - Missing Data Estimation Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification of a parametric, empirical, or process simulation method or model for calculating substitute data... available process simulation methods and models. 1.2Petition Requirements Continuously monitor, determine... desulfurization, a corresponding empirical correlation or process simulation parametric method using appropriate...

  11. Modeling and Visualization Process of the Curve of Pen Point by GeoGebra

    ERIC Educational Resources Information Center

    Aktümen, Muharem; Horzum, Tugba; Ceylan, Tuba

    2013-01-01

    This study describes the mathematical construction of a real-life model by means of parametric equations, as well as the two- and three-dimensional visualization of the model using the software GeoGebra. The model was initially considered as "determining the parametric equation of the curve formed on a plane by the point of a pen, positioned…

  12. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    PubMed

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

  13. On comparison of net survival curves.

    PubMed

    Pavlič, Klemen; Perme, Maja Pohar

    2017-05-02

    Relative survival analysis is a subfield of survival analysis where competing risks data are observed, but the causes of death are unknown. A first step in the analysis of such data is usually the estimation of a net survival curve, possibly followed by regression modelling. Recently, a log-rank type test for comparison of net survival curves has been introduced and the goal of this paper is to explore its properties and put this methodological advance into the context of the field. We build on the association between the log-rank test and the univariate or stratified Cox model and show the analogy in the relative survival setting. We study the properties of the methods using both the theoretical arguments as well as simulations. We provide an R function to enable practical usage of the log-rank type test. Both the log-rank type test and its model alternatives perform satisfactory under the null, even if the correlation between their p-values is rather low, implying that both approaches cannot be used simultaneously. The stratified version has a higher power in case of non-homogeneous hazards, but also carries a different interpretation. The log-rank type test and its stratified version can be interpreted in the same way as the results of an analogous semi-parametric additive regression model despite the fact that no direct theoretical link can be established between the test statistics.

  14. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  15. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    PubMed

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  16. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  17. Use of a machine learning framework to predict substance use disorder treatment success

    PubMed Central

    Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan

    2017-01-01

    There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed. PMID:28394905

  18. Use of a machine learning framework to predict substance use disorder treatment success.

    PubMed

    Acion, Laura; Kelmansky, Diana; van der Laan, Mark; Sahker, Ethan; Jones, DeShauna; Arndt, Stephan

    2017-01-01

    There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed.

  19. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  20. Sgr A* Emission Parametrizations from GRMHD Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Ressler, Sean; Quataert, Eliot

    2018-06-01

    Galactic Center emission near the vicinity of the central black hole, Sagittarius (Sgr) A*, is modeled using parametrizations involving the electron temperature, which is found from general relativistic magnetohydrodynamic (GRMHD) simulations to be highest in the disk-outflow corona. Jet-motivated prescriptions generalizing equipartition of particle and magnetic energies, e.g., by scaling relativistic electron energy density to powers of the magnetic field strength, are also introduced. GRMHD jet (or outflow)/accretion disk/black hole (JAB) simulation postprocessing codes IBOTHROS and GRMONTY are employed in the calculation of images and spectra. Various parametric models reproduce spectral and morphological features, such as the sub-mm spectral bump in electron temperature models and asymmetric photon rings in equipartition-based models. The Event Horizon Telescope (EHT) will provide unprecedentedly high-resolution 230+ GHz observations of the "shadow" around Sgr A*'s supermassive black hole, which the synthetic models presented here will reverse-engineer. Both electron temperature and equipartition-based models can be constructed to be compatible with EHT size constraints for the emitting region of Sgr A*. This program sets the groundwork for devising a unified emission parametrization flexible enough to model disk, corona and outflow/jet regions with a small set of parameters including electron heating fraction and plasma beta.

  1. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    PubMed

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  2. Fitting C 2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C 2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C 2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C 2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C 2 continuous. PMID:24782911

  3. Accounting for individual differences and timing of events: estimating the effect of treatment on criminal convictions in heroin users.

    PubMed

    Røislien, Jo; Clausen, Thomas; Gran, Jon Michael; Bukten, Anne

    2014-05-17

    The reduction of crime is an important outcome of opioid maintenance treatment (OMT). Criminal intensity and treatment regimes vary among OMT patients, but this is rarely adjusted for in statistical analyses, which tend to focus on cohort incidence rates and rate ratios. The purpose of this work was to estimate the relationship between treatment and criminal convictions among OMT patients, adjusting for individual covariate information and timing of events, fitting time-to-event regression models of increasing complexity. National criminal records were cross linked with treatment data on 3221 patients starting OMT in Norway 1997-2003. In addition to calculating cohort incidence rates, criminal convictions was modelled as a recurrent event dependent variable, and treatment a time-dependent covariate, in Cox proportional hazards, Aalen's additive hazards, and semi-parametric additive hazards regression models. Both fixed and dynamic covariates were included. During OMT, the number of days with criminal convictions for the cohort as a whole was 61% lower than when not in treatment. OMT was associated with reduced number of days with criminal convictions in all time-to-event regression models, but the hazard ratio (95% CI) was strongly attenuated when adjusting for covariates; from 0.40 (0.35, 0.45) in a univariate model to 0.79 (0.72, 0.87) in a fully adjusted model. The hazard was lower for females and decreasing with older age, while increasing with high numbers of criminal convictions prior to application to OMT (all p < 0.001). The strongest predictors were level of criminal activity prior to entering into OMT, and having a recent criminal conviction (both p < 0.001). The effect of several predictors was significantly time-varying with their effects diminishing over time. Analyzing complex observational data regarding to fixed factors only overlooks important temporal information, and naïve cohort level incidence rates might result in biased estimates of the effect of interventions. Applying time-to-event regression models, properly adjusting for individual covariate information and timing of various events, allows for more precise and reliable effect estimates, as well as painting a more nuanced picture that can aid health care professionals and policy makers.

  4. Multi-parametric variational data assimilation for hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Alvarado-Montero, R.; Schwanenberg, D.; Krahe, P.; Helmke, P.; Klein, B.

    2017-12-01

    Ensemble forecasting is increasingly applied in flow forecasting systems to provide users with a better understanding of forecast uncertainty and consequently to take better-informed decisions. A common practice in probabilistic streamflow forecasting is to force deterministic hydrological model with an ensemble of numerical weather predictions. This approach aims at the representation of meteorological uncertainty but neglects uncertainty of the hydrological model as well as its initial conditions. Complementary approaches use probabilistic data assimilation techniques to receive a variety of initial states or represent model uncertainty by model pools instead of single deterministic models. This paper introduces a novel approach that extends a variational data assimilation based on Moving Horizon Estimation to enable the assimilation of observations into multi-parametric model pools. It results in a probabilistic estimate of initial model states that takes into account the parametric model uncertainty in the data assimilation. The assimilation technique is applied to the uppermost area of River Main in Germany. We use different parametric pools, each of them with five parameter sets, to assimilate streamflow data, as well as remotely sensed data from the H-SAF project. We assess the impact of the assimilation in the lead time performance of perfect forecasts (i.e. observed data as forcing variables) as well as deterministic and probabilistic forecasts from ECMWF. The multi-parametric assimilation shows an improvement of up to 23% for CRPS performance and approximately 20% in Brier Skill Scores with respect to the deterministic approach. It also improves the skill of the forecast in terms of rank histogram and produces a narrower ensemble spread.

  5. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    NASA Astrophysics Data System (ADS)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  6. Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction

    PubMed Central

    Juricke, Stephan; Jung, Thomas

    2014-01-01

    The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027

  7. Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations

    NASA Technical Reports Server (NTRS)

    Mantz, A.; Allen, S. W.

    2011-01-01

    Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.

  8. Bounded Parametric Model Checking for Elementary Net Systems

    NASA Astrophysics Data System (ADS)

    Knapik, Michał; Szreter, Maciej; Penczek, Wojciech

    Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.

  9. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  10. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    NASA Astrophysics Data System (ADS)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  11. Complete hazard ranking to analyze right-censored data: An ALS survival study.

    PubMed

    Huang, Zhengnan; Zhang, Hongjiu; Boss, Jonathan; Goutman, Stephen A; Mukherjee, Bhramar; Dinov, Ivo D; Guan, Yuanfang

    2017-12-01

    Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS) Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.

  12. Multilevel mixed effects parametric survival models using adaptive Gauss-Hermite quadrature with application to recurrent events and individual participant data meta-analysis.

    PubMed

    Crowther, Michael J; Look, Maxime P; Riley, Richard D

    2014-09-28

    Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multicenter clinical trials, and individual participant data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper, we extend parametric frailty models including the exponential, Weibull and Gompertz proportional hazards (PH) models and the log logistic, log normal, and generalized gamma accelerated failure time models to allow any number of normally distributed random effects. Furthermore, we extend the flexible parametric survival model of Royston and Parmar, modeled on the log-cumulative hazard scale using restricted cubic splines, to include random effects while also allowing for non-PH (time-dependent effects). Maximum likelihood is used to estimate the models utilizing adaptive or nonadaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies representing clinically plausible scenarios of a multicenter trial and IPD meta-analysis, showing good performance of the estimation method. The flexible parametric mixed effects model is illustrated using a dataset of patients with kidney disease and repeated times to infection and an IPD meta-analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is provided to implement the methods. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Revisiting dark energy models using differential ages of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha

    In this work, we use a test based on the differential ages of galaxies for distinguishing the dark energy models. As proposed by Jimenez and Loeb in [1], relative ages of galaxies can be used to put constraints on various cosmological parameters. In the same vein, we reconstruct H {sub 0} {sub dt} / dz and its derivative ( H {sub 0} {sub d} {sup 2} {sup t} / dz {sup 2}) using a model independent technique called non-parametric smoothing . Basically, dt / dz is the change in the age of the object as a function of redshift whichmore » is directly linked with the Hubble parameter. Hence for reconstruction of this quantity, we use the most recent H ( z ) data. Further, we calculate H {sub 0} {sub dt} / dz and its derivative for several models like Phantom, Einstein de Sitter (EdS), ΛCDM, Chevallier-Polarski-Linder (CPL) parametrization, Jassal-Bagla-Padmanabhan (JBP) parametrization and Feng-Shen-Li-Li (FSLL) parametrization. We check the consistency of these models with the results of reconstruction obtained in a model independent way from the data. It is observed that H {sub 0} {sub dt} / dz as a tool is not able to distinguish between the ΛCDM, CPL, JBP and FSLL parametrizations but, as expected, EdS and Phantom models show noticeable deviation from the reconstructed results. Further, the derivative of H {sub 0} {sub dt} / dz for various dark energy models is more sensitive at low redshift. It is found that the FSLL model is not consistent with the reconstructed results, however, the ΛCDM model is in concordance with the 3σ region of the reconstruction at redshift z ≥ 0.3.« less

  14. Parametric reduced models for the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  15. Parametric reduced models for the nonlinear Schrödinger equation.

    PubMed

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  16. Improving Your Data Transformations: Applying the Box-Cox Transformation

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    2010-01-01

    Many of us in the social sciences deal with data that do not conform to assumptions of normality and/or homoscedasticity/homogeneity of variance. Some research has shown that parametric tests (e.g., multiple regression, ANOVA) can be robust to modest violations of these assumptions. Yet the reality is that almost all analyses (even nonparametric…

  17. Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

    PubMed Central

    Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times. PMID:27563373

  18. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin‐concentrating Hormone Receptor 1 Antagonist

    PubMed Central

    Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M

    2017-01-01

    In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. PMID:28556607

  19. Estimating trends in the global mean temperature record

    NASA Astrophysics Data System (ADS)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.

  20. Update on Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl. H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda

    2011-01-01

    Since the June 2010 Astronomy Conference, an independent review of our cost data base discovered some inaccuracies and inconsistencies which can modify our previously reported results. This paper will review changes to the data base, our confidence in those changes and their effect on various parametric cost models

  1. Logistic quantile regression provides improved estimates for bounded avian counts: A case study of California Spotted Owl fledgling production

    USGS Publications Warehouse

    Cade, Brian S.; Noon, Barry R.; Scherer, Rick D.; Keane, John J.

    2017-01-01

    Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical conditional distribution of a bounded discrete random variable. The logistic quantile regression model requires that counts are randomly jittered to a continuous random variable, logit transformed to bound them between specified lower and upper values, then estimated in conventional linear quantile regression, repeating the 3 steps and averaging estimates. Back-transformation to the original discrete scale relies on the fact that quantiles are equivariant to monotonic transformations. We demonstrate this statistical procedure by modeling 20 years of California Spotted Owl fledgling production (0−3 per territory) on the Lassen National Forest, California, USA, as related to climate, demographic, and landscape habitat characteristics at territories. Spotted Owl fledgling counts increased nonlinearly with decreasing precipitation in the early nesting period, in the winter prior to nesting, and in the prior growing season; with increasing minimum temperatures in the early nesting period; with adult compared to subadult parents; when there was no fledgling production in the prior year; and when percentage of the landscape surrounding nesting sites (202 ha) with trees ≥25 m height increased. Changes in production were primarily driven by changes in the proportion of territories with 2 or 3 fledglings. Average variances of the discrete cumulative distributions of the estimated fledgling counts indicated that temporal changes in climate and parent age class explained 18% of the annual variance in owl fledgling production, which was 34% of the total variance. Prior fledgling production explained as much of the variance in the fledgling counts as climate, parent age class, and landscape habitat predictors. Our logistic quantile regression model can be used for any discrete response variables with fixed upper and lower bounds.

  2. Normality of raw data in general linear models: The most widespread myth in statistics

    USGS Publications Warehouse

    Kery, Marc; Hatfield, Jeff S.

    2003-01-01

    In years of statistical consulting for ecologists and wildlife biologists, by far the most common misconception we have come across has been the one about normality in general linear models. These comprise a very large part of the statistical models used in ecology and include t tests, simple and multiple linear regression, polynomial regression, and analysis of variance (ANOVA) and covariance (ANCOVA). There is a widely held belief that the normality assumption pertains to the raw data rather than to the model residuals. We suspect that this error may also occur in countless published studies, whenever the normality assumption is tested prior to analysis. This may lead to the use of nonparametric alternatives (if there are any), when parametric tests would indeed be appropriate, or to use of transformations of raw data, which may introduce hidden assumptions such as multiplicative effects on the natural scale in the case of log-transformed data. Our aim here is to dispel this myth. We very briefly describe relevant theory for two cases of general linear models to show that the residuals need to be normally distributed if tests requiring normality are to be used, such as t and F tests. We then give two examples demonstrating that the distribution of the response variable may be nonnormal, and yet the residuals are well behaved. We do not go into the issue of how to test normality; instead we display the distributions of response variables and residuals graphically.

  3. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    NASA Astrophysics Data System (ADS)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  4. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    PubMed

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  5. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    NASA Astrophysics Data System (ADS)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  6. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  7. Assessment of Self-Efficacy and its Relationship with Frailty in the Elderly

    PubMed Central

    Doba, Nobutaka; Tokuda, Yasuharu; Saiki, Keiichirou; Kushiro, Toshio; Hirano, Masumi; Matsubara, Yoshihiro; Hinohara, Shigeaki

    2016-01-01

    Objective It has been increasingly recognized in various clinical areas that self-efficacy promotes the level of competence in patients. The validity, applicability and potential usefulness of a new, simple model for assessing self-efficacy in the elderly with special reference to frailty were investigated for improving elderly patients' accomplishments. Methods The subjects of the present study comprised 257 elderly people who were members of the New Elder Citizen Movement in Japan and their mean age was 82.3±3.8 years. Interview materials including self-efficacy questionnaires were sent to all participants in advance and all other physical examinations were performed at the Life Planning Center Clinic. Results The internal consistency and close relation among a set of items used as a measure of self-efficacy were evaluated by Cronbach's alpha index, which was 0.79. Although no age-dependent difference was identified in either sex, gender-related differences in some factors were noted. Regarding several parametric parameters, Beck's inventory alone revealed a significant relationship to self-efficacy in both sexes. Additionally, non-parametric items such as stamina, power and memory were strongly correlated with self-efficacy in both sexes. Frailty showed a significant independent relationship with self-efficacy in a multiple linear regression model analysis and using Beck's inventory, stamina, power and memory were identified to be independent factors for self-efficacy. Conclusion The simple assessment of self-efficacy described in this study may be a useful tool for successful aging of elderly people. PMID:27725537

  8. Assessment of Self-Efficacy and its Relationship with Frailty in the Elderly.

    PubMed

    Doba, Nobutaka; Tokuda, Yasuharu; Saiki, Keiichirou; Kushiro, Toshio; Hirano, Masumi; Matsubara, Yoshihiro; Hinohara, Shigeaki

    Objective It has been increasingly recognized in various clinical areas that self-efficacy promotes the level of competence in patients. The validity, applicability and potential usefulness of a new, simple model for assessing self-efficacy in the elderly with special reference to frailty were investigated for improving elderly patients' accomplishments. Methods The subjects of the present study comprised 257 elderly people who were members of the New Elder Citizen Movement in Japan and their mean age was 82.3±3.8 years. Interview materials including self-efficacy questionnaires were sent to all participants in advance and all other physical examinations were performed at the Life Planning Center Clinic. Results The internal consistency and close relation among a set of items used as a measure of self-efficacy were evaluated by Cronbach's alpha index, which was 0.79. Although no age-dependent difference was identified in either sex, gender-related differences in some factors were noted. Regarding several parametric parameters, Beck's inventory alone revealed a significant relationship to self-efficacy in both sexes. Additionally, non-parametric items such as stamina, power and memory were strongly correlated with self-efficacy in both sexes. Frailty showed a significant independent relationship with self-efficacy in a multiple linear regression model analysis and using Beck's inventory, stamina, power and memory were identified to be independent factors for self-efficacy. Conclusion The simple assessment of self-efficacy described in this study may be a useful tool for successful aging of elderly people.

  9. Transformation (normalization) of slope gradient and surface curvatures, automated for statistical analyses from DEMs

    NASA Astrophysics Data System (ADS)

    Csillik, O.; Evans, I. S.; Drăguţ, L.

    2015-03-01

    Automated procedures are developed to alleviate long tails in frequency distributions of morphometric variables. They minimize the skewness of slope gradient frequency distributions, and modify the kurtosis of profile and plan curvature distributions toward that of the Gaussian (normal) model. Box-Cox (for slope) and arctangent (for curvature) transformations are tested on nine digital elevation models (DEMs) of varying origin and resolution, and different landscapes, and shown to be effective. Resulting histograms are illustrated and show considerable improvements over those for previously recommended slope transformations (sine, square root of sine, and logarithm of tangent). Unlike previous approaches, the proposed method evaluates the frequency distribution of slope gradient values in a given area and applies the most appropriate transform if required. Sensitivity of the arctangent transformation is tested, showing that Gaussian-kurtosis transformations are acceptable also in terms of histogram shape. Cube root transformations of curvatures produced bimodal histograms. The transforms are applicable to morphometric variables and many others with skewed or long-tailed distributions. By avoiding long tails and outliers, they permit parametric statistics such as correlation, regression and principal component analyses to be applied, with greater confidence that requirements for linearity, additivity and even scatter of residuals (constancy of error variance) are likely to be met. It is suggested that such transformations should be routinely applied in all parametric analyses of long-tailed variables. Our Box-Cox and curvature automated transformations are based on a Python script, implemented as an easy-to-use script tool in ArcGIS.

  10. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.

    PubMed

    Dorie, Vincent; Harada, Masataka; Carnegie, Nicole Bohme; Hill, Jennifer

    2016-09-10

    When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior distributions of treatment effects to choices of sensitivity parameters. This results in an easily interpretable framework for testing for the impact of an unmeasured confounder that also limits the number of modeling assumptions. We evaluate our approach in a large-scale simulation setting and with high blood pressure data taken from the Third National Health and Nutrition Examination Survey. The model is implemented as open-source software, integrated into the treatSens package for the R statistical programming language. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  11. Parametric study of extended end-plate connection using finite element modeling

    NASA Astrophysics Data System (ADS)

    Mureşan, Ioana Cristina; Bâlc, Roxana

    2017-07-01

    End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.

  12. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  13. Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.

    PubMed

    Xu, Xiaoguang; Kypraios, Theodore; O'Neill, Philip D

    2016-10-01

    This paper considers novel Bayesian non-parametric methods for stochastic epidemic models. Many standard modeling and data analysis methods use underlying assumptions (e.g. concerning the rate at which new cases of disease will occur) which are rarely challenged or tested in practice. To relax these assumptions, we develop a Bayesian non-parametric approach using Gaussian Processes, specifically to estimate the infection process. The methods are illustrated with both simulated and real data sets, the former illustrating that the methods can recover the true infection process quite well in practice, and the latter illustrating that the methods can be successfully applied in different settings. © The Author 2016. Published by Oxford University Press.

  14. Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic

    2015-04-01

    Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24

  15. Cross-Sectional HIV Incidence Surveillance: A Benchmarking of Approaches for Estimating the 'Mean Duration of Recent Infection'.

    PubMed

    Kassanjee, Reshma; De Angelis, Daniela; Farah, Marian; Hanson, Debra; Labuschagne, Jan Phillipus Lourens; Laeyendecker, Oliver; Le Vu, Stéphane; Tom, Brian; Wang, Rui; Welte, Alex

    2017-03-01

    The application of biomarkers for 'recent' infection in cross-sectional HIV incidence surveillance requires the estimation of critical biomarker characteristics. Various approaches have been employed for using longitudinal data to estimate the Mean Duration of Recent Infection (MDRI) - the average time in the 'recent' state. In this systematic benchmarking of MDRI estimation approaches, a simulation platform was used to measure accuracy and precision of over twenty approaches, in thirty scenarios capturing various study designs, subject behaviors and test dynamics that may be encountered in practice. Results highlight that assuming a single continuous sojourn in the 'recent' state can produce substantial bias. Simple interpolation provides useful MDRI estimates provided subjects are tested at regular intervals. Regression performs the best - while 'random effects' describe the subject-clustering in the data, regression models without random effects proved easy to implement, stable, and of similar accuracy in scenarios considered; robustness to parametric assumptions was improved by regressing 'recent'/'non-recent' classifications rather than continuous biomarker readings. All approaches were vulnerable to incorrect assumptions about subjects' (unobserved) infection times. Results provided show the relationships between MDRI estimation performance and the number of subjects, inter-visit intervals, missed visits, loss to follow-up, and aspects of biomarker signal and noise.

  16. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    PubMed

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p < 0.05, FWE-corrected). Using the identical standard acquisition parameters, the 32ch head coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study

    PubMed Central

    Shen, Hui; Chau, Desmond K. P.; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-01-01

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions. PMID:27779211

  18. Brain responses to facial attractiveness induced by facial proportions: evidence from an fMRI study.

    PubMed

    Shen, Hui; Chau, Desmond K P; Su, Jianpo; Zeng, Ling-Li; Jiang, Weixiong; He, Jufang; Fan, Jintu; Hu, Dewen

    2016-10-25

    Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.

  19. Drawing Nomograms with R: applications to categorical outcome and survival data.

    PubMed

    Zhang, Zhongheng; Kattan, Michael W

    2017-05-01

    Outcome prediction is a major task in clinical medicine. The standard approach to this work is to collect a variety of predictors and build a model of appropriate type. The model is a mathematical equation that connects the outcome of interest with the predictors. A new patient with given clinical characteristics can be predicted for outcome with this model. However, the equation describing the relationship between predictors and outcome is often complex and the computation requires software for practical use. There is another method called nomogram which is a graphical calculating device allowing an approximate graphical computation of a mathematical function. In this article, we describe how to draw nomograms for various outcomes with nomogram() function. Binary outcome is fit by logistic regression model and the outcome of interest is the probability of the event of interest. Ordinal outcome variable is also discussed. Survival analysis can be fit with parametric model to fully describe the distributions of survival time. Statistics such as the median survival time, survival probability up to a specific time point are taken as the outcome of interest.

  20. Geographically weighted lasso (GWL) study for modeling the diarrheic to achieve open defecation free (ODF) target

    NASA Astrophysics Data System (ADS)

    Arumsari, Nurvita; Sutidjo, S. U.; Brodjol; Soedjono, Eddy S.

    2014-03-01

    Diarrhea has been one main cause of morbidity and mortality to children around the world, especially in the developing countries According to available data that was mentioned. It showed that sanitary and healthy lifestyle implementation by the inhabitants was not good yet. Inadequacy of environmental influence and the availability of health services were suspected factors which influenced diarrhea cases happened followed by heightened percentage of the diarrheic. This research is aimed at modelling the diarrheic by using Geographically Weighted Lasso method. With the existence of spatial heterogeneity was tested by Breusch Pagan, it was showed that diarrheic modeling with weighted regression, especially GWR and GWL, can explain the variation in each location. But, the absence of multi-collinearity cases on predictor variables, which were affecting the diarrheic, resulted in GWR and GWL modelling to be not different or identical. It is shown from the resulting MSE value. While from R2 value which usually higher on GWL model showed a significant variable predictor based on more parametric shrinkage value.

  1. QSAR models for anti-malarial activity of 4-aminoquinolines.

    PubMed

    Masand, Vijay H; Toropov, Andrey A; Toropova, Alla P; Mahajan, Devidas T

    2014-03-01

    In the present study, predictive quantitative structure - activity relationship (QSAR) models for anti-malarial activity of 4-aminoquinolines have been developed. CORAL, which is freely available on internet (http://www.insilico.eu/coral), has been used as a tool of QSAR analysis to establish statistically robust QSAR model of anti-malarial activity of 4-aminoquinolines. Six random splits into the visible sub-system of the training and invisible subsystem of validation were examined. Statistical qualities for these splits vary, but in all these cases, statistical quality of prediction for anti-malarial activity was quite good. The optimal SMILES-based descriptor was used to derive the single descriptor based QSAR model for a data set of 112 aminoquinolones. All the splits had r(2)> 0.85 and r(2)> 0.78 for subtraining and validation sets, respectively. The three parametric multilinear regression (MLR) QSAR model has Q(2) = 0.83, R(2) = 0.84 and F = 190.39. The anti-malarial activity has strong correlation with presence/absence of nitrogen and oxygen at a topological distance of six.

  2. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous p K a, and cyclohexane-water log D

    NASA Astrophysics Data System (ADS)

    Tielker, Nicolas; Tomazic, Daniel; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K. Friedemann; Kast, Stefan M.

    2016-11-01

    We predict cyclohexane-water distribution coefficients (log D 7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (p K a) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the "Minnesota Solvation Database" (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol-1 for water and 0.8-0.9 kcal mol-1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical p K a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2-3 for each solvent and two for the p K a) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0-2.1 for the RMSE with the first and 2.2-2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.

  3. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pK a, and cyclohexane-water log D.

    PubMed

    Tielker, Nicolas; Tomazic, Daniel; Heil, Jochen; Kloss, Thomas; Ehrhart, Sebastian; Güssregen, Stefan; Schmidt, K Friedemann; Kast, Stefan M

    2016-11-01

    We predict cyclohexane-water distribution coefficients (log D 7.4 ) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the "embedded cluster reference interaction site model" (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pK a ) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the "Minnesota Solvation Database" (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol -1 for water and 0.8-0.9 kcal mol -1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pK a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2-3 for each solvent and two for the pK a ) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0-2.1 for the RMSE with the first and 2.2-2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.

  4. Parametric Study of a YAV-8B Harrier in Ground Effect Using Time-Dependent Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.

  5. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Mota, R. D.; Granados, V. D.

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  6. Causal Methods for Observational Research: A Primer.

    PubMed

    Almasi-Hashiani, Amir; Nedjat, Saharnaz; Mansournia, Mohammad Ali

    2018-04-01

    The goal of many observational studies is to estimate the causal effect of an exposure on an outcome after adjustment for confounders, but there are still some serious errors in adjusting confounders in clinical journals. Standard regression modeling (e.g., ordinary logistic regression) fails to estimate the average effect of exposure in total population in the presence of interaction between exposure and covariates, and also cannot adjust for time-varying confounding appropriately. Moreover, stepwise algorithms of the selection of confounders based on P values may miss important confounders and lead to bias in effect estimates. Causal methods overcome these limitations. We illustrate three causal methods including inverse-probability-of-treatment-weighting (IPTW) and parametric g-formula, with an emphasis on a clever combination of these 2 methods: targeted maximum likelihood estimation (TMLE) which enjoys a double-robust property against bias. © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  7. Parametrization of Drag and Turbulence for Urban Neighbourhoods with Trees

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Santiago, J.-L.; Martilli, A.; Christen, A.; Oke, T. R.

    2015-08-01

    Urban canopy parametrizations designed to be coupled with mesoscale models must predict the integrated effect of urban obstacles on the flow at each height in the canopy. To assess these neighbourhood-scale effects, results of microscale simulations may be horizontally-averaged. Obstacle-resolving computational fluid dynamics (CFD) simulations of neutrally-stratified flow through canopies of blocks (buildings) with varying distributions and densities of porous media (tree foliage) are conducted, and the spatially-averaged impacts on the flow of these building-tree combinations are assessed. The accuracy with which a one-dimensional (column) model with a one-equation (-) turbulence scheme represents spatially-averaged CFD results is evaluated. Individual physical mechanisms by which trees and buildings affect flow in the column model are evaluated in terms of relative importance. For the treed urban configurations considered, effects of buildings and trees may be considered independently. Building drag coefficients and length scale effects need not be altered due to the presence of tree foliage; therefore, parametrization of spatially-averaged flow through urban neighbourhoods with trees is greatly simplified. The new parametrization includes only source and sink terms significant for the prediction of spatially-averaged flow profiles: momentum drag due to buildings and trees (and the associated wake production of turbulent kinetic energy), modification of length scales by buildings, and enhanced dissipation of turbulent kinetic energy due to the small scale of tree foliage elements. Coefficients for the Santiago and Martilli (Boundary-Layer Meteorol 137: 417-439, 2010) parametrization of building drag coefficients and length scales are revised. Inclusion of foliage terms from the new parametrization in addition to the Santiago and Martilli building terms reduces root-mean-square difference (RMSD) of the column model streamwise velocity component and turbulent kinetic energy relative to the CFD model by 89 % in the canopy and 71 % above the canopy on average for the highest leaf area density scenarios tested: . RMSD values with the new parametrization are less than 20 % of mean layer magnitude for the streamwise velocity component within and above the canopy, and for above-canopy turbulent kinetic energy; RMSD values for within-canopy turbulent kinetic energy are negligible for most scenarios. The foliage-related portion of the new parametrization is required for scenarios with tree foliage of equal or greater height than the buildings, and for scenarios with foliage below roof height for building plan area densities less than approximately 0.25.

  8. Significance of parametric spectral ratio methods in detection and recognition of whispered speech

    NASA Astrophysics Data System (ADS)

    Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.

    2012-12-01

    In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.

  9. Bim and Gis: when Parametric Modeling Meets Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Banfi, F.

    2017-12-01

    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.

  10. Parametric excitation of tire-wheel assemblies by a stiffness non-uniformity

    NASA Astrophysics Data System (ADS)

    Stutts, D. S.; Krousgrill, C. M.; Soedel, W.

    1995-01-01

    A simple model of the effect of a concentrated radial stiffness non-uniformity in a passenger car tire is presented. The model treats the tread band of the tire as a rigid ring supported on a viscoelastic foundation. The distributed radial stiffness is lumped into equivalent horizontal (fore-and-aft) and vertical stiffnesses. The concentrated radial stiffness non-uniformity is modeled by treating the tread band as fixed, and the stiffness non-uniformity as rotating around it at the nominal angular velocity of the wheel. Due to loading, the center of mass of the tread band ring model is displaced upward with respect to the wheel spindle and, therefore, the rotating stiffness non-uniformity is alternately compressed and stretched through one complete rotation. This stretching and compressing of the stiffness non-uniformity results in force transmission to the wheel spindle at twice the nominal angular velocity in frequency, and therefore, would excite a given resonance at one-half the nominal angular wheel velocity that a mass unbalance would. The forcing produced by the stiffness non-uniformity is parametric in nature, thus creating the possibility of parametric resonance. The basic theory of the parametric resonance is explained, and a parameter study using derived lumped parameters based on a typical passenger car tire is performed. This study revealed that parametric resonance in passenger car tires, although possible, is unlikely at normal highway speeds as predicted by this model unless the tire is partially deflated.

  11. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    PubMed

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  12. Changing space and sound: Parametric design and variable acoustics

    NASA Astrophysics Data System (ADS)

    Norton, Christopher William

    This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.

  13. Definition of NASTRAN sets by use of parametric geometry

    NASA Technical Reports Server (NTRS)

    Baughn, Terry V.; Tiv, Mehran

    1989-01-01

    Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.

  14. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    NASA Astrophysics Data System (ADS)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  15. An Efficient Non-iterative Bulk Parametrization of Surface Fluxes for Stable Atmospheric Conditions Over Polar Sea-Ice

    NASA Astrophysics Data System (ADS)

    Gryanik, Vladimir M.; Lüpkes, Christof

    2018-02-01

    In climate and weather prediction models the near-surface turbulent fluxes of heat and momentum and related transfer coefficients are usually parametrized on the basis of Monin-Obukhov similarity theory (MOST). To avoid iteration, required for the numerical solution of the MOST equations, many models apply parametrizations of the transfer coefficients based on an approach relating these coefficients to the bulk Richardson number Rib. However, the parametrizations that are presently used in most climate models are valid only for weaker stability and larger surface roughnesses than those documented during the Surface Heat Budget of the Arctic Ocean campaign (SHEBA). The latter delivered a well-accepted set of turbulence data in the stable surface layer over polar sea-ice. Using stability functions based on the SHEBA data, we solve the MOST equations applying a new semi-analytic approach that results in transfer coefficients as a function of Rib and roughness lengths for momentum and heat. It is shown that the new coefficients reproduce the coefficients obtained by the numerical iterative method with a good accuracy in the most relevant range of stability and roughness lengths. For small Rib, the new bulk transfer coefficients are similar to the traditional coefficients, but for large Rib they are much smaller than currently used coefficients. Finally, a possible adjustment of the latter and the implementation of the new proposed parametrizations in models are discussed.

  16. Prepositioning emergency supplies under uncertainty: a parametric optimization method

    NASA Astrophysics Data System (ADS)

    Bai, Xuejie; Gao, Jinwu; Liu, Yankui

    2018-07-01

    Prepositioning of emergency supplies is an effective method for increasing preparedness for disasters and has received much attention in recent years. In this article, the prepositioning problem is studied by a robust parametric optimization method. The transportation cost, supply, demand and capacity are unknown prior to the extraordinary event, which are represented as fuzzy parameters with variable possibility distributions. The variable possibility distributions are obtained through the credibility critical value reduction method for type-2 fuzzy variables. The prepositioning problem is formulated as a fuzzy value-at-risk model to achieve a minimum total cost incurred in the whole process. The key difficulty in solving the proposed optimization model is to evaluate the quantile of the fuzzy function in the objective and the credibility in the constraints. The objective function and constraints can be turned into their equivalent parametric forms through chance constrained programming under the different confidence levels. Taking advantage of the structural characteristics of the equivalent optimization model, a parameter-based domain decomposition method is developed to divide the original optimization problem into six mixed-integer parametric submodels, which can be solved by standard optimization solvers. Finally, to explore the viability of the developed model and the solution approach, some computational experiments are performed on realistic scale case problems. The computational results reported in the numerical example show the credibility and superiority of the proposed parametric optimization method.

  17. Towards the generation of a parametric foot model using principal component analysis: A pilot study.

    PubMed

    Scarton, Alessandra; Sawacha, Zimi; Cobelli, Claudio; Li, Xinshan

    2016-06-01

    There have been many recent developments in patient-specific models with their potential to provide more information on the human pathophysiology and the increase in computational power. However they are not yet successfully applied in a clinical setting. One of the main challenges is the time required for mesh creation, which is difficult to automate. The development of parametric models by means of the Principle Component Analysis (PCA) represents an appealing solution. In this study PCA has been applied to the feet of a small cohort of diabetic and healthy subjects, in order to evaluate the possibility of developing parametric foot models, and to use them to identify variations and similarities between the two populations. Both the skin and the first metatarsal bones have been examined. Besides the reduced sample of subjects considered in the analysis, results demonstrated that the method adopted herein constitutes a first step towards the realization of a parametric foot models for biomechanical analysis. Furthermore the study showed that the methodology can successfully describe features in the foot, and evaluate differences in the shape of healthy and diabetic subjects. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION

    PubMed Central

    Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey

    2013-01-01

    MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053

  19. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  20. A parametric model order reduction technique for poroelastic finite element models.

    PubMed

    Lappano, Ettore; Polanz, Markus; Desmet, Wim; Mundo, Domenico

    2017-10-01

    This research presents a parametric model order reduction approach for vibro-acoustic problems in the frequency domain of systems containing poroelastic materials (PEM). The method is applied to the Finite Element (FE) discretization of the weak u-p integral formulation based on the Biot-Allard theory and makes use of reduced basis (RB) methods typically employed for parametric problems. The parametric reduction is obtained rewriting the Biot-Allard FE equations for poroelastic materials using an affine representation of the frequency (therefore allowing for RB methods) and projecting the frequency-dependent PEM system on a global reduced order basis generated with the proper orthogonal decomposition instead of standard modal approaches. This has proven to be better suited to describe the nonlinear frequency dependence and the strong coupling introduced by damping. The methodology presented is tested on two three-dimensional systems: in the first experiment, the surface impedance of a PEM layer sample is calculated and compared with results of the literature; in the second, the reduced order model of a multilayer system coupled to an air cavity is assessed and the results are compared to those of the reference FE model.

  1. Temporal Progression of Visual Injury from Blast Exposure

    DTIC Science & Technology

    2017-09-01

    seen throughout the duration of the study. To correlate experimental blast exposures in rodents to human blast exposures, a computational parametric...software (JMP 10.0, Cary,NC). Descriptive and univariate analyses will first be performed to identify the occurrence of delayed visual system...later). The biostatistician evaluating the retrospective data has completed the descriptive analysis and is working on the multiple regression. Table

  2. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  3. Logistic Stick-Breaking Process

    PubMed Central

    Ren, Lu; Du, Lan; Carin, Lawrence; Dunson, David B.

    2013-01-01

    A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general spatially- or temporally-dependent data, imposing the belief that proximate data are more likely to be clustered together. The sticks in the LSBP are realized via multiple logistic regression functions, with shrinkage priors employed to favor contiguous and spatially localized segments. The LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and comparisons are made to related techniques in the literature. Experimental analysis is performed for audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP yields generally homogeneous segments with sharp boundaries. PMID:25258593

  4. Fair Inference on Outcomes

    PubMed Central

    Nabi, Razieh; Shpitser, Ilya

    2017-01-01

    In this paper, we consider the problem of fair statistical inference involving outcome variables. Examples include classification and regression problems, and estimating treatment effects in randomized trials or observational data. The issue of fairness arises in such problems where some covariates or treatments are “sensitive,” in the sense of having potential of creating discrimination. In this paper, we argue that the presence of discrimination can be formalized in a sensible way as the presence of an effect of a sensitive covariate on the outcome along certain causal pathways, a view which generalizes (Pearl 2009). A fair outcome model can then be learned by solving a constrained optimization problem. We discuss a number of complications that arise in classical statistical inference due to this view and provide workarounds based on recent work in causal and semi-parametric inference.

  5. Parametric Modeling as a Technology of Rapid Prototyping in Light Industry

    NASA Astrophysics Data System (ADS)

    Tomilov, I. N.; Grudinin, S. N.; Frolovsky, V. D.; Alexandrov, A. A.

    2016-04-01

    The paper deals with the parametric modeling method of virtual mannequins for the purposes of design automation in clothing industry. The described approach includes the steps of generation of the basic model on the ground of the initial one (obtained in 3D-scanning process), its parameterization and deformation. The complex surfaces are presented by the wireframe model. The modeling results are evaluated with the set of similarity factors. Deformed models are compared with their virtual prototypes. The results of modeling are estimated by the standard deviation factor.

  6. Sufficient Forecasting Using Factor Models

    PubMed Central

    Fan, Jianqing; Xue, Lingzhou; Yao, Jiawei

    2017-01-01

    We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. The connection between the sufficient forecasting and the deep learning architecture is explicitly stated. The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables. PMID:29731537

  7. Visual Literacy and the Integration of Parametric Modeling in the Problem-Based Curriculum

    ERIC Educational Resources Information Center

    Assenmacher, Matthew Benedict

    2013-01-01

    This quasi-experimental study investigated the application of visual literacy skills in the form of parametric modeling software in relation to traditional forms of sketching. The study included two groups of high school technical design students. The control and experimental groups involved in the study consisted of two randomly selected groups…

  8. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  9. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  10. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Cerviño, Laura I.; Tang, Xiaoli; Vasconcelos, Nuno; Jiang, Steve B.

    2009-02-01

    Accurate lung tumor tracking in real time is a keystone to image-guided radiotherapy of lung cancers. Existing lung tumor tracking approaches can be roughly grouped into three categories: (1) deriving tumor position from external surrogates; (2) tracking implanted fiducial markers fluoroscopically or electromagnetically; (3) fluoroscopically tracking lung tumor without implanted fiducial markers. The first approach suffers from insufficient accuracy, while the second may not be widely accepted due to the risk of pneumothorax. Previous studies in fluoroscopic markerless tracking are mainly based on template matching methods, which may fail when the tumor boundary is unclear in fluoroscopic images. In this paper we propose a novel markerless tumor tracking algorithm, which employs the correlation between the tumor position and surrogate anatomic features in the image. The positions of the surrogate features are not directly tracked; instead, we use principal component analysis of regions of interest containing them to obtain parametric representations of their motion patterns. Then, the tumor position can be predicted from the parametric representations of surrogates through regression. Four regression methods were tested in this study: linear and two-degree polynomial regression, artificial neural network (ANN) and support vector machine (SVM). The experimental results based on fluoroscopic sequences of ten lung cancer patients demonstrate a mean tracking error of 2.1 pixels and a maximum error at a 95% confidence level of 4.6 pixels (pixel size is about 0.5 mm) for the proposed tracking algorithm.

  11. Regression analysis on the variation in efficiency frontiers for prevention stage of HIV/AIDS.

    PubMed

    Kamae, Maki S; Kamae, Isao; Cohen, Joshua T; Neumann, Peter J

    2011-01-01

    To investigate how the cost effectiveness of preventing HIV/AIDS varies across possible efficiency frontiers (EFs) by taking into account potentially relevant external factors, such as prevention stage, and how the EFs can be characterized using regression analysis given uncertainty of the QALY-cost estimates. We reviewed cost-effectiveness estimates for the prevention and treatment of HIV/AIDS published from 2002-2007 and catalogued in the Tufts Medical Center Cost-Effectiveness Analysis (CEA) Registry. We constructed efficiency frontier (EF) curves by plotting QALYs against costs, using methods used by the Institute for Quality and Efficiency in Health Care (IQWiG) in Germany. We stratified the QALY-cost ratios by prevention stage, country of study, and payer perspective, and estimated EF equations using log and square-root models. A total of 53 QALY-cost ratios were identified for HIV/AIDS in the Tufts CEA Registry. Plotted ratios stratified by prevention stage were visually grouped into a cluster consisting of primary/secondary prevention measures and a cluster consisting of tertiary measures. Correlation coefficients for each cluster were statistically significant. For each cluster, we derived two EF equations - one based on the log model, and one based on the square-root model. Our findings indicate that stratification of HIV/AIDS interventions by prevention stage can yield distinct EFs, and that the correlation and regression analyses are useful for parametrically characterizing EF equations. Our study has certain limitations, such as the small number of included articles and the potential for study populations to be non-representative of countries of interest. Nonetheless, our approach could help develop a deeper appreciation of cost effectiveness beyond the deterministic approach developed by IQWiG.

  12. Relationship between the clinical global impression of severity for schizoaffective disorder scale and established mood scales for mania and depression.

    PubMed

    Turkoz, Ibrahim; Fu, Dong-Jing; Bossie, Cynthia A; Sheehan, John J; Alphs, Larry

    2013-08-15

    This analysis explored the relationship between ratings on HAM-D-17 or YMRS and those on the depressive or manic subscale of CGI-S for schizoaffective disorder (CGI-S-SCA). This post hoc analysis used the database (N=614) from two 6-week, randomized, placebo-controlled studies of paliperidone ER versus placebo in symptomatic subjects with schizoaffective disorder assessed using HAM-D-17, YMRS, and CGI-S-SCA scales. Parametric and nonparametric regression models explored the relationships between ratings on YMRS and HAM-D-17 and on depressive and manic domains of the CGI-S-SCA from baseline to the 6-week end point. A clinically meaningful improvement was defined as a change of 1 point in the CGI-S-SCA score. No adjustment was made for multiplicity. Multiple linear regression models suggested that a 1-point change in the depressive domain of CGI-S-SCA corresponded to an average 3.6-point (SE=0.2) change in HAM-D-17 score. Similarly, a 1-point change in the manic domain of CGI-S-SCA corresponded to an average 5.8-point (SE=0.2) change in YMRS score. Results were confirmed using local and cumulative logistic regression models in addition to equipercentile linking. Lack of subjects scoring over the complete range of possible scores may limit broad application of the analyses. Clinically meaningful score changes in depressive and manic domains of CGI-S-SCA corresponded to approximately 4- and 6-point score changes on HAM-D-17 and YMRS, respectively, in symptomatic subjects with schizoaffective disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    NASA Astrophysics Data System (ADS)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  14. Comparison of radiation parametrizations within the HARMONIE-AROME NWP model

    NASA Astrophysics Data System (ADS)

    Rontu, Laura; Lindfors, Anders V.

    2018-05-01

    Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.

  15. Latest astronomical constraints on some non-linear parametric dark energy models

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos

    2018-04-01

    We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.

  16. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  17. Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.

    PubMed

    Ingalls, Brian; Mincheva, Maya; Roussel, Marc R

    2017-07-01

    A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.

  18. A strategy for improved computational efficiency of the method of anchored distributions

    NASA Astrophysics Data System (ADS)

    Over, Matthew William; Yang, Yarong; Chen, Xingyuan; Rubin, Yoram

    2013-06-01

    This paper proposes a strategy for improving the computational efficiency of model inversion using the method of anchored distributions (MAD) by "bundling" similar model parametrizations in the likelihood function. Inferring the likelihood function typically requires a large number of forward model (FM) simulations for each possible model parametrization; as a result, the process is quite expensive. To ease this prohibitive cost, we present an approximation for the likelihood function called bundling that relaxes the requirement for high quantities of FM simulations. This approximation redefines the conditional statement of the likelihood function as the probability of a set of similar model parametrizations "bundle" replicating field measurements, which we show is neither a model reduction nor a sampling approach to improving the computational efficiency of model inversion. To evaluate the effectiveness of these modifications, we compare the quality of predictions and computational cost of bundling relative to a baseline MAD inversion of 3-D flow and transport model parameters. Additionally, to aid understanding of the implementation we provide a tutorial for bundling in the form of a sample data set and script for the R statistical computing language. For our synthetic experiment, bundling achieved a 35% reduction in overall computational cost and had a limited negative impact on predicted probability distributions of the model parameters. Strategies for minimizing error in the bundling approximation, for enforcing similarity among the sets of model parametrizations, and for identifying convergence of the likelihood function are also presented.

  19. Machinability assessment of commercially pure titanium (CP-Ti) during turning operation: Application potential of GRA method

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar; Maity, Kalipada

    2018-03-01

    This paper explores some of the vital machinability characteristics of commercially pure titanium (CP-Ti) grade 2. Experiments were conducted based on Taguchi’s L9 orthogonal array. The selected material was machined on a heavy duty lathe (Model: HMT NH26) using uncoated carbide inserts in dry cutting environment. The selected inserts were designated by ISO as SNMG 120408 (Model: K313) and manufactured by Kennametal. These inserts were rigidly mounted on a right handed tool holder PSBNR 2020K12. Cutting speed, feed rate and depth of cut were selected as three input variables whereas tool wear (VBc) and surface roughness (Ra) were the major attentions. In order to confirm an appreciable machinability of the work part, an optimal parametric combination was attained with the help of grey relational analysis (GRA) approach. Finally, a mathematical model was developed to exhibit the accuracy and acceptability of the proposed methodology using multiple regression equations. The results indicated that, the suggested model is capable of predicting overall grey relational grade within acceptable range.

  20. Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition.

    PubMed

    Xu, Li; Jiang, Yong; Qiu, Rong

    2018-01-01

    In present study, co-pyrolysis behavior of rape straw, waste tire and their various blends were investigated. TG-FTIR indicated that co-pyrolysis was characterized by a four-step reaction, and H 2 O, CH, OH, CO 2 and CO groups were the main products evolved during the process. Additionally, using BBD-based experimental results, best-fit multiple regression models with high R 2 -pred values (94.10% for mass loss and 95.37% for reaction heat), which correlated explanatory variables with the responses, were presented. The derived models were analyzed by ANOVA at 95% confidence interval, F-test, lack-of-fit test and residues normal probability plots implied the models described well the experimental data. Finally, the model uncertainties as well as the interactive effect of these parameters were studied, the total-, first- and second-order sensitivity indices of operating factors were proposed using Sobol' variance decomposition. To the authors' knowledge, this is the first time global parameter sensitivity analysis has been performed in (co-)pyrolysis literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Lofberg, Johan; Brenner, Martin J.

    2006-01-01

    Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system which may afford greater insight into the functionality of the system or a simpler controller design. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. The LASSO minimises the residual sum of squares by the addition of a 1 penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. The performance of this LASSO structure detection method was evaluated by using it to estimate the structure of a nonlinear polynomial model. Applicability of the method to more complex systems such as those encountered in aerospace applications was shown by identifying a parsimonious system description of the F/A-18 Active Aeroelastic Wing using flight test data.

  2. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  3. A derivation of the Cramer-Rao lower bound of euclidean parameters under equality constraints via score function

    NASA Astrophysics Data System (ADS)

    Susyanto, Nanang

    2017-12-01

    We propose a simple derivation of the Cramer-Rao Lower Bound (CRLB) of parameters under equality constraints from the CRLB without constraints in regular parametric models. When a regular parametric model and an equality constraint of the parameter are given, a parametric submodel can be defined by restricting the parameter under that constraint. The tangent space of this submodel is then computed with the help of the implicit function theorem. Finally, the score function of the restricted parameter is obtained by projecting the efficient influence function of the unrestricted parameter on the appropriate inner product spaces.

  4. SEMIPARAMETRIC ZERO-INFLATED MODELING IN MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS (MESA)

    PubMed Central

    Liu, Hai; Ma, Shuangge; Kronmal, Richard; Chan, Kung-Sik

    2013-01-01

    We analyze the Agatston score of coronary artery calcium (CAC) from the Multi-Ethnic Study of Atherosclerosis (MESA) using semi-parametric zero-inflated modeling approach, where the observed CAC scores from this cohort consist of high frequency of zeroes and continuously distributed positive values. Both partially constrained and unconstrained models are considered to investigate the underlying biological processes of CAC development from zero to positive, and from small amount to large amount. Different from existing studies, a model selection procedure based on likelihood cross-validation is adopted to identify the optimal model, which is justified by comparative Monte Carlo studies. A shrinkaged version of cubic regression spline is used for model estimation and variable selection simultaneously. When applying the proposed methods to the MESA data analysis, we show that the two biological mechanisms influencing the initiation of CAC and the magnitude of CAC when it is positive are better characterized by an unconstrained zero-inflated normal model. Our results are significantly different from those in published studies, and may provide further insights into the biological mechanisms underlying CAC development in human. This highly flexible statistical framework can be applied to zero-inflated data analyses in other areas. PMID:23805172

  5. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  6. Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars

    NASA Astrophysics Data System (ADS)

    Thomas, Job; Ramadass, S.

    2016-09-01

    Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.

  7. Parametric model of the scala tympani for haptic-rendered cochlear implantation.

    PubMed

    Todd, Catherine; Naghdy, Fazel

    2005-01-01

    A parametric model of the human scala tympani has been designed for use in a haptic-rendered computer simulation of cochlear implant surgery. It will be the first surgical simulator of this kind. A geometric model of the Scala Tympani has been derived from measured data for this purpose. The model is compared with two existing descriptions of the cochlear spiral. A first approximation of the basilar membrane is also produced. The structures are imported into a force-rendering software application for system development.

  8. Approximation Model Building for Reliability & Maintainability Characteristics of Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.

    2000-01-01

    This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.

  9. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  10. Parametric Modeling in the CAE Process: Creating a Family of Models

    NASA Technical Reports Server (NTRS)

    Brown, Christopher J.

    2011-01-01

    This Presentation meant as an example - Give ideas of approaches to use - The significant benefit of PARAMETRIC geometry based modeling The importance of planning before you build Showcase some NX capabilities - Mesh Controls - Associativity - Divide Face - Offset Surface Reminder - This only had to be done once! - Can be used for any cabinet in that "family" Saves a lot of time if pre-planned Allows re-use in the future

  11. GEE-Smoothing Spline in Semiparametric Model with Correlated Nominal Data

    NASA Astrophysics Data System (ADS)

    Ibrahim, Noor Akma; Suliadi

    2010-11-01

    In this paper we propose GEE-Smoothing spline in the estimation of semiparametric models with correlated nominal data. The method can be seen as an extension of parametric generalized estimating equation to semiparametric models. The nonparametric component is estimated using smoothing spline specifically the natural cubic spline. We use profile algorithm in the estimation of both parametric and nonparametric components. The properties of the estimators are evaluated using simulation studies.

  12. Correlation between a Student's Performance on the Mental Cutting Test and Their 3D Parametric Modeling Ability

    ERIC Educational Resources Information Center

    Steinhauer, H. M.

    2012-01-01

    Engineering graphics has historically been viewed as a challenging course to teach as students struggle to grasp and understand the fundamental concepts and then to master their proper application. The emergence of stable, fast, affordable 3D parametric modeling platforms such as CATIA, Pro-E, and AutoCAD while providing several pedagogical…

  13. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  14. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  15. Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes.

    PubMed

    Havrila, Marek; Stadlbauer, Petr; Islam, Barira; Otyepka, Michal; Šponer, Jiří

    2017-08-08

    G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG] 4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG] 4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na + ions move inside the GQs in a concerted manner, while larger relocations of the K + ions are typically separated. We suggest that the Joung-Cheatham SPC/E K + parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.

  16. Streamflow hindcasting in European river basins via multi-parametric ensemble of the mesoscale hydrologic model (mHM)

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis

    2016-04-01

    There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.

  17. A Systematic Review of Global Drivers of Ant Elevational Diversity

    PubMed Central

    Szewczyk, Tim; McCain, Christy M.

    2016-01-01

    Ant diversity shows a variety of patterns across elevational gradients, though the patterns and drivers have not been evaluated comprehensively. In this systematic review and reanalysis, we use published data on ant elevational diversity to detail the observed patterns and to test the predictions and interactions of four major diversity hypotheses: thermal energy, the mid-domain effect, area, and the elevational climate model. Of sixty-seven published datasets from the literature, only those with standardized, comprehensive sampling were used. Datasets included both local and regional ant diversity and spanned 80° in latitude across six biogeographical provinces. We used a combination of simulations, linear regressions, and non-parametric statistics to test multiple quantitative predictions of each hypothesis. We used an environmentally and geometrically constrained model as well as multiple regression to test their interactions. Ant diversity showed three distinct patterns across elevations: most common were hump-shaped mid-elevation peaks in diversity, followed by low-elevation plateaus and monotonic decreases in the number of ant species. The elevational climate model, which proposes that temperature and precipitation jointly drive diversity, and area were partially supported as independent drivers. Thermal energy and the mid-domain effect were not supported as primary drivers of ant diversity globally. The interaction models supported the influence of multiple drivers, though not a consistent set. In contrast to many vertebrate taxa, global ant elevational diversity patterns appear more complex, with the best environmental model contingent on precipitation levels. Differences in ecology and natural history among taxa may be crucial to the processes influencing broad-scale diversity patterns. PMID:27175999

  18. Volterra model of the parametric array loudspeaker operating at ultrasonic frequencies.

    PubMed

    Shi, Chuang; Kajikawa, Yoshinobu

    2016-11-01

    The parametric array loudspeaker (PAL) is an application of the parametric acoustic array in air, which can be applied to transmit a narrow audio beam from an ultrasonic emitter. However, nonlinear distortion is very perceptible in the audio beam. Modulation methods to reduce the nonlinear distortion are available for on-axis far-field applications. For other applications, preprocessing techniques are wanting. In order to develop a preprocessing technique with general applicability to a wide range of operating conditions, the Volterra filter is investigated as a nonlinear model of the PAL in this paper. Limitations of the standard audio-to-audio Volterra filter are elaborated. An improved ultrasound-to-ultrasound Volterra filter is proposed and empirically demonstrated to be a more generic Volterra model of the PAL.

  19. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  20. TOWARD HIGH-PRECISION SEISMIC STUDIES OF WHITE DWARF STARS: PARAMETRIZATION OF THE CORE AND TESTS OF ACCURACY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giammichele, N.; Fontaine, G.; Brassard, P.

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akimamore » splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.« less

  1. Real-time solution of linear computational problems using databases of parametric reduced-order models with arbitrary underlying meshes

    NASA Astrophysics Data System (ADS)

    Amsallem, David; Tezaur, Radek; Farhat, Charbel

    2016-12-01

    A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.

  2. Toward High-precision Seismic Studies of White Dwarf Stars: Parametrization of the Core and Tests of Accuracy

    NASA Astrophysics Data System (ADS)

    Giammichele, N.; Charpinet, S.; Fontaine, G.; Brassard, P.

    2017-01-01

    We present a prescription for parametrizing the chemical profile in the core of white dwarfs in light of the recent discovery that pulsation modes may sometimes be deeply confined in some cool pulsating white dwarfs. Such modes may be used as unique probes of the complicated chemical stratification that results from several processes that occurred in previous evolutionary phases of intermediate-mass stars. This effort is part of our ongoing quest for more credible and realistic seismic models of white dwarfs using static, parametrized equilibrium structures. Inspired by successful techniques developed in design optimization fields (such as aerodynamics), we exploit Akima splines for the tracing of the chemical profile of oxygen (carbon) in the core of a white dwarf model. A series of tests are then presented to better seize the precision and significance of the results that can be obtained in an asteroseismological context. We also show that the new parametrization passes an essential basic test, as it successfully reproduces the chemical stratification of a full evolutionary model.

  3. From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer.

    PubMed

    Willke, Richard J; Zheng, Zhiyuan; Subedi, Prasun; Althin, Rikard; Mullins, C Daniel

    2012-12-13

    Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the "intermediate" outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading.By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research.

  4. Finding vulnerable subpopulations in the Seychelles Child Development Study: effect modification with latent groups.

    PubMed

    Love, Tanzy Mt; Thurston, Sally W; Davidson, Philip W

    2017-04-01

    The Seychelles Child Development Study is a research project with the objective of examining associations between prenatal exposure to low doses of methylmercury from maternal fish consumption and children's developmental outcomes. Whether methylmercury has neurotoxic effects at low doses remains unclear and recommendations for pregnant women and children to reduce fish intake may prevent a substantial number of people from receiving sufficient nutrients that are abundant in fish. The primary findings of the Seychelles Child Development Study are inconsistent with adverse associations between methylmercury from fish consumption and neurodevelopmental outcomes. However, whether there are subpopulations of children who are particularly sensitive to this diet is an open question. Secondary analysis from this study found significant interactions between prenatal methylmercury levels and both caregiver IQ and income on 19-month IQ. These results are sensitive to the categories chosen for these covariates and are difficult to interpret collectively. In this paper, we estimate effect modification of the association between prenatal methylmercury exposure and 19-month IQ using a general formulation of mixture regression. Our mixture regression model creates a latent categorical group membership variable which interacts with methylmercury in predicting the outcome. We also fit the same outcome model when in addition the latent variable is assumed to be a parametric function of three distinct socioeconomic measures. Bayesian methods allow group membership and the regression coefficients to be estimated simultaneously and our approach yields a principled choice of the number of distinct subpopulations. The results show three groups with different response patterns between prenatal methylmercury exposure and 19-month IQ in this population.

  5. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  6. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.

    PubMed

    Wolf, Elizabeth Skubak; Anderson, David F

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  7. Cosmological implications of quantum mechanics parametrization of dark energy

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof

    2017-08-01

    We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.

  8. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.

    PubMed

    Hu, Sien; Ide, Jaime S; Zhang, Sheng; Sinha, Rajita; Li, Chiang-Shan R

    2015-01-01

    Our previous work characterized altered cerebral activations during cognitive control in individuals with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust behavior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural correlates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD. Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the study. fMRI data were pre-processed and modeled with SPM8. We modeled fMRI signals at trial onset with individual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared regional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT). Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect - a correlation between p(Stop) and RT during go trials - and the magnitude of sequential effect is diminished, suggesting a deficit in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD showed deactivation of the perigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of the pgACC to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is correlated with increased activation of the thalamus and cerebellum in AD during conflict anticipation. The current results highlight altered proactive control that may serve as an additional behavioral and neural marker of alcohol dependence.

  9. Accounting for animal movement in estimation of resource selection functions: sampling and data analysis.

    PubMed

    Forester, James D; Im, Hae Kyung; Rathouz, Paul J

    2009-12-01

    Patterns of resource selection by animal populations emerge as a result of the behavior of many individuals. Statistical models that describe these population-level patterns of habitat use can miss important interactions between individual animals and characteristics of their local environment; however, identifying these interactions is difficult. One approach to this problem is to incorporate models of individual movement into resource selection models. To do this, we propose a model for step selection functions (SSF) that is composed of a resource-independent movement kernel and a resource selection function (RSF). We show that standard case-control logistic regression may be used to fit the SSF; however, the sampling scheme used to generate control points (i.e., the definition of availability) must be accommodated. We used three sampling schemes to analyze simulated movement data and found that ignoring sampling and the resource-independent movement kernel yielded biased estimates of selection. The level of bias depended on the method used to generate control locations, the strength of selection, and the spatial scale of the resource map. Using empirical or parametric methods to sample control locations produced biased estimates under stronger selection; however, we show that the addition of a distance function to the analysis substantially reduced that bias. Assuming a uniform availability within a fixed buffer yielded strongly biased selection estimates that could be corrected by including the distance function but remained inefficient relative to the empirical and parametric sampling methods. As a case study, we used location data collected from elk in Yellowstone National Park, USA, to show that selection and bias may be temporally variable. Because under constant selection the amount of bias depends on the scale at which a resource is distributed in the landscape, we suggest that distance always be included as a covariate in SSF analyses. This approach to modeling resource selection is easily implemented using common statistical tools and promises to provide deeper insight into the movement ecology of animals.

  10. Classification of Company Performance using Weighted Probabilistic Neural Network

    NASA Astrophysics Data System (ADS)

    Yasin, Hasbi; Waridi Basyiruddin Arifin, Adi; Warsito, Budi

    2018-05-01

    Classification of company performance can be judged by looking at its financial status, whether good or bad state. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric methods. One of Artificial Neural Network (ANN) models is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclidean distance and each class share the same values as their weights. In this study used PNN that has been modified on the weighting process between the pattern layer and the addition layer by involving the calculation of the mahalanobis distance. This model is called the Weighted Probabilistic Neural Network (WPNN). The results show that the company's performance modeling with the WPNN model has a very high accuracy that reaches 100%.

  11. Accounting for individual differences and timing of events: estimating the effect of treatment on criminal convictions in heroin users

    PubMed Central

    2014-01-01

    Background The reduction of crime is an important outcome of opioid maintenance treatment (OMT). Criminal intensity and treatment regimes vary among OMT patients, but this is rarely adjusted for in statistical analyses, which tend to focus on cohort incidence rates and rate ratios. The purpose of this work was to estimate the relationship between treatment and criminal convictions among OMT patients, adjusting for individual covariate information and timing of events, fitting time-to-event regression models of increasing complexity. Methods National criminal records were cross linked with treatment data on 3221 patients starting OMT in Norway 1997–2003. In addition to calculating cohort incidence rates, criminal convictions was modelled as a recurrent event dependent variable, and treatment a time-dependent covariate, in Cox proportional hazards, Aalen’s additive hazards, and semi-parametric additive hazards regression models. Both fixed and dynamic covariates were included. Results During OMT, the number of days with criminal convictions for the cohort as a whole was 61% lower than when not in treatment. OMT was associated with reduced number of days with criminal convictions in all time-to-event regression models, but the hazard ratio (95% CI) was strongly attenuated when adjusting for covariates; from 0.40 (0.35, 0.45) in a univariate model to 0.79 (0.72, 0.87) in a fully adjusted model. The hazard was lower for females and decreasing with older age, while increasing with high numbers of criminal convictions prior to application to OMT (all p < 0.001). The strongest predictors were level of criminal activity prior to entering into OMT, and having a recent criminal conviction (both p < 0.001). The effect of several predictors was significantly time-varying with their effects diminishing over time. Conclusions Analyzing complex observational data regarding to fixed factors only overlooks important temporal information, and naïve cohort level incidence rates might result in biased estimates of the effect of interventions. Applying time-to-event regression models, properly adjusting for individual covariate information and timing of various events, allows for more precise and reliable effect estimates, as well as painting a more nuanced picture that can aid health care professionals and policy makers. PMID:24886472

  12. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist.

    PubMed

    Gennemark, P; Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M

    2017-07-01

    In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non-parametric input estimation (e.g., predicting energy intake from longitudinal body-weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose-prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  13. Statistical modelling of networked human-automation performance using working memory capacity.

    PubMed

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  14. Parameterization models for pesticide exposure via crop consumption.

    PubMed

    Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier

    2012-12-04

    An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.

  15. Efficient Parallel Levenberg-Marquardt Model Fitting towards Real-Time Automated Parametric Imaging Microscopy

    PubMed Central

    Zhu, Xiang; Zhang, Dianwen

    2013-01-01

    We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785

  16. A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice.

    PubMed

    Miller, S W; Dennis, R G

    1996-12-01

    A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r = R sin(a + delta), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and delta, the angle at which the maximum moment arm occurs as offset from 90 degrees. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.

  17. Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data

    PubMed Central

    George, Brandon; Aban, Inmaculada

    2014-01-01

    Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361

  18. Parametric FEM for geometric biomembranes

    NASA Astrophysics Data System (ADS)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  19. Failure Time Distributions: Estimates and Asymptotic Results.

    DTIC Science & Technology

    1980-01-01

    of the models. A parametric family of distributions is proposed for approximating life distri- butions whose hazard rate is bath-tub shaped, this...of the limiting dirtributions of the models. A parametric family of distributions is proposed for approximating life distribution~s whose hazard rate...12. always justified. But, because of this gener- ality, the possible limit laws for the maximum form a very large family . The

  20. Application of Group-Level Item Response Models in the Evaluation of Consumer Reports about Health Plan Quality

    ERIC Educational Resources Information Center

    Reise, Steven P.; Meijer, Rob R.; Ainsworth, Andrew T.; Morales, Leo S.; Hays, Ron D.

    2006-01-01

    Group-level parametric and non-parametric item response theory models were applied to the Consumer Assessment of Healthcare Providers and Systems (CAHPS[R]) 2.0 core items in a sample of 35,572 Medicaid recipients nested within 131 health plans. Results indicated that CAHPS responses are dominated by within health plan variation, and only weakly…

Top