ERIC Educational Resources Information Center
Sobh, Tarek M.; Tibrewal, Abhilasha
2006-01-01
Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…
Coherent white light amplification
Jovanovic, Igor; Barty, Christopher P.
2004-05-25
A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.
Martínez-Camblor, Pablo; Pardo-Fernández, Juan C
2017-01-01
Diagnostic procedures are based on establishing certain conditions and then checking if those conditions are satisfied by a given individual. When the diagnostic procedure is based on a continuous marker, this is equivalent to fix a region or classification subset and then check if the observed value of the marker belongs to that region. Receiver operating characteristic curve is a valuable and popular tool to study and compare the diagnostic ability of a given marker. Besides, the area under the receiver operating characteristic curve is frequently used as an index of the global discrimination ability. This paper revises and widens the scope of the receiver operating characteristic curve definition by setting the classification subsets in which the final decision is based in the spotlight of the analysis. We revise the definition of the receiver operating characteristic curve in terms of particular classes of classification subsets and then focus on a receiver operating characteristic curve generalization for situations in which both low and high values of the marker are associated with more probability of having the studied characteristic. Parametric and non-parametric estimators of the receiver operating characteristic curve generalization are investigated. Monte Carlo studies and real data examples illustrate their practical performance.
Parametrically disciplined operation of a vibratory gyroscope
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)
2008-01-01
Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.
Phase noise suppression through parametric filtering
NASA Astrophysics Data System (ADS)
Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca
2017-02-01
In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.
Turboprop cargo aircraft systems study
NASA Technical Reports Server (NTRS)
Muehlbauer, J. C.; Hewell, J. G., Jr.; Lindenbaum, S. P.; Randall, C. C.; Searle, N.; Stone, R. G., Jr.
1981-01-01
The effects of using advanced turboprop propulsion systems to reduce the fuel consumption and direct operating costs of cargo aircraft were studied, and the impact of these systems on aircraft noise and noise prints around a terminal area was determined. Parametric variations of aircraft and propeller characteristics were investigated to determine their effects on noiseprint areas, fuel consumption, and direct operating costs. From these results, three aircraft designs were selected and subjected to design refinements and sensitivity analyses. Three competitive turbofan aircraft were also defined from parametric studies to provide a basis for comparing the two types of propulsion.
Membrane reactor for water detritiation: a parametric study on operating parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarade, J.; Liger, K.; Troulay, M.
2015-03-15
This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependencemore » of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.« less
A unified framework for weighted parametric multiple test procedures.
Xi, Dong; Glimm, Ekkehard; Maurer, Willi; Bretz, Frank
2017-09-01
We describe a general framework for weighted parametric multiple test procedures based on the closure principle. We utilize general weighting strategies that can reflect complex study objectives and include many procedures in the literature as special cases. The proposed weighted parametric tests bridge the gap between rejection rules using either adjusted significance levels or adjusted p-values. This connection is made by allowing intersection hypotheses of the underlying closed test procedure to be tested at level smaller than α. This may be also necessary to take certain study situations into account. For such cases we introduce a subclass of exact α-level parametric tests that satisfy the consonance property. When the correlation is known only for certain subsets of the test statistics, a new procedure is proposed to fully utilize this knowledge within each subset. We illustrate the proposed weighted parametric tests using a clinical trial example and conduct a simulation study to investigate its operating characteristics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing
NASA Astrophysics Data System (ADS)
Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.
2018-04-01
A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.
Problems of the design of low-noise input devices. [parametric amplifiers
NASA Technical Reports Server (NTRS)
Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.
1974-01-01
An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.
Yin, Jingjing; Nakas, Christos T; Tian, Lili; Reiser, Benjamin
2018-03-01
This article explores both existing and new methods for the construction of confidence intervals for differences of indices of diagnostic accuracy of competing pairs of biomarkers in three-class classification problems and fills the methodological gaps for both parametric and non-parametric approaches in the receiver operating characteristic surface framework. The most widely used such indices are the volume under the receiver operating characteristic surface and the generalized Youden index. We describe implementation of all methods and offer insight regarding the appropriateness of their use through a large simulation study with different distributional and sample size scenarios. Methods are illustrated using data from the Alzheimer's Disease Neuroimaging Initiative study, where assessment of cognitive function naturally results in a three-class classification setting.
Orbit transfer rocket engine technology program: Advanced engine study
NASA Technical Reports Server (NTRS)
Erickson, C. M.
1992-01-01
In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.
A study of microwave downcoverters operating in the K sub u band
NASA Technical Reports Server (NTRS)
Fellers, R. G.; Simpson, T. L.; Tseng, B.
1982-01-01
A computer program for parametric amplifier design is developed with special emphasis on practical design considerations for microwave integrated circuit degenerate amplifiers. Precision measurement techniques are developed to obtain a more realistic varactor equivalent circuit. The existing theory of a parametric amplifier is modified to include the equivalent circuit, and microwave properties, such as loss characteristics and circuit discontinuities are investigated.
Ku band low noise parametric amplifier
NASA Technical Reports Server (NTRS)
1976-01-01
A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.
NASA Astrophysics Data System (ADS)
Amsallem, David; Tezaur, Radek; Farhat, Charbel
2016-12-01
A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
Advanced oxygen-hydrocarbon rocket engine study
NASA Technical Reports Server (NTRS)
Obrien, C. J.; Salkeld, R.
1980-01-01
The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.
Zou, Kelly H; Resnic, Frederic S; Talos, Ion-Florin; Goldberg-Zimring, Daniel; Bhagwat, Jui G; Haker, Steven J; Kikinis, Ron; Jolesz, Ferenc A; Ohno-Machado, Lucila
2005-10-01
Medical classification accuracy studies often yield continuous data based on predictive models for treatment outcomes. A popular method for evaluating the performance of diagnostic tests is the receiver operating characteristic (ROC) curve analysis. The main objective was to develop a global statistical hypothesis test for assessing the goodness-of-fit (GOF) for parametric ROC curves via the bootstrap. A simple log (or logit) and a more flexible Box-Cox normality transformations were applied to untransformed or transformed data from two clinical studies to predict complications following percutaneous coronary interventions (PCIs) and for image-guided neurosurgical resection results predicted by tumor volume, respectively. We compared a non-parametric with a parametric binormal estimate of the underlying ROC curve. To construct such a GOF test, we used the non-parametric and parametric areas under the curve (AUCs) as the metrics, with a resulting p value reported. In the interventional cardiology example, logit and Box-Cox transformations of the predictive probabilities led to satisfactory AUCs (AUC=0.888; p=0.78, and AUC=0.888; p=0.73, respectively), while in the brain tumor resection example, log and Box-Cox transformations of the tumor size also led to satisfactory AUCs (AUC=0.898; p=0.61, and AUC=0.899; p=0.42, respectively). In contrast, significant departures from GOF were observed without applying any transformation prior to assuming a binormal model (AUC=0.766; p=0.004, and AUC=0.831; p=0.03), respectively. In both studies the p values suggested that transformations were important to consider before applying any binormal model to estimate the AUC. Our analyses also demonstrated and confirmed the predictive values of different classifiers for determining the interventional complications following PCIs and resection outcomes in image-guided neurosurgery.
Solid-state lasers for coherent communication and remote sensing
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1990-01-01
Laser development, high efficiency, high power second harmonic generation, operation of optical parametric oscillators for wavelength diversity and tunability, and studies in coherent communications are reviewed.
Parametric traveling wave amplifier with a low pump frequency
NASA Astrophysics Data System (ADS)
Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.
1983-01-01
Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.
Diode Laser Pumped Alkali Vapor Lasers with Exciplex-Assisted Absorption
2013-05-14
transfer agent that established the population inversion. The excitation source used in these initial studies was a pulsed optical parametric oscillator ...parametric oscillator . The lasers operated at 703.2 (Ne*), 912.5 (Ar*), 893.1 (Kr*) and 980.2 run (Xe*). Peak powers as high as 27kW/cm2 were observed...Larissa Glebova and Leonid B. Glebov. Ultra-low absorption and laser-induced heating of volume Bragg combiners recorded in photo-thermo- refractive
A parametric study of single-wall carbon nanotube growth by laser ablation
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.
2004-01-01
Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118
Small-window parametric imaging based on information entropy for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean
2017-01-01
Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.
NASA Technical Reports Server (NTRS)
Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.
1993-01-01
A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.
NASA Technical Reports Server (NTRS)
Unal, Resit; Morris, W. Douglas; White, Nancy H.; Lepsch, Roger A.; Brown, Richard W.
2000-01-01
This paper describes the development of parametric models for estimating operational reliability and maintainability (R&M) characteristics for reusable vehicle concepts, based on vehicle size and technology support level. A R&M analysis tool (RMAT) and response surface methods are utilized to build parametric approximation models for rapidly estimating operational R&M characteristics such as mission completion reliability. These models that approximate RMAT, can then be utilized for fast analysis of operational requirements, for lifecycle cost estimating and for multidisciplinary sign optimization.
A Lunar Surface Operations Simulator
NASA Technical Reports Server (NTRS)
Nayar, H.; Balaram, J.; Cameron, J.; Jain, A.; Lim, C.; Mukherjee, R.; Peters, S.; Pomerantz, M.; Reder, L.; Shakkottai, P.;
2008-01-01
The Lunar Surface Operations Simulator (LSOS) is being developed to support planning and design of space missions to return astronauts to the moon. Vehicles, habitats, dynamic and physical processes and related environment systems are modeled and simulated in LSOS to assist in the visualization and design optimization of systems for lunar surface operations. A parametric analysis tool and a data browser were also implemented to provide an intuitive interface to run multiple simulations and review their results. The simulator and parametric analysis capability are described in this paper.
Study of parametric instability in gravitational wave detectors with silicon test masses
NASA Astrophysics Data System (ADS)
Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David
2017-03-01
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.
Bim and Gis: when Parametric Modeling Meets Geospatial Data
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Banfi, F.
2017-12-01
Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation.
Propulsion Study for Small Transport Aircraft Technology (STAT)
NASA Technical Reports Server (NTRS)
Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.
1980-01-01
Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.
NASA Technical Reports Server (NTRS)
Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.
2015-01-01
We present a parametric sizing model for a Molten Electrolysis Reactor that produces oxygen and molten metals from lunar regolith. The model has a foundation of regolith material properties validated using data from Apollo samples and simulants. A multiphysics simulation of an MRE reactor is developed and leveraged to generate a vast database of reactor performance and design trends. A novel design methodology is created which utilizes this database to parametrically design an MRE reactor that 1) can sustain the required mass of molten regolith, current, and operating temperature to meet the desired oxygen production level, 2) can operate for long durations via joule heated, cold wall operation in which molten regolith does not touch the reactor side walls, 3) can support a range of electrode separations to enable operational flexibility. Mass, power, and performance estimates for an MRE reactor are presented for a range of oxygen production levels. The effects of several design variables are explored, including operating temperature, regolith type/composition, batch time, and the degree of operational flexibility.
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
Turnable Blue-Green LIDAR Transmitter Demonstration: Injection Laser Technology
1990-08-30
5-1 5.2 Baseline Requirements ............................................. 5-1 5.3 Optical Parametric Oscillator Using Beta Barium Borate... optical parametric oscillators , and organic dye lasers. Tunable solid state lasers such as Ti: sapphire operate in the infrared and would have to be...The same is true of I frequency mixing schemes. Optical parametric oscillators (OPOs) are attractive because of their extremely wide potential tuning
NASA Astrophysics Data System (ADS)
Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.
2014-12-01
In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.
Parametric study of the lubrication of thrust loaded 120-mm bore ball bearings to 3 million DN
NASA Technical Reports Server (NTRS)
Signer, H.; Bamberger, E. N.; Zaretsky, E. V.
1973-01-01
A parametric study was performed with 120-mm bore angular-contact ball bearings under varying thrust loads, bearing and lubricant temperatures, and cooling and lubricant flow rates. Contact angles were nominally 20 and 24 deg with bearing speeds to 3 million DN. Endurance tests were run at 3 million DN and a temperature of 492 K (425 F) with 10 bearings having a nominal 24 deg contact angle at a thrust load of 22241 N (5000 lb). Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement by varying 4 parameters. These parameters are outer-race cooling, inner-race cooling, lubricant flow to the inner race, and oil inlet temperature. Preliminary endurance tests at 3 million DN and 492 K (425 F) indicate that long term bearing operation can be achieved with a high degree of reliability.
Analysis of operational requirements for medium density air transportation, volume 2
NASA Technical Reports Server (NTRS)
1975-01-01
The medium density air travel market is examined and defined in terms of numbers of people transported per route per day and frequency of service. The operational characteristics for aircraft to serve this market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations can be conducted. The impact of the operational characteristics on the air travel system is evaluated along with the economic viability of the study aircraft. Research and technology programs for future study consideration are identified.
A capacitive ultrasonic transducer based on parametric resonance.
Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F
2017-07-24
A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.
Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load
NASA Technical Reports Server (NTRS)
Kankam, M. David; Rauch, Jeffrey S.
1994-01-01
This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.
Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation
NASA Technical Reports Server (NTRS)
Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.
1998-01-01
The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.
Fuel cell on-site integrated energy system parametric analysis of a residential complex
NASA Technical Reports Server (NTRS)
Simons, S. N.
1977-01-01
A parametric energy-use analysis was performed for a large apartment complex served by a fuel cell on-site integrated energy system (OS/IES). The variables parameterized include operating characteristics for four phosphoric acid fuel cells, eight OS/IES energy recovery systems, and four climatic locations. The annual fuel consumption for selected parametric combinations are presented and a breakeven economic analysis is presented for one parametric combination. The results show fuel cell electrical efficiency and system component choice have the greatest effect on annual fuel consumption; fuel cell thermal efficiency and geographic location have less of an effect.
Advanced extravehicular protective systems study, volume 2
NASA Technical Reports Server (NTRS)
Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.
1972-01-01
The results of the subsystem studies are presented. Initial identification and evaluation of candidate subsystem concepts in the area of thermal control, humidity control, CO2 control/O2 supply, contaminant control and power supply are discussed. The candidate concepts that were judged to be obviously noncompetitive were deleted from further consideration and the remaining candidate concepts were carried into the go/no go evaluation. A detailed parametric analysis of each of the thermal/humidity control and CO2 control/O2 supply subsystem concepts which passed the go/no go evaluation is described. Based upon the results of the parametric analyses, primary and secondary evaluations of the remaining candidate concepts were conducted. These results and the subsystem recommendations emanating from these results are discussed. In addition, the parametric analyses of the recommended subsystem concepts were updated to reflect the final AEPS specification requirements. A detailed discussion regarding the selection of the AEPS operating pressure level is presented.
Aerodynamics as a subway design parameter
NASA Technical Reports Server (NTRS)
Kurtz, D. W.
1976-01-01
A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.
Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peng, E-mail: peng@ices.utexas.edu; Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch
2016-07-01
We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by themore » so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data assimilation and for Bayesian estimation. They also open a perspective for optimal experimental design.« less
Parametric symmetries in exactly solvable real and PT symmetric complex potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com; Khare, Avinash, E-mail: khare@physics.unipune.ac.in; Bagchi, Bijan, E-mail: bbagchi123@gmail.com
In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariantmore » (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.« less
Packaging Technology for SiC High Temperature Circuits Operable up to 500 Degrees Centigrade
NASA Technical Reports Server (NTRS)
Chen, Lian-Yu
2002-01-01
New high temperature low power 8-pin packages have been fabricated using commercial fabrication service. These packages are made of aluminum nitride and 96 percent alumina with Au metallization. The new design of these packages provides the chips inside with EM shielding. Wirebond geometry control has been achieved for precise mechanical tests. Au wirebond samples with 45 degree heel-angle have been tested using wireloop test module. The geometry control improves the consistency of measurement of the wireloop breaking point.Also reported on is a parametric study of the thermomechanical reliability of a Au thick-film based SiC die-attach assembly using nonlinear finite element analysis (FEA) was conducted to optimize the die-attach thermo-mechanical performance for operation at temperatures from room temperature to 500 degrees Centigrade. This parametric study centered on material selection, structure design and process control.
Karakaya, Jale; Karabulut, Erdem; Yucel, Recai M.
2015-01-01
Modern statistical methods using incomplete data have been increasingly applied in a wide variety of substantive problems. Similarly, receiver operating characteristic (ROC) analysis, a method used in evaluating diagnostic tests or biomarkers in medical research, has also been increasingly popular problem in both its development and application. While missing-data methods have been applied in ROC analysis, the impact of model mis-specification and/or assumptions (e.g. missing at random) underlying the missing data has not been thoroughly studied. In this work, we study the performance of multiple imputation (MI) inference in ROC analysis. Particularly, we investigate parametric and non-parametric techniques for MI inference under common missingness mechanisms. Depending on the coherency of the imputation model with the underlying data generation mechanism, our results show that MI generally leads to well-calibrated inferences under ignorable missingness mechanisms. PMID:26379316
Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1986-01-01
How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.
Parametric infrared tunable laser system
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.; Sutter, J. R.
1980-01-01
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.
Development of a subway operation incident delay model using accelerated failure time approaches.
Weng, Jinxian; Zheng, Yang; Yan, Xuedong; Meng, Qiang
2014-12-01
This study aims to develop a subway operational incident delay model using the parametric accelerated time failure (AFT) approach. Six parametric AFT models including the log-logistic, lognormal and Weibull models, with fixed and random parameters are built based on the Hong Kong subway operation incident data from 2005 to 2012, respectively. In addition, the Weibull model with gamma heterogeneity is also considered to compare the model performance. The goodness-of-fit test results show that the log-logistic AFT model with random parameters is most suitable for estimating the subway incident delay. First, the results show that a longer subway operation incident delay is highly correlated with the following factors: power cable failure, signal cable failure, turnout communication disruption and crashes involving a casualty. Vehicle failure makes the least impact on the increment of subway operation incident delay. According to these results, several possible measures, such as the use of short-distance and wireless communication technology (e.g., Wifi and Zigbee) are suggested to shorten the delay caused by subway operation incidents. Finally, the temporal transferability test results show that the developed log-logistic AFT model with random parameters is stable over time. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Bloch, B. Nicholas; Chappelow, Jonathan; Patel, Pratik; Rofsky, Neil; Lenkinski, Robert; Genega, Elizabeth; Madabhushi, Anant
2011-03-01
Currently, there is significant interest in developing methods for quantitative integration of multi-parametric (structural, functional) imaging data with the objective of building automated meta-classifiers to improve disease detection, diagnosis, and prognosis. Such techniques are required to address the differences in dimensionalities and scales of individual protocols, while deriving an integrated multi-parametric data representation which best captures all disease-pertinent information available. In this paper, we present a scheme called Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE); a powerful, generalizable framework applicable to a variety of domains for multi-parametric data representation and fusion. Our scheme utilizes an ensemble of embeddings (via dimensionality reduction, DR); thereby exploiting the variance amongst multiple uncorrelated embeddings in a manner similar to ensemble classifier schemes (e.g. Bagging, Boosting). We apply this framework to the problem of prostate cancer (CaP) detection on 12 3 Tesla pre-operative in vivo multi-parametric (T2-weighted, Dynamic Contrast Enhanced, and Diffusion-weighted) magnetic resonance imaging (MRI) studies, in turn comprising a total of 39 2D planar MR images. We first align the different imaging protocols via automated image registration, followed by quantification of image attributes from individual protocols. Multiple embeddings are generated from the resultant high-dimensional feature space which are then combined intelligently to yield a single stable solution. Our scheme is employed in conjunction with graph embedding (for DR) and probabilistic boosting trees (PBTs) to detect CaP on multi-parametric MRI. Finally, a probabilistic pairwise Markov Random Field algorithm is used to apply spatial constraints to the result of the PBT classifier, yielding a per-voxel classification of CaP presence. Per-voxel evaluation of detection results against ground truth for CaP extent on MRI (obtained by spatially registering pre-operative MRI with available whole-mount histological specimens) reveals that EMPrAvISE yields a statistically significant improvement (AUC=0.77) over classifiers constructed from individual protocols (AUC=0.62, 0.62, 0.65, for T2w, DCE, DWI respectively) as well as one trained using multi-parametric feature concatenation (AUC=0.67).
Preliminary design study of advanced multistage axial flow core compressors
NASA Technical Reports Server (NTRS)
Wisler, D. C.; Koch, C. C.; Smith, L. H., Jr.
1977-01-01
A preliminary design study was conducted to identify an advanced core compressor for use in new high-bypass-ratio turbofan engines to be introduced into commercial service in the 1980's. An evaluation of anticipated compressor and related component 1985 state-of-the-art technology was conducted. A parametric screening study covering a large number of compressor designs was conducted to determine the influence of the major compressor design features on efficiency, weight, cost, blade life, aircraft direct operating cost, and fuel usage. The trends observed in the parametric screening study were used to develop three high-efficiency, high-economic-payoff compressor designs. These three compressors were studied in greater detail to better evaluate their aerodynamic and mechanical feasibility.
Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei
2018-05-01
We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150 nm with a -10 dB bandwidth of ∼13.2 THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.
Volterra model of the parametric array loudspeaker operating at ultrasonic frequencies.
Shi, Chuang; Kajikawa, Yoshinobu
2016-11-01
The parametric array loudspeaker (PAL) is an application of the parametric acoustic array in air, which can be applied to transmit a narrow audio beam from an ultrasonic emitter. However, nonlinear distortion is very perceptible in the audio beam. Modulation methods to reduce the nonlinear distortion are available for on-axis far-field applications. For other applications, preprocessing techniques are wanting. In order to develop a preprocessing technique with general applicability to a wide range of operating conditions, the Volterra filter is investigated as a nonlinear model of the PAL in this paper. Limitations of the standard audio-to-audio Volterra filter are elaborated. An improved ultrasound-to-ultrasound Volterra filter is proposed and empirically demonstrated to be a more generic Volterra model of the PAL.
Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A
2017-12-01
In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging.
Wong, C Y; Geller, E B; Chen, E Q; MacIntyre, W J; Morris, H H; Raja, S; Saha, G B; Lüders, H O; Cook, S A; Go, R T
1996-07-01
PET is useful in the presurgical evaluation of temporal lobe epilepsy. The purpose of this retrospective study is to assess the clinical use of statistical parametric imaging in predicting surgical outcome. Interictal 18FDG-PET scans in 17 patients with surgically-treated temporal lobe epilepsy (Group A-13 seizure-free, group B = 4 not seizure-free at 6 mo) were transformed into statistical parametric imaging, with each pixel representing a z-score value by using the mean and s.d. of count distribution in each individual patient, for both visual and quantitative analysis. Mean z-scores were significantly more negative in anterolateral (AL) and mesial (M) regions on the operated side than the nonoperated side in group A (AL: p < 0.00005, M: p = 0.0097), but not in group B (AL: p = 0.46, M: p = 0.08). Statistical parametric imaging correctly lateralized 16 out of 17 patients. Only the AL region, however, was significant in predicting surgical outcome (F = 29.03, p < 0.00005). Using a cut-off z-score value of -1.5, statistical parametric imaging correctly classified 92% of temporal lobes from group A and 88% of those from Group B. The preliminary results indicate that statistical parametric imaging provides both clinically useful information for lateralization in temporal lobe epilepsy and a reliable predictive indicator of clinical outcome following surgical treatment.
Orbit transfer vehicle engine study. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
1980-01-01
The orbit transfer vehicle (OTV) engine study provided parametric performance, engine programmatic, and cost data on the complete propulsive spectrum that is available for a variety of high energy, space maneuvering missions. Candidate OTV engines from the near term RL 10 (and its derivatives) to advanced high performance expander and staged combustion cycle engines were examined. The RL 10/RL 10 derivative performance, cost and schedule data were updated and provisions defined which would be necessary to accommodate extended low thrust operation. Parametric performance, weight, envelope, and cost data were generated for advanced expander and staged combustion OTV engine concepts. A prepoint design study was conducted to optimize thrust chamber geometry and cooling, engine cycle variations, and controls for an advanced expander engine. Operation at low thrust was defined for the advanced expander engine and the feasibility and design impact of kitting was investigated. An analysis of crew safety and mission reliability was conducted for both the staged combustion and advanced expander OTV engine candidates.
NASA Astrophysics Data System (ADS)
Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos; Hartmann, Michael J.
2015-05-01
Nonlinear quantum optical systems are of paramount relevance for modern quantum technologies, as well as for the study of dissipative phase transitions. Their nonlinear nature makes their theoretical study very challenging and hence they have always served as great motivation to develop new techniques for the analysis of open quantum systems. We apply the recently developed self-consistent projection operator theory to the degenerate optical parametric oscillator to exemplify its general applicability to quantum optical systems. We show that this theory provides an efficient method to calculate the full quantum state of each mode with a high degree of accuracy, even at the critical point. It is equally successful in describing both the stationary limit and the dynamics, including regions of the parameter space where the numerical integration of the full problem is significantly less efficient. We further develop a Gaussian approach consistent with our theory, which yields sensibly better results than the previous Gaussian methods developed for this system, most notably standard linearization techniques.
NASA Astrophysics Data System (ADS)
Ahmadlou, M.; Delavar, M. R.; Tayyebi, A.; Shafizadeh-Moghadam, H.
2015-12-01
Land use change (LUC) models used for modelling urban growth are different in structure and performance. Local models divide the data into separate subsets and fit distinct models on each of the subsets. Non-parametric models are data driven and usually do not have a fixed model structure or model structure is unknown before the modelling process. On the other hand, global models perform modelling using all the available data. In addition, parametric models have a fixed structure before the modelling process and they are model driven. Since few studies have compared local non-parametric models with global parametric models, this study compares a local non-parametric model called multivariate adaptive regression spline (MARS), and a global parametric model called artificial neural network (ANN) to simulate urbanization in Mumbai, India. Both models determine the relationship between a dependent variable and multiple independent variables. We used receiver operating characteristic (ROC) to compare the power of the both models for simulating urbanization. Landsat images of 1991 (TM) and 2010 (ETM+) were used for modelling the urbanization process. The drivers considered for urbanization in this area were distance to urban areas, urban density, distance to roads, distance to water, distance to forest, distance to railway, distance to central business district, number of agricultural cells in a 7 by 7 neighbourhoods, and slope in 1991. The results showed that the area under the ROC curve for MARS and ANN was 94.77% and 95.36%, respectively. Thus, ANN performed slightly better than MARS to simulate urban areas in Mumbai, India.
Parametric Cost Study of AC-DC Wayside Power Systems
DOT National Transportation Integrated Search
1975-09-01
The wayside power system provides all the power requirements of an electric vehicle operating on a fixed guideway. For a given set of specifications there are numerous wayside power supply configurations which will be satisfactory from a technical st...
A parametrical study of disinfection with hydrodynamic cavitation.
Arrojo, S; Benito, Y; Tarifa, A Martínez
2008-07-01
The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.
A BEFORE AND AFTER TRIAL OF THE EFFECTIVENESS OF NETWORK ANALYSIS IN HEALTH OPERATIONS MANAGEMENT.
Bhalwar, R; Srivastava, M; Verma, S S; Vaze, M; Tilak, V W
1996-10-01
An intervention trial using "before-and-after" approach was undertaken to address the question whether network analysis as a health managerial tool of control can favourably affect the delays that occur in planning and executing the antimalaria operations of a Station Health Organization in a large military station. Exposure variable of interest was intervention with a network diagram, by which the potential causes of delay along the various activities were assessed and remedial measures were introduced during the second year. Sample size was calculated using conventional alpha and beta error levels. The study indicated that there was a definite beneficial outcome in that the operations could be started as well as completed in time during the intervention year. There was reduction in time requirement in 5 out of the 9 activities, the exact 'p' value being 0.08, by both parametric and non-parametric tests. The use of network analysis in health care management has been recommended.
ERIC Educational Resources Information Center
Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.
2010-01-01
The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…
Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing
2018-04-16
We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.
Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.
2017-01-01
CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064
Spectral and Radiometric Calibration Using Tunable Lasers
NASA Technical Reports Server (NTRS)
McCorkel, Joel (Inventor)
2017-01-01
A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.
Photon number amplification/duplication through parametric conversion
NASA Technical Reports Server (NTRS)
Dariano, G. M.; Macchiavello, C.; Paris, M.
1993-01-01
The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.
Switch Panel wear loading - a parametric study regarding governing train operational factors
NASA Astrophysics Data System (ADS)
Hiensch, E. J. M.; Burgelman, N.
2017-09-01
The acting forces and resulting material degradation at the running surfaces of wheels and rail are determined by vehicle, track, interface and operational characteristics. To effectively manage the experienced wear, plastic deformation and crack development at wheels and rail, the interaction between vehicle and track demands a system approach both in maintenance and in design. This requires insight into the impact of train operational parameters on rail- and wheel degradation, in particular at switches and crossings due to the complex dynamic behaviour of a railway vehicle at a turnout. A parametric study was carried out by means of vehicle-track simulations within the VAMPIRE® multibody simulation software, performing a sensitivity analysis regarding operational factors and their impact on expected switch panel wear loading. Additionally, theoretical concepts were cross-checked with operational practices by means of a case study in response to a dramatic change in lateral rail wear development at specific switches in Dutch track. Data from train operation, track maintenance and track inspection were analysed, providing further insight into the operational dependencies. From the simulations performed in this study, it was found that switch rail lateral wear loading at the diverging route of a 1:9 type turnout is significantly influenced by the level of wheel-rail friction and to a lesser extent by the direction of travel (facing or trailing). The influence of other investigated parameters, being vehicle speed, traction, gauge widening and track layout is found to be small. Findings from the case study further confirm the simulation outcome. This research clearly demonstrates the contribution flange lubrication can have in preventing abnormal lateral wear at locations where the wheel-rail interface is heavily loaded.
Kargarian-Marvasti, Sadegh; Rimaz, Shahnaz; Abolghasemi, Jamileh; Heydari, Iraj
2017-01-01
Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes. This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model ( P < 0.20) were entered into the multivariate Cox and parametric models ( P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS). Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy ( P < 0.05). According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.
Development of suspended core soft glass fibers for far-detuned parametric conversion
NASA Astrophysics Data System (ADS)
Rampur, Anupamaa; Ciąćka, Piotr; Cimek, Jarosław; Kasztelanic, Rafał; Buczyński, Ryszard; Klimczak, Mariusz
2018-04-01
Light sources utilizing χ (2) parametric conversion combine high brightness with attractive operation wavelengths in the near and mid-infrared. In optical fibers, it is possible to use χ (3) degenerate four-wave mixing in order to obtain signal-to-idler frequency detuning of over 100 THz. We report on a test series of nonlinear soft glass suspended core fibers intended for parametric conversion of 1000-1100 nm signal wavelengths available from an array of mature lasers into the near-to-mid-infrared range of 2700-3500 nm under pumping with an erbium sub-picosecond laser system. The presented discussion includes modelling of the fiber properties, details of their physical development and characterization, and experimental tests of parametric conversion.
Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators
NASA Astrophysics Data System (ADS)
Wiguna, T.; Park, Hoon C.; Heo, S.; Goo, Nam S.
2007-04-01
This paper presents an experiment and parametric study of a biomimetic fish robot actuated by the Lightweight Piezocomposite Actuator (LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF (Body and Caudal Fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, stiffness, area, and aspect ratio. It is found that a high aspect ratio caudal fin contributes to high swimming speed. The robotic fish propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for a 300 V p-p input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot is examined by calculating Strouhal number, Froude number, Reynolds number, and power consumption.
Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.
Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan
2014-07-28
Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2014-12-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.
Yu, Wenbao; Park, Taesung
2014-01-01
It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.
Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers
NASA Astrophysics Data System (ADS)
Voss, Paul L.; Kumar, Prem
2004-03-01
The nonzero response time of the Kerr [chi (3)] nonlinearity determines the quantum-limited noise figure of c3 parametric amplifiers. This nonzero response time of the nonlinearity requires coupling of the parametric amplification process to a molecular-vibration phonon bath, causing the addition of excess noise through Raman gain or loss at temperatures above 0 K. The effect of this excess noise on the noise figure can be surprisingly significant. We derive analytical expressions for this quantum-limited noise figure for phase-insensitive operation of a chi (3) amplifier and show good agreement with published noise-figure measurements.
Quantum Illumination-Based Target Detection and Discrimination
2014-06-30
amplifier (EDFA) was combined with the signal to simulate a high-noise environment, with a noise photon number per mode NB in the range 40–300. The...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement , parametric downconversion, optical parametric amplifiers...laser system of the same average transmitted photon number, when the target return has random-amplitude behavior. Receiver operating characteristic
Study of aircraft in intraurban transportation systems
NASA Technical Reports Server (NTRS)
Stout, E. G.
1972-01-01
A systems analysis was conducted to define the technical economic and operational characteristics of an aircraft transportation system for short-range intracity commutor operations. The analysis was for 1975 and 1985 in the seven county, Detroit, Michigan area. STOL and VTOL aircraft were studied in sizes from 40 to 120 passengers. The preferred vehicle for the Detroit area was the deflected slipstream STOL. Since the study was parametric in nature, it is applicable to generalization, and it was concluded that a feasible intraurban air transportation system could be developed in many viable situations.
Dynamic actuation of single-crystal diamond nanobeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko, E-mail: loncar@seas.harvard.edu
2015-12-14
We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.
A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data
Jiang, Fei; Haneuse, Sebastien
2016-01-01
In the analysis of semi-competing risks data interest lies in estimation and inference with respect to a so-called non-terminal event, the observation of which is subject to a terminal event. Multi-state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non-terminal and terminal events specified, in part, by a unit-specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi-competing risks analysis that permit the non-parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi-parametric efficient score under the complete data setting and propose a non-parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small-sample operating characteristics evaluated via simulation. Although the proposed semi-parametric transformation model and non-parametric score imputation method are motivated by the analysis of semi-competing risks data, they are broadly applicable to any analysis of multivariate time-to-event outcomes in which a unit-specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer. PMID:28439147
NASA Astrophysics Data System (ADS)
Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.
2015-12-01
Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.
Impact of signal scattering and parametric uncertainties on receiver operating characteristics
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Breton, Daniel J.; Hart, Carl R.; Pettit, Chris L.
2017-05-01
The receiver operating characteristic (ROC curve), which is a plot of the probability of detection as a function of the probability of false alarm, plays a key role in the classical analysis of detector performance. However, meaningful characterization of the ROC curve is challenging when practically important complications such as variations in source emissions, environmental impacts on the signal propagation, uncertainties in the sensor response, and multiple sources of interference are considered. In this paper, a relatively simple but realistic model for scattered signals is employed to explore how parametric uncertainties impact the ROC curve. In particular, we show that parametric uncertainties in the mean signal and noise power substantially raise the tails of the distributions; since receiver operation with a very low probability of false alarm and a high probability of detection is normally desired, these tails lead to severely degraded performance. Because full a priori knowledge of such parametric uncertainties is rarely available in practice, analyses must typically be based on a finite sample of environmental states, which only partially characterize the range of parameter variations. We show how this effect can lead to misleading assessments of system performance. For the cases considered, approximately 64 or more statistically independent samples of the uncertain parameters are needed to accurately predict the probabilities of detection and false alarm. A connection is also described between selection of suitable distributions for the uncertain parameters, and Bayesian adaptive methods for inferring the parameters.
NASA Astrophysics Data System (ADS)
Sabater, A. B.; Rhoads, J. F.
2017-02-01
The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.
A case study in programming a quantum annealer for hard operational planning problems
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor G.; Venturelli, Davide; O'Gorman, Bryan; Do, Minh B.; Prystay, Elicia M.; Smelyanskiy, Vadim N.
2015-01-01
We report on a case study in programming an early quantum annealer to attack optimization problems related to operational planning. While a number of studies have looked at the performance of quantum annealers on problems native to their architecture, and others have examined performance of select problems stemming from an application area, ours is one of the first studies of a quantum annealer's performance on parametrized families of hard problems from a practical domain. We explore two different general mappings of planning problems to quadratic unconstrained binary optimization (QUBO) problems, and apply them to two parametrized families of planning problems, navigation-type and scheduling-type. We also examine two more compact, but problem-type specific, mappings to QUBO, one for the navigation-type planning problems and one for the scheduling-type planning problems. We study embedding properties and parameter setting and examine their effect on the efficiency with which the quantum annealer solves these problems. From these results, we derive insights useful for the programming and design of future quantum annealers: problem choice, the mapping used, the properties of the embedding, and the annealing profile all matter, each significantly affecting the performance.
Feasibility study of modern airships, phase 1. Volume 3: Historical overview (task 1)
NASA Technical Reports Server (NTRS)
Faurote, G. L.
1975-01-01
The history of lighter-than-air vehicles is reviewed in terms of providing a background for the mission analysis and parametric analysis tasks. Data from past airships and airship operations are presented in the following areas: (1) parameterization of design characteristics; (2) markets, missions, costs, and operating procedures, (3) indices of efficiency for comparison; (4) identification of critical design and operational characteristics; and (5) definition of the 1930 state-of-the-art and the 1974 state-of-the-art from a technical and economic standpoint.
Theory of parametrically amplified electron-phonon superconductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babadi, Mehrtash; Knap, Michael; Martin, Ivar
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's functionmore » technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.« less
Fitting C 2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures
Bayer, Jason D.
2014-01-01
We present a technique to fit C 2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C 2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C 2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C 2 continuous. PMID:24782911
Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays
Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang
2017-01-01
Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845
Robustness against parametric noise of nonideal holonomic gates
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe
2007-07-01
Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature.
NASA Astrophysics Data System (ADS)
Kaertner, Franz X.; Russer, Peter
1990-11-01
The master equation for a dc-pumped degenerate Josephson parametric amplifier is derived. It is shown that the Wigner distribution representation of this master equation can be approximated by a Fokker-Planck equation. By using this equation, the dynamical behavior of this degenerate Josephson amplifier with respect to squeezing of the radiation field is investigated. It is shown that below threshold of parametric oscillation, a squeezed vacuum state can be generated, and above threshold a second bifurcation point exists, where the device generates amplitude squeezed radiation. Basic relations between the achievable amplitude squeezing, the output power, and the operation frequency are derived.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
Petersen, T.; Zuegel, J. D.; Bromage, J.
2017-08-15
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
Thermal effects in an ultrafast BiB 3O 6 optical parametric oscillator at high average powers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, T.; Zuegel, J. D.; Bromage, J.
An ultrafast, high-average-power, extended-cavity, femtosecond BiB 3O 6 optical parametric oscillator was constructed as a test bed for investigating the scalability of infrared parametric devices. Despite the high pulse energies achieved by this system, the reduction in slope efficiency near the maximum-available pump power prompted the investigation of thermal effects in the crystal during operation. Furthermore, the local heating effects in the crystal were used to determine the impact on both phase matching and thermal lensing to understand limitations that must be overcome to achieve microjoule-level pulse energies at high repetition rates.
NASA Astrophysics Data System (ADS)
Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem
2004-10-01
Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.
New graph polynomials in parametric QED Feynman integrals
NASA Astrophysics Data System (ADS)
Golz, Marcel
2017-10-01
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.
2014-01-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188
Software for Managing Parametric Studies
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian
2003-01-01
The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.
Solution-Space Screening of a Hypersonic Endurance Demonstrator
NASA Technical Reports Server (NTRS)
Chudoba, Bernd; Coleman, Gary; Oza, Amit; Gonzalez, Lex; Czysz, Paul
2012-01-01
This report documents a parametric sizing study performed to develop a program strategy for research and development and procurement of a feasible next-generation hypersonic air-breathing endurance demonstrator. Overall project focus has been on complementing technical and managerial decision-making during the earliest conceptual design phase towards minimization of operational, technical, and managerial risks.
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
Efficient model reduction of parametrized systems by matrix discrete empirical interpolation
NASA Astrophysics Data System (ADS)
Negri, Federico; Manzoni, Andrea; Amsallem, David
2015-12-01
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
Minimum Uncertainty Coherent States Attached to Nondegenerate Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Dehghani, A.; Mojaveri, B.
2015-06-01
Exact analytical solutions for the two-mode nondegenerate parametric amplifier have been obtained by using the transformation from the two-dimensional harmonic oscillator Hamiltonian. Some important physical properties such as quantum statistics and quadrature squeezing of the corresponding states are investigated. In addition, these states carry classical features such as Poissonian statistics and minimize the Heisenberg uncertainty relation of a pair of the coordinate and the momentum operators.
Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)
2001-01-01
Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.
A concordance index for matched case-control studies with applications in cancer risk.
Brentnall, Adam R; Cuzick, Jack; Field, John; Duffy, Stephen W
2015-02-10
In unmatched case-control studies, the area under the receiver operating characteristic (ROC) curve (AUC) may be used to measure how well a variable discriminates between cases and controls. The AUC is sometimes used in matched case-control studies by ignoring matching, but it lacks interpretation because it is not based on an estimate of the ROC for the population of interest. We introduce an alternative measure of discrimination that is the concordance of risk factors conditional on the matching factors. Parametric and non-parametric estimators are given for different matching scenarios, and applied to real data from breast and lung cancer case-control studies. Diagnostic plots to verify the constancy of discrimination over matching factors are demonstrated. The proposed simple measure is easy to use, interpret, more efficient than unmatched AUC statistics and may be applied to compare the conditional discrimination performance of risk factors. Copyright © 2014 John Wiley & Sons, Ltd.
Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E
2003-12-01
Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.
NASA Astrophysics Data System (ADS)
Khobragade, P.; Fan, Jiahua; Rupcich, Franco; Crotty, Dominic J.; Gilat Schmidt, Taly
2016-03-01
This study quantitatively evaluated the performance of the exponential transformation of the free-response operating characteristic curve (EFROC) metric, with the Channelized Hotelling Observer (CHO) as a reference. The CHO has been used for image quality assessment of reconstruction algorithms and imaging systems and often it is applied to study the signal-location-known cases. The CHO also requires a large set of images to estimate the covariance matrix. In terms of clinical applications, this assumption and requirement may be unrealistic. The newly developed location-unknown EFROC detectability metric is estimated from the confidence scores reported by a model observer. Unlike the CHO, EFROC does not require a channelization step and is a non-parametric detectability metric. There are few quantitative studies available on application of the EFROC metric, most of which are based on simulation data. This study investigated the EFROC metric using experimental CT data. A phantom with four low contrast objects: 3mm (14 HU), 5mm (7HU), 7mm (5 HU) and 10 mm (3 HU) was scanned at dose levels ranging from 25 mAs to 270 mAs and reconstructed using filtered backprojection. The area under the curve values for CHO (AUC) and EFROC (AFE) were plotted with respect to different dose levels. The number of images required to estimate the non-parametric AFE metric was calculated for varying tasks and found to be less than the number of images required for parametric CHO estimation. The AFE metric was found to be more sensitive to changes in dose than the CHO metric. This increased sensitivity and the assumption of unknown signal location may be useful for investigating and optimizing CT imaging methods. Future work is required to validate the AFE metric against human observers.
NASA Technical Reports Server (NTRS)
1972-01-01
The tug design and performance data base for the economic analysis of space tug operation are presented. A compendium of the detailed design and performance information from the data base is developed. The design data are parametric across a range of reusable space tug sizes. The performance curves are generated for selected point designs of expendable orbit injection stages and reusable tugs. Data are presented in the form of graphs for various modes of operation.
Feng, Dai; Cortese, Giuliana; Baumgartner, Richard
2017-12-01
The receiver operating characteristic (ROC) curve is frequently used as a measure of accuracy of continuous markers in diagnostic tests. The area under the ROC curve (AUC) is arguably the most widely used summary index for the ROC curve. Although the small sample size scenario is common in medical tests, a comprehensive study of small sample size properties of various methods for the construction of the confidence/credible interval (CI) for the AUC has been by and large missing in the literature. In this paper, we describe and compare 29 non-parametric and parametric methods for the construction of the CI for the AUC when the number of available observations is small. The methods considered include not only those that have been widely adopted, but also those that have been less frequently mentioned or, to our knowledge, never applied to the AUC context. To compare different methods, we carried out a simulation study with data generated from binormal models with equal and unequal variances and from exponential models with various parameters and with equal and unequal small sample sizes. We found that the larger the true AUC value and the smaller the sample size, the larger the discrepancy among the results of different approaches. When the model is correctly specified, the parametric approaches tend to outperform the non-parametric ones. Moreover, in the non-parametric domain, we found that a method based on the Mann-Whitney statistic is in general superior to the others. We further elucidate potential issues and provide possible solutions to along with general guidance on the CI construction for the AUC when the sample size is small. Finally, we illustrate the utility of different methods through real life examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Mr. Suxin; Gluesenkamp, Kyle R; Hwang, Dr. Yunho
Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3kW adsorption chiller test facility driven by hot water at 70 C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resultingmore » in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies.« less
Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders
NASA Astrophysics Data System (ADS)
Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.
2017-12-01
Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.
NASA Astrophysics Data System (ADS)
Riera-Palou, Felip; den Brinker, Albertus C.
2007-12-01
This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).
Falk, Carl F; Cai, Li
2016-06-01
We present a semi-parametric approach to estimating item response functions (IRF) useful when the true IRF does not strictly follow commonly used functions. Our approach replaces the linear predictor of the generalized partial credit model with a monotonic polynomial. The model includes the regular generalized partial credit model at the lowest order polynomial. Our approach extends Liang's (A semi-parametric approach to estimate IRFs, Unpublished doctoral dissertation, 2007) method for dichotomous item responses to the case of polytomous data. Furthermore, item parameter estimation is implemented with maximum marginal likelihood using the Bock-Aitkin EM algorithm, thereby facilitating multiple group analyses useful in operational settings. Our approach is demonstrated on both educational and psychological data. We present simulation results comparing our approach to more standard IRF estimation approaches and other non-parametric and semi-parametric alternatives.
NASA Astrophysics Data System (ADS)
Voss, Paul L.; Köprülü, Kahraman G.; Kumar, Prem
2006-04-01
We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a χ(3) nonlinear medium. The nonzero response time of the Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3) parametric amplification, as well as the limit on quadrature squeezing. This nonzero response time of the nonlinearity requires coupling of the parametric process to a molecular vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency nondegenerate and frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency nondegenerate quadrature squeezing. We show that our nondegenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1975-01-01
The LOVES computer code developed to investigate the concept of space servicing operational satellites as an alternative to replacing expendable satellites or returning satellites to earth for ground refurbishment is presented. In addition to having the capability to simulate the expendable satellite operation and the ground refurbished satellite operation, the program is designed to simulate the logistics of space servicing satellites using an upper stage vehicle and/or the earth to orbit shuttle. The program not only provides for the initial deployment of the satellite but also simulates the random failure and subsequent replacement of various equipment modules comprising the satellite. The program has been used primarily to conduct trade studies and/or parametric studies of various space program operational philosophies.
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
Parametric tests of a 40-Ah bipolar nickel-hydrogen battery
NASA Technical Reports Server (NTRS)
Cataldo, R. L.
1986-01-01
A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.
ERIC Educational Resources Information Center
Enoh, Tabe Florence Ako
2000-01-01
Examined the syntactic behavior of wh-operators in Kenyang, a Bantu language. Following Chomsky's minimalist programme (1993, 1995), describes the nature of universal grammar and accounts for certain specific parametrized variations of that system into the nature of interrogative structures in Kenyang. (Author/VWL)
NASA Astrophysics Data System (ADS)
Sciarrino, Fabio; Vitelli, Chiara; de Martini, Francesco; Glasser, Ryan; Cable, Hugo; Dowling, Jonathan P.
2008-01-01
Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interferometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric amplifier can be intense yet exhibits quantum features, namely, sub-Rayleigh fringes, as proposed by [Agarwal , Phys. Rev. Lett. 86, 1389 (2001)]. We investigate multiphoton states generated by a high-gain optical parametric amplifier operating with a quantum vacuum input for gain values up to 2.5. The visibility has then been increased by means of three-photon absorption. The present paper opens interesting perspectives for the implementation of such an advanced interferometrical setup.
Development and fabrication of S-band chip varactor parametric amplifier
NASA Technical Reports Server (NTRS)
Kramer, E.
1974-01-01
A noncryogenic, S-band parametric amplifier operating in the 2.2 to 2.3 GHz band and having an average input noise temperature of less than 30 K was built and tested. The parametric amplifier module occupies a volume of less than 1-1/4 cubic feet and weighs less than 60 pounds. The module is designed for use in various NASA ground stations to replace larger, more complex cryogenic units which require considerably more maintenance because of the cryogenic refrigeration system employed. The amplifier can be located up to 15 feet from the power supply unit. Optimum performance was achieved through the use of high-quality unpackaged (chip) varactors in the amplifier design.
2013-07-05
This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between
Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes
2012-11-01
2012 4. TITLE AND SUBTITLE Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes 5a. CONTRACT NUMBER 5b. GRANT ...may be used to construct spatially varying wind fields for the GOM region (e.g., Thompson and Cardone [12]), but this requires using a complicated...Storm Damage Reduc- tion, and Dredging Operations and Environmental Research (DOER). The USACE Headquarters granted permission to publish this paper
ERIC Educational Resources Information Center
Samejima, Fumiko
This paper is the final report of a multi-year project sponsored by the Office of Naval Research (ONR) in 1987 through 1990. The main objectives of the research summarized were to: investigate the non-parametric approach to the estimation of the operating characteristics of discrete item responses; revise and strengthen the package computer…
Guidance, navigation, and control trades for an Electric Orbit Transfer Vehicle
NASA Astrophysics Data System (ADS)
Zondervan, K. P.; Bauer, T. A.; Jenkin, A. B.; Metzler, R. A.; Shieh, R. A.
The USAF Space Division initiated the Electric Insertion Transfer Experiment (ELITE) in the fall of 1988. The ELITE space mission is planned for the mid 1990s and will demonstrate technological readiness for the development of operational solar-powered electric orbit transfer vehicles (EOTVs). To minimize the cost of ground operations, autonomous flight is desirable. Thus, the guidance, navigation, and control (GNC) functions of an EOTV should reside on board. In order to define GNC requirements for ELITE, parametric trades must be performed for an operational solar-powered EOTV so that a clearer understanding of the performance aspects is obtained. Parametric trades for the GNC subsystems have provided insight into the relationship between pointing accuracy, transfer time, and propellant utilization. Additional trades need to be performed, taking into account weight, cost, and degree of autonomy.
Gong, Yan-Xiao; Zhang, ShengLi; Xu, P; Zhu, S N
2016-03-21
We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.
Parametric control in coupled fermionic oscillators
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2014-10-01
A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
Parametric study of flame radiation characteristics of a tubular-can combustor
NASA Technical Reports Server (NTRS)
Humenik, F. M.; Claus, R. W.; Neely, G. M.
1983-01-01
A series of combustor tests were conducted with a tubular-can combustor to study flame radiation characteristics and effects with parametric variations in combustor operating conditions. Two alternate combustor assemblies using a different fuel nozzle were compared. Spectral and total radiation detectors were positioned at three stations along the length of the combustor can. Data were obtained for a range of pressures from 0.34 to 2.07 MPa (50 to 300 psia), inlet temperatures from 533 to 700K (500 to 800 F), for Jet A (13.9 deg hydrogen) and ERBS (12.9% hydrogen) fuels, and with fuel-air ratios nominally from 0.008 to 0.021. Spectral radiation data, total radiant heat flux data, and liner temperature data are presented to illustrate the flame radiation characteristics and effects in the primary, secondary, and tertiary combustion zones.
Marmarelis, Vasilis Z.; Berger, Theodore W.
2009-01-01
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it
2016-02-15
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.
On the orthogonal dissipative lax-phillips scattering theory
NASA Astrophysics Data System (ADS)
Neidhardt, Hagen
1988-08-01
The paper is devoted to the so-called orthogonal dissipative Lax-Phillips scattering theory. A parametrization of all possible orthogonal dissipative Lax-Phillips scattering theories is obtained in terms of ordered 6-tuples consisting of unilateral shifts and contractions which can be, roughly speaking, freely chosen. In this parametrization the wave and scattering operators as well as the scattering matrix are explicitly calculated. Moreover, a description of all analytical contraction-valued functions admitting a Darlington synthesis is found.
Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X
2010-06-15
We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.
Analysis of operational requirements for medium density air transportation. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1975-01-01
The medium density air travel market was studied to determine the aircraft design and operational requirements. The impact of operational characteristics on the air travel system and the economic viability of the study aircraft were also evaluated. Medium density is defined in terms of numbers of people transported (20 to 500 passengers per day on round trip routes), and frequency of service ( a minumium of two and maximum of eight round trips per day) for 10 regional carriers. The operational characteristics of aircraft best suited to serve the medium density air transportation market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations could be conducted. The impact of selected aircraft on the medium density market, economics, and operations is ascertained. Research and technology objectives for future programs in medium density air transportation are identified and ranked.
Baudisch, M; Hemmer, M; Pires, H; Biegert, J
2014-10-15
The performance of potassium niobate (KNbO₃), MgO-doped periodically poled lithium niobate (MgO:PPLN), and potassium titanyl arsenate (KTA) were experimentally compared for broadband mid-wave infrared parametric amplification at a high repetition rate. The seed pulses, with an energy of 6.5 μJ, were amplified using 410 μJ pump energy at 1064 nm to a maximum pulse energy of 28.9 μJ at 3 μm wavelength and at a 160 kHz repetition rate in MgO:PPLN while supporting a transform limited duration of 73 fs. The high average powers of the interacting beams used in this study revealed average power-induced processes that limit the scaling of optical parametric amplification in MgO:PPLN; the pump peak intensity was limited to 3.8 GW/cm² due to nonpermanent beam reshaping, whereas in KNbO₃ an absorption-induced temperature gradient in the crystal led to permanent internal distortions in the crystal structure when operated above a pump peak intensity of 14.4 GW/cm².
NASA Astrophysics Data System (ADS)
Golovaty, Yuriy
2018-06-01
We construct a norm resolvent approximation to the family of point interactions , by Schrödinger operators with localized rank-two perturbations coupled with short range potentials. In particular, a new approximation to the -interactions is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass opticalmore » parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.« less
Phase-sensitive, through-amplification with a double-pumped JPC
NASA Astrophysics Data System (ADS)
Sliwa, K. M.; Hatridge, M.; Frattini, N. E.; Narla, A.; Shankar, S.; Devoret, M. H.
The Josephson Parametric Converter (JPC) is now routinely used as a quantum-limited signal processing device for superconducting qubit experiments. The JPC consists of two modes, the signal and the idler, that are coupled by a ring of Josephson junctions that implements a non-degenerate, three-wave mixing process. This device is conventionally operated as either a phase-preserving parametric amplifier, or a coherent frequency converter, by pumping it at the sum or difference of the signal and idler frequencies, respectively. Here we present a novel double-pumping scheme based on theory by Metelmann and Clerk where a coherent conversion process and a gain process are simultaneously imposed between the signal and idler modes. The interference of these two processes results in a phase-sensitive amplifier with only forward gain, and which breaks the traditional gain-bandwidth limit of parametric amplification. We present results on phase-sensitive amplification with increased bandwidth, and on noise performance and dynamic range that are comparable to the traditional mode of operation. Work supported by ARO, AFOSR, NSF and YINQE.
NASA Astrophysics Data System (ADS)
Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
Sun, Chao; Feng, Wenquan; Du, Songlin
2018-01-01
As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2014-01-01
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289
Operational fitness of box truss antennas in response to dynamic slewing
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Schartel, W. A.; Karanian, L. A.
1985-01-01
A parametric study was performed to define slewing capability of large satellites along with associated system changes or subsystem weight and complexity impacts. The satellite configuration and structural arrangement from the Earth Observation Spacecraft (EOS) study was used as the baseline spacecraft. Varying slew rates, settling times, damping, maneuver frequencies, and attitude hold times provided the data required to establish applicability to a wide range of potential missions. The key elements of the study are: (1) determine the dynamic transient response of the antenna system; (2) calculate the system errors produced by the dynamic response; (3) determine if the antenna has exceeded operational requirements at completion of the slew, and if so; (4) determine when the antenna has settled to the operational requirements. The slew event is not considered complete until the antenna is within operational limits.
Dorrer, C.; Consentino, A.; Cuffney, R.; ...
2017-10-18
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorrer, C.; Consentino, A.; Cuffney, R.
Here, we describe a parametric-amplification–based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal’s sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front endmore » are discussed.« less
Gao, Mingyi; Kurumida, Junya; Namiki, Shu
2011-11-07
For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.
NASA Technical Reports Server (NTRS)
Noble, S. T.; Gordon, W. E.; Djuth, F. T.; Jost, R. J.; Hedberg, A.
1987-01-01
This paper discusses the results of the September 1983 observations of artificial field-aligned irregularities (AFAIs) in the Tromso, Norway region, made by backscatter radars operating at 46.9, 143.8, 21.4, and 140.0 MHz. Four classes of resonant instability processes at work in the E and F regions are examined in detail: (1) the coupling of parametric decay instability waves across geomagnetic field lines, (2) thermal parametric instability, (3) four-wave interaction thermal parametric instability, and (4) the resonance instability. The characteristics of the AFAI scatter are described, with special attention given to the growth and decay time constants, functional dependence on the heater power and polarization, and the scattering cross sections of the irregularities.
Geostationary platform study: Advanced ESGP/evolutionary SSF accommodation study
NASA Technical Reports Server (NTRS)
1990-01-01
The implications on the evolutionary space station of accommodating geosynchronous Earth Orbit (GEO) facilities including unmanned satellites and platforms, manned elements, and transportation and servicing vehicles/elements. The latest existing definitions of typical unmanned GEO facilities and transportation and servicing vehicles/elements are utilized. The physical design, functional design, and operations implications at the space station are determined. Various concepts of the space station from past studies are utilized ranging from the IOC Multifunction Space Station to a branched transportation node space station, and the implications of the accommodation the GEO infrastructure of each type are assessed. Where possible, parametric data are provided to show the implications of variations in sizes and quantities of elements, launch rates, crew sizes, etc. The use of advanced automation, robotics equipment, and an efficient mix of manned/automated support for accomplishing necessary activities at the space station are identified and assessed. The products of this study are configuration sketches, resource requirements, trade studies, and parametric data.
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
Parametrically coupled fermionic oscillators: Correlation functions and phase-space description
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2015-01-01
A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.
Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François
2015-04-01
The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.
Statistical properties of light from optical parametric oscillators
NASA Astrophysics Data System (ADS)
Vyas, Reeta; Singh, Surendra
2009-12-01
Coherence properties of light beams generated by optical parametric oscillators (OPOs) are discussed in the region of threshold. Analytic expressions, that are valid throughout the threshold region, for experimentally measurable quantities such as the mean and variance of photon number fluctuations, squeezing of field quadratures, and photon counting distributions are derived. These expressions describe non-Gaussian fluctuations of light in the region of threshold and reproduce Gaussian fluctuations below and above threshold, thus providing a bridge between below and above threshold regimes of operation. They are used to study the transformation of fluctuation properties of light as the OPOs make a transition from below to above threshold. The results for the OPOs are compared to those for the single-mode and two-mode lasers and their similarities and differences are discussed.
Busch, Stephen; Miles, Paul C.
2015-03-31
A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for amore » single injection but dramatically different for multiple injections with short dwells.« less
NASA Astrophysics Data System (ADS)
Singh, Thingujam Jackson; Samanta, Sutanu
2016-09-01
In the present work an attempt was made towards parametric optimization of drilling bamboo/Kevlar K29 fiber reinforced sandwich composite to minimize the delamination occurred during the drilling process and also to maximize the tensile strength of the drilled composite. The spindle speed and the feed rate of the drilling operation are taken as the input parameters. The influence of these parameters on delamination and tensile strength of the drilled composite studied and analysed using Taguchi GRA and ANOVA technique. The results show that both the response parameters i.e. delamination and tensile strength are more influenced by feed rate than spindle speed. The percentage contribution of feed rate and spindle speed on response parameters are 13.88% and 81.74% respectively.
NASA Astrophysics Data System (ADS)
Imani, Farhad; Ghavidel, Sahar; Abolmaesumi, Purang; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Mousavi, Parvin
2016-03-01
Recently, multi-parametric Magnetic Resonance Imaging (mp-MRI) has been used to improve the sensitivity of detecting high-risk prostate cancer (PCa). Prior to biopsy, primary and secondary cancer lesions are identified on mp-MRI. The lesions are then targeted using TRUS guidance. In this paper, for the first time, we present a fused mp-MRI-temporal-ultrasound framework for characterization of PCa, in vivo. Cancer classification results obtained using temporal ultrasound are fused with those achieved using consolidated mp-MRI maps determined by multiple observers. We verify the outcome of our study using histopathology following deformable registration of ultrasound and histology images. Fusion of temporal ultrasound and mp-MRI for characterization of the PCa results in an area under the receiver operating characteristic curve (AUC) of 0.86 for cancerous regions with Gleason scores (GSs)>=3+3, and AUC of 0.89 for those with GSs>=3+4.
Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley K. Heath
2014-03-01
This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show thatmore » fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.« less
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
Method of the active contour for segmentation of bone systems on bitmap images
NASA Astrophysics Data System (ADS)
Vu, Hai Anh; Safonov, Roman A.; Kolesnikova, Anna S.; Kirillova, Irina V.; Kossovich, Leonid U.
2018-02-01
It is developed within a method of the active contours the approach, which is allowing to realize separation of a contour of a object of the image in case of its segmentation. This approach exceeds a parametric method on speed, but also does not concede to it on decision accuracy. The approach is offered within this operation will allow to realize allotment of a contour with high accuracy of the image and quicker than a parametric method of the active contours.
Efficient two-stage dual-beam noncollinear optical parametric amplifier
NASA Astrophysics Data System (ADS)
Cheng, Yu-Hsiang; Gao, Frank Y.; Poulin, Peter R.; Nelson, Keith A.
2018-06-01
We have constructed a noncollinear optical parametric amplifier with two signal beams amplified in the same nonlinear crystal. This dual-beam design is more energy-efficient than operating two amplifiers in parallel. The cross-talk between two beams has been characterized and discussed. We have also added a second amplification stage to enhance the output of one of the arms, which is then frequency-doubled for ultraviolet generation. This single device provides two tunable sources for ultrafast spectroscopy in the ultraviolet and visible region.
Dynamic single sideband modulation for realizing parametric loudspeaker
NASA Astrophysics Data System (ADS)
Sakai, Shinichi; Kamakura, Tomoo
2008-06-01
A parametric loudspeaker, that presents remarkably narrow directivity compared with a conventional loudspeaker, is newly produced and examined. To work the loudspeaker optimally, we prototyped digitally a single sideband modulator based on the Weaver method and appropriate signal processing. The processing techniques are to change the carrier amplitude dynamically depending on the envelope of audio signals, and then to operate the square root or fourth root to the carrier amplitude for improving input-output acoustic linearity. The usefulness of the present modulation scheme has been verified experimentally.
NASA Technical Reports Server (NTRS)
Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield;
1961-01-01
This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire astrodynamic subject. By the use of compact graphical and tabular presentation the full scope of the material is made available in an easy-to-use style. Throughout the volume the analyst is shown, by means of suitable introductions, notes, authoritative examples, and cross-references the vital interrelation of the various orbital mechanics topics in the general field of earth satellites and satellite rendezvous. The handbook is designed to give the analyst rapid, reliable access to the mathematics of orbital mechanics needed for virtually any working requirements.
Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A
2008-06-09
We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
Buffer thermal energy storage for an air Brayton solar engine
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Barr, K. P.
1981-01-01
The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brzoska, B.; Depisch, F.; Fuchs, H.P.
To analyze the influence of prepressurization on fuel rod behavior, a parametric study has been performed that considers the effects of as-fabricated fuel rod internal prepressure on the normal operation and postulated loss-of-coolant accident (LOCA) rod behavior of a 1300-MW(electric) Kraftwerk Union (KWU) standard pressurized water reactor nuclear power plant. A variation of the prepressure in the range from 15 to 35 bars has only a slight influence on normal operation behavior. Considering the LOCA behavior, only a small temperature increase results from prepressure reduction, while the core-wide straining behavior is improved significantly. The KWU prepressurization takes both conditions intomore » account.« less
Husimi coordinates of multipartite separable states
NASA Astrophysics Data System (ADS)
Parfionov, Georges; Zapatrin, Romàn R.
2010-12-01
A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.
Force Reduction Impacts on Resourcing Army Operational Requirements
2017-03-10
scenarios involving parametric changes to demand for and supply of manpower and equipment from the institutional Army. This type of mission- based ...i SPECIAL REPORT Force Reduction Impacts on Resourcing Army Operational Requirements By Dynamics Research Corporation In Partial... Research .................................................................................................. 12 2.1.2 Identifying and Collecting Unit
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier
Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh
2017-01-01
This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636
NASA Astrophysics Data System (ADS)
Kazmi, K. R.; Khan, F. A.
2008-01-01
In this paper, using proximal-point mapping technique of P-[eta]-accretive mapping and the property of the fixed-point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of a parametric generalized implicit quasi-variational-like inclusion involving P-[eta]-accretive mapping in real uniformly smooth Banach space. Further, under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to the parameter. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [R.P. Agarwal, Y.-J. Cho, N.-J. Huang, Sensitivity analysis for strongly nonlinear quasi-variational inclusions, Appl. MathE Lett. 13 (2002) 19-24; S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988) 421-434; X.-P. Ding, Sensitivity analysis for generalized nonlinear implicit quasi-variational inclusions, Appl. Math. Lett. 17 (2) (2004) 225-235; X.-P. Ding, Parametric completely generalized mixed implicit quasi-variational inclusions involving h-maximal monotone mappings, J. Comput. Appl. Math. 182 (2) (2005) 252-269; X.-P. Ding, C.L. Luo, On parametric generalized quasi-variational inequalities, J. Optim. Theory Appl. 100 (1999) 195-205; Z. Liu, L. Debnath, S.M. Kang, J.S. Ume, Sensitivity analysis for parametric completely generalized nonlinear implicit quasi-variational inclusions, J. Math. Anal. Appl. 277 (1) (2003) 142-154; R.N. Mukherjee, H.L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992) 299-304; M.A. Noor, Sensitivity analysis framework for general quasi-variational inclusions, Comput. Math. Appl. 44 (2002) 1175-1181; M.A. Noor, Sensitivity analysis for quasivariational inclusions, J. Math. Anal. Appl. 236 (1999) 290-299; J.Y. Park, J.U. Jeong, Parametric generalized mixed variational inequalities, Appl. Math. Lett. 17 (2004) 43-48].
Resonant dampers for parametric instabilities in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M.
2015-10-01
Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ˜1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.
On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.
Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
NASA Astrophysics Data System (ADS)
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.
Parametric analysis of ATT configurations.
NASA Technical Reports Server (NTRS)
Lange, R. H.
1972-01-01
This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.
Witnessing entanglement without entanglement witness operators.
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-11
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
NASA Astrophysics Data System (ADS)
Avila, Edward R.
The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.
Prospects for reduced energy transports: A preliminary analysis
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Harper, M.; Smith, C. L.; Waters, M. H.; Williams, L. J.
1974-01-01
The recent energy crisis and subsequent substantial increase in fuel prices have provided increased incentive to reduce the fuel consumption of civil transport aircraft. At the present time many changes in operational procedures have been introduced to decrease fuel consumption of the existing fleet. In the future, however, it may become desirable or even necessary to introduce new fuel-conservative aircraft designs. This paper reports the results of a preliminary study of new near-term fuel conservative aircraft. A parametric study was made to determine the effects of cruise Mach number and fuel cost on the optimum configuration characteristics and on economic performance. For each design, the wing geometry was optimized to give maximum return on investment at a particular fuel cost. Based on the results of the parametric study, a nominal reduced energy configuration was selected. Compared with existing transport designs, the reduced energy design has a higher aspect ratio wing with lower sweep, and cruises at a lower Mach number. It has about 30% less fuel consumption on a seat-mile basis.
Stability analysis of a time-periodic 2-dof MEMS structure
NASA Astrophysics Data System (ADS)
Kniffka, Till Jochen; Welte, Johannes; Ecker, Horst
2012-11-01
Microelectromechanical systems (MEMS) are becoming important for all kinds of industrial applications. Among them are filters in communication devices, due to the growing demand for efficient and accurate filtering of signals. In recent developments single degree of freedom (1-dof) oscillators, that are operated at a parametric resonances, are employed for such tasks. Typically vibration damping is low in such MEM systems. While parametric excitation (PE) is used so far to take advantage of a parametric resonance, this contribution suggests to also exploit parametric anti-resonances in order to improve the damping behavior of such systems. Modeling aspects of a 2-dof MEM system and first results of the analysis of the non-linear and the linearized system are the focus of this paper. In principle the investigated system is an oscillating mechanical system with two degrees of freedom x = [x1x2]T that can be described by Mx+Cx+K1x+K3(x2)x+Fes(x,V(t)) = 0. The system is inherently non-linear because of the cubic mechanical stiffness K3 of the structure, but also because of electrostatic forces (1+cos(ωt))Fes(x) that act on the system. Electrostatic forces are generated by comb drives and are proportional to the applied time-periodic voltage V(t). These drives also provide the means to introduce time-periodic coefficients, i.e. parametric excitation (1+cos(ωt)) with frequency ω. For a realistic MEM system the coefficients of the non-linear set of differential equations need to be scaled for efficient numerical treatment. The final mathematical model is a set of four non-linear time-periodic homogeneous differential equations of first order. Numerical results are obtained from two different methods. The linearized time-periodic (LTP) system is studied by calculating the Monodromy matrix of the system. The eigenvalues of this matrix decide on the stability of the LTP-system. To study the unabridged non-linear system, the bifurcation software ManLab is employed. Continuation analysis including stability evaluations are executed and show the frequency ranges for which the 2-dof system becomes unstable due to parametric resonances. Moreover, the existence of frequency intervals are shown where enhanced damping for the system is observed for this MEMS. The results from the stability studies are confirmed by simulation results.
Orbit Transfer Rocket Engine Technology Program, Advanced Engine Study Task D.6
1992-02-28
l!J~iliiJl 1. Report No. 2. Government Accession No. 3 . Recipient’s Catalog No. NASA 187215 4. Title and Subtitle 5. Report Date ORBIT TRANSFER ROCKET...Engine Study, three primary subtasks were accomplished: 1) Design and Parametric Data, 2) Engine Requirement Variation Studies, and 3 ) Vehicle Study...Mixture Ratio Parametrics 18 3 . Thrust Parametrics Off-Design Mixture Ratio Scans 22 4. Expansion Area Ratio Parametrics 24 5. OTV 20 klbf Engine Off
Systems evaluation of thermal bus concepts
NASA Technical Reports Server (NTRS)
Stalmach, D. D.
1982-01-01
Thermal bus concepts, to provide a centralized thermal utility for large, multihundred kilowatt space platforms, were studied and the results are summarized. Concepts were generated, defined, and screened for inclusion in system level thermal bus trades. Parametric trade studies were conducted in order to define the operational envelope, performance, and physical characteristics of each. Two concepts were selected as offering the most promise for thermal bus development. All of four concepts involved two phase flow in order to meet the required isothermal nature of the thermal bus. Two of the concepts employ a mechanical means to circulate the working fluid, a liquid pump in one case and a vapor compressor in another. Another concept utilizes direct osmosis as the driving force of the thermal bus. The fourth concept was a high capacity monogroove heat pipe. After preliminary sizing and screening, three of these concepts were selected to carry into the trade studies. The monogroove heat pipe concept was deemed unsuitable for further consideration because of its heat transport limitations. One additional concept utilizing capillary forces to drive the working fluid was added. Parametric system level trade studies were performed. Sizing and weight calculations were performed for thermal bus sizes ranging from 5 to 350 kW and operating temperatures in the range of 4 to 120 C. System level considerations such as heat rejection and electrical power penalties and interface temperature losses were included in the weight calculations.
1989-07-31
Information System (OSMIS). The long-range objective is to develop methods to determine total operating and support (O&S) costs within life-cycle cost...objective was to assess the feasibility of developing cost estimating relationships (CERs) based on data from the Army Operating and Support Management
Quadrature demultiplexing using a degenerate vector parametric amplifier.
Lorences-Riesgo, Abel; Liu, Lan; Olsson, Samuel L I; Malik, Rohit; Kumpera, Aleš; Lundström, Carl; Radic, Stojan; Karlsson, Magnus; Andrekson, Peter A
2014-12-01
We report on quadrature demultiplexing of a quadrature phase-shift keying (QPSK) signal into two cross-polarized binary phase-shift keying (BPSK) signals with negligible penalty at bit-error rate (BER) equal to 10(-9). The all-optical quadrature demultiplexing is achieved using a degenerate vector parametric amplifier operating in phase-insensitive mode. We also propose and demonstrate the use of a novel and simple phase-locked loop (PLL) scheme based on detecting the envelope of one of the signals after demultiplexing in order to achieve stable quadrature decomposition.
Effects of cosmic rays on single event upsets
NASA Technical Reports Server (NTRS)
Venable, D. D.; Zajic, V.; Lowe, C. W.; Olidapupo, A.; Fogarty, T. N.
1989-01-01
Assistance was provided to the Brookhaven Single Event Upset (SEU) Test Facility. Computer codes were developed for fragmentation and secondary radiation affecting Very Large Scale Integration (VLSI) in space. A computer controlled CV (HP4192) test was developed for Terman analysis. Also developed were high speed parametric tests which are independent of operator judgment and a charge pumping technique for measurement of D(sub it) (E). The X-ray secondary effects, and parametric degradation as a function of dose rate were simulated. The SPICE simulation of static RAMs with various resistor filters was tested.
Four modes of optical parametric operation for squeezed state generation
NASA Astrophysics Data System (ADS)
Andersen, U. L.; Buchler, B. C.; Lam, P. K.; Wu, J. W.; Gao, J. R.; Bachor, H.-A.
2003-11-01
We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments of the squeezed quadrature.
Amplification of microwaves by superconducting microbridges in a four-wave parametric mode
NASA Technical Reports Server (NTRS)
Parrish, P. T.; Chiao, R. Y.
1974-01-01
Parametric amplification of microwaves was observed using thin-film junctions of the Anderson-Dayem type. A series of 80 such junctions were incorporated into the upper conductor of a broadband 50-ohm microstrip transmission line with no DC bias. The amplifier was operated in the 'doubly degenerate' mode with signal, pump, and idler frequencies closely and equally spaced. An electronic gain of 12 dB at 10 GHz was observed. The bandwidth was measured to be 1 GHz and the noise temperature to be less than 20 K.
NASA Astrophysics Data System (ADS)
Yoshida, Takato O.; Matsuzawa, Eiji; Matsuo, Tetsumichi; Koide, Yukio; Terakawa, Susumu; Yokokura, Teruo; Hirano, Toru
1995-03-01
A new cancer-treatment model, photodynamic therapy (PDT) combined with a type I topoisomerase inhibitor, camptothecin derivative (CPT-11), against HeLa cell tumors in BALB/c nude mice has been developed using a wide-band tunable coherent light source operated on optical parametric oscillation (OPO parametric tunable laser). The Photosan-3 PDT and CPT-11 combined therapy was remarkably effective, that is the inhibition rate (I.R.) 40 - 80%, as compared to PDT only in vivo. The analysis of HpD (Photosan-3) and CPT-11 effects on cultured HeLa cells in vitro has been studied by a video-enhanced contrast differential interference contrast microscope (VEC-DIC). Photosan-3 with 600 nm light killed cells by mitochondrial damage within 50 min, but not with 700 nm light. CPT-11 with 700 - 400 nm light killed cells within 50 min after nucleolus damage appeared after around 30 min. The localization of CPT-11 in cells was observed as fluorescence images in the nucleus, particularly the nucleoral area produced clear images using an Argus 100.
NASA Technical Reports Server (NTRS)
Wright, J. P.; Wilson, D. E.
1976-01-01
Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.
Computer modeling of heat pipe performance
NASA Technical Reports Server (NTRS)
Peterson, G. P.
1983-01-01
A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.
NASA Astrophysics Data System (ADS)
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Scenario based optimization of a container vessel with respect to its projected operating conditions
NASA Astrophysics Data System (ADS)
Wagner, Jonas; Binkowski, Eva; Bronsart, Robert
2014-06-01
In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.
Temporal Simultons in Optical Parametric Oscillators
NASA Astrophysics Data System (ADS)
Jankowski, Marc; Marandi, Alireza; Phillips, C. R.; Hamerly, Ryan; Ingold, Kirk A.; Byer, Robert L.; Fejer, M. M.
2018-02-01
We report the first demonstration of a regime of operation in optical parametric oscillators (OPOs), in which the formation of temporal simultons produces stable femtosecond half-harmonic pulses. Simultons are simultaneous bright-dark solitons of a signal field at frequency ω and the pump field at 2 ω , which form in a quadratic nonlinear medium. The formation of simultons in an OPO is due to the interplay of nonlinear pulse acceleration with the timing mismatch between the pump repetition period and the cold-cavity round-trip time and is evidenced by sech2 spectra with broad instantaneous bandwidths when the resonator is detuned to a slightly longer round-trip time than the pump repetition period. We provide a theoretical description of an OPO operating in a regime dominated by these dynamics, observe the distinct features of simulton formation in an experiment, and verify our results with numerical simulations. These results represent a new regime of operation in nonlinear resonators, which can lead to efficient and scalable sources of few-cycle frequency combs at arbitrary wavelengths.
Parametric study of two planar high power flexible solar array concepts
NASA Technical Reports Server (NTRS)
Garba, J. A.; Kudija, D. A.; Zeldin, B.; Costogue, E. N.
1978-01-01
The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented.
NASA Astrophysics Data System (ADS)
Chakraborty, Pritam; Biner, S. Bulent
2015-10-01
Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.
Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.
Ingalls, Brian; Mincheva, Maya; Roussel, Marc R
2017-07-01
A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.
NASA Astrophysics Data System (ADS)
Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.
2018-03-01
This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).
Witnessing entanglement without entanglement witness operators
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-01-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625
NASA Technical Reports Server (NTRS)
Smith, S. D.; Tevepaugh, J. A.; Penny, M. M.
1975-01-01
The exhaust plumes of the space shuttle solid rocket motors can have a significant effect on the base pressure and base drag of the shuttle vehicle. A parametric analysis was conducted to assess the sensitivity of the initial plume expansion angle of analytical solid rocket motor flow fields to various analytical input parameters and operating conditions. The results of the analysis are presented and conclusions reached regarding the sensitivity of the initial plume expansion angle to each parameter investigated. Operating conditions parametrically varied were chamber pressure, nozzle inlet angle, nozzle throat radius of curvature ratio and propellant particle loading. Empirical particle parameters investigated were mean size, local drag coefficient and local heat transfer coefficient. Sensitivity of the initial plume expansion angle to gas thermochemistry model and local drag coefficient model assumptions were determined.
Paul, Sarbajit; Chang, Junghwan
2017-01-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension. PMID:28671580
Paul, Sarbajit; Chang, Junghwan
2017-07-01
This paper presents a design approach for a magnetic sensor module to detect mover position using the proper orthogonal decomposition-dynamic mode decomposition (POD-DMD)-based nonlinear parametric model order reduction (PMOR). The parameterization of the sensor module is achieved by using the multipolar moment matching method. Several geometric variables of the sensor module are considered while developing the parametric study. The operation of the sensor module is based on the principle of the airgap flux density distribution detection by the Hall Effect IC. Therefore, the design objective is to achieve a peak flux density (PFD) greater than 0.1 T and total harmonic distortion (THD) less than 3%. To fulfill the constraint conditions, the specifications for the sensor module is achieved by using POD-DMD based reduced model. The POD-DMD based reduced model provides a platform to analyze the high number of design models very fast, with less computational burden. Finally, with the final specifications, the experimental prototype is designed and tested. Two different modes, 90° and 120° modes respectively are used to obtain the position information of the linear motor mover. The position information thus obtained are compared with that of the linear scale data, used as a reference signal. The position information obtained using the 120° mode has a standard deviation of 0.10 mm from the reference linear scale signal, whereas the 90° mode position signal shows a deviation of 0.23 mm from the reference. The deviation in the output arises due to the mechanical tolerances introduced into the specification during the manufacturing process. This provides a scope for coupling the reliability based design optimization in the design process as a future extension.
NASA Technical Reports Server (NTRS)
1974-01-01
The effect of aircraft operational techniques in the terminal area on community noise impact of future short haul aircraft was investigated. Aircraft equipped with mechanical flap (MF) and aircraft with externally blown flap (EBF) were used to study the noise impact at four U.S. airports. The four airports were: (1) Hanscom Field (Boston), (2) Washington National (D.C.), (3) Midway (Chicago) and (4) Orange County (California). With the exception of Washington National (D.C.), the study showed that a reduction of approximately 40 percent in the number of people highly annoyed can be obtained by using the recommended operational techniques. The evaluation procedures and methodology developed in the study represent an advance in acoustical state-of-the-art and provide an effective and useful tool for determining aircraft noise impact on the airport community.
Frequency-tuned microwave photon counter based on a superconductive quantum interferometer
NASA Astrophysics Data System (ADS)
Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.
2018-03-01
Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.
NASA Astrophysics Data System (ADS)
Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.
2017-04-01
Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and resolution.
Parametric Study of HTS Coil Quench Protection Strategies
NASA Astrophysics Data System (ADS)
Seibert, Joseph; Zarnstorff, Michael; Zhai, Yuhu
2016-10-01
Next generation fusion devices require high magnetic fields to adequately contain burning plasmas. Use of high temperature superconducting (HTS) coils to generate these magnetic fields would lower energy cost of operation as well as increase stability of the superconducting state compared to low temperature superconducting coils. However, use of HTS coils requires developing quench protection strategies to prevent damage to the coils. One technique involves the utilization of copper discs and other conductors mutually coupled to the HTS coil to quickly extract the current from the coil. Another technique allows conduction between HTS turns to reduce the current in the coil during quench. This project describes a parametric study of the HTS coil and resistive-conductor setup in order to determine limiting cases of the geometry in an attempt to optimize current extraction and coil protection during quench scenarios. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, D. J.; Block, B. P.; Rubin, M.
This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less
Multi-Mission Power Analysis Tool (MMPAT) Version 3
NASA Technical Reports Server (NTRS)
Wood, Eric G.; Chang, George W.; Chen, Fannie C.
2012-01-01
The Multi-Mission Power Analysis Tool (MMPAT) simulates a spacecraft power subsystem including the power source (solar array and/or radioisotope thermoelectric generator), bus-voltage control, secondary battery (lithium-ion or nickel-hydrogen), thermostatic heaters, and power-consuming equipment. It handles multiple mission types including heliocentric orbiters, planetary orbiters, and surface operations. Being parametrically driven along with its user-programmable features can reduce or even eliminate any need for software modifications when configuring it for a particular spacecraft. It provides multiple levels of fidelity, thereby fulfilling the vast majority of a project s power simulation needs throughout the lifecycle. It can operate in a stand-alone mode with a graphical user interface, in batch mode, or as a library linked with other tools. This software can simulate all major aspects of a spacecraft power subsystem. It is parametrically driven to reduce or eliminate the need for a programmer. Added flexibility is provided through user-designed state models and table-driven parameters. MMPAT is designed to be used by a variety of users, such as power subsystem engineers for sizing power subsystem components; mission planners for adjusting mission scenarios using power profiles generated by the model; system engineers for performing system- level trade studies using the results of the model during the early design phases of a spacecraft; and operations personnel for high-fidelity modeling of the essential power aspect of the planning picture.
Parametric Cooling of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael
2017-04-01
An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.
Adelian, R; Jamali, J; Zare, N; Ayatollahi, S M T; Pooladfar, G R; Roustaei, N
2015-01-01
Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. To compare Cox's regression model with parametric models for determining the independent factors for predicting adults' and pediatrics' survival after liver transplantation. This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Parametric regression model is a good alternative for the Cox's regression model.
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
A superconducting quenchgun for delivering lunar derived oxygen to lunar orbit
NASA Technical Reports Server (NTRS)
Nottke, Nathan; Bilby, Curt R.
1990-01-01
The development of a parametric model for a superconducting quenchgun for launching lunar derived liquid oxygen to lunar orbit is detailed. An overview is presented of the quenchgun geometry and operating principles, a definition of the required support systems, and the methods used to size the quenchgun launcher and support systems. An analysis assessing the impact of a lunar quenchgun on the OEXP Lunar Evolution Case Study is included.
Frequency domain optical parametric amplification
Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François
2014-01-01
Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968
Parametric Characterization of TES Detectors Under DC Bias
NASA Technical Reports Server (NTRS)
Chiao, Meng P.; Smith, Stephen James; Kilbourne, Caroline A.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.;
2016-01-01
The X-ray integrated field unit (X-IFU) in European Space Agency's (ESA's) Athena mission will be the first high-resolution X-ray spectrometer in space using a large-format transition-edge sensor microcalorimeter array. Motivated by optimization of detector performance for X-IFU, we have conducted an extensive campaign of parametric characterization on transition-edge sensor (TES) detectors with nominal geometries and physical properties in order to establish sensitivity trends relative to magnetic field, dc bias on detectors, operating temperature, and to improve our understanding of detector behavior relative to its fundamental properties such as thermal conductivity, heat capacity, and transition temperature. These results were used for validation of a simple linear detector model in which a small perturbation can be introduced to one or multiple parameters to estimate the error budget for X-IFU. We will show here results of our parametric characterization of TES detectors and briefly discuss the comparison with the TES model.
Maidment, Luke; Schunemann, Peter G; Reid, Derryck T
2016-09-15
We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.
Generation of polarization squeezed light with an optical parametric amplifier at 795 nm
NASA Astrophysics Data System (ADS)
Han, Yashuai; Wen, Xin; Liu, Jinyu; He, Jun; Wang, Junmin
2018-06-01
We report the experimental demonstration of polarization squeezed beam at 795 nm by combining a quadrature amplitude squeezed beam with an in-phase bright coherent beam. The quadrature amplitude squeezed beam is generated by a degenerate optical parametric amplifier based on a PPKTP crystal. Stokes operators Sˆ2 squeezing of -3.8 dB and Sˆ3 anti-squeezing of +5.0 dB have been observed. This polarization squeezed beam resonant to rubidium D1 line has potential applications in quantum information networks and precision measurement beyond the shot noise limit.
Transfer pricing in hospitals and efficiency of physicians: the case of anesthesia services.
Kuntz, Ludwig; Vera, Antonio
2005-01-01
The objective is to investigate theoretically and empirically how the efficiency of the physicians involved in anesthesia and surgery can be optimized by the introduction of transfer pricing for anesthesia services. The anesthesiology data of approximately 57,000 operations carried out at the University Hospital Hamburg-Eppendorf (UKE) in Germany in the period from 2000 to 2002 are analyzed using parametric and non-parametric methods. The principal finding of the empirical analysis is that the efficiency of the physicians involved in anesthesia and surgery at the UKE improved after the introduction of transfer pricing.
Parametric Methods for Dynamic 11C-Phenytoin PET Studies.
Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A
2017-03-01
In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggington, W.J.; Stevens, P.M.; John, C.J.
1994-10-01
The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selectedmore » for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.« less
Parametric study of closed wet cooling tower thermal performance
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Hayder, M. J.
2017-08-01
The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.
NASA Astrophysics Data System (ADS)
Yamanishi, Manabu
A combined experimental and computational investigation was performed in order to evaluate the effects of various design parameters of an in-line injection pump on the nozzle exit characteristics for DI diesel engines. Measurements of the pump chamber pressure and the delivery valve lift were included for validation by using specially designed transducers installed inside the pump. The results confirm that the simulation model is capable of predicting the pump operation for all the different designs investigated pump operating conditions. Following the successful validation of this model, parametric studies were performed which allow for improved fuel injection system design.
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot
NASA Astrophysics Data System (ADS)
Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio
2012-12-01
In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.
Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock
NASA Astrophysics Data System (ADS)
Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.
2017-12-01
Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.
Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:
NASA Astrophysics Data System (ADS)
Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.
In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.
Observation of quantum jumps in a superconducting quantum bit
NASA Astrophysics Data System (ADS)
Vijay, R.
2011-03-01
Superconducting qubit technology has made great advances since the first demonstration of coherent oscillations more than 10 years ago. Coherence times have improved by several orders of magnitude and significant progress has been made in qubit state readout fidelity. However, a fast, high-fidelity, quantum non-demolition measurement scheme which is essential to implement quantum error correction has so far been missing. We demonstrate such a scheme for the first time where we continuously measure the state of a superconducting quantum bit using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time. The key development enabling this experiment is the use of a low quality factor (Q), nonlinear resonator to implement a phase-sensitive parametric amplifier operating near the quantum limit. The nonlinear resonator was constructed using a two junction SQUID shunted with an on-chip capacitor. The SQUID allowed us to tune the operating band of the amplifier and the low Q provided us with a bandwidth greater than 10 MHz, sufficient to observe jumps in the qubit state in real time. I will briefly describe the operation of the parametric amplifier and discuss how it was used to measure the state of a transmon qubit in the circuit QED architecture. I will discuss measurement fidelity and the statistics of the quantum jumps. I will conclude by discussing the implications of this development for quantum information processing and further improvements to the measurement technique. We acknowledge support from AFOSR and the Hertz Foundation.
Siemens, Mark; Hancock, Jason; Siminovitch, David
2007-02-01
Euler angles (alpha,beta,gamma) are cumbersome from a computational point of view, and their link to experimental parameters is oblique. The angle-axis {Phi, n} parametrization, especially in the form of quaternions (or Euler-Rodrigues parameters), has served as the most promising alternative, and they have enjoyed considerable success in rf pulse design and optimization. We focus on the benefits of angle-axis parameters by considering a multipole operator expansion of the rotation operator D(Phi, n), and a Clebsch-Gordan expansion of the rotation matrices D(MM')(J)(Phi, n). Each of the coefficients in the Clebsch-Gordan expansion is proportional to the product of a spherical harmonic of the vector n specifying the axis of rotation, Y(lambdamu)(n), with a fixed function of the rotation angle Phi, a Gegenbauer polynomial C(2J-lambda)(lambda+1)(cosPhi/2). Several application examples demonstrate that this Clebsch-Gordan expansion gives easy and direct access to many of the parameters of experimental interest, including coherence order changes (isolated in the Clebsch-Gordan coefficients), and rotation angle (isolated in the Gegenbauer polynomials).
Parametric instability of shaft with discs
NASA Astrophysics Data System (ADS)
Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor
2017-12-01
The occurrence of resonance is a major criterion to be considered in the design of shaft. While force resonance occurs merely when the natural frequency of the rotor system equals speed of the shaft, parametric resonance or parametric instability can occur at excitation speed that is integral or sub-multiple of the frequency of the rotor. This makes the study on parametric resonance crucial. Parametric instability of a shaft system consisting of a shaft and disks has been investigated in this study. The finite element formulation of the Mathieu-Hill equation that represents the parametric instability problem of the shaft is developed based on Timoshenko’s beam theory and Nelson’s finite element method (FEM) model that considers the effect of torsional motion on such problem. The Bolotin’s method is used to determine the regions of instability and the Strut-Ince diagram. The validation works show that the results of this study are in close agreement to past results. It is found that a larger radius of disk will cause the shaft to become more unstable compared to smaller radius although both weights are similar. Furthermore, the effect of torsional motion on the parametric instability of the shaft is significant at higher rotating speed.
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
NASA Astrophysics Data System (ADS)
Azarov, Vladimir I.
2018-01-01
Data available on the 5d3, 5d26s and 5d26p configurations in the Lu I isoelectronic sequence have been critically reviewed by means of calculations with the orthogonal operators. The study included spectra from Ta III through Hg X. The calculations agree very well with the experimental data. The isoelectronic behavior of parameters and deviations of the experimental levels from the calculated positions, ΔE = (Eexp -Ecalc), show regular trends. Three missing 5d26s levels have been accurately predicted theoretically and confirmed experimentally: the level (3P)2P3/2 in Pt VIII and the levels (3P)4P5/2 and (3P)2P1/2 in Os VI have been determined in the study. The research suggested revision of the published initial analyses of the Re V and Hg X spectra. The recently completed revised analysis of Re V has confirmed the issues noticed in the initial analysis and has resulted in the data that fit very well in the current parametric study. The isoelectronic evolution of the higher order interactions was studied for the first time in the Lu I sequence. The study included the parameters Ac, A3-A6 describing two-particle magnetic interaction of the dd-type, the parameter Amso describing two-particle magnetic ds-type effect, the parameter Tdds describing 3-particle electrostatic ds-type interaction, and the effective parameters S1 and S2 of the dp-type.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.
Tile-based rigidization surface parametric design study
NASA Astrophysics Data System (ADS)
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of variations in geometric design parameters, operating parameters, and architectural variations on the performance evaluation metrics. The results of this study bring insight into the rigidization behavior of this architecture, and provide design guidelines and expose tradeoffs to form the basis for the design of tile-based rigidization surfaces for a wide range of applications.
Parametric instabilities of rotor-support systems with application to industrial ventilators
NASA Technical Reports Server (NTRS)
Parszewski, Z.; Krodkiemski, T.; Marynowski, K.
1980-01-01
Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.
Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel
2016-10-01
Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Dunbar, D. N.; Tunnah, B. G.
1978-01-01
A FORTRAN computer program is described for predicting the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.
NASA Technical Reports Server (NTRS)
Dunbar, D. N.; Tunnah, B. G.
1978-01-01
The FORTRAN computing program predicts flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications. The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.
NASA Astrophysics Data System (ADS)
Galeazzi, G.; Lombardi, A.; Ruoso, G.; Braggio, C.; Carugno, G.; Della Valle, F.; Zanello, D.; Dodonov, V. V.
2013-11-01
In this paper we present theoretical and experimental studies of the modifications of the thermal spectrum inside a microwave resonator due to a parametric amplification process. Both the degenerate and nondegenerate amplifiers are discussed. Theoretical calculations are compared with measurements performed with a microwave cavity parametric amplifier.
Parametric optimization of optical signal detectors employing the direct photodetection scheme
NASA Astrophysics Data System (ADS)
Kirakosiants, V. E.; Loginov, V. A.
1984-08-01
The problem of optimization of the optical signal detection scheme parameters is addressed using the concept of a receiver with direct photodetection. An expression is derived which accurately approximates the field of view (FOV) values obtained by a direct computer minimization of the probability of missing a signal; optimum values of the receiver FOV were found for different atmospheric conditions characterized by the number of coherence spots and the intensity fluctuations of a plane wave. It is further pointed out that the criterion presented can be possibly used for parametric optimization of detectors operating in accordance with the Neumann-Pearson criterion.
The effect of pumping noise on the characteristics of a single-stage parametric amplifier
NASA Astrophysics Data System (ADS)
Medvedev, S. Iu.; Muzychuk, O. V.
1983-10-01
An analysis is made of the operation of a single-stage parametric amplifier based on a varactor with a sharp transition. Analytical expressions are obtained for the statistical moments of the output signal, the signal-noise ratio, and other characteristics in the case when the output signal and the pump are a mixture of harmonic oscillation and Gaussian noise. It is shown that, when a noise component is present in the pump, an increase of its harmonic component to values close to the threshold leads to a sharp decrease in the signal-noise ratio at the amplifier output.
Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui
2016-11-15
Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.
Global, Multi-Objective Trajectory Optimization With Parametric Spreading
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.
2017-01-01
Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.
Computer aided system for parametric design of combination die
NASA Astrophysics Data System (ADS)
Naranje, Vishal G.; Hussein, H. M. A.; Kumar, S.
2017-09-01
In this paper, a computer aided system for parametric design of combination dies is presented. The system is developed using knowledge based system technique of artificial intelligence. The system is capable to design combination dies for production of sheet metal parts having punching and cupping operations. The system is coded in Visual Basic and interfaced with AutoCAD software. The low cost of the proposed system will help die designers of small and medium scale sheet metal industries for design of combination dies for similar type of products. The proposed system is capable to reduce design time and efforts of die designers for design of combination dies.
Pitch-Learning Algorithm For Speech Encoders
NASA Technical Reports Server (NTRS)
Bhaskar, B. R. Udaya
1988-01-01
Adaptive algorithm detects and corrects errors in sequence of estimates of pitch period of speech. Algorithm operates in conjunction with techniques used to estimate pitch period. Used in such parametric and hybrid speech coders as linear predictive coders and adaptive predictive coders.
Parametric Mass Modeling for Mars Entry, Descent and Landing System Analysis Study
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Komar, D. R.
2011-01-01
This paper provides an overview of the parametric mass models used for the Entry, Descent, and Landing Systems Analysis study conducted by NASA in FY2009-2010. The study examined eight unique exploration class architectures that included elements such as a rigid mid-L/D aeroshell, a lifting hypersonic inflatable decelerator, a drag supersonic inflatable decelerator, a lifting supersonic inflatable decelerator implemented with a skirt, and subsonic/supersonic retro-propulsion. Parametric models used in this study relate the component mass to vehicle dimensions and mission key environmental parameters such as maximum deceleration and total heat load. The use of a parametric mass model allows the simultaneous optimization of trajectory and mass sizing parameters.
Adelian, R.; Jamali, J.; Zare, N.; Ayatollahi, S. M. T.; Pooladfar, G. R.; Roustaei, N.
2015-01-01
Background: Identification of the prognostic factors for survival in patients with liver transplantation is challengeable. Various methods of survival analysis have provided different, sometimes contradictory, results from the same data. Objective: To compare Cox’s regression model with parametric models for determining the independent factors for predicting adults’ and pediatrics’ survival after liver transplantation. Method: This study was conducted on 183 pediatric patients and 346 adults underwent liver transplantation in Namazi Hospital, Shiraz, southern Iran. The study population included all patients undergoing liver transplantation from 2000 to 2012. The prognostic factors sex, age, Child class, initial diagnosis of the liver disease, PELD/MELD score, and pre-operative laboratory markers were selected for survival analysis. Result: Among 529 patients, 346 (64.5%) were adult and 183 (34.6%) were pediatric cases. Overall, the lognormal distribution was the best-fitting model for adult and pediatric patients. Age in adults (HR=1.16, p<0.05) and weight (HR=2.68, p<0.01) and Child class B (HR=2.12, p<0.05) in pediatric patients were the most important factors for prediction of survival after liver transplantation. Adult patients younger than the mean age and pediatric patients weighing above the mean and Child class A (compared to those with classes B or C) had better survival. Conclusion: Parametric regression model is a good alternative for the Cox’s regression model. PMID:26306158
NASA Astrophysics Data System (ADS)
Ali Asgarian, M.; Abbasi, M.
2018-04-01
Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.
NASA Technical Reports Server (NTRS)
Stow, W. K.; Cheeseman, C.; Dallam, W.; Dietrich, D.; Dorfman, G.; Fleming, R.; Fries, R.; Guard, W.; Jackson, F.; Jankowski, H.
1975-01-01
Economic benefits studies regarding the application of remote sensing to resource management and the Total Earth Resources for the Shuttle Era (TERSSE) study to outline the structure and development of future systems are used, along with experience from LANDSAT and LACIE, to define the system performance and economics of an operational Earth Resources system. The system is to be based on current (LANDSAT follow-on) technology and its application to high priority resource management missions, such as global crop inventory. The TERSSE Operational System Study (TOSS) investigated system-level design alternatives using economic performance as the evaluation criterion. As such, the TOSS effort represented a significant step forward in the systems engineering and economic analysis of Earth Resources programs. By parametrically relating engineering design parameters, such as sensor performance details, to the economic benefit mechanisms a new level of confidence in the conclusions concerning the implementation of such systems can be reached.
NASA Technical Reports Server (NTRS)
Baum, J. A.; Dumais, P. J.; Mayo, M. G.; Metzger, F. B.; Shenkman, A. M.; Walker, G. G.
1978-01-01
Updated parametric prop-fan data packages are presented and the rationale used in developing the new prop-fan data is detailed. These data represent Hamilton Standard's projections of prop-fan characteristics for aircraft that are expected to be in-service in the 1985 to 1990 time frame. The basic prop-fan configuration was designed for efficient cruise operation at 0.8 Mach number and 10,668M altitude. The design blade tip speed is 244 mps and the design power loading is 301 KW/M squared.
Electrolytic hydrogen production: An analysis and review
NASA Technical Reports Server (NTRS)
Evangelista, J.; Phillips, B.; Gordon, L.
1975-01-01
The thermodynamics of water electrolysis cells is presented, followed by a review of current and future technology of commercial cells. The irreversibilities involved are analyzed and the resulting equations assembled into a computer simulation model of electrolysis cell efficiency. The model is tested by comparing predictions based on the model to actual commercial cell performance, and a parametric investigation of operating conditions is performed. Finally, the simulation model is applied to a study of electrolysis cell dynamics through consideration of an ideal pulsed electrolyzer.
Electronically steerable millimeter wave antenna techniques for space shuttle applications
NASA Technical Reports Server (NTRS)
Kummer, W. H.
1975-01-01
A large multi-function antenna aperture and related components are described which will perform electronic steering of one or more beams for two of the three applications envisioned: (1) communications, (2) radar, and (3) radiometry. The array consists of a 6-meter folded antenna that fits into two pallets. The communications frequencies are 20 and 30 GHz, while the radar is to operate at 13.9 GHz. Weight, prime power, and volumes are given parametrically; antenna designs, electronics configurations, and mechanical design were studied.
Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide
NASA Astrophysics Data System (ADS)
Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario
2004-10-01
The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.
Study of thermal management for space platform applications
NASA Technical Reports Server (NTRS)
Oren, J. A.
1980-01-01
Techniques for the management of the thermal energy of large space platforms using many hundreds of kilowatts over a 10 year life span were evaluated. Concepts for heat rejection, heat transport within the vehicle, and interfacing were analyzed and compared. The heat rejection systems were parametrically weight optimized over conditions for heat pipe and pumped fluid approaches. Two approaches to achieve reliability were compared for: performance, weight, volume, projected area, reliability, cost, and operational characteristics. Technology needs are assessed and technology advancement recommendations are made.
Advanced propulsion system for hybrid vehicles
NASA Technical Reports Server (NTRS)
Norrup, L. V.; Lintz, A. T.
1980-01-01
A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Separation and purification of enzymes by continuous pH-parametric pumping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S.Y.; Lin, C.K.; Juang, L.Y.
1985-10-01
Trypsin and chymotrypsin were separated from porcine pancreas extract by continuous pH-parametric pumping. CHOM (chicken ovomucoid) was convalently bound to laboratory-prepared crab chitin with glutaraldehyde to form an affinity adsorbent of trypsin. The pH levels of top and bottom feeds were 8.0 and 2.5, respectively. Similar inhibitor, DKOM (duck ovomucoid), and pH levels 8.0 and 2.0 for top and bottom feeds, respectively, were used for separation and purification of chymotrypsin. e-Amino caproyl-D-tryptophan methyl ester was coupled to chitosan to form an affinity adsorbent for stem bromelain. The pH levels were 8.7 and 3.0. Separation continued fairly well with high yield,more » e.g., 95% recovery of trypsin after continuous pumping of 10 cycles. Optimum operational conditions for concentration and purification of these enzymes were investigated. The results showed that the continuous pH-parametric pumping coupled with affinity chromatography is effective for concentration and purification of enzymes. 19 references.« less
NASA Astrophysics Data System (ADS)
Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.
2009-07-01
We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.
The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data
NASA Astrophysics Data System (ADS)
Peres, Leonardo de Faria; Lucena, Andrews José de; Rotunno Filho, Otto Corrêa; França, José Ricardo de Almeida
2018-02-01
The aim of this work is to study urban heat island (UHI) in Metropolitan Area of Rio de Janeiro (MARJ) based on the analysis of land-surface temperature (LST) and land-use patterns retrieved from Landsat-5/Thematic Mapper (TM), Landsat-7/Enhanced Thematic Mapper Plus (ETM+) and Landsat-8/Operational Land Imager (OLI) and Thermal Infrared Sensors (TIRS) data covering a 32-year period between 1984 and 2015. LST temporal evolution is assessed by comparing the average LST composites for 1984-1999 and 2000-2015 where the parametric Student t-test was conducted at 5% significance level to map the pixels where LST for the more recent period is statistically significantly greater than the previous one. The non-parametric Mann-Whitney-Wilcoxon rank sum test has also confirmed at the same 5% significance level that the more recent period (2000-2015) has higher LST values. UHI intensity between ;urban; and ;rural/urban low density; (;vegetation;) areas for 1984-1999 and 2000-2015 was established and confirmed by both parametric and non-parametric tests at 1% significance level as 3.3 °C (5.1 °C) and 4.4 °C (7.1 °C), respectively. LST has statistically significantly (p-value < 0.01) increased over time in two of three land cover classes (;urban; and ;urban low density;), respectively by 1.9 °C and 0.9 °C, except in ;vegetation; class. A spatial analysis was also performed to identify the urban pixels within MARJ where UHI is more intense by subtracting the LST of these pixels from the LST mean value of ;vegetation; land-use class.
Parabose Squeezed Operator and Its Applications
NASA Astrophysics Data System (ADS)
Yang, Wei-Min; Jing, Si-Cong
2001-03-01
By virtue of the parabose squeezed operator, propagator of a parabose parametric amplifier, explicit forms of parabose squeezed number states and normalization factors of excitation states on a parabose squeezed vacuum state are calculated, which generalize the relevant results from ordinary Bose statistics to the parabose case. The project supported by National Natural Science Foundation of China under Grant Nos 19771077, 10075042, and LWTZ 1298 of the Chinese Academy of Sciences
Impedance based time-domain modeling of lithium-ion batteries: Part I
NASA Astrophysics Data System (ADS)
Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen
2018-03-01
This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.
The average receiver operating characteristic curve in multireader multicase imaging studies
Samuelson, F W
2014-01-01
Objective: In multireader, multicase (MRMC) receiver operating characteristic (ROC) studies for evaluating medical imaging systems, the area under the ROC curve (AUC) is often used as a summary metric. Owing to the limitations of AUC, plotting the average ROC curve to accompany the rigorous statistical inference on AUC is recommended. The objective of this article is to investigate methods for generating the average ROC curve from ROC curves of individual readers. Methods: We present both a non-parametric method and a parametric method for averaging ROC curves that produce a ROC curve, the area under which is equal to the average AUC of individual readers (a property we call area preserving). We use hypothetical examples, simulated data and a real-world imaging data set to illustrate these methods and their properties. Results: We show that our proposed methods are area preserving. We also show that the method of averaging the ROC parameters, either the conventional bi-normal parameters (a, b) or the proper bi-normal parameters (c, da), is generally not area preserving and may produce a ROC curve that is intuitively not an average of multiple curves. Conclusion: Our proposed methods are useful for making plots of average ROC curves in MRMC studies as a companion to the rigorous statistical inference on the AUC end point. The software implementing these methods is freely available from the authors. Advances in knowledge: Methods for generating the average ROC curve in MRMC ROC studies are formally investigated. The area-preserving criterion we defined is useful to evaluate such methods. PMID:24884728
NASA Technical Reports Server (NTRS)
1973-01-01
Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.
NASA Technical Reports Server (NTRS)
Malpica, Carlos
2017-01-01
This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.
EC/LSS thermal control system study for the space shuttle
NASA Technical Reports Server (NTRS)
Howell, H. R.
1972-01-01
The results of a parametric weight analysis of heat rejection systems for the space shuttle orbiter are presented. Integrating the suborbital heat rejection system with the overall heat rejection system design and the possible use of a common system for both on-orbit and suborbital operations require an overall system and parametric analyses applicable to all mission phases. The concept of equivalent weights, with weight penalties assigned for power, induced aircraft drag and radiator area is used to determine weight estimates for the following candidate systems: vapor cycle refrigeration, gas cycle refrigeration, radiators (space and atmospheric convectors), expendable heat sinks, and ram air. The orbiter power penalty, ram air penalty, and radiator weight penalty are analyzed. The vapor compression system and an expendable fluid system utilizing a multifluid spraying flash evaporator are selected as the two most promising systems. These are used for maximum on-orbit heat rejection in combination with or as a supplement to a space radiator.
NASA Astrophysics Data System (ADS)
Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.
2009-07-01
Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.
The costs of transit fare prepayment programs : a parametric cost analysis.
DOT National Transportation Integrated Search
Despite the renewed interest in transit fare prepayment plans over the past : 10 years, few transit managers have a clear idea of how much it costs to operate : and maintain a fare prepayment program. This report provides transit managers : with the ...
A simplified model of a mechanical cooling tower with both a fill pack and a coil
NASA Astrophysics Data System (ADS)
Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan
2017-11-01
Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.
OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser
Dorrer, C.; Consentino, A.; Irwin, D.; ...
2015-09-01
OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Wang, Guobao; Qi, Jinyi
2010-03-07
Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.
A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.
Azimi, Seyed Mohammad; Afsharnia, Saeed
2017-01-01
This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borges de Sousa, P.; Morrone, M.; Hovenga, N.; Garion, C.; van Weelderen, R.; Koettig, T.; Bremer, J.
2017-12-01
The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will increase the accelerator’s luminosity by a factor 10 beyond its original design value, giving rise to more collisions and generating an intense flow of debris. A new beam screen has been designed for the inner triplets that incorporates tungsten alloy blocks to shield the superconducting magnets and the 1.9 K superfluid helium bath from incoming radiation. These screens will operate between 60 K and 80 K and are designed to sustain a nominal head load of 15 Wm-1, over 10 times the nominal heat load for the original LHC design. Their overall new and more complex design requires them and their constituent parts to be characterised from a thermal performance standpoint. In this paper we describe the experimental parametric study carried out on two principal thermal components: a representative sample of the beam screen with a tungsten-based alloy block and thermal link and the supporting structure composed of an assembly of ceramic spheres and titanium springs. Results from both studies are shown and discussed regarding their impact on the baseline considerations for the thermal design of the beam screens.
Characterization of mixing in an electroosmotically stirred continuous micro mixer
NASA Astrophysics Data System (ADS)
Beskok, Ali
2005-11-01
We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms.
Mei, Yefeng; Guo, Xianxin; Zhao, Luwei; Du, Shengwang
2017-10-13
We report the demonstration of a mirrorless optical parametric oscillator with a tunable threshold in laser-cooled atoms with four-wave mixing (FWM) using electromagnetically induced transparency. Driven by two classical laser beams, the generated Stokes and anti-Stokes fields counterpropagate and build up efficient intrinsic feedback through the nonlinear FWM process. This feedback does not involve any cavity or spatially distributed microstructures. We observe the transition of photon correlation properties from the biphoton quantum regime (below the threshold) to the oscillation regime (above the threshold). The pump threshold can be tuned by varying the operating parameters. We achieve the oscillation with a threshold as low as 15 μW.
Matrix Product Operator Simulations of Quantum Algorithms
2015-02-01
parallel to the Grover subspace parametrically: (Zi|φ〉)‖ = s cos γ|α〉+ s sin γ|β〉, s = √ a(k)2 (N − 1)2 + b(k)2, γ = tan −1 ( b(k)(N − 1) a(k) ) (6.32) Each...of this vector parallel to the Grover subspace in parametric form: (XiZi|φ〉)‖ = s cos(γ)|α〉+ s sin(γ)|β〉, s = 1√ N − 1 , γ = tan −1 ( cot (( k + 1 2 ) θ...quant- ph/0001106, 2000. Bibliography 146 [30] Jérémie Roland and Nicolas J Cerf. Quantum search by local adiabatic evolution. Physical Review A, 65(4
3-D Human body models in C.A.D. : Anthropometric Aspects
NASA Astrophysics Data System (ADS)
Renaud, C.; Steck, R.; Pineau, J. C.
1986-07-01
Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.
A parametric symmetry breaking transducer
NASA Astrophysics Data System (ADS)
Eichler, Alexander; Heugel, Toni L.; Leuch, Anina; Degen, Christian L.; Chitra, R.; Zilberberg, Oded
2018-06-01
Force detectors rely on resonators to transduce forces into a readable signal. Usually, these resonators operate in the linear regime and their signal appears amidst a competing background comprising thermal or quantum fluctuations as well as readout noise. Here, we demonstrate a parametric symmetry breaking transduction method that leads to a robust nonlinear force detection in the presence of noise. The force signal is encoded in the frequency at which the system jumps between two phase states which are inherently protected against phase noise. Consequently, the transduction effectively decouples from readout noise channels. For a controlled demonstration of the method, we experiment with a macroscopic doubly clamped string. Our method provides a promising paradigm for high-precision force detection.
Organizing Space Shuttle parametric data for maintainability
NASA Technical Reports Server (NTRS)
Angier, R. C.
1983-01-01
A model of organization and management of Space Shuttle data is proposed. Shuttle avionics software is parametrically altered by a reconfiguration process for each flight. As the flight rate approaches an operational level, current methods of data management would become increasingly complex. An alternative method is introduced, using modularized standard data, and its implications for data collection, integration, validation, and reconfiguration processes are explored. Information modules are cataloged for later use, and may be combined in several levels for maintenance. For each flight, information modules can then be selected from the catalog at a high level. These concepts take advantage of the reusability of Space Shuttle information to reduce the cost of reconfiguration as flight experience increases.
Once-through integral system (OTIS): Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloudemans, J R
1986-09-01
A scaled experimental facility, designated the once-through integral system (OTIS), was used to acquire post-small break loss-of-coolant accident (SBLOCA) data for benchmarking system codes. OTIS was also used to investigate the application of the Abnormal Transient Operating Guidelines (ATOG) used in the Babcock and Wilcox (B and W) designed nuclear steam supply system (NSSS) during the course of an SBLOCA. OTIS was a single-loop facility with a plant to model power scale factor of 1686. OTIS maintained the key elevations, approximate component volumes, and loop flow resistances, and simulated the major component phenomena of a B and W raised-loop nuclearmore » plant. A test matrix consisting of 15 tests divided into four categories was performed. The largest group contained 10 tests and was defined to parametrically obtain an extensive set of plant-typical experimental data for code benchmarking. Parameters such as leak size, leak location, and high-pressure injection (HPI) shut-off head were individually varied. The remaining categories were specified to study the impact of the ATOGs (2 tests), to note the effect of guard heater operation on observed phenomena (2 tests), and to provide a data set for comparison with previous test experience (1 test). A summary of the test results and a detailed discussion of Test 220100 is presented. Test 220100 was the nominal or reference test for the parametric studies. This test was performed with a scaled 10-cm/sup 2/ leak located in the cold leg suction piping.« less
Simulation of Propellant Loading System Senior Design Implement in Computer Algorithm
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak
2010-01-01
Propellant loading from the Storage Tank to the External Tank is one of the very important and time consuming pre-launch ground operations for the launch vehicle. The propellant loading system is a complex integrated system involving many physical components such as the storage tank filled with cryogenic fluid at a very low temperature, the long pipe line connecting the storage tank with the external tank, the external tank along with the flare stack, and vent systems for releasing the excess fuel. Some of the very important parameters useful for design purpose are the prediction of pre-chill time, loading time, amount of fuel lost, the maximum pressure rise etc. The physics involved for mathematical modeling is quite complex due to the fact the process is unsteady, there is phase change as some of the fuel changes from liquid to gas state, then conjugate heat transfer in the pipe walls as well as between solid-to-fluid region. The simulation is very tedious and time consuming too. So overall, this is a complex system and the objective of the work is student's involvement and work in the parametric study and optimization of numerical modeling towards the design of such system. The students have to first become familiar and understand the physical process, the related mathematics and the numerical algorithm. The work involves exploring (i) improved algorithm to make the transient simulation computationally effective (reduced CPU time) and (ii) Parametric study to evaluate design parameters by changing the operational conditions
Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma
NASA Astrophysics Data System (ADS)
Rehmet, Christophe; Cao, Tengfei; Cheng, Yi
2016-04-01
Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.
NASA Technical Reports Server (NTRS)
Dunbar, D. N.; Tunnah, B. G.
1978-01-01
The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case. The report has sufficient detail for the information of most readers.
Quantitative evaluation of a thrust vector controlled transport at the conceptual design phase
NASA Astrophysics Data System (ADS)
Ricketts, Vincent Patrick
The impetus to innovate, to push the bounds and break the molds of evolutionary design trends, often comes from competition but sometimes requires catalytic political legislature. For this research endeavor, the 'catalyzing legislation' comes in response to the rise in cost of fossil fuels and the request put forth by NASA on aircraft manufacturers to show reduced aircraft fuel consumption of +60% within 30 years. This necessitates that novel technologies be considered to achieve these values of improved performance. One such technology is thrust vector control (TVC). The beneficial characteristic of thrust vector control technology applied to the traditional tail-aft configuration (TAC) commercial transport is its ability to retain the operational advantage of this highly evolved aircraft type like cabin evacuation, ground operation, safety, and certification. This study explores if the TVC transport concept offers improved flight performance due to synergistically reducing the traditional empennage size, overall resulting in reduced weight and drag, and therefore reduced aircraft fuel consumption. In particular, this study explores if the TVC technology in combination with the reduced empennage methodology enables the TAC aircraft to synergistically evolve while complying with current safety and certification regulation. This research utilizes the multi-disciplinary parametric sizing software, AVD Sizing, developed by the Aerospace Vehicle Design (AVD) Laboratory. The sizing software is responsible for visualizing the total system solution space via parametric trades and is capable of determining if the TVC technology can enable the TAC aircraft to synergistically evolve, showing marked improvements in performance and cost. This study indicates that the TVC plus reduced empennage methodology shows marked improvements in performance and cost.
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters.
Angelis, Georgios I; Thielemans, Kris; Tziortzi, Andri C; Turkheimer, Federico E; Tsoumpas, Charalampos
2011-07-01
In dynamic positron emission tomography data many researchers have attempted to exploit kinetic models within reconstruction such that parametric images are estimated directly from measurements. This work studies a direct parametric maximum likelihood expectation maximization algorithm applied to [(18)F]DOPA data using reference-tissue input function. We use a modified version for direct reconstruction with a gradually descending scheme of subsets (i.e. 18-6-1) initialized with the FBP parametric image for faster convergence and higher accuracy. The results compared with analytic reconstructions show quantitative robustness (i.e. minimal bias) and clinical reproducibility within six human acquisitions in the region of clinical interest. Bland-Altman plots for all the studies showed sufficient quantitative agreement between the direct reconstructed parametric maps and the indirect FBP (--0.035x+0.48E--5). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Flores, Robert Joseph
Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load being met in an effort to reduce demand. In addition, buildings with large thermal demand have access to the least expensive natural gas, lowering the cost of operating distributed generation. Recovery of exhaust heat from DG reduces cost only if the buildings thermal demand coincides with the electrical demand. Capacity limits exist where annual savings from operation of distributed generation decrease if further generation is installed. For low operating cost generators, the approximate limit is the average building load. This limit decreases as operating costs increase. In addition, a high capital cost of distributed generation can be accepted if generator operating costs are low. As generator operating costs increase, capital cost must decrease if a positive economic performance is desired.
Parametric study of potential early commercial power plants Task 3-A MHD cost analysis
NASA Technical Reports Server (NTRS)
1983-01-01
The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.
Advanced Concepts in Josephson Junction Reflection Amplifiers
NASA Astrophysics Data System (ADS)
Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti
2014-06-01
Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.
Predicting procedural pain after ureteroscopy: does hydrodistention play a role?
Gul, Zeynep; Alazem, Kareem; Li, Ina; Monga, Manoj
2016-01-01
ABSTRACT Purpose: To identify perioperative predictors of immediate pain after ureteroscopy, specifically evaluating the impact of hydrodistention from irrigation on pain. Materials and Methods: We retrospectively identified patients who underwent ureteroscopy for the treatment of calculi. Data recorded for these patients included their maximum pain score in the post-anesthesia care unit (PACU), average flow rate of irrigant used during the procedure, patient and stone characteristics, operative procedure, and details of patients' immediate, post-operative course. Spearman's rho was used to determine the relationship between non-parametric, continuous variables. Then, a linear regression was performed to assess which variables could predict the peak pain score. Results: A total of 131 patients were included in the study. A non-parametric correlation analysis revealed that maximum pain score was negatively correlated with being male (r = −0.18, p=0.04), age (r = −0.34, p<0.001), and post-op foley placement (r = −0.20, p=0.02) but positively correlated with the preoperative pain score (r = 0.41, p<0.001), time in the PACU (r = 0.19, p = 0.03), and the morphine equivalent dose (MED) of narcotics administered in the PACU (r = 0.67, p<0.001). On linear regression, the significant variables were age, preoperative pain score, and stent placement. For every ten-year increase in age post-operative pain score decreased by 4/10 of a point (p = 0.03). For every 1 point increase in preoperative pain score there was a 3/10 of a point increase in the maximum pain score (p = 0.01), and leaving a stent in place post-operatively was associated with a 1.6 point increase in the maximum pain score. Conclusions: Hydrodistention does not play a role in post-ureteroscopy pain. Patients who are younger, have higher preoperative pain scores, or who are stented will experience more post-operative pain after ureteroscopy. PMID:27564284
Preliminary calculations related to the accident at Three Mile Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchner, W.L.; Stevenson, M.G.
This report discusses preliminary studies of the Three Mile Island Unit 2 (TMI-2) accident based on available methods and data. The work reported includes: (1) a TRAC base case calculation out to 3 hours into the accident sequence; (2) TRAC parametric calculations, these are the same as the base case except for a single hypothetical change in the system conditions, such as assuming the high pressure injection (HPI) system operated as designed rather than as in the accident; (3) fuel rod cladding failure, cladding oxidation due to zirconium metal-steam reactions, hydrogen release due to cladding oxidation, cladding ballooning, cladding embrittlement,more » and subsequent cladding breakup estimates based on TRAC calculated cladding temperatures and system pressures. Some conclusions of this work are: the TRAC base case accident calculation agrees very well with known system conditions to nearly 3 hours into the accident; the parametric calculations indicate that, loss-of-core cooling was most influenced by the throttling of High-Pressure Injection (HPI) flows, given the accident initiating events and the pressurizer electromagnetic-operated valve (EMOV) failing to close as designed; failure of nearly all the rods and gaseous fission product gas release from the failed rods is predicted to have occurred at about 2 hours and 30 minutes; cladding oxidation (zirconium-steam reaction) up to 3 hours resulted in the production of approximately 40 kilograms of hydrogen.« less
Injector design guidelines for gas/liquid propellant systems
NASA Technical Reports Server (NTRS)
Falk, A. Y.; Burick, R. J.
1973-01-01
Injector design guidelines are provided for gas/liquid propellant systems. Information was obtained from a 30-month applied research program encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space storable propellants. The gas/liquid propellant combination studied was FLOX (82.6% F2)/ ambient temperature gaseous methane. Design criteria that provide for simultaneous attainment of high performance and chamber compatibility are presented for both injector types. Parametric data are presented that are applicable for the design of circular coaxial and like-doublet injectors that operate with design parameters similar to those employed. However, caution should be exercised when applying these data to propellant combinations whose elements operate in ranges considerably different from those employed in this study.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2015-01-01
Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.
Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2015-01-01
Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at high pressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NO(x) emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8.
Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods
NASA Technical Reports Server (NTRS)
Olds, John R.; Walberg, Gerald D.
1993-01-01
Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.
Satellite Power Systems (SPS) concept definition study. Volume 6: In-depth element investigation
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
The fabrication parameters of GaAs MESFET solid-state amplifiers considering a power added conversion efficiency of at least 80% and power gains of at least 10dB were determined. Operating frequency was 2.45 GHz although 914 MHz was also considered. Basic circuit to be considered was either Class C or Class E amplification. Two modeling programs were utilized. The results of several computer calculations considering differing loads, temperatures, and efficiencies are presented. Parametric data in both tabular and plotted form are presented.
High-order dispersion in chirped-pulse oscillators.
Kalashnikov, Vladimir L; Fernández, Alma; Apolonski, Alexander
2008-03-17
The effects of high-order dispersion on a chirped-pulse oscillator operating in the positive dispersion regime were studied both theoretically and experimentally. It was found that odd and negative even high-order dispersions impair the oscillator stability owing to resonance with the dispersion waves, but can broaden the spectrum as in the case of continuum generation in the fibers. Positive fourth-order dispersion enhances the stability and shifts the stability range into negative dispersion. The destabilization mechanism was found to be a parametrical instability which causes noisy mode locking around zero dispersion.
Parametric-Studies and Data-Plotting Modules for the SOAP
NASA Technical Reports Server (NTRS)
2008-01-01
"Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.
Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier
NASA Astrophysics Data System (ADS)
Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.
2015-02-01
The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.
CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2002-07-01
Proposed activities for quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) Continue the parametric study of cofiring of pulverized coal and LB in the boiler burner, and determining the combustor performance and emissions of NO, CO, CO{sub 2}, PO{sub 2} and P{sub 4}O{sub 10}, etc. The air-fuel ratio, swirl number of the secondary air stream and moisture effects will also be investigated (Task 4). Gasification: (Task 3) (2) Measuring the temperature profile for chicken litter biomass under different operating conditions. (3) Product gas species for different operating conditions for different fuels. (4) Determining the bed ash composition for differentmore » fuels. (5) Determining the gasification efficiency for different operating conditions. Activities Achieved during quarter 8 (3/15/2001--6/14/2002), Boiler Burner Simulation and Experiments: (1) The evaporation and phosphorus combustion models have been incorporated into the PCGC-2 code. Mr. Wei has successfully defended his Ph.D. proposal on Coal: LB modeling studies (Task 4, Appendix C). (2) Reburn experiments with both low and high phosphorus feedlot biomass has been performed (Task 2, Appendix A). (3) Parametric studies on the effect of air-fuel ratio, swirl number of the secondary air stream and moisture effects have been investigated (Task 2, Appendix A). (4) Three abstracts have been submitted to the American Society of Agricultural Engineers Annual International meeting at Chicago in July 2002. Three part paper dealing with fuel properties, cofiring, large scale testing are still under review in the Journal of Fuel. Gasification: (Task 3, Appendix B) (5) Items No. 2, and 3 are 95% complete, with four more experiments yet to be performed with coal and chicken litter biomass blends. (6) Item No. 4, and 5 shall be performed after completion of all the experiments.« less
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
Uncertainty importance analysis using parametric moment ratio functions.
Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen
2014-02-01
This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.
Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser
NASA Astrophysics Data System (ADS)
Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun
2017-01-01
Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.
Schmidt, K; Witte, H
1999-11-01
Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.
Siciliani, Luigi
2006-01-01
Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.
NASA Astrophysics Data System (ADS)
Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo
2017-12-01
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.
Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces
NASA Astrophysics Data System (ADS)
Vinnakota, Raj; Genov, Dentcho
We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.
Parametric Modeling of the Safety Effects of NextGen Terminal Maneuvering Area Conflict Scenarios
NASA Technical Reports Server (NTRS)
Rogers, William H.; Waldron, Timothy P.; Stroiney, Steven R.
2011-01-01
The goal of this work was to analytically identify and quantify the issues, challenges, technical hurdles, and pilot-vehicle interface issues associated with conflict detection and resolution (CD&R)in emerging operational concepts for a NextGen terminal aneuvering area, including surface operations. To this end, the work entailed analytical and trade studies focused on modeling the achievable safety benefits of different CD&R strategies and concepts in the current and future airport environment. In addition, crew-vehicle interface and pilot performance enhancements and potential issues were analyzed based on review of envisioned NextGen operations, expected equipage advances, and human factors expertise. The results of perturbation analysis, which quantify the high-level performance impact of changes to key parameters such as median response time and surveillance position error, show that the analytical model developed could be useful in making technology investment decisions.
Automatic identification of cochlear implant electrode arrays for post-operative assessment
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Schuman, Theodore A.; Wright, Charles G.; Labadie, Robert F.; Dawant, Benoit M.
2011-03-01
Cochlear implantation is a procedure performed to treat profound hearing loss. Accurately determining the postoperative position of the implant in vivo would permit studying the correlations between implant position and hearing restoration. To solve this problem, we present an approach based on parametric Gradient Vector Flow snakes to segment the electrode array in post-operative CT. By combining this with existing methods for localizing intra-cochlear anatomy, we have developed a system that permits accurate assessment of the implant position in vivo. The system is validated using a set of seven temporal bone specimens. The algorithms were run on pre- and post-operative CTs of the specimens, and the results were compared to histological images. It was found that the position of the arrays observed in the histological images is in excellent agreement with the position of their automatically generated 3D reconstructions in the CT scans.
Magnetocardiography measurements with 4He vector optically pumped magnetometers at room temperature
NASA Astrophysics Data System (ADS)
Morales, S.; Corsi, M. C.; Fourcault, W.; Bertrand, F.; Cauffet, G.; Gobbo, C.; Alcouffe, F.; Lenouvel, F.; Le Prado, M.; Berger, F.; Vanzetto, G.; Labyt, E.
2017-09-01
In this paper, we present a proof of concept study which demonstrates for the first time the possibility of recording magnetocardiography (MCG) signals with 4He vector optically pumped magnetometers (OPM) operated in a gradiometer mode. Resulting from a compromise between sensitivity, size and operability in a clinical environment, the developed magnetometers are based on the parametric resonance of helium in a zero magnetic field. Sensors are operated at room temperature and provide a tri-axis vector measurement of the magnetic field. Measured sensitivity is around 210 f T (√Hz)-1 in the bandwidth (2 Hz; 300 Hz). MCG signals from a phantom and two healthy subjects are successfully recorded. Human MCG data obtained with the OPMs are compared to reference electrocardiogram recordings: similar heart rates, shapes of the main patterns of the cardiac cycle (P/T waves, QRS complex) and QRS widths are obtained with both techniques.
Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A
2011-03-29
During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.
Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin; Kumar, Suresh; Xu, Lixin
2014-02-01
The parametrizations q = q 0+ q 1 z and q = q 0+ q 1(1 - a/ a 0) (Chevallier-Polarski-Linder parametrization) of the deceleration parameter, which are linear in cosmic redshift z and scale factor a , have been frequently utilized in the literature to study the kinematics of the Universe. In this paper, we follow a strategy that leads to these two well-known parametrizations of the deceleration parameter as well as an additional new parametrization, q = q 0+ q 1(1 - t/ t 0), which is linear in cosmic time t. We study the features of this linearly time-varying deceleration parameter in contrast with the other two linear parametrizations. We investigate in detail the kinematics of the Universe by confronting the three models with the latest observational data. We further study the dynamics of the Universe by considering the linearly time-varying deceleration parameter model in comparison with the standard ΛCDM model. We also discuss the future of the Universe in the context of the models under consideration.
NASA Astrophysics Data System (ADS)
Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas
2017-11-01
While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.
Combining large number of weak biomarkers based on AUC.
Yan, Li; Tian, Lili; Liu, Song
2015-12-20
Combining multiple biomarkers to improve diagnosis and/or prognosis accuracy is a common practice in clinical medicine. Both parametric and non-parametric methods have been developed for finding the optimal linear combination of biomarkers to maximize the area under the receiver operating characteristic curve (AUC), primarily focusing on the setting with a small number of well-defined biomarkers. This problem becomes more challenging when the number of observations is not order of magnitude greater than the number of variables, especially when the involved biomarkers are relatively weak. Such settings are not uncommon in certain applied fields. The first aim of this paper is to empirically evaluate the performance of existing linear combination methods under such settings. The second aim is to propose a new combination method, namely, the pairwise approach, to maximize AUC. Our simulation studies demonstrated that the performance of several existing methods can become unsatisfactory as the number of markers becomes large, while the newly proposed pairwise method performs reasonably well. Furthermore, we apply all the combination methods to real datasets used for the development and validation of MammaPrint. The implication of our study for the design of optimal linear combination methods is discussed. Copyright © 2015 John Wiley & Sons, Ltd.
Combining large number of weak biomarkers based on AUC
Yan, Li; Tian, Lili; Liu, Song
2018-01-01
Combining multiple biomarkers to improve diagnosis and/or prognosis accuracy is a common practice in clinical medicine. Both parametric and non-parametric methods have been developed for finding the optimal linear combination of biomarkers to maximize the area under the receiver operating characteristic curve (AUC), primarily focusing on the setting with a small number of well-defined biomarkers. This problem becomes more challenging when the number of observations is not order of magnitude greater than the number of variables, especially when the involved biomarkers are relatively weak. Such settings are not uncommon in certain applied fields. The first aim of this paper is to empirically evaluate the performance of existing linear combination methods under such settings. The second aim is to propose a new combination method, namely, the pairwise approach, to maximize AUC. Our simulation studies demonstrated that the performance of several existing methods can become unsatisfactory as the number of markers becomes large, while the newly proposed pairwise method performs reasonably well. Furthermore, we apply all the combination methods to real datasets used for the development and validation of MammaPrint. The implication of our study for the design of optimal linear combination methods is discussed. PMID:26227901
Parametric models of reflectance spectra for dyed fabrics
NASA Astrophysics Data System (ADS)
Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph
2016-05-01
This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.
Parametric analysis of a down-scaled turbo jet engine suitable for drone and UAV propulsion
NASA Astrophysics Data System (ADS)
Wessley, G. Jims John; Chauhan, Swati
2018-04-01
This paper presents a detailed study on the need for downscaling gas turbine engines for UAV and drone propulsion. Also, the procedure for downscaling and the parametric analysis of a downscaled engine using Gas Turbine Simulation Program software GSP 11 is presented. The need for identifying a micro gas turbine engine in the thrust range of 0.13 to 4.45 kN to power UAVs and drones weighing in the range of 4.5 to 25 kg is considered and in order to meet the requirement a parametric analysis on the scaled down Allison J33-A-35 Turbojet engine is performed. It is evident from the analysis that the thrust developed by the scaled engine and the Thrust Specific Fuel Consumption TSFC depends on pressure ratio, mass flow rate of air and Mach number. A scaling factor of 0.195 corresponding to air mass flow rate of 7.69 kg/s produces a thrust in the range of 4.57 to 5.6 kN while operating at a Mach number of 0.3 within the altitude of 5000 to 9000 m. The thermal and overall efficiency of the scaled engine is found to be 67% and 75% respectively for a pressure ratio of 2. The outcomes of this analysis form a strong base for further analysis, design and fabrication of micro gas turbine engines to propel future UAVs and drones.
Lightweight moving radiators for heat rejection in space
NASA Technical Reports Server (NTRS)
Knapp, K.
1981-01-01
Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Kenany, S.; Anil, M. A.; Backes, K. M.
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
Design and operational experience of a microwave cavity axion detector for the 20 – 100 μ eV range
Al Kenany, S.; Anil, M. A.; Backes, K. M.; ...
2017-02-09
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the 5-25 GHz range (~20-100 eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
Parametric estimation for reinforced concrete relief shelter for Aceh cases
NASA Astrophysics Data System (ADS)
Atthaillah; Saputra, Eri; Iqbal, Muhammad
2018-05-01
This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.
Parametric Analysis and Safety Concepts of CWR Track Buckling.
DOT National Transportation Integrated Search
1993-12-01
The report presents a comprehensive study of continuous welded rail (CWR) track buckling strength as influenced by the range of all key parameters such as the lateral, torsional and longitudinal resistance, vehicle loads, etc. The parametric study pr...
Temperature Dependence of Parametric Phenomenon in Airborne Ultrasound for Temperature Measurement
NASA Astrophysics Data System (ADS)
Kon, Akihiko; Wakatsuki, Naoto; Mizutani, Koichi
2008-08-01
The temperature dependence of parametric phenomenon in air was experimentally studied. It was confirmed from experimental data that the amplitude of upper sideband sound with a frequency of 36.175 kHz, which is caused by parametric phenomenon between high-power ultrasound with a frequency of 20.175 kHz and another normal sound with a frequency of 16.0 kHz, is proportional to -0.88×10-4×(T+273.15). This temperature dependence of the amplitude of upper sideband sound caused by the parametric phenomenon suggests a simple and effective method of temperature measurement.
NASA Technical Reports Server (NTRS)
Hart, S. W.
1982-01-01
A preliminary characterization of Orbital Maneuvering System (OMS) and Reaction Control System (RCS) engine point designs over a range of thrust and chamber pressure for several hydrocarbon fuels is reported. OMS and RCS engine point designs were established in two phases comprising baseline and parametric designs. Interface pressures, performance and operating parameters, combustion chamber cooling and turboprop requirements, component weights and envelopes, and propellant conditioning requirements for liquid to vapor phase engine operation are defined.
Commercial launch systems: A risky investment?
NASA Astrophysics Data System (ADS)
Dupnick, Edwin; Skratt, John
1996-03-01
A myriad of evolutionary paths connect the current state of government-dominated space launch operations to true commercial access to space. Every potential path requires the investment of private capital sufficient to fund the commercial venture with a perceived risk/return ratio acceptable to the investors. What is the private sector willing to invest? Does government participation reduce financial risk? How viable is a commercial launch system without government participation and support? We examine the interplay between various forms of government participation in commercial launch system development, alternative launch system designs, life cycle cost estimates, and typical industry risk aversion levels. The boundaries of this n-dimensional envelope are examined with an ECON-developed business financial model which provides for the parametric assessment and interaction of SSTO design variables (including various operational scenarios with financial variables including debt/equity assumptions, and commercial enterprise burden rates on various functions. We overlay this structure with observations from previous ECON research which characterize financial risk aversion levels for selected industrial sectors in terms of acceptable initial lump-sum investments, cumulative investments, probability of failure, payback periods, and ROI. The financial model allows the construction of parametric tradeoffs based on ranges of variables which can be said to actually encompass the ``true'' cost of operations and determine what level of ``true'' costs can be tolerated by private capitalization.
Transformation-invariant and nonparametric monotone smooth estimation of ROC curves.
Du, Pang; Tang, Liansheng
2009-01-30
When a new diagnostic test is developed, it is of interest to evaluate its accuracy in distinguishing diseased subjects from non-diseased subjects. The accuracy of the test is often evaluated by receiver operating characteristic (ROC) curves. Smooth ROC estimates are often preferable for continuous test results when the underlying ROC curves are in fact continuous. Nonparametric and parametric methods have been proposed by various authors to obtain smooth ROC curve estimates. However, there are certain drawbacks with the existing methods. Parametric methods need specific model assumptions. Nonparametric methods do not always satisfy the inherent properties of the ROC curves, such as monotonicity and transformation invariance. In this paper we propose a monotone spline approach to obtain smooth monotone ROC curves. Our method ensures important inherent properties of the underlying ROC curves, which include monotonicity, transformation invariance, and boundary constraints. We compare the finite sample performance of the newly proposed ROC method with other ROC smoothing methods in large-scale simulation studies. We illustrate our method through a real life example. Copyright (c) 2008 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Emanuel, George
1989-01-01
A variety of related scramjet engine topics are examined. The flow is assumed to be 1-D, the gas is thermally and calorically perfect, and focus is on low hypersonic Mach numbers. The thrust and lift of an exposed half nozzle, which is used on the aerospace plane, is evaluated as well as a fully confined nozzle. A rough estimate of the drag of an aerospace plane is provided. Thermal effects and shock waves are next discussed. A parametric scramjet model is then presented based on the influence coefficient method, which evaluates the dominant scramjet processes. The independent parameters are the ratio of specific heats, a nondimensional heat addition parameter, and four Mach numbers. The total thrust generated by the combustor and nozzle is shown to be independent of the heat release distribution and the combustor exit Mach number, providing thermal choking is avoided. An operating condition for the combustor is found that maximizes the thrust. An alternative condition is explored when this optimum is no longer realistic. This condition provides a favorable pressure gradient and a reasonable area ratio for the combustor. Parametric results based on the model is provided.
Sun, Liang; Huo, Wei; Jiao, Zongxia
2017-03-01
This paper studies relative pose control for a rigid spacecraft with parametric uncertainties approaching to an unknown tumbling target in disturbed space environment. State feedback controllers for relative translation and relative rotation are designed in an adaptive nonlinear robust control framework. The element-wise and norm-wise adaptive laws are utilized to compensate the parametric uncertainties of chaser and target spacecraft, respectively. External disturbances acting on two spacecraft are treated as a lumped and bounded perturbation input for system. To achieve the prescribed disturbance attenuation performance index, feedback gains of controllers are designed by solving linear matrix inequality problems so that lumped disturbance attenuation with respect to the controlled output is ensured in the L 2 -gain sense. Moreover, in the absence of lumped disturbance input, asymptotical convergence of relative pose are proved by using the Lyapunov method. Numerical simulations are performed to show that position tracking and attitude synchronization are accomplished in spite of the presence of couplings and uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Ground-based deep-space LADAR for satellite detection: A parametric study
NASA Astrophysics Data System (ADS)
Davey, Kevin F.
1989-12-01
The minimum performance requirements are determined of a ground based infrared LADAR designed to detect deep space satellites, and a candidate sensor design is presented based on current technology. The research examines LADAR techniques and detection methods to determine the optimum LADAR configuration, and then assesses the effects of atmospheric transmission, background radiance, and turbulence across the infrared region to find the optimum laser wavelengths. Diffraction theory is then used in a parametric analysis of the transmitted laser beam and received signal, using a Cassegrainian telescope design and heterodyne detection. The effects of beam truncation and obscuration, heterodyne misalignment, off-boresight detection, and image-pixel geometry are also included in the analysis. The derived equations are then used to assess the feasibility of several candidate designs under a wide range of detection conditions including daylight operation through cirrus. The results show that successful detection is theoretically possible under most conditions by transmitting a high power frequency modulated pulse train from an isotopic 13CO2 laser radiating at 11.17 micrometers, and utilizing post-detection integration and pulse compression techniques.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
NASA Astrophysics Data System (ADS)
Leka, K. D.; Barnes, Graham; Wagner, Eric
2018-04-01
A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.
Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...
2015-03-26
The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
NASA Technical Reports Server (NTRS)
Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)
2001-01-01
Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.
NASA Astrophysics Data System (ADS)
Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent
2018-03-01
In this paper, we use the molecular dynamics simulation method to study gas-wall boundary conditions. Discrete scattering information of gas molecules at the wall surface is obtained from collision simulations. The collision data can be used to identify the accommodation coefficients for parametric wall models such as Maxwell and Cercignani-Lampis scattering kernels. Since these scattering kernels are based on a limited number of accommodation coefficients, we adopt non-parametric statistical methods to construct the kernel to overcome these issues. Different from parametric kernels, the non-parametric kernels require no parameter (i.e. accommodation coefficients) and no predefined distribution. We also propose approaches to derive directly the Navier friction and Kapitza thermal resistance coefficients as well as other interface coefficients associated with moment equations from the non-parametric kernels. The methods are applied successfully to systems composed of CH4 or CO2 and graphite, which are of interest to the petroleum industry.
Parametric resonance in tunable superconducting cavities
NASA Astrophysics Data System (ADS)
Wustmann, Waltraut; Shumeiko, Vitaly
2013-05-01
We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.
Grating lobe elimination in steerable parametric loudspeaker.
Shi, Chuang; Gan, Woon-Seng
2011-02-01
In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.
2011-01-01
The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.
Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald
2007-05-01
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).
Impact of fiber ring laser configuration on detection capabilities in FBG based sensor systems
NASA Astrophysics Data System (ADS)
Osuch, Tomasz; Kossek, Tomasz; Markowski, Konrad
2014-11-01
In this paper fiber ring lasers (FRL) as interrogation units for distributed fiber Bragg grating (FBG) based sensor networks are studied. In particular, two configurations of the fiber laser with erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) as gain medium were analyzed. In the case of EDFA-based fiber interrogation systems, CW as well as active-mode locking operation were taken into account. The influence of spectral overlapping of FBGs spectra on detection capabilities of examined FRLs are presented. Experimental results show that the SOA-based fiber laser interrogation unit can operate as a multi-parametric sensing system. In turn, using an actively mode-locked fiber ring laser with an EDFA, an electronically switchable FBG based sensing system can be realized.
NASA Astrophysics Data System (ADS)
Tuan, Le Anh; Lee, Soon-Geul
2018-03-01
In this study, a new mathematical model of crawler cranes is developed for heavy working conditions, with payload-lifting and boom-hoisting motions simultaneously activated. The system model is built with full consideration of wind disturbances, geometrical nonlinearities, and cable elasticities of cargo lifting and boom luffing. On the basis of this dynamic model, three versions of sliding mode control are analyzed and designed to control five system outputs with only two inputs. When used in complicated operations, the effectiveness of the controllers is analyzed using analytical investigation and numerical simulation. Results indicate the effectiveness of the control algorithms and the proposed dynamic model. The control algorithms asymptotically stabilize the system with finite-time convergences, remaining robust amid disturbances and parametric uncertainties.
Parametrization study of the land multiparameter VTI elastic waveform inversion
NASA Astrophysics Data System (ADS)
He, W.; Plessix, R.-É.; Singh, S.
2018-06-01
Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.
Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu
2010-06-01
An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.
NASA Technical Reports Server (NTRS)
1974-01-01
The effect of aircraft operational techniques in the terminal area on community noise impact of future short-haul aircraft was investigated. These operational techniques affected altitude, flap retraction rate, thrust cutback altitude, amount of thrust cutback, and amount of turning. During landing the parameters varied were glide slope angle, change in slope angle (two segment approach), and flap extension rate. One mechanical-flap (MF) aircraft and one externally-blown-flap (EBF) aircraft were used to study by noise impact at four U.S. airports, Hanscom Field (Boston); Washington National; Midway (Chicago); and Orange County (California). With the exception of Washington National (DCA), the study showed that a reduction of approximately 40 percent in the number of people highly annoyed (as defined in the study) can be obtained by using these operational techniques. At DCA the number of people highly annoyed using the standard procedure was quite low, but it is significant that the minimumimpact case for Runway 36 reduced the number of people highly annoyed to zero using a power cutback and a turning departure path. The evaluation procedures and methodology developed in this study represents an advance in acoustical state-of-the-art and should provide an effective and useful tool for determining aircraft noise impact upon the airport community.
Linear aerospike engine study. [for reusable launch vehicles
NASA Technical Reports Server (NTRS)
Diem, H. G.; Kirby, F. M.
1977-01-01
Parametric data on split-combustor linear engine propulsion systems are presented for use in mixed-mode single-stage-to-orbit (SSTO) vehicle studies. Preliminary design data for two selected engine systems are included. The split combustor was investigated for mixed-mode operations with oxygen/hydrogen propellants used in the inner combustor in Mode 2, and in conjunction with either oxygen/RP-1, oxygen/RJ-5, O2/CH4, or O2/H2 propellants in the outer combustor for Mode 1. Both gas generator and staged combustion power cycles were analyzed for providing power to the turbopumps of the inner and outer combustors. Numerous cooling circuits and cooling fluids (propellants) were analyzed and hydrogen was selected as the preferred coolant for both combustors and the linear aerospike nozzle. The maximum operating chamber pressure was determined to be limited by the availability of hydrogen coolant pressure drop in the coolant circuit.
Shuttle cryogenic supply system optimization study
NASA Technical Reports Server (NTRS)
1971-01-01
Technical information on different cryogenic supply systems is presented for selecting representative designs. Parametric data and sensitivity studies, and an evaluation of related technology status are included. An integrated mathematical model for hardware program support was developed. The life support system, power generation, and propellant supply are considered. The major study conclusions are the following: Optimum integrated systems tend towards maximizing liquid storage. Vacuum jacketing of tanks is a major effect on integrated systems. Subcritical storage advantages over supercritical storage decrease as the quantity of propellant or reactant decreases. Shuttle duty cycles are not severe. The operational mode has a significant effect on reliability. Components are available for most subsystem applications. Subsystems and components require a minimum amount of technology development.
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2012-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions. PMID:23645976
Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.
Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao
2013-01-01
Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.
Ng, S K; McLachlan, G J
2003-04-15
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad
2015-11-01
One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.
Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan
2013-11-18
The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.
Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Fleury, Romain
2018-02-01
We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
Parametric Study and Design of Tab Shape for Improving Aerodynamic Performance of Rotor Blade
NASA Astrophysics Data System (ADS)
Han, Jaeseong; Kwon, Oh Joon
2018-04-01
In the present study, the parametric study was performed to analyze the effect of the tab on the aerodynamic performance and characteristics of rotor blades. Also, the tab shape was designed to improve the aerodynamic performance of rotor blades. A computational fluid dynamics solver based on three-dimensional Reynolds averaged Navier-Stokes equation using an unstructured mesh was used for the parametric study and the tab design. For airfoils, the effect of length and angle of a tab was studied on the aerodynamic characteristics of airfoils. In addition, including those parameters, the effect of a span of a tab was studied for rotor blades in hovering flight. The results of the parametric study were analyzed in terms of change of the aerodynamic performance and characteristics to understand the effect of a tab. Considering the analysis, the design of tab shape was conducted to improve the aerodynamic performance of rotor blades. The simply attached tab to trailing edge of the rotor blades increases the thrust of the rotor blades without significant changing of aerodynamic characteristics of the rotor blades in hovering and forward flight.
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
Fang, Jui; Zhou, Zhuhuang; Chang, Ning-Fang; Wan, Yung-Liang; Tsui, Po-Hsiang
2018-07-01
Hepatic steatosis is an abnormal state where excess lipid mass is accumulated in hepatocyte vesicles. Backscattered ultrasound signals received from the liver contain useful information regarding the degree of steatosis in the liver. The homodyned-K (HK) distribution has been demonstrated as a general model for ultrasound backscattering. The estimator based on the first three integer moments (denoted as "FTM") of the intensity has potential for practical applications because of its simplicity and low computational complexity. This study explored the diagnostic performance of HK parametric imaging based on the FTM method in the assessment of hepatic steatosis. Phantom experiments were initially conducted using the sliding window technique to determine an appropriate window size length (WSL) for HK parametric imaging. Subsequently, hepatic steatosis was induced in male Wistar rats fed a methionine- and choline-deficient (MCD) diet for 0 (i.e., normal control), 1, 2, 4, 6, and 8 weeks (n = 36; six rats in each group). After completing the scheduled MCD diet, ultrasound B-mode and HK imaging of the rat livers were performed in vivo and histopathological examinations were conducted to score the degree of hepatic steatosis. HK parameters μ (related to scatterer number density) and k (related to scatterer periodicity) were expressed as functions of the steatosis stage in terms of the median and interquartile range (IQR). Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance levels of the μ and k parameters. The results showed that an appropriate WSL for HK parametric imaging is seven times the pulse length of the transducer. The median value of the μ parameter increased monotonically from 0.194 (IQR: 0.18-0.23) to 0.893 (IQR: 0.64-1.04) as the steatosis stage increased. Concurrently, the median value of the k parameter increased from 0.279 (IQR: 0.26-0.31) to 0.5 (IQR: 0.41-0.54) in the early stages (normal to mild) and decreased to 0.39 (IQR: 0.29-0.45) in the advanced stages (moderate to severe). The areas under the ROC curves obtained using (μ, k) were (0.947, 0.804), (0.914, 0.575), and (0.813, 0.604) for the steatosis stages of ≥mild, ≥moderate, and ≥severe, respectively. The current findings suggest that ultrasound HK parametric imaging based on FTM estimation has great potential for future clinical diagnoses of hepatic steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Modular reflector concept study
NASA Technical Reports Server (NTRS)
Vaughan, D. H.
1981-01-01
A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.
Mahajan, Lakshmi; Mittal, Vaishali; Gupta, Ruchi; Chhabra, Himani; Vidhan, Jyoti; Kaur, Ashreen
2017-01-01
Background: Effective pain relief therapy after caesarean section is essential for the parturient's comfort and early ambulation. Paracetamol has an excellent safety profile when compared to opioids. Aim: To assess and evaluate the effect of oral, rectal, and intravenous infusion of paracetamol for post-operative analgesia in women undergoing caesarean section under spinal anaesthesia. Settings and Design: We conducted a prospective, randomized controlled study (18-35 years of age) of the ASA- I and II parturient scheduled for lower segment caesarean section were included. Methods and Materials: They were randomly allocated to 3 groups of 50 each. Group A received oral paracetamol tablet 650mg (1 tablet) 20min before shifting to operation room, group B received rectal paracetamol suppository 35-45 mg/kg immediately after spinal anaesthesia and group C received i.v. paracetamol infusion of 10-15mg/kg over 15min duration 20min before finishing the operation. Duration of analgesia was evaluated as primary outcome and other parameters as secondary outcome. Statistical Tests: All statistical analyses were performed using the SPSS statistical package 17.0 version. Results were analyzed using Chi Square test for non-parametric data and ANOVA for parametric data. P value of less than 0.05 was considered significant and less than 0.001 as highly significant. Results: Duration of analgesia was significantly longer in group B as compared to group A and C. The requirement of supplemental rescue analgesia was also lower in group B compared to group A and C. No significant haemodynamic derangements and adverse effects were noted among all the three groups. Conclusion: Paracetamol when given rectally improves the quality and duration of postoperative analgesia to a greater extent as compared to oral and intravenous route of paracetamol without any side effects. PMID:28928554
Effect of Monovalent Ion Parameters on Molecular Dynamics Simulations of G-Quadruplexes.
Havrila, Marek; Stadlbauer, Petr; Islam, Barira; Otyepka, Michal; Šponer, Jiří
2017-08-08
G-quadruplexes (GQs) are key noncanonical DNA and RNA architectures stabilized by desolvated monovalent cations present in their central channels. We analyze extended atomistic molecular dynamics simulations (∼580 μs in total) of GQs with 11 monovalent cation parametrizations, assessing GQ overall structural stability, dynamics of internal cations, and distortions of the G-tetrad geometries. Majority of simulations were executed with the SPC/E water model; however, test simulations with TIP3P and OPC water models are also reported. The identity and parametrization of ions strongly affect behavior of a tetramolecular d[GGG] 4 GQ, which is unstable with several ion parametrizations. The remaining studied RNA and DNA GQs are structurally stable, though the G-tetrad geometries are always deformed by bifurcated H-bonding in a parametrization-specific manner. Thus, basic 10-μs-scale simulations of fully folded GQs can be safely done with a number of cation parametrizations. However, there are parametrization-specific differences and basic force-field errors affecting the quantitative description of ion-tetrad interactions, which may significantly affect studies of the ion-binding processes and description of the GQ folding landscape. Our d[GGG] 4 simulations indirectly suggest that such studies will also be sensitive to the water models. During exchanges with bulk water, the Na + ions move inside the GQs in a concerted manner, while larger relocations of the K + ions are typically separated. We suggest that the Joung-Cheatham SPC/E K + parameters represent a safe choice in simulation studies of GQs, though variation of ion parameters can be used for specific simulation goals.
Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions
NASA Technical Reports Server (NTRS)
Griffith, J. S.; Rathod, M. S.; Paslaski, J.
1981-01-01
The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.
Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Driggers, H. H.; Powers, S. A.; Roush, R. T.
1982-01-01
A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.
Effects of time ordering in quantum nonlinear optics
NASA Astrophysics Data System (ADS)
Quesada, Nicolás; Sipe, J. E.
2014-12-01
We study time-ordering corrections to the description of spontaneous parametric down-conversion (SPDC), four-wave mixing (SFWM), and frequency conversion using the Magnus expansion. Analytic approximations to the evolution operator that are unitary are obtained. They are Gaussian preserving, and allow us to understand order-by-order the effects of time ordering. We show that the corrections due to time ordering vanish exactly if the phase-matching function is sufficiently broad. The calculation of the effects of time ordering on the joint spectral amplitude of the photons generated in SPDC and SFWM are reduced to quadrature.
A study of 60 GHz intersatellite link applications
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.
1983-01-01
Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.
A study of 60 Gigahertz intersatellite link applications
NASA Astrophysics Data System (ADS)
Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.
Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.
A study of 60 Gigahertz intersatellite link applications
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.
1983-01-01
Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.
A study of 60 GHz intersatellite link applications
NASA Astrophysics Data System (ADS)
Anzic, G.; Connolly, D. J.; Haugland, E. J.; Kosmahl, H. G.; Chitwood, J. S.
Applications of intersatellite links operating at 60 GHz are reviewed. Likely scenarios, ranging from transmission of moderate and high data rates over long distances to low data rates over short distances are examined. A limited parametric tradeoff is performed with system variables such as radiofrequency power, receiver noise temperature, link distance, data rate, and antenna size. Present status is discussed and projections are given for both electron tube and solid state transmitter technologies. Monolithic transmit and receive module technology, already under development at 20 to 30 GHz, is reviewed and its extension to 60 GHz, and possible applicability is discussed.
Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.
2000-01-01
A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.
Parametrically driven scalar field in an expanding background
NASA Astrophysics Data System (ADS)
Yanez-Pagans, Sergio; Urzagasti, Deterlino; Oporto, Zui
2017-10-01
We study the existence and dynamic behavior of localized and extended structures in a massive scalar inflaton field ϕ in 1 +1 dimensions in the framework of an expanding universe with constant Hubble parameter. We introduce a parametric forcing, produced by another quantum scalar field ψ , over the effective mass squared around the minimum of the inflaton potential. For this purpose, we study the system in the context of the cubic quintic complex Ginzburg-Landau equation and find the associated amplitude equation to the cosmological scalar field equation, which near the parametric resonance allows us to find the field amplitude. We find homogeneous null solutions, flat-top expanding solitons, and dark soliton patterns. No persistent non-null solutions are found in the absence of parametric forcing, and divergent solutions are obtained when the forcing amplitude is greater than 4 /3 .
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test deadline for PM CEMS. Relative accuracy testing for other CEMS need not be repeated if that... system. (i) Installation of the continuous monitoring system sampling probe or other interface at a... equipment specifications for the sample interface, the pollutant concentration or parametric signal analyzer...
The report gives results of a recent analysis showing that cost- effective indoor radon reduction technology is required for houses with initial radon concentrations < 4 pCi/L, because 78-86% of the national lung cancer risk due to radon is associated with those houses. ctive soi...
An application of tensor ideas to nonlinear modeling of a turbofan jet engine
NASA Technical Reports Server (NTRS)
Klingler, T. A.; Yurkovich, S.; Sain, M. K.
1982-01-01
An application of tensor modelling to a digital simulation of NASA's Quiet, Clean, Shorthaul Experimental (QCSE) gas turbine engine is presented. The results show that the tensor algebra offers a universal parametrization which is helpful in conceptualization and identification for plant modelling prior to feedback or for representing scheduled controllers over an operating line.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, A.W.
1984-04-16
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, Alfred W.
1985-01-01
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.
High energy efficient solid state laser sources
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1989-01-01
Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.
40 CFR 75.58 - General recordkeeping provisions for specific situations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The... owner or operator shall record: (i) Parametric data which demonstrate, for each hour of missing SO2 or... indicating, for each hour of missing SO2 or NOX emission data, either that the add-on emission controls are...
40 CFR 75.58 - General recordkeeping provisions for specific situations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The... owner or operator shall record: (i) Parametric data which demonstrate, for each hour of missing SO2 or... indicating, for each hour of missing SO2 or NOX emission data, either that the add-on emission controls are...
40 CFR 75.58 - General recordkeeping provisions for specific situations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The... owner or operator shall record: (i) Parametric data which demonstrate, for each hour of missing SO2 or... indicating, for each hour of missing SO2 or NOX emission data, either that the add-on emission controls are...
40 CFR 75.58 - General recordkeeping provisions for specific situations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... C to this part, for each hour of missing SO2 concentration or volumetric flow data: (i) The... owner or operator shall record: (i) Parametric data which demonstrate, for each hour of missing SO2 or... indicating, for each hour of missing SO2 or NOX emission data, either that the add-on emission controls are...
Modeling the full-bridge series-resonant power converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1982-01-01
A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.
Parametric Variation in Acquisition and Diachronic Change: A Response to the Commentaries
ERIC Educational Resources Information Center
Meisel, Jurgen M.
2011-01-01
The starting hypothesis of the keynote article (KA) is that language acquisition plays an essential role in processes leading to grammatical change. Consequently, a minimal requirement, to be met by explanations of diachronic change is that they rely on mechanisms which are operative in acquisition. The KA is therefore an appeal for…
ERIC Educational Resources Information Center
Sinharay, Sandip
2017-01-01
Karabatsos compared the power of 36 person-fit statistics using receiver operating characteristics curves and found the "H[superscript T]" statistic to be the most powerful in identifying aberrant examinees. He found three statistics, "C", "MCI", and "U3", to be the next most powerful. These four statistics,…
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and monitor downtime that must be reported are defined as follows: (a) For turbines using water or... is injected into the turbine when a fuel is being burned that requires water or steam injection for... operating hour in which water or steam is injected into the turbine, but the essential parametric data...
2013-10-01
AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate
NASA Astrophysics Data System (ADS)
Izmaylov, R.; Lebedev, A.
2015-08-01
Centrifugal compressors are complex energy equipment. Automotive control and protection system should meet the requirements: of operation reliability and durability. In turbocompressors there are at least two dangerous areas: surge and rotating stall. Antisurge protecting systems usually use parametric or feature methods. As a rule industrial system are parametric. The main disadvantages of anti-surge parametric systems are difficulties in mass flow measurements in natural gas pipeline compressor. The principal idea of feature method is based on the experimental fact: as a rule just before the onset of surge rotating or precursor stall established in compressor. In this case the problem consists in detecting of unsteady pressure or velocity fluctuations characteristic signals. Wavelet analysis is the best method for detecting onset of rotating stall in spite of high level of spurious signals (rotating wakes, turbulence, etc.). This method is compatible with state of the art DSP systems of industrial control. Examples of wavelet analysis application for detecting onset of rotating stall in typical stages centrifugal compressor are presented. Experimental investigations include unsteady pressure measurement and sophisticated data acquisition system. Wavelet transforms used biorthogonal wavelets in Mathlab systems.
Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters
NASA Technical Reports Server (NTRS)
Numata, Kenji; Riris, Haris; Wu, Stewart; Gonzalez, Brayler; Rodriguez, Michael; Hasselbrack, William; Fahey, Molly; Yu, Anthony; Stephen, Mark; Mao, Jianping;
2016-01-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision.
NASA Astrophysics Data System (ADS)
Drewes, M.; Garbrecht, B.; Hernández, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Rius, N.; Salvado, J.; Teresi, D.
2018-02-01
We review the current status of the leptogenesis scenario originally proposed by Akhmedov, Rubakov and Smirnov (ARS). It takes place in the parametric regime where the right-handed neutrinos are at the electroweak scale or below and the CP-violating effects are induced by the coherent superposition of different right-handed mass eigenstates. Two main theoretical approaches to derive quantum kinetic equations, the Hamiltonian time evolution as well as the Closed-Time-Path technique are presented, and we discuss their relations. For scenarios with two right-handed neutrinos, we chart the viable parameter space. Both, a Bayesian analysis, that determines the most likely configurations for viable leptogenesis given different variants of flat priors, and a determination of the maximally allowed mixing between the light, mostly left-handed, and heavy, mostly right-handed, neutrino states are discussed. Rephasing invariants are shown to be a useful tool to classify and to understand various distinct contributions to ARS leptogenesis that can dominate in different parametric regimes. While these analyses are carried out for the parametric regime where initial asymmetries are generated predominantly from lepton-number conserving, but flavor violating effects, we also review the contributions from lepton-number violating operators and identify the regions of parameter space where these are relevant.
Parametric identification of the process of preparing ceramic mixture as an object of control
NASA Astrophysics Data System (ADS)
Galitskov, Stanislav; Nazarov, Maxim; Galitskov, Konstantin
2017-10-01
Manufacture of ceramic materials and products largely depends on the preparation of clay raw materials. The main process here is the process of mixing, which in industrial production is mostly done in cross-compound clay mixers of continuous operation with steam humidification. The authors identified features of dynamics of this technological stage, which in itself is a non-linear control object with distributed parameters. When solving practical tasks for automation of a certain class of ceramic materials production it is important to make parametric identification of moving clay. In this paper the task is solved with the use of computational models, approximated to a particular section of a clay mixer along its length. The research introduces a methodology of computational experiments as applied to the designed computational model. Parametric identification of dynamic links was carried out according to transient characteristics. The experiments showed that the control object in question is to a great extent a non-stationary one. The obtained results are problematically oriented on synthesizing a multidimensional automatic control system for preparation of ceramic mixture with specified values of humidity and temperature exposed to the technological process of major disturbances.
Lee, Soomin; Katsuura, Tetsuo; Shimomura, Yoshihiro
2011-01-01
In recent years, a new type of speaker called the parametric speaker has been used to generate highly directional sound, and these speakers are now commercially available. In our previous study, we verified that the burden of the parametric speaker was lower than that of the general speaker for endocrine functions. However, nothing has yet been demonstrated about the effects of the shorter distance than 2.6 m between parametric speakers and the human body. Therefore, we investigated the distance effect on endocrinological function and subjective evaluation. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-min quiet period as a baseline, a 30-min mental task period with general speakers or parametric speakers, and a 20-min recovery period. We measured salivary cortisol and chromogranin A (CgA) concentrations. Furthermore, subjects took the Kwansei-gakuin Sleepiness Scale (KSS) test before and after the task and also a sound quality evaluation test after it. Four experiments, one with a speaker condition (general speaker and parametric speaker), the other with a distance condition (0.3 m and 1.0 m), were conducted, respectively, at the same time of day on separate days. We used three-way repeated measures ANOVA (speaker factor × distance factor × time factor) to examine the effects of the parametric speaker. We found that the endocrinological functions were not significantly different between the speaker condition and the distance condition. The results also showed that the physiological burdens increased with progress in time independent of the speaker condition and distance condition.
Formation of parametric images using mixed-effects models: a feasibility study.
Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh
2016-03-01
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Assessment of Dimensionality in Social Science Subtest
ERIC Educational Resources Information Center
Ozbek Bastug, Ozlem Yesim
2012-01-01
Most of the literature on dimensionality focused on either comparison of parametric and nonparametric dimensionality detection procedures or showing the effectiveness of one type of procedure. There is no known study to shown how to do combined parametric and nonparametric dimensionality analysis on real data. The current study is aimed to fill…
Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing
2015-01-01
Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
99 W mid-IR operation of a ZGP OPO at 25% duty cycle.
Hemming, Alexander; Richards, Jim; Davidson, Alan; Carmody, Neil; Bennetts, Shayne; Simakov, Nikita; Haub, John
2013-04-22
We have demonstrated the highest reported output power from a mid-IR ZGP OPO. The laser is a cascaded hybrid system consisting of a thulium fibre laser, Ho:YAG solid state laser and a Zinc Germanium Phosphide parametric oscillator. The system produces 27 W of output power in the 3-5 μm wavelength range with an M(2) = 4.0 when operating in a repetitively q-switched mode, and a modulated peak output power of 99 W at a reduced duty cycle of 25%.
Kramer, Gerbrand Maria; Frings, Virginie; Heijtel, Dennis; Smit, E F; Hoekstra, Otto S; Boellaard, Ronald
2017-06-01
The objective of this study was to validate several parametric methods for quantification of 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) PET in advanced-stage non-small cell lung carcinoma (NSCLC) patients with an activating epidermal growth factor receptor mutation who were treated with gefitinib or erlotinib. Furthermore, we evaluated the impact of noise on accuracy and precision of the parametric analyses of dynamic 18 F-FLT PET/CT to assess the robustness of these methods. Methods : Ten NSCLC patients underwent dynamic 18 F-FLT PET/CT at baseline and 7 and 28 d after the start of treatment. Parametric images were generated using plasma input Logan graphic analysis and 2 basis functions-based methods: a 2-tissue-compartment basis function model (BFM) and spectral analysis (SA). Whole-tumor-averaged parametric pharmacokinetic parameters were compared with those obtained by nonlinear regression of the tumor time-activity curve using a reversible 2-tissue-compartment model with blood volume fraction. In addition, 2 statistically equivalent datasets were generated by countwise splitting the original list-mode data, each containing 50% of the total counts. Both new datasets were reconstructed, and parametric pharmacokinetic parameters were compared between the 2 replicates and the original data. Results: After the settings of each parametric method were optimized, distribution volumes (V T ) obtained with Logan graphic analysis, BFM, and SA all correlated well with those derived using nonlinear regression at baseline and during therapy ( R 2 ≥ 0.94; intraclass correlation coefficient > 0.97). SA-based V T images were most robust to increased noise on a voxel-level (repeatability coefficient, 16% vs. >26%). Yet BFM generated the most accurate K 1 values ( R 2 = 0.94; intraclass correlation coefficient, 0.96). Parametric K 1 data showed a larger variability in general; however, no differences were found in robustness between methods (repeatability coefficient, 80%-84%). Conclusion: Both BFM and SA can generate quantitatively accurate parametric 18 F-FLT V T images in NSCLC patients before and during therapy. SA was more robust to noise, yet BFM provided more accurate parametric K 1 data. We therefore recommend BFM as the preferred parametric method for analysis of dynamic 18 F-FLT PET/CT studies; however, SA can also be used. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
A design study for the addition of higher order parametric discrete elements to NASTRAN
NASA Technical Reports Server (NTRS)
Stanton, E. L.
1972-01-01
The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.
Visual Literacy and the Integration of Parametric Modeling in the Problem-Based Curriculum
ERIC Educational Resources Information Center
Assenmacher, Matthew Benedict
2013-01-01
This quasi-experimental study investigated the application of visual literacy skills in the form of parametric modeling software in relation to traditional forms of sketching. The study included two groups of high school technical design students. The control and experimental groups involved in the study consisted of two randomly selected groups…
Model independent new physics analysis in Λ _b→ Λ μ ^+μ ^- decay
NASA Astrophysics Data System (ADS)
Das, Diganta
2018-03-01
We study the rare Λ _b→ Λ μ ^+μ ^- decay in the Standard Model and beyond. Beyond the Standard Model we include new vector and axial-vector operators, scalar and pseudo-scalar operators, and tensor operators in the effective Hamiltonian. Working in the helicity basis and using appropriate parametrization of the Λ _b → Λ hadronic matrix elements, we give expressions of hadronic and leptonic helicity amplitudes and derive expression of double differential branching ratio with respect to dilepton invariant mass squared and cosine of lepton angle. Appropriately integrating the differential branching ratio over the lepton angle, we obtain the longitudinal polarization fraction and the leptonic forward-backward asymmetry and sequentially study the observables in the presence of the new couplings. To analyze the implications of the new vector and axial-vector couplings, we follow the current global fits to b→ sμ ^+μ ^- data. While the impacts of scalar couplings can be significant, exclusive \\bar{B}→ X_sμ ^+μ ^- data imply stringent constraints on the tensor couplings and hence the effects on Λ _b→ Λ μ ^+μ ^- are negligible.
NASA Astrophysics Data System (ADS)
Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.
2018-01-01
The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.
NASA Astrophysics Data System (ADS)
Jeong, Junho; Kim, Seungkeun; Suk, Jinyoung
2017-12-01
In order to overcome the limited range of GPS-based techniques, vision-based relative navigation methods have recently emerged as alternative approaches for a high Earth orbit (HEO) or deep space missions. Therefore, various vision-based relative navigation systems use for proximity operations between two spacecraft. For the implementation of these systems, a sensor placement problem can occur on the exterior of spacecraft due to its limited space. To deal with the sensor placement, this paper proposes a novel methodology for a vision-based relative navigation based on multiple position sensitive diode (PSD) sensors and multiple infrared beacon modules. For the proposed method, an iterated parametric study is used based on the farthest point optimization (FPO) and a constrained extended Kalman filter (CEKF). Each algorithm is applied to set the location of the sensors and to estimate relative positions and attitudes according to each combination by the PSDs and beacons. After that, scores for the sensor placement are calculated with respect to parameters: the number of the PSDs, number of the beacons, and accuracy of relative estimates. Then, the best scoring candidate is determined for the sensor placement. Moreover, the results of the iterated estimation show that the accuracy improves dramatically, as the number of the PSDs increases from one to three.
Intervening on risk factors for coronary heart disease: an application of the parametric g-formula.
Taubman, Sarah L; Robins, James M; Mittleman, Murray A; Hernán, Miguel A
2009-12-01
Estimating the population risk of disease under hypothetical interventions--such as the population risk of coronary heart disease (CHD) were everyone to quit smoking and start exercising or to start exercising if diagnosed with diabetes--may not be possible using standard analytic techniques. The parametric g-formula, which appropriately adjusts for time-varying confounders affected by prior exposures, is especially well suited to estimating effects when the intervention involves multiple factors (joint interventions) or when the intervention involves decisions that depend on the value of evolving time-dependent factors (dynamic interventions). We describe the parametric g-formula, and use it to estimate the effect of various hypothetical lifestyle interventions on the risk of CHD using data from the Nurses' Health Study. Over the period 1982-2002, the 20-year risk of CHD in this cohort was 3.50%. Under a joint intervention of no smoking, increased exercise, improved diet, moderate alcohol consumption and reduced body mass index, the estimated risk was 1.89% (95% confidence interval: 1.46-2.41). We discuss whether the assumptions required for the validity of the parametric g-formula hold in the Nurses' Health Study data. This work represents the first large-scale application of the parametric g-formula in an epidemiologic cohort study.
NASA Astrophysics Data System (ADS)
Juillard, J.; Brenes, A.
2018-05-01
In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.
Economic study of multipurpose advanced high-speed transport configurations
NASA Technical Reports Server (NTRS)
1979-01-01
A nondimensional economic examination of a parametrically-derived set of supersonic transport aircraft was conducted. The measure of economic value was surcharged relative to subsonic airplane tourist-class yield. Ten airplanes were defined according to size, payload, and speed. The price, range capability, fuel burned, and block time were determined for each configuration, then operating costs and surcharges were calculated. The parameter with the most noticeable influence on nominal surcharge was found to be real (constant dollars) fuel price increase. A change in SST design Mach number from 2.4 to Mach 2.7 showed a very small surcharge advantage (on the order of 1 percent for the faster aircraft). Configuration design compromises required for an airplane to operate overland at supersonic speeds without causing sonic boom annoyance result in severe performance penalties and require high (more than 100 percent) surcharges.
Zilverstand, Anna; Sorger, Bettina; Kaemingk, Anita; Goebel, Rainer
2017-06-01
We employed a novel parametric spider picture set in the context of a parametric fMRI anxiety provocation study, designed to tease apart brain regions involved in threat monitoring from regions representing an exaggerated anxiety response in spider phobics. For the stimulus set, we systematically manipulated perceived proximity of threat by varying a depicted spider's context, size, and posture. All stimuli were validated in a behavioral rating study (phobics n = 20; controls n = 20; all female). An independent group participated in a subsequent fMRI anxiety provocation study (phobics n = 7; controls n = 7; all female), in which we compared a whole-brain categorical to a whole-brain parametric analysis. Results demonstrated that the parametric analysis provided a richer characterization of the functional role of the involved brain networks. In three brain regions-the mid insula, the dorsal anterior cingulate, and the ventrolateral prefrontal cortex-activation was linearly modulated by perceived proximity specifically in the spider phobia group, indicating a quantitative representation of an exaggerated anxiety response. In other regions (e.g., the amygdala), activation was linearly modulated in both groups, suggesting a functional role in threat monitoring. Prefrontal regions, such as dorsolateral prefrontal cortex, were activated during anxiety provocation but did not show a stimulus-dependent linear modulation in either group. The results confirm that brain regions involved in anxiety processing hold a quantitative representation of a pathological anxiety response and more generally suggest that parametric fMRI designs may be a very powerful tool for clinical research in the future, particularly when developing novel brain-based interventions (e.g., neurofeedback training). Hum Brain Mapp 38:3025-3038, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Orczyk, Clément; Mikheev, Artem; Rosenkrantz, Andrew; Melamed, Jonathan; Taneja, Samir S.; Rusinek, Henry
2012-02-01
Objectives: Multi-parametric MRI is emerging as a promising method for prostate cancer diagnosis. prognosis and treatment planning. However, the localization of in-vivo detected lesions and pathologic sites of cancer remains a significant challenge. To overcome this limitation we have developed and tested a system for co-registration of in-vivo MRI, ex-vivo MRI and histology. Materials and Methods: Three men diagnosed with localized prostate cancer (ages 54-72, PSA levels 5.1-7.7 ng/ml) were prospectively enrolled in this study. All patients underwent 3T multi-parametric MRI that included T2W, DCEMRI, and DWI prior to robotic-assisted prostatectomy. Ex-vivo multi-parametric MRI was performed on fresh prostate specimen. Excised prostates were then sliced at regular intervals and photographed both before and after fixation. Slices were perpendicular to the main axis of the posterior capsule, i.e., along the direction of the rectal wall. Guided by the location of the urethra, 2D digital images were assembled into 3D models. Cancer foci, extra-capsular extensions and zonal margins were delineated by the pathologist and included in 3D histology data. A locally-developed software was applied to register in-vivo, ex-vivo and histology using an over-determined set of anatomical landmarks placed in anterior fibro-muscular stroma, central. transition and peripheral zones. The mean root square distance across corresponding control points was used to assess co-registration error. Results: Two specimens were pT3a and one pT2b (negative margin) at pathology. The software successfully fused invivo MRI. ex-vivo MRI fresh specimen and histology using appropriate (rigid and affine) transformation models with mean square error of 1.59 mm. Coregistration accuracy was confirmed by multi-modality viewing using operator-guided variable transparency. Conclusion: The method enables successful co-registration of pre-operative MRI, ex-vivo MRI and pathology and it provides initial evidence of feasibility of MRI-guided surgical planning.
Parametric modeling studies of turbulent non-premixed jet flames with thin reaction zones
NASA Astrophysics Data System (ADS)
Wang, Haifeng
2013-11-01
The Sydney piloted jet flame series (Flames L, B, and M) feature thinner reaction zones and hence impose greater challenges to modeling than the Sanida Piloted jet flames (Flames D, E, and F). Recently, the Sydney flames received renewed interest due to these challenges. Several new modeling efforts have emerged. However, no systematic parametric modeling studies have been reported for the Sydney flames. A large set of modeling computations of the Sydney flames is presented here by using the coupled large eddy simulation (LES)/probability density function (PDF) method. Parametric studies are performed to gain insight into the model performance, its sensitivity and the effect of numerics.
Parametric study of extended end-plate connection using finite element modeling
NASA Astrophysics Data System (ADS)
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
Acoustic emission based damage localization in composites structures using Bayesian identification
NASA Astrophysics Data System (ADS)
Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.
2017-05-01
Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying operational loads and would be investigated in future studies.
Colloby, Sean J; O'Brien, John T; Fenwick, John D; Firbank, Michael J; Burn, David J; McKeith, Ian G; Williams, E David
2004-11-01
Dopaminergic loss can be visualised using (123)I-FP-CIT single photon emission computed tomography (SPECT) in several disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Most previous SPECT studies have adopted region of interest (ROI) methods for analysis, which are subjective and operator-dependent. The purpose of this study was to investigate differences in striatal binding of (123)I-FP-CIT SPECT using the automated technique of statistical parametric mapping (SPM99) in subjects with DLB, Alzheimer's disease (AD), PD and healthy age-matched controls. This involved spatial normalisation of each subject's image to a customised template, followed by smoothing and intensity normalisation of each image to its corresponding mean occipital count per voxel. Group differences were assessed using a two-sample t test. Applying a height threshold of P
Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A
2017-04-01
Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Normal dispersion femtosecond fiber optical parametric oscillator.
Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N
2013-09-15
We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60 mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3 ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.
NASA Astrophysics Data System (ADS)
Thomas, M. A.
2016-12-01
The Waste Isolation Pilot Plant (WIPP) is the only deep geological repository for transuranic waste in the United States. As the Science Advisor for the WIPP, Sandia National Laboratories annually evaluates site data against trigger values (TVs), metrics whose violation is indicative of conditions that may impact long-term repository performance. This study focuses on a groundwater-quality dataset used to redesign a TV for the Culebra Dolomite Member (Culebra) of the Permian-age Rustler Formation. Prior to this study, a TV violation occurred if the concentration of a major ion fell outside a range defined as the mean +/- two standard deviations. The ranges were thought to denote conditions that 95% of future values would fall within. Groundwater-quality data used in evaluating compliance, however, are rarely normally distributed. To create a more robust Culebra groundwater-quality TV, this study employed the randomization test, a non-parametric permutation method. Recent groundwater compositions considered TV violations under the original ion concentration ranges are now interpreted as false positives in light of the insignificant p-values calculated with the randomization test. This work highlights that the normality assumption can weaken as the size of a groundwater-quality dataset grows over time. Non-parametric permutation methods are an attractive option because no assumption about the statistical distribution is required and calculating all combinations of the data is an increasingly tractable problem with modern workstations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. SAND2016-7306A
Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).
Thatcher, R W; North, D; Biver, C
2005-01-01
This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate of 6.67% and ranged from 41.34% to 0% false positives of the 2,394 gray matter pixels for any cross-validated normal subject. In conclusion, adequate approximation to Gaussian distribution and high cross-validation can be achieved by the Key Institute's LORETA programs by using a log10 transform and parametric statistics, and parametric normative comparisons had lower false positive rates than the non-parametric tests.
1981-02-01
GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81...GCiteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University oflMaryland College Park, Maryland 20742 i AflS1RACi Parametric
NASA Astrophysics Data System (ADS)
Siddiquee, Abu Nayem Md. Asraf
A parametric modeling study has been carried out to assess the impact of change in operating parameters on the performance of Vanadium Redox Flow Battery (VRFB). The objective of this research is to develop a computer program to predict the dynamic behavior of VRFB combining fluid mechanics, reaction kinetics, and electric circuit. The computer program was developed using Maple 2015 and calculations were made at different operating parameters. Modeling results show that the discharging time increases from 2.2 hours to 6.7 hours when the concentration of V2+ in electrolytes increases from 1M to 3M. The operation time during the charging cycle decreases from 6.9 hours to 3.3 hours with the increase of applied current from 1.85A to 3.85A. The modeling results represent that the charging and discharging time were found to increase from 4.5 hours to 8.2 hours with the increase in tank to cell ratio from 5:1 to 10:1.
Operating characteristics of 120-millimeter-bore ball bearings at 3 million DN
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Bamberger, E. N.; Signer, H.
1974-01-01
A parametric study was performed with split inner-race 120-mm-bore angular-contact ball bearings at a speed of 25,000 rpm (3 million DN) at initial contact angles of 20 deg and 24 deg. Provisions were made for outer- and inner-race cooling and for injection of lubricant into the bearing through a number of radial holes in the split inner-race of the bearing. Oil flow and coolant rate to the bearing was controlled and varied for a total up to approximately 3.2 gal/min. Bearing temperature was found to decrease as the total lubricant flow to the bearing increased. However, at intermediate flow rates temperature began to increase with increasing flow. Power consumption increased with increasing flow rate. Bearing operating temperature, differences in temperatures between the inner and outer races, and bearing power consumption can be tuned to any desirable operating requirement. Cage speed increased by not more than 2 percent with increasing oil flow to the inner race.
High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.
Chaitanya Kumar, S; Ebrahim-Zadeh, M
2011-07-01
We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.
NASA Technical Reports Server (NTRS)
Prakash, OM, II
1991-01-01
Three linear controllers are desiged to regulate the end effector of the Space Shuttle Remote Manipulator System (SRMS) operating in Position Hold Mode. In this mode of operation, jet firings of the Orbiter can be treated as disturbances while the controller tries to keep the end effector stationary in an orbiter-fixed reference frame. The three design techniques used include: the Linear Quadratic Regulator (LQR), H2 optimization, and H-infinity optimization. The nonlinear SRMS is linearized by modelling the effects of the significant nonlinearities as uncertain parameters. Each regulator design is evaluated for robust stability in light of the parametric uncertanties using both the small gain theorem with an H-infinity norm and the less conservative micro-analysis test. All three regulator designs offer significant improvement over the current system on the nominal plant. Unfortunately, even after dropping performance requirements and designing exclusively for robust stability, robust stability cannot be achieved. The SRMS suffers from lightly damped poles with real parametric uncertainties. Such a system renders the micro-analysis test, which allows for complex peturbations, too conservative.
Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation.
Deng, Wenxiang; Yao, Jianyong; Ma, Dawei
2017-09-01
This paper addresses the high performance motion control of hydraulic actuators with parametric uncertainties, unmodeled disturbances and unknown valve dead-zone. By constructing a smooth dead-zone inverse, a robust adaptive controller is proposed via backstepping method, in which adaptive law is synthesized to deal with parametric uncertainties and a continuous nonlinear robust control law to suppress unmodeled disturbances. Since the unknown dead-zone parameters can be estimated by adaptive law and then the effect of dead-zone can be compensated effectively via inverse operation, improved tracking performance can be expected. In addition, the disturbance upper bounds can also be updated online by adaptive laws, which increases the controller operability in practice. The Lyapunov based stability analysis shows that excellent asymptotic output tracking with zero steady-state error can be achieved by the developed controller even in the presence of unmodeled disturbance and unknown valve dead-zone. Finally, the proposed control strategy is experimentally tested on a servovalve controlled hydraulic actuation system subjected to an artificial valve dead-zone. Comparative experimental results are obtained to illustrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
The common case study: Lockheed design of a supersonic cruise vehicle
NASA Technical Reports Server (NTRS)
Clauss, J. S., Jr.; Hays, A. P.; Wilson, J. R.
1978-01-01
The objective was to compare the characteristics of SSTs designed for the same mission by Lockheed, McDonnell Douglas, British Aerospace (U.K.), Aerospatiale (France), and the USSR. This comparison was to be used to calibrate parametric design studies of the tradeoff between SST direct operating cost (DOC) and noise levels at the FAR 36 certification points. The guidelines for this common case study were to design an aircraft with the following mission: payload 23 247 kg (51 250 lbm), range - 7000 km (3780 n. mi.), and cruise Mach number - 2.2. Field length was constrained to 3505 m (11 500 ft). Other airfield constraints and fuel reserves were also specified, but no noise constraints were applied.
NASA Astrophysics Data System (ADS)
Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea
2017-04-01
Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.
An appraisal of statistical procedures used in derivation of reference intervals.
Ichihara, Kiyoshi; Boyd, James C
2010-11-01
When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.
Andersson, Therese M L; Dickman, Paul W; Eloranta, Sandra; Lambert, Paul C
2011-06-22
When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. © 2011 Andersson et al; licensee BioMed Central Ltd.
2011-01-01
Background When the mortality among a cancer patient group returns to the same level as in the general population, that is, the patients no longer experience excess mortality, the patients still alive are considered "statistically cured". Cure models can be used to estimate the cure proportion as well as the survival function of the "uncured". One limitation of parametric cure models is that the functional form of the survival of the "uncured" has to be specified. It can sometimes be hard to find a survival function flexible enough to fit the observed data, for example, when there is high excess hazard within a few months from diagnosis, which is common among older age groups. This has led to the exclusion of older age groups in population-based cancer studies using cure models. Methods Here we have extended the flexible parametric survival model to incorporate cure as a special case to estimate the cure proportion and the survival of the "uncured". Flexible parametric survival models use splines to model the underlying hazard function, and therefore no parametric distribution has to be specified. Results We have compared the fit from standard cure models to our flexible cure model, using data on colon cancer patients in Finland. This new method gives similar results to a standard cure model, when it is reliable, and better fit when the standard cure model gives biased estimates. Conclusions Cure models within the framework of flexible parametric models enables cure modelling when standard models give biased estimates. These flexible cure models enable inclusion of older age groups and can give stage-specific estimates, which is not always possible from parametric cure models. PMID:21696598
Investigation of an ejector heat pump by analytical methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, C.T.
1984-07-01
Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less
Fan, Zhen; Dani, Melanie; Femminella, Grazia D; Wood, Melanie; Calsolaro, Valeria; Veronese, Mattia; Turkheimer, Federico; Gentleman, Steve; Brooks, David J; Hinz, Rainer; Edison, Paul
2018-07-01
Neuroinflammation and microglial activation play an important role in amnestic mild cognitive impairment (MCI) and Alzheimer's disease. In this study, we investigated the spatial distribution of neuroinflammation in MCI subjects, using spectral analysis (SA) to generate parametric maps and quantify 11 C-PBR28 PET, and compared these with compartmental and other kinetic models of quantification. Thirteen MCI and nine healthy controls were enrolled in this study. Subjects underwent 11 C-PBR28 PET scans with arterial cannulation. Spectral analysis with an arterial plasma input function was used to generate 11 C-PBR28 parametric maps. These maps were then compared with regional 11 C-PBR28 V T (volume of distribution) using a two-tissue compartment model and Logan graphic analysis. Amyloid load was also assessed with 18 F-Flutemetamol PET. With SA, three component peaks were identified in addition to blood volume. The 11 C-PBR28 impulse response function (IRF) at 90 min produced the lowest coefficient of variation. Single-subject analysis using this IRF demonstrated microglial activation in five out of seven amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake revealed a group-wise significant increase in neuroinflammation in amyloid-positive MCI subjects versus HC in multiple cortical association areas, and particularly in the temporal lobe. Interestingly, compartmental analysis detected group-wise increase in 11 C-PBR28 binding in the thalamus of amyloid-positive MCI subjects, while Logan parametric maps did not perform well. This study demonstrates for the first time that spectral analysis can be used to generate parametric maps of 11 C-PBR28 uptake, and is able to detect microglial activation in amyloid-positive MCI subjects. IRF parametric maps of 11 C-PBR28 uptake allow voxel-wise single-subject analysis and could be used to evaluate microglial activation in individual subjects.
Can color-coded parametric maps improve dynamic enhancement pattern analysis in MR mammography?
Baltzer, P A; Dietzel, M; Vag, T; Beger, S; Freiberg, C; Herzog, A B; Gajda, M; Camara, O; Kaiser, W A
2010-03-01
Post-contrast enhancement characteristics (PEC) are a major criterion for differential diagnosis in MR mammography (MRM). Manual placement of regions of interest (ROIs) to obtain time/signal intensity curves (TSIC) is the standard approach to assess dynamic enhancement data. Computers can automatically calculate the TSIC in every lesion voxel and combine this data to form one color-coded parametric map (CCPM). Thus, the TSIC of the whole lesion can be assessed. This investigation was conducted to compare the diagnostic accuracy (DA) of CCPM with TSIC for the assessment of PEC. 329 consecutive patients with 469 histologically verified lesions were examined. MRM was performed according to a standard protocol (1.5 T, 0.1 mmol/kgbw Gd-DTPA). ROIs were drawn manually within any lesion to calculate the TSIC. CCPMs were created in all patients using dedicated software (CAD Sciences). Both methods were rated by 2 observers in consensus on an ordinal scale. Receiver operating characteristics (ROC) analysis was used to compare both methods. The area under the curve (AUC) was significantly (p=0.026) higher for CCPM (0.829) than TSIC (0.749). The sensitivity was 88.5% (CCPM) vs. 82.8% (TSIC), whereas equal specificity levels were found (CCPM: 63.7%, TSIC: 63.0%). The color-coded parametric maps (CCPMs) showed a significantly higher DA compared to TSIC, in particular the sensitivity could be increased. Therefore, the CCPM method is a feasible approach to assessing dynamic data in MRM and condenses several imaging series into one parametric map. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Chatterjee, Sudip K.; Khan, Saba N.; Chaudhuri, Partha Roy
2014-12-01
An ultra-wide 1646 nm (1084-2730 nm), continuous-wave single pump parametric amplification spanning from near-infrared to short-wave infrared band (NIR-SWIR) in a host lead-silicate based binary multi-clad microstructure fiber (BMMF) is analyzed and reported. This ultra-broad band (widest reported to date) parametric amplification with gain more than 10 dB is theoretically achieved by a combination of low input pump power source ~7 W and a short-length of ~70 cm of nonlinear-BMMF through accurately engineered multi-order dispersion coefficients. A highly efficient theoretical formulation based on four-wave-mixing (FWM) is worked out to determine fiber's chromatic dispersion (D) profile which is used to optimise the gain-bandwidth and ripple of the parametric gain profile. It is seen that by appropriately controlling the higher-order dispersion coefficient (up-to sixth order), a great enhancement in the gain-bandwidth (2-3 times) can be achieved when operated very close to zero-dispersion wavelength (ZDW) in the anomalous dispersion regime. Moreover, the proposed theoretical model can predict the maximum realizable spectral width and the required pump-detuning (w.r.t ZDW) of any advanced complex microstructured fiber. Our thorough investigation of the wide variety of broadband gain spectra obtained as an integral part of this research work opens up the way for realizing amplification in the region (SWIR) located far from the pump (NIR) where good amplifiers currently do not exist.
Effect of non-normality on test statistics for one-way independent groups designs.
Cribbie, Robert A; Fiksenbaum, Lisa; Keselman, H J; Wilcox, Rand R
2012-02-01
The data obtained from one-way independent groups designs is typically non-normal in form and rarely equally variable across treatment populations (i.e., population variances are heterogeneous). Consequently, the classical test statistic that is used to assess statistical significance (i.e., the analysis of variance F test) typically provides invalid results (e.g., too many Type I errors, reduced power). For this reason, there has been considerable interest in finding a test statistic that is appropriate under conditions of non-normality and variance heterogeneity. Previously recommended procedures for analysing such data include the James test, the Welch test applied either to the usual least squares estimators of central tendency and variability, or the Welch test with robust estimators (i.e., trimmed means and Winsorized variances). A new statistic proposed by Krishnamoorthy, Lu, and Mathew, intended to deal with heterogeneous variances, though not non-normality, uses a parametric bootstrap procedure. In their investigation of the parametric bootstrap test, the authors examined its operating characteristics under limited conditions and did not compare it to the Welch test based on robust estimators. Thus, we investigated how the parametric bootstrap procedure and a modified parametric bootstrap procedure based on trimmed means perform relative to previously recommended procedures when data are non-normal and heterogeneous. The results indicated that the tests based on trimmed means offer the best Type I error control and power when variances are unequal and at least some of the distribution shapes are non-normal. © 2011 The British Psychological Society.
Likert scales, levels of measurement and the "laws" of statistics.
Norman, Geoff
2010-12-01
Reviewers of research reports frequently criticize the choice of statistical methods. While some of these criticisms are well-founded, frequently the use of various parametric methods such as analysis of variance, regression, correlation are faulted because: (a) the sample size is too small, (b) the data may not be normally distributed, or (c) The data are from Likert scales, which are ordinal, so parametric statistics cannot be used. In this paper, I dissect these arguments, and show that many studies, dating back to the 1930s consistently show that parametric statistics are robust with respect to violations of these assumptions. Hence, challenges like those above are unfounded, and parametric methods can be utilized without concern for "getting the wrong answer".
Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation
NASA Astrophysics Data System (ADS)
Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward
1981-11-01
A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Xin
2011-09-01
The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters: A Stability Margin
NASA Astrophysics Data System (ADS)
Kolokolov, Yury; Monovskaya, Anna
The popularity of systems of pulse energy conversion (PEC-systems) for practical applications is due to the heightened efficiency of energy conversion processes with comparatively simple realizations. Nevertheless, a PEC-system represents a nonlinear object with a variable structure, and the bifurcation analysis remains the basic tool to describe PEC dynamics evolution. The paper is devoted to the discussion on whether the scientific viewpoint on the natural nonlinear dynamics evolution can be involved in practical applications. We focus on the problems connected with stability boundaries of an operating regime. The results of both small-signal analysis and computational bifurcation analysis are considered in the parametrical space in comparison with the results of the experimental identification of the zonal heterogeneity of the operating process. This allows to propose an adapted stability margin as a sufficiently safe distance before the point after which the operating process begins to lose the stability. Such stability margin can extend the permissible operating domain in the parametrical space at the expense of using cause-and-effect relations in the context of natural regularities of nonlinear dynamics. Reasoning and discussion are based on the experimental and computational results for a synchronous buck converter with a pulse-width modulation. The presented results can be useful, first of all, for PEC-systems with significant variation of equivalent inductance and/or capacity. We believe that the discussion supports a viewpoint by which the contemporary methods of the computational and experimental bifurcation analyses possess both analytical abilities and experimental techniques for promising solutions which could be practice-oriented for PEC-systems.
NASA Astrophysics Data System (ADS)
Cernesson, Flavie; Tournoud, Marie-George; Lalande, Nathalie
2018-06-01
Among the various parameters monitored in river monitoring networks, bioindicators provide very informative data. Analysing time variations in bioindicator data is tricky for water managers because the data sets are often short, irregular, and non-normally distributed. It is then a challenging methodological issue for scientists, as it is in Saône basin (30 000 km2, France) where, between 1998 and 2010, among 812 IBGN (French macroinvertebrate bioindicator) monitoring stations, only 71 time series have got more than 10 data values and were studied here. Combining various analytical tools (three parametric and non-parametric statistical tests plus a graphical analysis), 45 IBGN time series were classified as stationary and 26 as non-stationary (only one of which showing a degradation). Series from sampling stations located within the same hydroecoregion showed similar trends, while river size classes seemed to be non-significant to explain temporal trends. So, from a methodological point of view, combining statistical tests and graphical analysis is a relevant option when striving to improve trend detection. Moreover, it was possible to propose a way to summarise series in order to analyse links between ecological river quality indicators and land use stressors.
Layout design-based research on optimization and assessment method for shipbuilding workshop
NASA Astrophysics Data System (ADS)
Liu, Yang; Meng, Mei; Liu, Shuang
2013-06-01
The research study proposes to examine a three-dimensional visualization program, emphasizing on improving genetic algorithms through the optimization of a layout design-based standard and discrete shipbuilding workshop. By utilizing a steel processing workshop as an example, the principle of minimum logistic costs will be implemented to obtain an ideological equipment layout, and a mathematical model. The objectiveness is to minimize the total necessary distance traveled between machines. An improved control operator is implemented to improve the iterative efficiency of the genetic algorithm, and yield relevant parameters. The Computer Aided Tri-Dimensional Interface Application (CATIA) software is applied to establish the manufacturing resource base and parametric model of the steel processing workshop. Based on the results of optimized planar logistics, a visual parametric model of the steel processing workshop is constructed, and qualitative and quantitative adjustments then are applied to the model. The method for evaluating the results of the layout is subsequently established through the utilization of AHP. In order to provide a mode of reference to the optimization and layout of the digitalized production workshop, the optimized discrete production workshop will possess a certain level of practical significance.
Parametric instabilities in resonantly-driven Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lellouch, S.; Goldman, N.
2018-04-01
Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.
Impact of new physics on the EW vacuum stability in a curved spacetime background
NASA Astrophysics Data System (ADS)
Bentivegna, E.; Branchina, V.; Contino, F.; Zappalà, D.
2017-12-01
It has been recently shown that, contrary to an intuitive decoupling argument, the presence of new physics at very large energy scales (say around the Planck scale) can have a strong impact on the electroweak vacuum lifetime. In particular, the vacuum could be totally destabilized. This study was performed in a flat spacetime background, and it is important to extend the analysis to curved spacetime since these are Planckian-physics effects. It is generally expected that under these extreme conditions gravity should totally quench the formation of true vacuum bubbles, thus washing out the destabilizing effect of new physics. In this work we extend the analysis to curved spacetime and show that, although gravity pushes toward stabilization, the destabilizing effect of new physics is still (by far) the dominating one. In order to get model independent results, high energy new physics is parametrized in two different independent ways: as higher order operators in the Higgs field, or introducing new particles with very large masses. The destabilizing effect is observed in both cases, hinting at a general mechanism that does not depend on the parametrization details for new physics, thus maintaining the results obtained from the analysis performed in flat spacetime.
Exact linearized Coulomb collision operator in the moment expansion
Ji, Jeong -Young; Held, Eric D.
2006-10-05
In the moment expansion, the Rosenbluth potentials, the linearized Coulomb collision operators, and the moments of the collision operators are analytically calculated for any moment. The explicit calculation of Rosenbluth potentials converts the integro-differential form of the Coulomb collision operator into a differential operator, which enables one to express the collision operator in a simple closed form for any arbitrary mass and temperature ratios. In addition, it is shown that gyrophase averaging the collision operator acting on arbitrary distribution functions is the same as the collision operator acting on the corresponding gyrophase averaged distribution functions. The moments of the collisionmore » operator are linear combinations of the fluid moments with collision coefficients parametrized by mass and temperature ratios. Furthermore, useful forms involving the small mass-ratio approximation are easily found since the collision operators and their moments are expressed in terms of the mass ratio. As an application, the general moment equations are explicitly written and the higher order heat flux equation is derived.« less
Seitner, Maximilian J; Abdi, Mehdi; Ridolfo, Alessandro; Hartmann, Michael J; Weig, Eva M
2017-06-23
We study locking phenomena of two strongly coupled, high quality factor nanomechanical resonator modes to a common parametric drive at a single drive frequency in different parametric driving regimes. By controlled dielectric gradient forces we tune the resonance frequencies of the flexural in-plane and out-of-plane oscillation of the high stress silicon nitride string through their mutual avoided crossing. For the case of the strong common parametric drive signal-idler generation via nondegenerate parametric two-mode oscillation is observed. Broadband frequency tuning of the very narrow linewidth signal and idler resonances is demonstrated. When the resonance frequencies of the signal and idler get closer to each other, partial injection locking, injection pulling, and complete injection locking to half of the drive frequency occurs depending on the pump strength. Furthermore, satellite resonances, symmetrically offset from the signal and idler by their beat note, are observed, which can be attributed to degenerate four-wave mixing in the highly nonlinear mechanical oscillations.
Accessing northern California earthquake data via Internet
NASA Astrophysics Data System (ADS)
Romanowicz, Barbara; Neuhauser, Douglas; Bogaert, Barbara; Oppenheimer, David
The Northern California Earthquake Data Center (NCEDC) provides easy access to central and northern California digital earthquake data. It is located at the University of California, Berkeley, and is operated jointly with the U.S. Geological Survey (USGS) in Menlo Park, Calif., and funded by the University of California and the National Earthquake Hazard Reduction Program. It has been accessible to users in the scientific community through Internet since mid-1992.The data center provides an on-line archive for parametric and waveform data from two regional networks: the Northern California Seismic Network (NCSN) operated by the USGS and the Berkeley Digital Seismic Network (BDSN) operated by the Seismographic Station at the University of California, Berkeley.
Modeling and test of a kinaesthetic actuator based on MR fluid for haptic applications.
Yang, Tae-Heon; Koo, Jeong-Hoi; Kim, Sang-Youn; Kwon, Dong-Soo
2017-03-01
Haptic display units have been widely used for conveying button sensations to users, primarily employing vibrotactile actuators. However, the human feeling for pressing buttons mainly relies on kinaesthetic sensations (rather than vibrotactile sensations), and little studies exist on small-scale kinaesthetic haptic units. Thus, the primary goals of this paper are to design a miniature kinaesthetic actuator based on Magneto-Rheological (MR) fluid that can convey various button-clicking sensations and to experimentally evaluate its haptic performance. The design focuses of the proposed actuator were to produce sufficiently large actuation forces (resistive forces) for human users in a given size constraint and to offer a wide range of actuation forces for conveying vivid haptic sensations to users. To this end, this study first performed a series of parametric studies using mathematical force models for multiple operating modes of MR fluid in conjunction with finite element electromagnetism analysis. After selecting design parameters based on parametric studies, a prototype actuator was constructed, and its performance was evaluated using a dynamic mechanical analyzer. It measured the actuator's resistive force with a varying stroke (pressed depth) up to 1 mm and a varying input current from 0 A to 200 mA. The results show that the proposed actuator creates a wide range of resistive forces from around 2 N (off-state) to over 9.5 N at 200 mA. In order to assess the prototype's performance in the terms of the haptic application prospective, a maximum force rate was calculated to determine just noticeable difference in force changes for the 1 mm stoke of the actuator. The results show that the force rate is sufficient to mimic various levels of button sensations, indicating that the proposed kinaesthetic actuator can offer a wide range of resistive force changes that can be conveyed to human operators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, A.F.; Heerwage, D.R.; Kippehan, C.J.
A parametric study has been conducted of passive heating devices that are to be used to provide environmental conditioning for a single-family house. This study has been performed using the thermal simulation computer program UWENSOL. Climatic data used in this analysis were for Yokohama, Japan, which has a subtropical humid climate similar to Washington, D.C. (in terms of winter air temperatures and useful radiation). Initial studies considered the use of different wall thicknesses, glazing types, and orientations for a Trombe wall and alternate storage quantities for a walk-in greenhouse. Employing a number of comparative parametric studies an economical and efficientmore » combination of devices was selected. Then, using a computer routine COMFORT which is based on the Fanger Comfort Equation, another series of parametric analyses were performed to evaluate the degree of thermal comfort for the occupants of the house. The results of these analyses demonstrated that an averaged Predicted Mean Vote of less than 0.3 from a thermally-neutral condition could be maintained and that less than 10% of all occupants of such a passively-heated house would be thermally uncomfortable.« less
USDA-ARS?s Scientific Manuscript database
This study reports the use of crude glycerine from biodiesel production in the glycerolysis process and presents the associated parametric and energy analyses. The potential of glycerolysis as an alternative pretreatment method for high free fatty acid (FFA) containing fats, oils and greases (FOGs) ...
The role of automation and artificial intelligence
NASA Astrophysics Data System (ADS)
Schappell, R. T.
1983-07-01
Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.
NASA Technical Reports Server (NTRS)
1973-01-01
A computer program for space shuttle orbit injection propulsion system analysis (SOPSA) is described to show the operational characteristics and the computer system requirements. The program was developed as an analytical tool to aid in the preliminary design of propellant feed systems for the space shuttle orbiter main engines. The primary purpose of the program is to evaluate the propellant tank ullage pressure requirements imposed by the need to accelerate propellants rapidly during the engine start sequence. The SOPSA program will generate parametric feed system pressure histories and weight data for a range of nominal feedline sizes.
NASA Technical Reports Server (NTRS)
Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.
1986-01-01
The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.
Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.
2015-09-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.
New Logic Circuit with DC Parametric Excitation
NASA Astrophysics Data System (ADS)
Sugahara, Masanori; Kaneda, Hisayoshi
1982-12-01
It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.
Selecting a Separable Parametric Spatiotemporal Covariance Structure for Longitudinal Imaging Data
George, Brandon; Aban, Inmaculada
2014-01-01
Longitudinal imaging studies allow great insight into how the structure and function of a subject’s internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures, and the spatial from the outcomes of interest being observed at multiple points in a patients body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on Type I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the Type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be done in practice, as well as how covariance structure choice can change inferences about fixed effects. PMID:25293361
A review of parametric approaches specific to aerodynamic design process
NASA Astrophysics Data System (ADS)
Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li
2018-04-01
Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.
Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wong, Kenneth K. Y.
2013-12-01
Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.
Direct solar-pumped iodine laser amplifier
NASA Technical Reports Server (NTRS)
Han, K. S.
1985-01-01
This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.
Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells
NASA Astrophysics Data System (ADS)
Banerjee, Rupak
Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not been investigated in detail. This study begins to investigate the effects of changing operating conditions on liquid water transport through the reactant channels. It has been identified that rapidly increasing temperature leads to the dry-out of the membrane and rapidly cooling the cell below 55°C results in the start of cell flooding. In changing the operating load of the PEMFC, overshoot in the pressure drop in the reactant channel has been identified for the first time as part of this investigation. A parametric study has been conducted to identify the factors which influence this overshoot behavior.
Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP
NASA Astrophysics Data System (ADS)
Kuo, Spencer; Snyder, Arnold; Lee, M. C.
2014-06-01
Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.
Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Spencer; Snyder, Arnold; Lee, M. C.
2014-06-15
Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below themore » upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.« less
Zhang, Dongsheng; Wang, Shiyu; Xiu, Jie
2017-11-01
Elastic wave quality determines the operating performance of traveling wave ultrasonic motor (TWUM). The time-variant circumferential force from the shrink of piezoelectric ceramic is one of the factors that distort the elastic wave. The distorted waveshape deviates from the ideal standard sinusoidal fashion and affects the contact mechanics and driving performance. An analytical dynamic model of ring ultrasonic motor is developed. Based on this model, the piezoelectric parametric effects on the wave distortion and contact mechanics are examined. Multi-scale method is employed to obtain unstable regions and distorted wave response. The unstable region is verified by Floquét theory. Since the waveshape affects the contact mechanism, a contact model involving the distorted waveshape and normal stiffness of the contact layer is established. The contact model is solved by numerical calculation. The results verify that the deformation of the contact layer deviates from sinusoidal waveshape and the pressure distribution is changed, which influences the output characteristics directly. The surface speed within the contact region is averaged such that the rotor speed decreases for lower torque and increases for larger torque. The effects from different parametric strengths, excitation frequencies and pre-pressures on pressure distribution and torque-speed relation are compared. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous parametric generation and up-conversion of entangled optical images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r
A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less
Field-quadrature and photon-number correlations produced by parametric processes.
McKinstrie, C J; Karlsson, M; Tong, Z
2010-09-13
In a previous paper [Opt. Express 13, 4986 (2005)], formulas were derived for the field-quadrature and photon-number variances produced by multiple-mode parametric processes. In this paper, formulas are derived for the quadrature and number correlations. The number formulas are used to analyze the properties of basic devices, such as two-mode amplifiers, attenuators and frequency convertors, and composite systems made from these devices, such as cascaded parametric amplifiers and communication links. Amplifiers generate idlers that are correlated with the amplified signals, or correlate pre-existing pairs of modes, whereas attenuators decorrelate pre-existing modes. Both types of device modify the signal-to-noise ratios (SNRs) of the modes on which they act. Amplifiers decrease or increase the mode SNRs, depending on whether they are operated in phase-insensitive (PI) or phase-sensitive (PS) manners, respectively, whereas attenuators always decrease these SNRs. Two-mode PS links are sequences of transmission fibers (attenuators) followed by two-mode PS amplifiers. Not only do these PS links have noise figures that are 6-dB lower than those of the corresponding PI links, they also produce idlers that are (almost) completely correlated with the signals. By detecting the signals and idlers, one can eliminate the effects of electronic noise in the detectors.
Feature selection and classification of multiparametric medical images using bagging and SVM
NASA Astrophysics Data System (ADS)
Fan, Yong; Resnick, Susan M.; Davatzikos, Christos
2008-03-01
This paper presents a framework for brain classification based on multi-parametric medical images. This method takes advantage of multi-parametric imaging to provide a set of discriminative features for classifier construction by using a regional feature extraction method which takes into account joint correlations among different image parameters; in the experiments herein, MRI and PET images of the brain are used. Support vector machine classifiers are then trained based on the most discriminative features selected from the feature set. To facilitate robust classification and optimal selection of parameters involved in classification, in view of the well-known "curse of dimensionality", base classifiers are constructed in a bagging (bootstrap aggregating) framework for building an ensemble classifier and the classification parameters of these base classifiers are optimized by means of maximizing the area under the ROC (receiver operating characteristic) curve estimated from their prediction performance on left-out samples of bootstrap sampling. This classification system is tested on a sex classification problem, where it yields over 90% classification rates for unseen subjects. The proposed classification method is also compared with other commonly used classification algorithms, with favorable results. These results illustrate that the methods built upon information jointly extracted from multi-parametric images have the potential to perform individual classification with high sensitivity and specificity.
Stochastic stability of parametrically excited random systems
NASA Astrophysics Data System (ADS)
Labou, M.
2004-01-01
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
Distillation of the two-mode squeezed state.
Kurochkin, Yury; Prasad, Adarsh S; Lvovsky, A I
2014-02-21
We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the fraction of the photon-pair component in the state, resulting in the increase of both squeezing and entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not experience significant loss of Gaussian character.
Conformal Galilei algebras, symmetric polynomials and singular vectors
NASA Astrophysics Data System (ADS)
Křižka, Libor; Somberg, Petr
2018-01-01
We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.
One-man, self-contained CO2 concentrating system
NASA Technical Reports Server (NTRS)
Wynveen, R. A.; Schubert, F. H.; Powell, J. D.
1972-01-01
A program to design, fabricate, and test a 1-man, self-contained, electrochemical CO2 concentrating system is described. The system was designed with electronic controls and instrumentation to regulate performance, to analyze and display performance trends, and to detect and isolate faults. Ground support accessories were included to provide power, fluids, and a Parametric Data Display allowing real time indication of operating status in engineering units.
CALiPER Report 20.5: Chromaticity Shift Modes of LED PAR38 Lamps Operated in Steady-State Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Lynn; Young, Joseph; Royer, Michael
2016-02-26
This report builds on CALiPER Report 20.4, focusing on the same 32 PAR38 lamps but investigating causes of color shift and parametric failures. It provides a tear-down analysis of the lamp models and performs additional analyses on the spectroradiometric data obtained using a specially developed automated long-term test apparatus.
Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength
NASA Technical Reports Server (NTRS)
Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.
1974-01-01
The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
NASA Astrophysics Data System (ADS)
Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro
2018-03-01
Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.
Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro
2018-03-30
Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory-a concrete, explicit form of free operations of contextuality-was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.
Projecting LED product life based on application
NASA Astrophysics Data System (ADS)
Narendran, Nadarajah; Liu, Yi-wei; Mou, Xi; Thotagamuwa, Dinusha R.; Eshwarage, Oshadhi V. Madihe
2016-09-01
LED products have started to displace traditional light sources in many lighting applications. One of the commonly claimed benefits for LED lighting products is their long useful lifetime in applications. Today there are many replacement lamp products using LEDs in the marketplace. Typically, lifetime claims of these replacement lamps are in the 25,000-hour range. According to current industry practice, the time for the LED light output to reach the 70% value is estimated according to IESNA LM-80 and TM-21 procedures and the resulting value is reported as the whole system life. LED products generally experience different thermal environments and switching (on-off cycling) patterns when used in applications. Current industry test methods often do not produce accurate lifetime estimates for LED systems because only one component of the system, namely the LED, is tested under a continuous-on burning condition without switching on and off, and because they estimate for only one failure type, lumen depreciation. The objective of the study presented in this manuscript was to develop a test method that could help predict LED system life in any application by testing the whole LED system, including on-off power cycling with sufficient dwell time, and considering both failure types, catastrophic and parametric. The study results showed for the LED A-lamps tested in this study, both failure types, catastrophic and parametric, exist. The on-off cycling encourages catastrophic failure, and maximum operating temperature influences the lumen depreciation rate and parametric failure time. It was also clear that LED system life is negatively affected by on-off switching, contrary to commonly held belief. In addition, the study results showed that most of the LED systems failed catastrophically much ahead of the LED light output reaching the 70% value. This emphasizes the fact that life testing of LED systems must consider catastrophic failure in addition to lumen depreciation, and the shorter of the two failure modes must be selected as the system life. The results of this study show a shorter time test procedure can be developed to accurately predict LED system life in any application by knowing the LED temperature and the switching cycle.
Model risk for European-style stock index options.
Gençay, Ramazan; Gibson, Rajna
2007-01-01
In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.
Rational Ruijsenaars Schneider hierarchy and bispectral difference operators
NASA Astrophysics Data System (ADS)
Iliev, Plamen
2007-05-01
We show that a monic polynomial in a discrete variable n, with coefficients depending on time variables t1,t2,…, is a τ-function for the discrete Kadomtsev-Petviashvili hierarchy if and only if the motion of its zeros is governed by a hierarchy of Ruijsenaars-Schneider systems. These τ-functions were considered in [L. Haine, P. Iliev, Commutative rings of difference operators and an adelic flag manifold, Int. Math. Res. Not. 2000 (6) (2000) 281-323], where it was proved that they parametrize rank one solutions to a difference-differential version of the bispectral problem.
Liberati, Stefano; Maccione, Luca; Sotiriou, Thomas P
2012-10-12
Hořava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
NASA Astrophysics Data System (ADS)
Zhang, Shuai-Shuai; Shu, Qi; Zhou, Lan; Sheng, Yu-Bo
2017-06-01
Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Network of time-multiplexed optical parametric oscillators as a coherent Ising machine
NASA Astrophysics Data System (ADS)
Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa
2014-12-01
Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.
Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J
2017-09-01
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback
NASA Astrophysics Data System (ADS)
You, Xiang; Li, Zongyang; Li, Yongmin
2017-12-01
A scheme to achieve strong quantum squeezing of a mechanical resonator in a membrane-in-the-middle optomechanical system is developed. To this end, simultaneous linear and nonlinear coupling between the mechanical resonator and the cavity modes is applied. A two-tone driving light field, comprising unequal red-detuned and blue-detuned sidebands, helps in generating a coherent feedback force through the linear coupling with the membrane resonator. Another driving light field with its amplitude modulated at twice the mechanical frequency drives the mechanical parametric amplification through a second-order coupling with the resonator. The combined effect produces strong quantum squeezing of the mechanical state. The proposed scheme is quite robust to excess second-order coupling observed in coherent feedback operations and can suppress the fluctuations in the mechanical quadrature to far below the zero point and achieve strong squeezing (greater than 10 dB) for realistic parameters.
Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation
NASA Astrophysics Data System (ADS)
Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.
2013-06-01
Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.
Parametric instability in the high power era of Advanced LIGO
NASA Astrophysics Data System (ADS)
Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration
2017-01-01
After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.
NASA Astrophysics Data System (ADS)
Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias
2017-11-01
The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.
Dimitrakis, Dimitrios A; Syrigou, Maria; Lorentzou, Souzana; Kostoglou, Margaritis; Konstandopoulos, Athanasios G
2017-10-11
This study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated. Different test cases are explored in order to improve the product yield. At first a parametric analysis is conducted, investigating the appropriate duration of the oxidation and the thermal reduction step that maximizes the hydrogen yield. Subsequently, a non-isothermal oxidation step is simulated and proven as an interesting option for increasing the hydrogen production. The kinetic model is adapted to simulate the production yields in structured solar reactor components, i.e. extruded monolithic structures, as well.
NASA Astrophysics Data System (ADS)
Brächer, T.; Pirro, P.; Hillebrands, B.
2017-06-01
Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an excellent tool to generate and to amplify spin waves in these systems in a wide wavevector range. In particular, the amplification greatly benefits from the discreteness of the spin-wave spectra since the size of the microstructures is comparable to the spin-wave wavelength. This opens up new, interesting routes of spin-wave amplification and manipulation. In this review, we will give an overview over the recent developments and achievements in this field.
The chi-square test of independence.
McHugh, Mary L
2013-01-01
The Chi-square statistic is a non-parametric (distribution free) tool designed to analyze group differences when the dependent variable is measured at a nominal level. Like all non-parametric statistics, the Chi-square is robust with respect to the distribution of the data. Specifically, it does not require equality of variances among the study groups or homoscedasticity in the data. It permits evaluation of both dichotomous independent variables, and of multiple group studies. Unlike many other non-parametric and some parametric statistics, the calculations needed to compute the Chi-square provide considerable information about how each of the groups performed in the study. This richness of detail allows the researcher to understand the results and thus to derive more detailed information from this statistic than from many others. The Chi-square is a significance statistic, and should be followed with a strength statistic. The Cramer's V is the most common strength test used to test the data when a significant Chi-square result has been obtained. Advantages of the Chi-square include its robustness with respect to distribution of the data, its ease of computation, the detailed information that can be derived from the test, its use in studies for which parametric assumptions cannot be met, and its flexibility in handling data from both two group and multiple group studies. Limitations include its sample size requirements, difficulty of interpretation when there are large numbers of categories (20 or more) in the independent or dependent variables, and tendency of the Cramer's V to produce relative low correlation measures, even for highly significant results.
Total recognition discriminability in Huntington's and Alzheimer's disease.
Graves, Lisa V; Holden, Heather M; Delano-Wood, Lisa; Bondi, Mark W; Woods, Steven Paul; Corey-Bloom, Jody; Salmon, David P; Delis, Dean C; Gilbert, Paul E
2017-03-01
Both the original and second editions of the California Verbal Learning Test (CVLT) provide an index of total recognition discriminability (TRD) but respectively utilize nonparametric and parametric formulas to compute the index. However, the degree to which population differences in TRD may vary across applications of these nonparametric and parametric formulas has not been explored. We evaluated individuals with Huntington's disease (HD), individuals with Alzheimer's disease (AD), healthy middle-aged adults, and healthy older adults who were administered the CVLT-II. Yes/no recognition memory indices were generated, including raw nonparametric TRD scores (as used in CVLT-I) and raw and standardized parametric TRD scores (as used in CVLT-II), as well as false positive (FP) rates. Overall, the patient groups had significantly lower TRD scores than their comparison groups. The application of nonparametric and parametric formulas resulted in comparable effect sizes for all group comparisons on raw TRD scores. Relative to the HD group, the AD group showed comparable standardized parametric TRD scores (despite lower raw nonparametric and parametric TRD scores), whereas the previous CVLT literature has shown that standardized TRD scores are lower in AD than in HD. Possible explanations for the similarity in standardized parametric TRD scores in the HD and AD groups in the present study are discussed, with an emphasis on the importance of evaluating TRD scores in the context of other indices such as FP rates in an effort to fully capture recognition memory function using the CVLT-II.
Computer simulation of a cruise missile using brushless dc motor fin control
NASA Astrophysics Data System (ADS)
Franklin, G. C.
1985-03-01
This thesis describes a computer simulation developed in order to provide a method of establishing the potential of brushless dc motors for applications to tactical cruise missile control surface positioning. In particular, an altitude hold controller has been developed that provides an operational load test condition for the evaluation of the electromechanical actuator. A proportional integral control scheme in conjunction with tachometer feedback provides the position control for the missile tailfin surfaces. The fin control system is further imbedded in a cruise missile model to allow altitude control of the missile. The load on the fin is developed from the dynamic fluid environment that the missile will be operating in and is proportional to such factors as fin size and air density. The program written in CSMP language is suitable for parametric studies including motor and torque load characteristics, and missile and control system parameters.
Design study of wind turbines, 50 kW to 3000 kW for electric utility applications: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
Preliminary designs of low power (50 to 500 kW) and high power (500 to 3000 kW) wind generator systems (WGS) for electric utility applications were developed. These designs provide the bases for detail design, fabrication, and experimental demonstration testing of these units at selected utility sites. Several feasible WGS configurations were evaluated, and the concept offering the lowest energy cost potential and minimum technical risk for utility applications was selected. The selected concept was optimized utilizing a parametric computer program prepared for this purpose. The utility requirements evaluation task examined the economic, operational and institutional factors affecting the WGS in a utility environment, and provided additional guidance for the preliminary design effort. Results of the conceptual design task indicated that a rotor operating at constant speed, driving an AC generator through a gear transmission is the most cost effective WGS configuration.
Operating limitations of high speed jet lubricated ball bearings
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.; Signer, H.; Bamberger, E. N.
1975-01-01
A parametric study was performed with 120-mm bore angular-contact ball bearings having a nominal contact angle of 20 degrees. The bearings had either an inner- or an outer-race land riding cage, and lubrication was by recirculating oil jets which had either a single or dual orifice. Thrust load, speed, and lubricant flow rate were varied. Test results were compared with those previously reported and obtained from bearings of the same design which were under-race lubricated but run under the same conditions. Jet lubricated ball bearings were limited to speeds less than 2,500,000 DN, and bearings having inner-race land riding cages produced lower temperatures than bearings with outer-race land riding cages. For a given lubricant flow rate dual orifice jets produced lower bearing temperatures than single orifice jets, but under-race lubrication produced lower bearing temperatures under all conditions of operation with no apparent bearing speed limitation.
NASA Technical Reports Server (NTRS)
Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.
1980-01-01
The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.
Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J
2014-01-01
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.
Comparison of four approaches to a rock facies classification problem
Dubois, M.K.; Bohling, Geoffrey C.; Chakrabarti, S.
2007-01-01
In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu
2014-01-01
Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.
Spacelab mission dependent training parametric resource requirements study
NASA Technical Reports Server (NTRS)
Ogden, D. H.; Watters, H.; Steadman, J.; Conrad, L.
1976-01-01
Training flows were developed for typical missions, resource relationships analyzed, and scheduling optimization algorithms defined. Parametric analyses were performed to study the effect of potential changes in mission model, mission complexity and training time required on the resource quantities required to support training of payload or mission specialists. Typical results of these analyses are presented both in graphic and tabular form.
Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela
2015-10-13
We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).
Rephasing invariant parametrization of flavor mixing
NASA Astrophysics Data System (ADS)
Lee, Tae-Hun
A new rephasing invariant parametrization for the 3 x 3 CKM matrix, called (x, y) parametrization, is introduced and the properties and applications of the parametrization are discussed. The overall phase condition leads this parametrization to have only six rephsing invariant parameters and two constraints. Its simplicity and regularity become apparent when it is applied to the one-loop RGE (renormalization group equations) for the Yukawa couplings. The implications of this parametrization for unification of the Yukawa couplings are also explored.
NASA Astrophysics Data System (ADS)
Anurose, T. J.; Subrahamanyam, D. Bala
2013-06-01
We discuss the impact of the differential treatment of the roughness lengths for momentum and heat (z_{0m} and z_{0h}) in the flux parametrization scheme of the high-resolution regional model (HRM) for a heterogeneous terrain centred around Thiruvananthapuram, India (8.5°N, 76.9°E). The magnitudes of sensible heat flux ( H) obtained from HRM simulations using the original parametrization scheme differed drastically from the concurrent in situ observations. With a view to improving the performance of this parametrization scheme, two distinct modifications are incorporated: (1) In the first method, a constant value of 100 is assigned to the z_{0m}/z_{0h} ratio; (2) and in the second approach, this ratio is treated as a function of time. Both these modifications in the HRM model showed significant improvements in the H simulations for Thiruvananthapuram and its adjoining regions. Results obtained from the present study provide a first-ever comparison of H simulations using the modified parametrization scheme in the HRM model with in situ observations for the Indian coastal region, and suggest a differential treatment of z_{0m} and z_{0h} in the flux parametrization scheme.
The Logarithmic Tail of Néel Walls
NASA Astrophysics Data System (ADS)
Melcher, Christof
We study the multiscale problem of a parametrized planar 180° rotation of magnetization states in a thin ferromagnetic film. In an appropriate scaling and when the film thickness is comparable to the Bloch line width, the underlying variational principle has the form