Science.gov

Sample records for paranitrophenol-an xrd tem

  1. Changes in the surfaces on DDOAB organoclays adsorbed with paranitrophenol-An XRD, TEM and TG study

    SciTech Connect

    Zhou Qin; He Hongping; Frost, Ray L. Xi Yunfei

    2008-12-01

    The adsorption of paranitrophenol on organoclays synthesised by the ion exchange of the surfactant molecule dimethyldioctadecylammonium bromide (DDOAB) of formula (CH{sub 3}(CH{sub 2}){sub 17}){sub 2}NBr(CH{sub 3}){sub 2} has been studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermogravimetric analysis. The expansion of the montmorillonite depends on the loading of the montmorillonite with dimethyldioctadecylammonium bromide and is related to the arrangement of the surfactant molecules within the clay interlayer. This expansion is altered by the adsorbed paranitrophenol and is observed in the transmission electron microscopic images of the organoclay with adsorbed paranitrophenol. Changes in the surfactant molecular arrangements were analysed by thermogravimetry. The paranitrophenol is sublimed simultaneously with the loss of surfactant. The dehydroxylation temperature of the montmorillonite is decreased upon adsorption of the paranitrophenol indicating a bonding between the paranitrophenol and the hydroxyl units of the montmorillonite.

  2. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Lee, M. E.; Yagoub, M. Y. A.; Swart, H. C.; Coetsee, E.

    2016-01-01

    Crystallite morphology for Eu-doped and undoped SrF2 nanophosphors have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The values for average crystallite size obtained by the application of the Scherrer equation and the full width at half maximum (FWHM) values for XRD peaks are compared to the results obtained using the hollow cone dark field (HCDF) TEM imaging technique. In the case of the TEM analysis, a bimodal crystallite size distribution was revealed with one of the distributions having a measured range of crystallite sizes which was in good agreement with the XRD data. HCDF in combination with FIB specimen preparation was found to be a promising technique for the determination of crystallite size distributions in nanophosphors which might facilitate a better understanding of their scintillation properties.

  3. Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles

    NASA Astrophysics Data System (ADS)

    Lathiya, U. M.; Jethva, H. O.; Joshi, M. J.; Vyas, P. M.

    2017-05-01

    Strontium tartrate finds several applications, e.g., as non-linear optical and dielectric material, in tracer composition and ammunition unit, in treating structural integrity of bone. The growth of single crystals of strontium tartrate in silica gel has been widely reported. In the present study, strontium tartrate nano particles were synthesized by wet chemical method using strontium chloride, tartaric acid and sodium meta-silicate solutions in the presence of Triton X -100 surfactant. It was found that the presence of sodium meta-silicate facilitated the reaction for strontium tartrate product. The powder XRD study of strontium tartrate nano-particles suggested monoclinic crystal system and the average crystallite size was found to be 40 nm determined by applying Scherrer's formula. The TEM analysis indicated that the nano particles were spherical in nature. The FTIR spectrum confirmed the presence of various functional groups such as O-H,C-H, and C=O stretching mode. The thermal analysis was carried out by using TGA and DTA studies. The nano-particles were found to be stable up to 175°C and then decomposed through various stages. The results are compared with the bulk crystalline material available in the literature.

  4. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  5. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  6. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: Characterization of nanocomposite by FTIR, XRD, FESEM and TEM

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2014-10-01

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35 nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field.

  7. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  8. NGR, XRD and TEM/SAED investigations on waste dumps materials with a view to recover precious metals

    NASA Astrophysics Data System (ADS)

    Udubasa, S. S.; Constantinescu, S.; Popescu-Pogrion, N.; Feder, M.; Udubasa, G.

    2010-03-01

    Two types of ores were selected for the investigation of the fate of the ore minerals during relatively long time of residence in the waste dumps (active mining: 25 years ago in the Badeanca Valley and some 50 years ago in the Valea lui Stan area). The pentametallic ores (Co-Ni-Bi-Ag-U) in the Leaota Mts. contain a great number of primary minerals of Cu, As etc. Although the waste dumps materials have whitish-yellowish colors their NGR spectra show the presence of iron minerals very finely dispersed. In the gold ores of Valea lui Stan deposit numerous minerals were identified, such as arsenopyrite, pyrite, pyrrhotite, etc., as major gold bearing sulfides. The waste dumps materials naturally show different mineral constituents, with clay minerals as major phases. Detailed NGR investigations show however Mössbauer spectra pointing out the presence of finely dispersed iron or iron-bearing minerals. Under supergene conditions gold is commonly sequestrated by iron hydroxydes; further TEM/SAED and XRD investigations are contributing to localize the gold. In some samples Mössbauer spectra resembling those of greigite have been obtained. Greigite is also a principal concentrator of gold under supergene conditions.

  9. A TEM and XRD Study of (BiS) 1+δ(Nb 1+ɛS 2) n Misfit Layer Structures

    NASA Astrophysics Data System (ADS)

    Otero-Diaz, L. C.; Withers, R. L.; Gomez-Herrero, A.; Welberry, T. R.; Schmid, S.

    1995-02-01

    Monolayer and bilayer lamellar misfit layered chalcogenides within the BiS-NbS 2 system have been synthesized and studied via TEM and XRD. Both BiS and NbS 2 parent substructures are shown to have very close to orthorhombic symmetry in the former case, but definite monoclinic symmetry in the latter. Stacking disorder and its effect upon electron diffraction patterns is investigated via higher order Laue zone (HOLZ) diffraction. In addition to the usual set of reflections for such systems, an additional set of weak, somewhat diffuse satellite reflections (not previously reported before for any other misfit layered chalcogenide) have been observed. Bilayer tubular crystals have also been studied by XRD. A close relationship with the corresponding lamellar bilayer phase is established, and some unusual features of its reciprocal lattice are pointed out.

  10. Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies

    NASA Astrophysics Data System (ADS)

    Ramos Guivar, Juan A.; Sanches, Edgar A.; Bruns, Florian; Sadrollahi, Elaheh; Morales, M. A.; López, Elvis O.; Litterst, F. Jochen

    2016-12-01

    Vacancy ordered maghemite (γ-Fe2O3) nanoparticles functionalized with nanohydroxyapatite (HAp - Ca10(PO4) 6(OH)2) have been successfully synthesized using an inexpensive co-precipitation chemical route. Evidence for the presence of vacancy order in maghemite was shown by the superstructure lines observed in X-ray diffraction. The adsorption of carboxyl groups of citric acid (C6H8O7) onto γ-Fe2O3 nanoparticles was investigated by FTIR, XPS and Mössbauer spectroscopy. From XPS surface analysis, two binding energies related to oxygen were attributed to bindings between C6H8O7/γ- Fe2O3 and C6H8O7/HAp from an interfacial reaction promoted by strongly adsorbed H2O molecules at the surface of these nanomaterials. Le Bail refinement of the XRD patterns showed the formation of well-crystallized pure tetragonal maghemite before and after functionalization with nanoHAp. The temperature dependence of hyperfine parameters of pure and functionalized γ-Fe2O3 nanoparticles was investigated via Mössbauer spectroscopy. TEM revealed the formation of quasi-spherical γ- Fe2O3 nanoparticles with an average diameter of ca. 12 nm and 16 nm before and after functionalization with nanoHAp in agreement with Le Bail refinement. Magnetometry measurements showed a saturation magnetization of 12 emu/g and a blocking temperature of 340 K for the functionalized γ- Fe2O3 nanoparticles.

  11. Alteration history of mudrock samples from the San Andreas Fault Observatory at Depth (SAFOD) drill hole: a TEM-XRD study

    NASA Astrophysics Data System (ADS)

    Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Studying rock alteration in active fault zones is key to understanding fault history and the interaction with mechanical, hydrological and mineralogical processes. In the SAFOD mudrocks at 3064 and 3436 m depths, abundant clay mineral phases, including mixed-layered varieties, occur in the matrix. At present, little is known about the mechanism and timing of their formation in relation to the faulting process. Based on a detailed TEM-XRD study, a preliminary assessment of the alteration history of the clay-rich rock chips is made by studying mineral character, hydration behavior, fabric and textural relationships. The mudrocks contain detrital grains of chlorite, muscovite and biotite, along with a range of authigenic illite, illite-smectite, chlorite- smectite and smectite. The predominant clay minerals are small illite packets (20-30 nm thickness) of a 1Md polytype. The illite constitutes about 75 percent of the illite-smectite mixed layer particles, showing a long- range ordering (R greater than 3). These authigenic mineral phases are probably formed during the movement of aqueous fluids along permeable fractures and veins by dissolution-precipitation reactions, and partly at the expense of larger (about 150 nm thick), deformed, detrital packets. The chlorite-smectite mixed layered phases formed via similar mechanisms, but in this case by direct alteration of detrital chlorite and biotite grains. Preliminary DTA heat flow results from a whole rock mudstone indicate a total loss of about 6 percent of total volatiles (about 2 percent interlayer water, about 4 percent crystalline water), most of which occurs during the dehydroxylation of clays (400-600 C). The timing of authigenic mineral growth in the matrix assemblages is considered to be coeval or older than localized mineralization along open fractures. The fracture precipitations are notably smectite rich and can be taken as an indication of more recent low temperature fluids of varying composition or more

  12. XRD and TEM characterization of cathodic MnO{sub 2} and discharge products in the Li-MnO{sub 2} cell

    SciTech Connect

    Shao, Y.; Hackney, S.A.; Cornilsen, B.C.

    1995-12-31

    The crystal structures of the undischarged, heat-treated electrolytic manganese dioxide (HEMD) and discharge products are characterized by high spatial resolution convergent beam electron diffraction (CBED). The results are compared with the x-ray diffraction (XRD) patterns characterized by broad, diffuse peaks. The CBED results for HEMD show that the starting cathodic material has the pyrolusite space group, but with a range of c/a ratios. The variability of the lattice parameter from grain to grain is found to coincide with the broadening on the low angle side of the XRD peaks. The CBED patterns of discharge products suggest a reduction range in c/a ratios and the formation of another phase.

  13. Al-Si ordering in Sr-feldspar SrAl2Si2O8: IR, TEM and single-crystal XRD evidences

    NASA Astrophysics Data System (ADS)

    Benna, P.; Tribaudino, M.; Bruno, E.

    1995-09-01

    Al-Si ordering in Sr-feldspar has been followed by isothermal annealing, starting from a disordered metastable configuration. Ordering could not be followed by changes in the spontaneous strain as cell parameters did not show significant changes with thermal treatment from 0.016 h to 452 h at T=1350° C, while, on the contrary, significant changes in IR spectra are observed. A single crystal obtained from melt ( Q od≈ 0) has been progressively heated up to 678 h at T=1350° C and the relevant structural refinements enabled to monitor changes in degree of Al-Si order up to Qod = 0.86. In isothermal treatment for Sr-feldspar it is observed a significantly lower Q od than in anorthite after the same annealing time. TEM observation has shown in Sr-feldspar, also for shortest annealing, ‘ b’ type reflections, while in anorthite, in the same conditions, ‘ e’ type reflections have been observed (Carpenter 1991a). In the first stages of ordering ‘ b’ APDs sized ≈ 100 Å (at T=1350° C, 0.33 h) have been observed in Sr-feldspar; APD coarsening occurs with an activation energy of 120±7 kcal mol-1, not significantly different from anorthite. The ordering process seems to be a slower process in Sr-feldspar than in anorthite, even though data from longer annealing suggest that the Q od close to the equilibrium is the same in Sr and Ca-feldspar ( Q od = 0.86 at T=1350° C).

  14. Morphological and Structural Changes during the Reduction and Reoxidation of CuO/CeO2 and Ce1-xCuxO2 Nanocatalysts: In Situ Studies with Environmental TEM XRD and XAS

    SciTech Connect

    J Ciston; R Si; J Rodriquez; J Hanson; A Martinez-Arias; M Fernandez-Garcia; Y Zhu

    2011-12-31

    We have studied the structural, morphological, and electronic properties of CuO/CeO{sub 2} and Ce{sub 1-x}Cu{sub x}O{sub 2} nanocatalysts during reduction/oxidation cycles using H2 and O2 as chemical probes. Time-resolved in situ characterization was performed by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) as well as aberration-corrected environmental transmission electron microscopy (ETEM). We have found that both types of nanocatalysts reduce to a Cu/CeO{sub 2} biphase system with significant oxygen vacancies in CeO{sub 2}. Important variations are seen in the Cu particle size and metal dispersion depending on the initial state of the copper oxide-ceria systems. During subsequent in situ oxygen annealing, the Cu precipitated from the CuO/CeO{sub 2} system reoxidized to form CuO through a Cu2O intermediate phase as expected. However, the Cu precipitated from the Ce{sub 0.8}Cu{sub 0.2}O{sub 2} solid solution behaved rather differently under oxidizing conditions, and neither oxidized to form CuO nor fully returned to a bulk Ce{sub 0.8}Cu{sub 0.2}O{sub 2} phase in solid solution. We found that 50% of the Cu returned to a Ce{sub 1-x}Cu{sub x}O{sub 2} solid solution, while the remainder was observed by in situ ETEM to form an amorphous copper oxide phase with a Cu oxidation state similar to Ce{sub 1-x}Cu{sub x}O{sub 2}, but with a local bonding environment similar to CuO. The behavior of the reduced Ce{sub 0.8}Cu{sub 0.2}O{sub 2} reflects strong interactions between Cu and the ceria matrix and illustrates the advantages of working with solid solutions of mixed oxides.

  15. Morphological and Structural Changes During the Reduction and Reoxidation of CuO/CeO(2) and Ce(1-x)Cu(x)O(2) Nanocatalysts: In-situ Studies with Environmental TEM, XRD and XAS

    SciTech Connect

    Rodriguez, J.A.; Ciston, J.; Si, R.; Hanson, J.C.; Martínez-Arias, A.; Fernandez-García, M.; Zhu, Y.

    2011-07-21

    We have studied the structural, morphological, and electronic properties of CuO/CeO{sub 2} and Ce{sub 1-x}Cu{sub x}O{sub 2} nanocatalysts during reduction/oxidation cycles using H{sub 2} and O{sub 2} as chemical probes. Time-resolved in situ characterization was performed by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) as well as aberration-corrected environmental transmission electron microscopy (ETEM). We have found that both types of nanocatalysts reduce to a Cu/CeO{sub 2} biphase system with significant oxygen vacancies in CeO{sub 2}. Important variations are seen in the Cu particle size and metal dispersion depending on the initial state of the copper oxide-ceria systems. During subsequent in situ oxygen annealing, the Cu precipitated from the CuO/CeO{sub 2} system reoxidized to form CuO through a Cu{sub 2}O intermediate phase as expected. However, the Cu precipitated from the Ce{sub 0.8}Cu{sub 0.2}O{sub 2} solid solution behaved rather differently under oxidizing conditions, and neither oxidized to form CuO nor fully returned to a bulk Ce{sub 0.8}Cu{sub 0.2}O{sub 2} phase in solid solution. We found that {approx} 50% of the Cu returned to a Ce{sub 1-x}Cu{sub x}O{sub 2} solid solution, while the remainder was observed by in situ ETEM to form an amorphous copper oxide phase with a Cu oxidation state similar to Ce{sub 1-x}Cu{sub x}O{sub 2}, but with a local bonding environment similar to CuO. The behavior of the reduced Ce{sub 0.8}Cu{sub 0.2}O{sub 2} reflects strong interactions between Cu and the ceria matrix and illustrates the advantages of working with solid solutions of mixed oxides.

  16. TEM Video Compressive Sensing

    SciTech Connect

    Stevens, Andrew J.; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.

    2015-08-02

    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental

  17. Vanga Bhasma and its XRD analysis

    PubMed Central

    Hiremath, Rudramma; Jha, C.B.; Narang, K.K.

    2010-01-01

    Bhasmas are potent Ayurvedic medicaments, biologically active and powerful healing preparations in all aspects. Properly prepared Bhasmas have not reported any serious untoward effects in clinical practice. Vanga Bhasma is an effective Ayurvedic medicine among various Bhasmas which are classically explained and advised specially in genitourinary disorders. XRD peaks of Vanga Bhasma are identified to be as Tindioxide (SnO2) PMID:22557364

  18. Vanga Bhasma and its XRD analysis.

    PubMed

    Hiremath, Rudramma; Jha, C B; Narang, K K

    2010-04-01

    Bhasmas are potent Ayurvedic medicaments, biologically active and powerful healing preparations in all aspects. Properly prepared Bhasmas have not reported any serious untoward effects in clinical practice. Vanga Bhasma is an effective Ayurvedic medicine among various Bhasmas which are classically explained and advised specially in genitourinary disorders. XRD peaks of Vanga Bhasma are identified to be as Tindioxide (SnO(2)).

  19. Polycrystal orientation maps from TEM.

    PubMed

    Fundenberger, J-J; Morawiec, A; Bouzy, E; Lecomte, J S

    2003-08-01

    Determination of topography of crystallite orientations is an important technique of investigation of polycrystalline materials. A system for creating orientation maps using transmission electron microscope (TEM) Kikuchi patterns and Convergent beam electron diffraction patterns is presented. The orientation maps are obtained using a step-by-step beam scan on a computer-controlled TEM equipped with a CCD camera. At each step, acquired diffraction patterns are indexed and orientations are determined. Although, the approach used is similar to that applied in SEM/electron back scattered diffraction (EBSD) orientation imaging setups, the TEM-based system considerably differs from its SEM counterpart. The main differences appear due to specific features of TEM and SEM diffraction patterns. Also, the resulting maps are not equivalent. On these generated by TEM, the accuracy of orientation determination can be better than 0.1 degrees. The spatial resolution is estimated to be about 10nm. The latter feature makes the TEM orientation mapping system an important tool for studies at fine scale unreachable by SEM/EBSD systems. The automatic orientation mapping is expected to be a useful complement of the conventional TEM contrast images. The new technique will be essential for characterization of fine structure materials. To illustrate that, example maps of an aluminum sample produced by severe plastic deformation are included.

  20. TEM turbulence optimisation in stellarators

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  1. TEM PSHA2015 Reliability Assessment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Wang, Y. J.; Chan, C. H.; Ma, K. F.

    2016-12-01

    The Taiwan Earthquake Model (TEM) developed a new probabilistic seismic hazard analysis (PSHA) for determining the probability of exceedance (PoE) of ground motion over a specified period in Taiwan. To investigate the adequacy of the seismic source parameters adopted in the 2015 PSHA of the TEM (TEM PSHA2015), we conducted several tests of the seismic source models. The observed maximal peak ground acceleration (PGA) of the ML > 4.0 mainshocks in the 23-year data period of 1993-2015 were used to test the predicted PGA of PSHA from the areal and subduction zone sources with the time-independent Poisson assumption. This comparison excluded the observations from 1999 Chi-Chi earthquake, as this was the only earthquake associated with the identified active fault in this past 23 years. We used tornado diagrams to analyze the sensitivities of these source parameters to the ground motion values of the PSHA. This study showed that the predicted PGA for a 63% PoE in the 23-year period corresponded to the empirical PGA and the predicted numbers of PGA exceedances to a threshold value 0.1g close to the observed numbers, confirming the parameter applicability for the areal and subduction zone sources. We adopted the disaggregation analysis from a hazard map to determine the contribution of the individual seismic sources to hazard for six metropolitan cities in Taiwan. The sensitivity tests of the seismogenic structure parameters indicated that the slip rate and maximum magnitude are dominant factors for the TEM PSHA2015. For densely populated faults in SW Taiwan, maximum magnitude is more sensitive than the slip rate, giving the concern on the possible multiple fault segments rupture with larger magnitude in this area, which was not yet considered in TEM PSHA2015. The source category disaggregation also suggested that special attention is necessary for subduction zone earthquakes for long-period shaking seismic hazards in Northern Taiwan.

  2. Characterization of magnetite in silico-aluminous fly ash by SEM, TEM, XRD, magnetic susceptibility, and Moessbauer spectroscopy

    SciTech Connect

    Gomes, S.; Francois, M.; Abdelmoula, M.; Refait, P.; Pellissier, C.; Evrard, O.

    1999-11-01

    Spinel magnetite contained in a silico-aluminous fly ash (originating from la Maxe's power plant, near Metz in the east of France) issued from bituminous coal combustion has been studied by scanning and transmission electron microscopy linked with energy dispersive spectroscopy. X-ray diffraction, susceptibility measurements, and Moessbauer spectroscopy. The results show that in this magnetite Mg is strongly substituted for Fe and the chemical formula is closer to MgFe{sub 2}O{sub 4} than Fe{sub 3}O{sub 4}. Magnetite also contains Mn, Ca, and Si elements, but at a lower proportion. The results are compatible with the chemical formula Fe{sub 2.08}Mg{sub 0.75}Mn{sub 0.11}Ca{sub 0.04}Si{sub 0.02}O{sub 4} and crystallochemical formula [Fe{sup 2{minus}}{sub 0.92}Ca{sup 2+}{sub 0.06}Si{sup 4+}{sub 0.02}]{sup tetra}[Fe{sup 3+}Fe{sup 2+}{sub 0.16}Mg{sup 2+}{sub 0.73}Mn{sup 2+}{sub 0.11}]{sup octa}O{sub 4}, showing the cation distribution on octahedral and tetrahedral sites of the spinel structure. The reason Mg element is not incorporated in soluble surface salt and in glass composition of the silico-aluminous fly ashes is now understood.

  3. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  4. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values.

  5. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  6. In-situ TEM phase formation in cold rolled aluminum-nickel multilayers

    SciTech Connect

    Sieber, H.; Perepezko, J.H.

    1998-12-31

    Multilayer samples of Nickel and Aluminum with an overall composition of Al-20Ni were prepared by cold rolling of elemental foils. The sample microstructures and phases were characterized by XRD, SEM and TEM/SAED, and the reactive phase formation was then examined by DSC measurements. XRD, SEM and TEM measurements show that the rolling procedure results in a decrease of the Al and Ni layer thicknesses (down to 100 nm in average) and a decrease of the grain size (down to less than 50 nm). No phase formation is observed during the cold rolling procedure. In isochronal DSC scans of the Al-Ni multilayers, the formation of the Al{sub 3}Ni phase was found to be a two step reaction process due to 2-dimensional nucleation and lateral growth and a 3-dimensional phase thickening. While XRD measurements showed Al{sub 3}Ni as the only phase that forms, more detailed TEM investigations of the samples after DSC treatment also showed a small amount of an amorphous Al-Ni phase, formed by a thermally activated solid state amorphization reaction (SSAR). In-situ TEM heating of the amorphous areas under the electron beam in the microscope yielded the crystallization of the amorphous phase to a B2 structure and a growth of the B2 grains up to 100 nm in size.

  7. New TEM variant (TEM-92) produced by Proteus mirabilis and Providencia stuartii isolates.

    PubMed

    de Champs, C; Monne, C; Bonnet, R; Sougakoff, W; Sirot, D; Chanal, C; Sirot, J

    2001-04-01

    The sequences of the bla(TEM) genes encoding TEM-92 in Proteus mirabilis and Providencia stuartii isolates were determined and were found to be identical. Except for positions 218 (Lys-6) and 512 (Lys-104), the nucleotide sequence of bla(TEM-92) was identical to that of bla(TEM-20), including the sequence of the promoter region harboring a 135-bp deletion combined with a G-162-->T substitution. The deduced amino acid sequence of TEM-92 differed from that of TEM-52 by the presence of a substitution (Gln-6-->Lys) in the peptide signal.

  8. Modulation of synthetic parameters of cobalt nanoparticles: TEM, EDS, spectral and thermal studies.

    PubMed

    Chandra, Sulekh; Kumar, Avdhesh

    2012-12-01

    The study focuses on the modulation of synthetic parameters in order to influence the size, structure, composition and arrangement of nanoparticles of cobalt. Cobalt nanoparticles were synthesized by ethanolic solution of benzildiethylenetriamine in cobalt nitrate solution at 60 °C with stirring and refluxing leads to nanoparticles of cobalt. The morphology and structure of the synthesized nanoparticles of cobalt were characterized by Transmission Electron Microscopy (TEM), Powder X-ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), QELS Data and Infrared Spectroscopy (IR). Crystalline size was 20 nm determined from the sharp peak at 2θ=25 °C from the powder XRD. TEM images of cobalt nanoparticles without reducing agent having the diameter 20 nm with spherical shape and black color.

  9. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  10. [Transanal endoscopic microsurgery (TEM) our experience].

    PubMed

    Robek, O; Čan, V; Svoboda, T; Hemmelová, B; Kala, Z; Hrivnák, R

    2016-01-01

    The purpose of this paper is to present our experience with transanal endoscopic microsurgery (TEM) as an operative approach in a selected group of patients with rectal tumours. We present a retrospective study of 80 patients operated for rectal tumour using TEM. Specific preoperative and postoperative indicators were gathered and statistically evaluated. We assessed histological examination before the surgery and definitive histology of the resected tumour, resection depth and basic demographic data of our patients. Our experience suggests that there is no significant difference between the age of patients according to sex, even if malignant and benign tumours are assessed separately. The majority of our operated patients were male patients, mean age of 64 years who were primarily referred to our department because of bleeding low-grade adenomas of the rectum. In 17 patients a malignant tumour was diagnosed based on final histopathologic examination. None of them had signs of malignancy before the surgery. In the hands of an experienced surgeon, TEM is a feasible option of radical removal of rectal, locally not advanced malignancies if within reach of TEM rectoscope. TEM is a safe procedure that does not result in any alteration of rectal sphincter functions. Possible false negative preoperative benign diagnosis leads us to approach radical removal of the tumour with full wall thickness resection. Although the posterior aspect of the rectum is an optimal location for the rectoscope, anterior tumours were found in almost one half of our patients. Considering technical feasibility of the rectal wall suture, the base of the tumour should not extend beyond one half of the rectal circumference. Low non-stenotising noninvasive tumours of the rectum are suitable for TEM. Our good results are particularly due to strict patient selection criteria, mastering the operating technique and long-time experience. transanal endoscopic microsurgery (TEM) benign rectal tumours

  11. TEM-STM for Novel Nanotechnological Experimentation

    NASA Astrophysics Data System (ADS)

    Vaughn, Joel

    2005-03-01

    We present the design and construction of a miniature scanning tunneling microscope (STM) to be used inside a transmission electron microscope (TEM). In our system, the entire STM head is fitted inside the TEM sample holder, which allows for both TEM imaging/diffraction and STM-tip indentation experiments. The positioning of STM-tip over the desired sample locations can be guided through the real time TEM images. In addition to the nano indentation experiments, the STM program also allows the state-of-the-art control of atom/molecule manipulation procedures [1]. This hybrid TEM-STM system can be used for nanoscale manipulation, electrical characterization and mechanical strength examination of various nanomaterials including nanowires, nanotubes and quantum dots. [1]. S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, Nano Lett. 4 (2004) 1997-2001. This work is financially supported by the NSF-NIRT grant no. DMR- 0304314 and the US-DOE grant no. DE-FG02-02ER46012.

  12. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  13. Technical Evaluation Motor No. 7 (TEM-07)

    NASA Technical Reports Server (NTRS)

    Hugh, Phil

    1991-01-01

    Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.

  14. High pressure single crystal and powder XRD study for neighborite

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2016-12-01

    After Murakami et al. (2004) identified the post-perovskite (ppv) phase transition in MgSiO3 perovskite (pv) at pressures and temperatures consistent with the onset of Earth's D" layer, lots of post-perovskite type phase transitions were founded in other similar systems. These discoveries provided a better understanding of heterogeneous structures and seismic anisotropy observed in the controversial region of the lower mantle. With previous experimental evidence showing the analogue system of neighborite NaMgF3 will transform from pv to ppv at 30 GPa, we performed high quality single crystal XRD experiment, which led to a more precise structure determination. Using helium as pressure medium, one metastable low symmetric phase before the pv-ppv structure transition was discovered, whose total energy was calculated as well. The comparison between single crystal and powder XRD data will be presented, and potential application will be discussed.

  15. FTIR and XRD study of PMMA/PCTFE blend films

    SciTech Connect

    Tripathi, S. Shripathi, T.; Tripathi, J.; Agrawal, A.; Sharma, A.

    2014-04-24

    The results are reported on solution cast PMMA-PCTFE blend films characterized using x-ray diffraction and FTIR. The nanocrystalline nature of PMMA is still seen in the blends, however, the bond modifications are clearly observed. The addition of PCTFE results in the modification in structural properties, as reflected in the XRD and FTIR spectra showing modifications in bonding as a function of PCTFE percentage.

  16. Design of a TEM cell EMP simulator

    NASA Astrophysics Data System (ADS)

    Sevat, Pete

    1991-06-01

    Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.

  17. Silver Trees: Chemistry on a TEM Grid

    EPA Science Inventory

    The copper/carbon substrate of a TEM grid reacted with aqueous silver nitrate solution within minutes to yield spectacular tree-like silver dendrites, without using any added capping or reducing reagents. These results demonstrate a facile, aqueous, room temperature synthesis of...

  18. Test for English Majors (TEM) in China

    ERIC Educational Resources Information Center

    Jin, Yan; Fan, Jinsong

    2011-01-01

    The purpose of the Test for English Majors (TEM) is to measure the English proficiency of Chinese university undergraduates majoring in English Language and Literature and to examine whether these students meet the required levels of English language abilities as specified in the National College English Teaching Syllabus for English Majors…

  19. Silver Trees: Chemistry on a TEM Grid

    EPA Science Inventory

    The copper/carbon substrate of a TEM grid reacted with aqueous silver nitrate solution within minutes to yield spectacular tree-like silver dendrites, without using any added capping or reducing reagents. These results demonstrate a facile, aqueous, room temperature synthesis of...

  20. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    NASA Astrophysics Data System (ADS)

    Singh, Virendra; Agrawal, H. M.

    2012-12-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil-plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully.

  1. LLNL Workshop on TEM of Pu

    SciTech Connect

    King, W.E.

    1996-09-10

    On Sept. 10, 1996, LLNL hosted a workshop aimed at answering the question: Is it possible to carry out transmission electron microscopy (TEM) on plutonium metal in an electron microscope located outside the LLNL plutonium facility. The workshop focused on evaluation of a proposed plan for Pu microscopy both from a technical and environment, health, and safety point of view. After review and modification of the plan, workshop participants unanimously concluded that: (1) the technical plan is sound, (2) this technical plan, including a proposal for a new TEM, provides significant improvements and unique capabilities compared with the effort at LANL and is therefore complementary, (3) there is no significant environment, health, and safety obstacle to this plan.

  2. Quantification of small, convex particles by TEM.

    PubMed

    Andersen, Sigmund J; Holme, Børge; Marioara, Calin D

    2008-07-01

    It is shown how size distributions of arbitrarily oriented, convex, non-overlapping particles extracted from conventional transmission electron microscopy (TEM) images may be determined by a variation of the Schwartz-Saltykov method. In TEM, particles cut at the surfaces have diminished projections, which alter the observed size distribution. We represent this distribution as a vector and multiply it with the inverse of a matrix comprising thickness-dependent Scheil or Schwartz-Saltykov terms. The result is a corrected size distribution of the projections of uncut particles. It is shown how the real (3D) distribution may be estimated when particle shape is considered. Computer code to generate the matrix is given. A log-normal distribution of spheres and a real distribution of pill-box-shaped dispersoids in an Al-Mg-Si alloy are given as examples. The errors are discussed in detail.

  3. Radial averages of astigmatic TEM images.

    PubMed

    Fernando, K Vince

    2008-10-01

    The Contrast Transfer Function (CTF) of an image, which modulates images taken from a Transmission Electron Microscope (TEM), is usually determined from the radial average of the power spectrum of the image (Frank, J., Three-dimensional Electron Microscopy of Macromolecular Assemblies, Oxford University Press, Oxford, 2006). The CTF is primarily defined by the defocus. If the defocus estimate is accurate enough then it is possible to demodulate the image, which is popularly known as the CTF correction. However, it is known that the radial average is somewhat attenuated if the image is astigmatic (see Fernando, K.V., Fuller, S.D., 2007. Determination of astigmatism in TEM images. Journal of Structural Biology 157, 189-200) but this distortion due to astigmatism has not been fully studied or understood up to now. We have discovered the exact mathematical relationship between the radial averages of TEM images with and without astigmatism. This relationship is determined by a zeroth order Bessel function of the first kind and hence we can exactly quantify this distortion in the radial averages of signal and power spectra of astigmatic images. The argument to this Bessel function is similar to an aberration function (without the spherical aberration term) except that the defocus parameter is replaced by the differences of the defoci in the major and minor axes of astigmatism. The ill effects due this Bessel function are twofold. Since the zeroth order Bessel function is a decaying oscillatory function, it introduces additional zeros to the radial average and it also attenuates the CTF signal in the radial averages. Using our analysis, it is possible to simulate the effects of astigmatism in radial averages by imposing Bessel functions on idealized radial averages of images which are not astigmatic. We validate our theory using astigmatic TEM images.

  4. Novel TEM-type extended-spectrum beta-lactamase, TEM-134, in a Citrobacter koseri clinical isolate.

    PubMed

    Perilli, Mariagrazia; Mugnaioli, Claudia; Luzzaro, Francesco; Fiore, Marianna; Stefani, Stefania; Rossolini, Gian Maria; Amicosante, Gianfranco

    2005-04-01

    A new natural TEM derivative with extended-spectrum beta-lactamase activity, TEM-134, was identified in a ceftazidime-resistant clinical isolate of Citrobacter koseri. Compared to TEM-1, TEM-134 contains the following mutations: Q39K, E104K, R164H, and G238S. The bla(TEM-134) gene was not transferable by conjugation and, apparently, was chromosomally encoded. Expression studies with Escherichia coli revealed efficient cefotaximase and ceftazidimase activity for TEM-134.

  5. Green synthesis of silver nanoparticles and their characterization by XRD

    NASA Astrophysics Data System (ADS)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  6. Porosity investigation of compacted bentonite using XRD profile modeling

    NASA Astrophysics Data System (ADS)

    Holmboe, Michael; Wold, Susanna; Jonsson, Mats

    2012-02-01

    Many countries intend to use compacted bentonite as a barrier in their deep geological repositories for nuclear waste. In order to describe and predict hydraulic conductivity or radionuclide transport through the bentonite barrier, fundamental understanding of the microstructure of compacted bentonite is needed. This study examined the interlayer swelling and overall microstructure of Wyoming Bentonite MX-80 and the corresponding homo-ionic Na + and Ca 2 + forms, using XRD with samples saturated under confined swelling conditions and free swelling conditions. For the samples saturated under confined conditions, the interparticle, or so-called free or external porosity was estimated by comparing the experimental interlayer distances obtained from one-dimensional XRD profile fitting against the maximum interlayer distances possible for the corresponding water content. The results showed that interlayer porosity dominated total porosity, irrespective of water content, and that the interparticle porosity was lower than previously reported in the literature. At compactions relevant for the saturated bentonite barrier (1.4-1.8 g/cm 3), the interparticle porosity was estimated to ≤ 3%.

  7. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  8. Insights into the fine-grained fraction of serpentine mud from the Southern Chamorro seamount (ODP Leg 195): A combined XRD, RFA and TEM-EDS study

    NASA Astrophysics Data System (ADS)

    Lischka, M.; Meschede, M.; Warr, L. N.

    2009-12-01

    Serpentine mud volcanoes in the outer forearc of the Izu-Bonin-Mariana subduction system occur in a restricted zone, 50km - 120 km away from the trench axis [Fryer et al., 1985]. The morphotectonic elements of the forearc are dominated by horst and graben structures, caused by extensional movements and normal fault systems related to seamount subduction [Fryer et al., 2000; Stern and Smooth, 1998]. These faults may provide conduits for the diapiric uprising of low density serpentine, extruding at the seafloor in stratovolcanic like structures. Released fluids from the subducted slab at estimated depths of approximately 30km are considered to hydrate the forearc mantle wedge along those fractures [Benton et al., 2001; Mottl et al., 2003; Rübke et al., 2004]. During the formation of the fault gouge, serpentine-bodies entrained xenoliths and xenocrysts from the surrounding rocks and are exhumed towards the surface [Fryer et al., 1990]. In our investigation we focus on the silty to clay-sized particle fraction of the serpentine mud matrix, drilled during ODP Leg 195 at site 1200E. We analysed the bulk mineral composition with X-ray diffraction methods on random powder samples, supplemented by X-ray fluorescence measurements on 25 samples. To obtain more insights into the mineralogy fabric and microstructure of the samples, electron microscopy and electron dispersive spectroscopy were used to determine the crystal-chemistry and alteration textures. Particular emphasis was given on determining serpentine polymorphs and the nature of other phyllosilicates and their geochemical composition and constraints. Geochemical observation of the secondary mineral phases should allow us to reconstruct the processes linked with the migration of fluids and volatile components during subduction related metamorphism affecting the mantle wedge. Based on the new data we characterize the conditions of alteration products within a subduction factory, related to the diapiric deposition of serpentine mud volcanoes.

  9. Silver Accumulation in the Green Microalga Coccomyxa actinabiotis: Toxicity, in Situ Speciation, and Localization Investigated Using Synchrotron XAS, XRD, and TEM.

    PubMed

    Leonardo, Thomas; Farhi, Emmanuel; Pouget, Stéphanie; Motellier, Sylvie; Boisson, Anne-Marie; Banerjee, Dipanjan; Rébeillé, Fabrice; den Auwer, Christophe; Rivasseau, Corinne

    2016-01-05

    Microalgae are good candidates for toxic metal remediation biotechnologies. This study explores the cellular processes implemented by the green microalga Coccomyxa actinabiotis to take up and cope with silver over the concentration range of 10(-7) to 10(-2) M Ag(+). Understanding these processes enables us to assess the potential of this microalga for applications for bioremediation. Silver in situ speciation and localization were investigated using X-ray absorption spectroscopy, X-ray diffraction, and transmission electron microscopy. Silver toxicity was evaluated by monitoring microalgal growth and photochemical parameters. Different accumulation mechanisms were brought out depending on silver concentration. At low micromolar concentration, microalgae fixed all silver initially present in solution, trapping it inside the cells into the cytosol, mainly as unreduced Ag(I) bound with molecules containing sulfur. Silver was efficiently detoxified. When concentration increased, silver spread throughout the cell and particularly entered the chloroplast, where it damaged the photosystem. Most silver was reduced to Ag(0) and aggregated to form crystalline silver nanoparticles of face-centered cubic structure with a mean size of 10 nm. An additional minor interaction of silver with molecules containing sulfur indicated the concomitant existence of the mechanism observed at low concentration or nanoparticle capping. Nanoparticles were observed in chloroplasts, in mitochondria, on the plasma membrane, on cytosolic membrane structures, and in vacuoles. Above 10(-4) M Ag(+), damages were irreversible, and photosynthesis and growth were definitely inhibited. However, high silver amounts remained confined inside microalgae, showing their potential for the bioremediation of contaminated water.

  10. High temperature XRD of Cu2GeSe3

    NASA Astrophysics Data System (ADS)

    Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra

    2015-06-01

    The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  11. XRD analysis and leachability of solidified phenol-cement mixtures

    SciTech Connect

    Vipulanandan, C.; Krishnan, S. . Department of Civil and Environmental Engineering)

    1993-07-01

    The microstructure and leachability of phenol from solidified phenol-Portland cement mixtures cured up to 6 months were investigated. Phenol was solidified with Type I Portland cement at concentrations of 0.5% and 2% by weight of the cement. XRD studies and pore fluid analyses indicate that phenol inhibits cement setting by reacting with the calcium hydroxide produced during the hydration of cement. Phenol leachability was studied using the Toxicity Characteristic Leaching Procedure (TCLP) test recommended by the U. S. EPA. The quantity of phenol leached is dependent on the initial phenol concentration and the curing time and a simple model has been proposed to predict the leachability. Phenol increases the initial and final setting times of cement. The compressive strength of the solidified cement-phenol mixtures decrease with increasing phenol content in the matrix and increase with curing time. The relationship between leaching of phenol and strength of cement-phenol mixtures has been verified.

  12. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  13. X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel.

    PubMed

    Xue, J; Zavgorodniy, A V; Kennedy, B J; Swain, M V; Li, W

    2013-08-01

    Human tooth is a complex bioceramic composite, which consists of enamel, dentin and the interface, the dentin-enamel junction (DEJ). The crystal properties and ultrastructure of the inorganic phase through the thickness of healthy human molar teeth were investigated using X-ray microdiffraction (μXRD), electron diffraction and transmission electron microscopy (TEM) techniques. The XRD data were analysed using the Le Bail profile fitting approach. The size and the texture of the crystallites forming enamel and dentin in the crown part of teeth were measured using both techniques and then compared. Results showed that the thickness of dentin crystallites was found to decrease towards the DEJ, whereas the thickness of the enamel crystallites increased from the DEJ towards the outer layers. It was demonstrated that enamel exhibited an increase of texture in 002 lattice planes from the DEJ towards the outer layers. Texture was also detected in 102 lattice planes. The texture effect in 002 planes at the scale of less than 1 μm was also demonstrated in dentin. The variation of lattice parameters as a function of the position within the thickness of dentin and enamel was also observed. The values of the nonuniform microstrain in the dentin and enamel crystallites were from 1.40 × 10(-6) % to 4.44 × 10(-5) %. The good correlation between XRD and TEM indicated that μXRD is a useful technique to study crystallography and microstructure of heterogeneous enamel and dentin. The observed gradient characteristics of texture and crystallite size in enamel and dentin maybe an evolutionary outcome to resist wear and fracture, thereby contributing to the excellent mechanical properties of teeth.

  14. Graphene nanoscrolls and live TEM imaging

    NASA Astrophysics Data System (ADS)

    Mokkapati, Venkata; Mirsaidov, Utkur; Matsudaira, Paul; Oezyilmaz, Barbaros; Graphene research laboratory Team; Centerbio-imaging sciences/Mechanobiology institute Team

    2013-03-01

    It has been theoretically hypothesized and predicted that graphene when in contact with water, wraps itself around the droplets and forms graphene nanoscrolls. Studying the applications of these nanoscrolls can open a new area of research especially in the bio-medical field. Here we present a method where partially suspended graphene nanoscrolls were fabricated on carbon mesh attached to a gold TEM grid. The process involves sandwiching of two graphene layers with water being encapsulated within these nanoscrolls. Gold nanoparticles were encapsulated and live imaging of water and gold nanoparticles was carried out under the TEM. The dynamics of the encapsulated water and nanobubbles is being studied. The encapsulated water within these graphene nanoscrolls lasted for more than three months (till the date of publication). It was also realized that the formation/abundance of these nanoscrolls is concentration dependent of the etching solution (Ammonium persulfate) with a saturation point. Large area, uniform, monolayer graphene films can also be produced by varying the concentration of Ammonium persulfate. Further studies are being carried out to live image TMV/protein and liposome encapsulated drugs using nanoscrolls and films respectively. The authors would like to acknowledge A*Star for funding this research

  15. Technical Evaluation Motor 3 (TEM-3)

    NASA Technical Reports Server (NTRS)

    Garecht, Diane

    1989-01-01

    A primary objective of the technical evaluation motor program is to recover the case, igniter and nozzle hardware for use on the redesigned solid rocket motor flight program. Two qualification objectives were addressed and met on TEM-3. The Nylok thread locking device of the 1U100269-03 leak check port plug and the 1U52295-04 safe and arm utilizing Krytox grease on the barrier-booster shaft O-rings were both certified. All inspection and instrumentation data indicate that the TEM-3 static test firing conducted 23 May 1989 was successful. The test was conducted at ambient conditions with the exception of the field joints (set point of 121 F, with a minimum of 87 F at the sensors), igniter joint (set point at 122 F with a minimum of 87 F at sensors) and case-to-nozzle joint (set point at 114 F with a minimum of 87 F at sensors). Ballistics performance values were within specification requirements. Nozzle performance was nominal with typical erosion. The nozzle and the case joint temperatures were maintained at the heaters controlling set points while electrical power was supplied. The water and the CO2 quench systems prevented damage to the metal hardware. All other test equipment performed as planned, contributing to a successful motor firing. All indications are that the test was a success, and all expected hardware will be refurbished for the RSRM program.

  16. Vacancy ordering and superstructure formation in dry and hydrated strontium tantalate perovskites: a TEM perspective.

    PubMed

    Ashok, Anuradha M; Haavik, Camilla; Norby, Poul; Norby, Truls; Olsen, Arne

    2014-07-01

    Crystal structures of Sr4(Sr2Ta2)O11 and Sr4(Sr1.92Ta2.08)O11.12, synthesized by solid state reaction technique in dry and hydrated state have been studied mainly using Transmission Electron Microscopy. Due to the lesser ability of X-rays to probe details in oxygen sublattice, the change in crystal symmetry due to ordering of oxygen vacancies could be detected better using Transmission Electron Microscopy. After detailed analysis through TEM, it was observed that no major change occurs in the cation sublattice. The TEM observations are compared with XRD data and discussed. The crystal symmetries and corresponding unit cells of all the perovskites based on the ordering of oxygen vacancies is deduced. Crystal unit cells based on the observations are proposed with ideal atomic coordinates. Finally an attempt is made to explain the water uptake behaviour of these perovskites based on the proposed crystal structure.

  17. RBS and XRD Characterization of Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Roumie, M.; Abdel Samad, B.; Basma, H.; Korek, M.

    2015-03-01

    Magnetic materials such as yttrium iron garnet (YIG or Y3Fe5O12) present a great importance for their magneto-optic properties. They are potential materials used for applications in the domain of optical telecommunications for example. In this work, we have investigated YIG thin films deposited on substrates of quartz and GGG (gadolinium gallium garnet or Gd3Ga5O12). Using Rutherford backscattering spectrometry (RBS) we characterized the performed layers (thickness and stoichiometry) in order to correlate the films preparation conditions with the quality of the final material. We determined the optimal energy of the alpha particles beam used for RBS measurements and we fitted the experimental spectra using the SIMNRA simulated code. Our RBS results showed that the films have a stoichiometry close to that of the starting material. In addition, we found that the film thickness is proportional to deposition time but inversely proportional to the substrate temperature. Moreover, using x-ray diffraction (XRD) we determined the annealing effect on the structure of the profile of our thin films.

  18. Gahnite under high pressure: A XRD insitu study

    NASA Astrophysics Data System (ADS)

    Lathe, Christian; Wehber, Michael; Schilling, Frank; Mueller, Hans

    2013-06-01

    Placing P-T-t constraints on planetary differentiation Natural gahnite has the ideal formula ZnAl2O4. Together with franklinite (ZnFe2O4) it forms a limited solid solution at high temperatures an occurs as an accessory phase in magmatic and metamorphic rocks, but mainly in the Franklin marble and skarn deposits (Carvalho and Sclar 1988, Frondel and Baum 1974). A natural gahnite sample was investigated with large volume presses at the Synchrotron source DESY. Pressure was stepwise increased to 5 GPa at the MAX80 and 15 GPa at MAX200x and diffraction patterns were collected after each step. The determined volume-pressure-data are fitted to a 2nd and 3rd order Birch-Murnaghan equation of state to obtain the isothermal bulk modulus KT0 and its pressure derivative K'. Isothermal bulk modulus was derived from XRD data. Using a 2nd and 3rd order Birch-Murnaghan equation of state revealed KT02nd = 207(4) GPa KT03rd = 204(4) GPa and K' = 4.9(3), respectively. A significant change of the pressure derivatives of C11, C12 and C44 at a pressure of approximately 15 GPa indicates a 2nd order phase transition in gahnite.

  19. Mirrored low-energy channel for the MiniXRD

    SciTech Connect

    Dutra, Eric; MacNeil, Lawrence; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-10-08

    X-ray Diodes (XRDs) are currently used for spectroscopic measurements, measuring X-ray flux, and estimating spectral shape of the VUV to soft X-ray spectrum. A niche exists for an inexpensive, robust X-ray diode that can be used for experiments in hostile environments on multiple platforms, including explosively driven experiments that have the potential for destroying the diode during the experiment. A multiple channel stacked filtered array was developed with a small field of view where a wider parallel array could not be used, but filtered channels for energies lower than 1000 eV were too fragile to deploy under normal conditions. To achieve both the robustness and the required low-energy detection ability, the researchers designed a small low-energy mirrored channel with a spectral sensitivity from 30 to 1000 eV. The stacked MiniXRD X-ray diode system design incorporates the mirrored low-energy channel on the front of the stacked filtered channels to allow the system to work within a small field of view. We will present results that demonstrate this is a promising solution for low-energy spectrum measurements.

  20. An expert system for qualitative XRD analysis of sedimentary rocks

    SciTech Connect

    Fang, J.H.; Chen, H.C.; Liu, C.L. ); Wright, D. )

    1991-03-01

    Mineral identification using x-ray powder diffractometry (XRD) requires human judgment and heuristics. Thus, the task is admirably suited for an expert system approach. Expert systems are computer programs which emulate human expertise. The power of an expert system is derived from the knowledge the system embodies, rather than from search algorithms. An expert system helps solve problems for which well-defined algorithmic solutions are difficult to obtain. The authors have coded an expert system, XRAYS, to identify minerals via x-ray diffractograms. The system emulates the well-known manual Hanawalt method, thus avoiding the black-box approach of some computer search/match programs. The mineral subfile of the JCPDS file is stored in a database file, from which the Hanawalt groups are created. The expert system then carries out a manual search following exactly the steps prescribed for the Hanawalt method. In the program, both peak positions and intensities are represented by fuzzy numbers. Fuzzy comparisons and fuzzy arithmetic operations are employed in searching for matches. A list of candidate minerals is output in decreasing order of confidence. Other information, such as chemistry, rock type, suspected minerals, etc. can be coded as production rules, thereby further narrowing the list of candidate minerals. Examples composed of typical mineral suites in sedimentary rocks will be given.

  1. Quantifying Nonspecific TEM β-Lactamase (blaTEM) Genes in a Wastewater Stream▿

    PubMed Central

    Lachmayr, Karen L.; Kerkhof, Lee J.; DiRienzo, A. Gregory; Cavanaugh, Colleen M.; Ford, Timothy E.

    2009-01-01

    To control the antibiotic resistance epidemic, it is necessary to understand the distribution of genetic material encoding antibiotic resistance in the environment and how anthropogenic inputs, such as wastewater, affect this distribution. Approximately two-thirds of antibiotics administered to humans are β-lactams, for which the predominant bacterial resistance mechanism is hydrolysis by β-lactamases. Of the β-lactamases, the TEM family is of overriding significance with regard to diversity, prevalence, and distribution. This paper describes the design of DNA probes universal for all known TEM β-lactamase genes and the application of a quantitative PCR assay (also known as Taqman) to quantify these genes in environmental samples. The primer set was used to study whether sewage, both treated and untreated, contributes to the spread of these genes in receiving waters. It was found that while modern sewage treatment technologies reduce the concentrations of these antibiotic resistance genes, the ratio of blaTEM genes to 16S rRNA genes increases with treatment, suggesting that bacteria harboring blaTEM are more likely to survive the treatment process. Thus, β-lactamase genes are being introduced into the environment in significantly higher concentrations than occur naturally, creating reservoirs of increased resistance potential. PMID:18997031

  2. XRD studies of chitin-based polyurethane elastomers.

    PubMed

    Zia, Khalid Mahmood; Bhatti, Ijaz Ahmad; Barikani, Mehdi; Zuber, Mohammad; Sheikh, Munir Ahmad

    2008-08-15

    Chitin-based polyurethane elastomers (PUEs) were synthesized by step growth polymerization techniques using poly(epsilon-caprolactone) (PCL) varying diisocyanate and chain extender structures. The viscosity average molecular weight (M(v)) of chitin was deduced from the intrinsic viscosity and found; M(v)=6.067 x 10(5). The conventional spectroscopic characterization of the samples with FTIR, (1)H NMR and (13)C NMR were in accordance with proposed PUEs structure. The crystalline behavior of the synthesized polymers were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and loss tangent curves (tan delta peaks). The observed patterns of the crystalline peaks for the lower angle for chitin in the 2theta range were indexed as 9.39 degrees, 19.72 degrees, 20.73 degrees, 23.41 degrees and 26.39 degrees. Results showed that crystallinity of the synthesized PUEs samples was affected by varying the structure of the diisocyanate and chain extender. Crystallinity decreased from aliphatic to aromatic characters of the diisocyanates used in the final PU. The presence of chitin also favors the formation of more ordered structure, as higher peak intensities was obtained from the PU extended with chitin than 1,4-butane diol (BDO). The value of peak enthalpy (DeltaH) of chitin was found to be 47.13 J g(-1). The higher DeltaH value of 46.35 J g(-1) was found in the samples extended with chitin than BDO (39.73 J g(-1)).

  3. A-10/TF34 Turbine Engine Monitoring System (TEMS)

    NASA Technical Reports Server (NTRS)

    Christopher, R. G.

    1981-01-01

    The hardware and software development of the A-10/TF34 turbine engine monitoring system (TEMS) is described. The operation and interfaces of the A-10/TF34 TEMS hardware are discussed with particular emphasis on function, capabilities, and limitations. The TEMS data types are defined and the various data acquisition modes are explained. Potential data products are also discussed.

  4. Motorized manipulator for positioning a TEM specimen

    DOEpatents

    Schmid, Andreas Karl; Andresen, Nord

    2010-12-14

    The invention relates to a motorized manipulator for positioning a TEM specimen holder with sub-micron resolution parallel to a y-z plane and rotating the specimen holder in the y-z plane, the manipulator comprising a base (2), and attachment means (30) for attaching the specimen holder to the manipulator, characterized in that the manipulator further comprises at least three nano-actuators (3.sup.a, 3.sup.b, 3.sup.c) mounted on the base, each nano-actuator showing a tip (4.sup.a, 4.sup.b, 4.sup.c), the at least three tips defining the y-z plane, each tip capable of moving with respect to the base in the y-z plane; a platform (5) in contact with the tips of the nano-actuators; and clamping means (6) for pressing the platform against the tips of the nano-actuators; as a result of which the nano-actuators can rotate the platform with respect to the base in the y-z plane and translate the platform parallel to the y-z plane.

  5. SIMS and TEM Analysis of Niobium Bicrystals

    SciTech Connect

    Maheshwari, P; Griffis, D P; Stevie, F A; Zhou, C; Ciovati, G; Myneni, R; Spradlin, J K; Rigsbee, M

    2011-07-01

    The behaviour of interstitial impurities(C,O,N,H) on the Nb surface with respect to grain boundaries may affect cavity performance. Large grain Nb makes possible the selection of bicrystal samples with a well defined grain boundary. In this work, Dynamic SIMS was used to analyze two Nb bicrystal samples, one of them heat treated and the other non heat treated (control). H levels were found to be higher for the non heat treated sample and a difference in the H intensity and sputtering rate was also observed across the grain boundary for both the samples. TEM results showed that the bicrystal interface showed no discontinuity and the oxide layer was uniform across the grain boundary for both the samples. TOF-SIMS imaging was also performed to analyze the distribution of the impurities across the grain boundary in both the samples. C was observed to be segregated along the grain boundary for the control sample, while H and O showed a difference in signal intensity across the grain boundary. Crystal orientation appears to have an important role in the observed sputtering rate and impurity ion signal differences both across the grain boundary and between samples

  6. OBSERVATION OF DIPOLAR FERROMAGNETISM BY TEM TECHNIQUES.

    SciTech Connect

    BELEGGIA, M.ZHU,Y.TANDON,S.ET AL.

    2004-08-01

    Magnetostatic interactions play a central role in determining the magnetic response of an array of patterned magnetic elements or magnetized nanoparticles of given shape. The Fourier space approach recently introduced for the analytical computation of the demagnetizing tensor, field and energy for particles of arbitrary shape [1], has been recently extended to cover interactions between elements [2]. The main achievement has been the definition of a generalized dipole-dipole interaction for cylindrical objects, which takes into account the influence of shape anisotropy without resorting to,any kind of approximations [3]. Once the interaction energy is available, it becomes possible to evaluate the minimum energy state of the system for a given set of external parameters (such as applied field, aspect ratio, distance between elements). It turns out that, below a critical combination of aspect ratios and distances, the system undergoes a phase transition, changing abruptly from a closure domain state, with zero net magnetization, to a dipolar ferromagnetic state with a net magnetization which depends on the interaction strength between the elements. In order to observe this phenomenon by TEM, it is necessary to estimate the feasibility of the experiment by a series of simulations. Figure 1 shows the electron optical phase shifts for the system of three weakly (a-c) and strongly (d) interacting disks. The elements have a radius of 50 nm, a thickness of 5 nm (aspect ratio 1/20), and are uniformly magnetized at 2 T. By comparing Fig.1 (c) and (d), it can be seen that the fingerprint of the transition is the presence of fringing fields around the elements, revealed by the cosine fringes which resemble a dipole-like field in (d). When the system is in the closure-domain state, as in (a-c), no fringing field can be observed on a large scale. Figure 2 shows a set of Fresnel images, calculated for the same configurations as in Fig.1. As the Fresnel technique is scarcely

  7. Rapid approximate inversion of airborne TEM

    NASA Astrophysics Data System (ADS)

    Fullagar, Peter K.; Pears, Glenn A.; Reid, James E.; Schaa, Ralf

    2015-11-01

    Rapid interpretation of large airborne transient electromagnetic (ATEM) datasets is highly desirable for timely decision-making in exploration. Full solution 3D inversion of entire airborne electromagnetic (AEM) surveys is often still not feasible on current day PCs. Therefore, two algorithms to perform rapid approximate 3D interpretation of AEM have been developed. The loss of rigour may be of little consequence if the objective of the AEM survey is regional reconnaissance. Data coverage is often quasi-2D rather than truly 3D in such cases, belying the need for `exact' 3D inversion. Incorporation of geological constraints reduces the non-uniqueness of 3D AEM inversion. Integrated interpretation can be achieved most readily when inversion is applied to a geological model, attributed with lithology as well as conductivity. Geological models also offer several practical advantages over pure property models during inversion. In particular, they permit adjustment of geological boundaries. In addition, optimal conductivities can be determined for homogeneous units. Both algorithms described here can operate on geological models; however, they can also perform `unconstrained' inversion if the geological context is unknown. VPem1D performs 1D inversion at each ATEM data location above a 3D model. Interpretation of cover thickness is a natural application; this is illustrated via application to Spectrem data from central Australia. VPem3D performs 3D inversion on time-integrated (resistive limit) data. Conversion to resistive limits delivers a massive increase in speed since the TEM inverse problem reduces to a quasi-magnetic problem. The time evolution of the decay is lost during the conversion, but the information can be largely recovered by constructing a starting model from conductivity depth images (CDIs) or 1D inversions combined with geological constraints if available. The efficacy of the approach is demonstrated on Spectrem data from Brazil. Both separately and in

  8. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    USGS Publications Warehouse

    Drits, V.; Srodon, J.; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer "constant" has very different values. Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity). For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of precent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect. The technique was calibrated using NEWMOD ??-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite smaples. The XRD measurements are in good

  9. Persistence of TEM-52/TEM-92 and SHV-12 extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae in Italy.

    PubMed

    Perilli, Mariagrazia; Segatore, Bernardetta; Mugnaioli, Claudia; Celenza, Giuseppe; Rossolini, Gian Maria; Stefani, Stefania; Luzzaro, Francesco; Pini, Beatrice; Amicosante, Gianfranco

    2011-12-01

    Extended-spectrum β-lactamases (ESBLs) belonging to the TEM and SHV families were investigated in 583 ESBL-producing Enterobacteriaceae collected at the clinical microbiology laboratories of 11 teaching Italian hospitals. By molecular analysis TEM-type and SHV-type ESBLs were confirmed on 154 and 74 isolates, respectively. High variability was found among TEM-types β-lactamases with the following variants: TEM-5, TEM-6, TEM-12, TEM-15, TEM-24, TEM-26, TEM-29, TEM-52, TEM-92, TEM-134, and TEM-149. Among SHV variants, SHV-2a, SHV-5, SHV-12, and SHV-28 have been detected. The most widespread variants are TEM-52/92 and SHV-12.

  10. In situ TEM of radiation effects in complex ceramics.

    PubMed

    Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C

    2009-03-01

    In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions.

  11. Nanoparticle embedded chitosan film for agglomeration free TEM images.

    PubMed

    Dogan, Üzeyir; Çiftçi, Hakan; Cetin, Demet; Suludere, Zekiye; Tamer, Ugur

    2017-02-01

    Transmission electron microscopy (TEM) is a very useful and commonly used microscopy technique, used especially for the characterization of nanoparticles. However, the identification of the magnetic nanoparticle could be thought problematic in TEM analysis, due to the fact that the magnetic nanoparticles are usually form aggregates on the TEM grid to form bigger particles generating higher stability. This prevents to see exact shape and size of each nanoparticle. In order to overcome this problem, a simple process for the formation of well-dispersed nanoparticles was conducted, by covering chitosan film on the unmodified copper grid, it was said to result in aggregation-free TEM images. It is also important to fix the magnetic nanoparticles on the TEM grids, due to possible contamination of TEM filament which is operated under high vacuum conditions. The chitosan film matrix also helps to protect the TEM filament from contact with magnetic nanoparticles during the imaging process. The proposed procedure offers a quick method to fix the nanoparticles in a conventional copper TEM grid and chitosan matrix prevents agglomeration of nanoparticles, and thus getting TEM images showing well-dispersed individual nanoparticles. © 2016 Wiley Periodicals, Inc.

  12. Characterization of the Novel CMT Enzyme TEM-154.

    PubMed

    Robin, Frédéric; Delmas, Julien; Machado, Elisabete; Bouchon, Bernadette; Peixe, Luísa; Bonnet, Richard

    2011-03-01

    TEM-154, identified in Portugal in 2004, associated the substitutions observed in the extended-spectrum β-lactamase (ESBL) TEM-12 and in the inhibitor-resistant penicillinase (IRT) TEM-33. This enzyme exhibited hydrolytic activity against ceftazidime and a low level of resistance to clavulanic acid. Surprisingly, the substitution Met69Leu enhanced the catalytic efficiency of oxyimino β-lactams conferred by the substitution Arg164Ser. Its discovery confirms the dissemination of the complex mutant group of TEM enzymes in European countries.

  13. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  14. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  15. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  16. The Structural Bases of Antibiotic Resistance in the Clinically Derived Mutant beta-Lactamases TEM-30, TEM-32, and TEM-34

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K.

    2010-03-08

    Widespread use of {beta}-lactam antibiotics has promoted the evolution of {beta}-lactamase mutant enzymes that can hydrolyze ever newer classes of these drugs. Among the most pernicious mutants are the inhibitor-resistant TEM {beta}-lactamases (IRTs), which elude mechanism-based inhibitors, such as clavulanate. Despite much research on these IRTs, little is known about the structural bases of their action. This has made it difficult to understand how many of the resistance substitutions act as they often occur far from Ser-130. Here, three IRT structures, TEM-30 (R244S), TEM-32 (M69I/M182T), and TEM-34 (M69V), are determined by x-ray crystallography at 2.00, 1.61, and 1.52 {angstrom}, respectively. In TEM-30, the Arg-244 {yields} Ser substitution (7.8 {angstrom} from Ser-130) displaces a conserved water molecule that usually interacts with the {beta}-lactam C3 carboxylate. In TEM-32, the substitution Met-69 {yields} Ile (10 {angstrom} from Ser-130) appears to distort Ser-70, which in turn causes Ser-130 to adopt a new conformation, moving its O{gamma} further away, 2.3 {angstrom} from where the inhibitor would bind. This substitution also destabilizes the enzyme by 1.3 kcal/mol. The Met-182 {yields} Thr substitution (20 {angstrom} from Ser-130) has no effect on enzyme activity but rather restabilizes the enzyme by 2.9 kcal/mol. In TEM-34, the Met-69 {yields} Val substitution similarly leads to a conformational change in Ser-130, this time causing it to hydrogen bond with Lys-73 and Lys-234. This masks the lone pair electrons of Ser-130 O{gamma}, reducing its nucleophilicity for cross-linking. In these three structures, distant substitutions result in accommodations that converge on the same point of action, the local environment of Ser-130. TEM-1 {beta}-lactamase is the predominant source of resistance to {beta}-lactams, such as the penicillins. TEM-1 and related class A {beta}-lactamases confer resistance by hydrolyzing the {beta}-lactam ring of these antibiotics

  17. Updated Sequence Information for TEM β-Lactamase Genes

    PubMed Central

    Goussard, Sylvie; Courvalin, Patrice

    1999-01-01

    The sequences of the promoter regions and of the structural genes for 13 penicillinase, extended-spectrum, and inhibitor-resistant TEM-type β-lactamases have been determined, and an updated blaTEM gene nomenclature is proposed. PMID:9925535

  18. Design, fabrication, and applications of in situ fluid cell TEM.

    PubMed

    Li, Dongsheng; Nielsen, Michael H; De Yoreo, James J

    2013-01-01

    In situ fluid cell TEM is a powerful new tool for understanding dynamic processes during liquid phase chemical reactions, including mineral formation. This technique, which operates in the high vacuum of a TEM chamber, provides information on crystal structure, phase, morphology, size, aggregation/segregation, and crystal growth mechanisms in real time. In situ TEM records both crystal structure and morphology at spatial resolutions down to the atomic level with high temporal resolution of up to 10(-6)s per image, giving it distinct advantages over other in situ techniques such as optical microscopy, AFM, or X-ray scattering or diffraction. This chapter addresses the design, fabrication, and assembly of TEM fluid cells and applications of fluid cell TEM to understanding mechanisms of mineralization. © 2013 Elsevier Inc. All rights reserved.

  19. Recognition and Resistance in TEM [superscript beta]-Lactamase

    SciTech Connect

    Wang, Xiaojun; Minasov, George; Blazquez, Jesus; Caselli, Emilia; Prati, Fabio; Shoichet, Brian K.

    2010-03-08

    Developing antimicrobials that are less likely to engender resistance has become an important design criterion as more and more drugs fall victim to resistance mutations. One hypothesis is that the more closely an inhibitor resembles a substrate, the more difficult it will be to develop resistant mutations that can at once disfavor the inhibitor and still recognize the substrate. To investigate this hypothesis, 10 transition-state analogues, of greater or lesser similarity to substrates, were tested for inhibition of TEM-1 beta-lactamase, the most widespread resistance enzyme to penicillin antibiotics. The inhibitors were also tested against four characteristic mutant enzymes: TEM-30, TEM-32, TEM-52, and TEM-64. The inhibitor most similar to the substrate, compound 10, was the most potent inhibitor of the WT enzyme, with a K(i) value of 64 nM. Conversely, compound 10 was the most susceptible to the TEM-30 (R244S) mutant, for which inhibition dropped by over 100-fold. The other inhibitors were relatively impervious to the TEM-30 mutant enzyme. To understand recognition and resistance to these transition-state analogues, the structures of four of these inhibitors in complex with TEM-1 were determined by X-ray crystallography. These structures suggest a structural basis for distinguishing inhibitors that mimic the acylation transition state and those that mimic the deacylation transition state; they also suggest how TEM-30 reduces the affinity of compound 10. In cell culture, this inhibitor reversed the resistance of bacteria to ampicillin, reducing minimum inhibitory concentrations of this penicillin by between 4- and 64-fold, depending on the strain of bacteria. Notwithstanding this activity, the resistance of TEM-30, which is already extant in the clinic, suggests that there can be resistance liabilities with substrate-based design.

  20. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  1. Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles.

    PubMed

    Mulligan, Sean K; Speir, Jeffrey A; Razinkov, Ivan; Cheng, Anchi; Crum, John; Jain, Tilak; Duggan, Erika; Liu, Er; Nolan, John P; Carragher, Bridget; Potter, Clinton S

    2015-08-01

    We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multiscale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically active nanomaterials.

  2. Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles

    PubMed Central

    Cheng, Anchi; Crum, John; Jain, Tilak; Duggan, Erika; Liu, Er; Nolan, John P.; Carragher, Bridget; Potter, Clinton S.

    2015-01-01

    We describe a system for rapidly screening hundreds of nanoparticle samples using transmission electron microscopy (TEM). The system uses a liquid handling robot to place up to 96 individual samples onto a single standard TEM grid at separate locations. The grid is then transferred into the TEM and automated software is used to acquire multi-scale images of each sample. The images are then analyzed to extract metrics on the size, shape, and morphology of the nanoparticles. The system has been used to characterize plasmonically-active nanomaterials. PMID:26223550

  3. Appendix B: Summary of TEM Particle Size Distribution Datasets

    EPA Pesticide Factsheets

    As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).

  4. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  5. Preparation of carbon-free TEM microgrids by metal sputtering.

    PubMed

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  6. Instability of nanoscale metallic particles under electron irradiation in TEM

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Zhang, S. G.; Xia, M. X.; Li, J. G.

    2016-03-01

    The stability of nano metallic glass under electron beam in transmission electron microscope (TEM) was investigated. The most common voltage of TEM used in metallic materials characterization was either 200 kV or 300 kV. Both situations were investigated in this work. An amorphous metallic particle with a dimension of a few hundred nanometers was tested under 300 keV electron irradiation. New phase decomposed from the parent phase was observed. Moreover, a crystal particle with the same composition and dimension was tested under 200 keV irradiation. Decomposition process also occurred in this situation. Besides, crystal orientation modification was observed during irradiation. These results proved that the electron beam in TEM have an effect on the stability of nanoscale samples during long time irradiation. Atomic displacement was induced and diffusion was enhanced by electron irradiation. Thus, artifacts would be induced when a nanoscale metallic sample was characterized in TEM.

  7. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  8. Mineralogical Composition of the Mexican Ordinary Chondrite Type Meteorite: A Raman, Infrared and XRD Study

    NASA Astrophysics Data System (ADS)

    Ostrooumov, M.

    2016-08-01

    The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.

  9. R164H and V240H replacements by site-directed mutagenesis of TEM-149 extended-spectrum β-lactamase: kinetic analysis of TEM-149H240 and TEM-149H164-H240 laboratory mutants.

    PubMed

    Perilli, Mariagrazia; Celenza, Giuseppe; Mercuri, Paola Sandra; Galleni, Moreno; Pellegrini, Cristina; Segatore, Bernardetta; Amicosante, Gianfranco

    2013-02-01

    Two laboratory mutant forms, TEM-149(H240) and TEM-149(H164-H240), of the TEM-149 extended-spectrum β-lactamase enzyme were constructed by site-directed mutagenesis. TEM-149(H240) and TEM-149(H164-H240) were similar in kinetic behavior, except with respect to benzylpenicillin and ceftazidime. Molecular modeling of the two mutant enzymes demonstrated the role of histidine at position 240 in the reduction of the affinity of the enzyme for ceftazidime.

  10. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  11. In-situ TEM observation on STM tunneling gap

    NASA Astrophysics Data System (ADS)

    Kim, Suhyun; Tanishiro, Yasumasa; Takayanagi, Kunio

    2009-03-01

    Transmission Electron Microscope and Scanning Tunneling Microscope in an ultra high vacuum environment (UHV-TEM-STM) have been combined to simultaneously perform both high resolution TEM and atomically resolved STM experiments. This system was constructed for in-situ investigation of physical property of impurity atoms embedded below semiconductor surface. To image TEM and STM at the same time, crucial requirement is that, the STM image must be acquired under the electron beam irradiation. As a preliminary test, we used HOPG (Highly Oriented Pyrolytic Graphite) sample and tungsten tip as schematically shown in Fig 1(a). Fig 1(b) shows an atomic resolution STM image of HOPG obtained with 300mV sample bias and 3nA tunneling current even in the condition of the electron beam irradiation on the tip. TEM image can be simultaneously acquired by performing In-situ TEM observation on STM tunneling gap formed between the tip and a thin sample. Fig 1(a) Geometry of STM observation on STM tunneling gap Fig 1(b) STM image of HOPG obtained with 300mV sample bias and 3nA tunneling current

  12. Novel sample preparation for operando TEM of catalysts.

    PubMed

    Miller, Benjamin K; Barker, Trevor M; Crozier, Peter A

    2015-09-01

    A new TEM sample preparation method is developed to facilitate operando TEM of gas phase catalysis. A porous Pyrex-fiber pellet TEM sample was produced, allowing a comparatively large amount of catalyst to be loaded into a standard Gatan furnace-type tantalum heating holder. The increased amount of catalyst present inside the environmental TEM allows quantitative determination of the gas phase products of a catalytic reaction performed in-situ at elevated temperatures. The product gas concentration was monitored using both electron energy loss spectroscopy (EELS) and residual gas analysis (RGA). Imaging of catalyst particles dispersed over the pellet at atomic resolution is challenging, due to charging of the insulating glass fibers. To overcome this limitation, a metal grid is placed into the holder in addition to the pellet, allowing catalyst particles dispersed over the grid to be imaged, while particles in the pellet, which are assumed to experience identical conditions, contribute to the overall catalytic conversion inside the environmental TEM cell. The gas within the cell is determined to be well-mixed, making this assumption reasonable. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. In vivo selection of a complex mutant TEM (CMT) from an inhibitor-resistant TEM (IRT) during ceftazidime therapy.

    PubMed

    Jacquier, H; Marcadé, G; Raffoux, E; Dombret, H; Woerther, P L; Donay, J L; Arlet, G; Cambau, E

    2013-12-01

    A relapse from Escherichia coli bloodstream infection was observed in a patient with acute leukaemia treated with ceftazidime for 7 days for febrile neutropenia. Whereas the original E. coli isolate was resistant to β-lactam/β-lactamase inhibitor combinations (EC1), the relapse E. coli isolate showed a similar phenotype but with resistance extended to ceftazidime (EC2). We investigated the molecular mechanisms of β-lactam resistance and sought if EC2 could have been selected in vivo from EC1. EC1 and EC2 isolates were compared for antibiotic MICs, plasmid content, genotyping, β-lactamase genes and their environment. Both isolates were conjugated with E. coli JW4111ΔampC and MICs determined for transconjugants. In addition, ceftazidime-resistant mutants were selected in vitro from EC1. EC1 and EC2 showed identical patterns for genotyping and resistance plasmids. PCR sequencing of blaTEM in EC1 showed the mutations M69L and N276D corresponding to TEM-35, also called inhibitor-resistant TEM (IRT)-4. In EC2, the TEM allele showed an additional mutation, R164S, known to confer resistance to ceftazidime. The combination of these three mutations was previously reported in TEM-158, described as the complex mutant TEM (CMT)-9, associated with resistance to β-lactamase inhibitors and third-generation cephalosporins. In vitro selection of ceftazidime-resistant mutants from EC1 yielded six different CMT alleles, including TEM-158 containing the R164S mutation. This first known report of in vivo selection of CMT from IRT, reproduced in vitro, shows how the evolution of β-lactamase enzymes is easily driven by antibiotic pressure, even during a short antibiotic therapy.

  14. The mineralogy and chemistry analyser (MARS-XRD) for the ExoMars 2018 mission

    NASA Astrophysics Data System (ADS)

    Marinangeli, L.; Hutchinson, I. B.; Stevoli, A.; Adami, G.; Ambrosi, R.; Amils, R.; Assis Fernandes, V.; Baliva, A.; Basilevsky, A. T.; Benedix, G.; Bland, P.; Böttger, A. J.; Bridges, J.; Caprarelli, G.; Cressey, G.; Critani, F.; D'Alessandro, N.; Delhez, R.; Domeneghetti, C.; Fernandez-Remolar, D.; Filippone, R.; Fioretti, A. M.; Garcia Ruiz, J. M.; Gilmore, M.; Hansford, G. M.; Iezzi, G.; Ingley, R.; Ivanov, M.; Marseguerra, G.; Moroz, L.; Pelliciari, C.; Petrinca, P.; Piluso, E.; Pompilio, L.; Sykes, J.; Westall, F.

    2011-10-01

    The Mineralogy and Chemistry Analyser (MARSXRD) is a miniaturised X-ray diffraction and fluorescence (XRD/XRF) spectrometer aimed to the mineralogical characterisation of Martian rocks. Simultaneously, MARS-XRD is able to acquire the diffraction pattern for mineralogical phases identification and the X-ray fluorescence spectrum for the chemical species, providing a complete rock characterization. The X-ray diffractometer (XRD) is the routine instrument used in every Earth Science laboratory to provide the mineralogical composition of rocks. XRD produces unequivocal results because it is based on the recognition of the geometrical properties of the crystal lattice. This kind of investigation is an extremely useful tool to define the textural and petro-mineralogical characteristics of the Martian rocks or soils and provide information on the past Martian environment conditions related to life. The analytic range we plan to cover includes all the silicate minerals, from clays or other phyllosilicates characterised by high interplanar lattice distance, to oxide and carbonates or evaporates (mainly sulphates). This rock spectrum is what we expect to be the target for exobiological exploration. These data will be integrated with those obtained by elemental analysis, in order to determine the exact elemental chemistry characterization of rock components. As mineralogy can be unambiguously derived from XRD analysis, it is probably our most powerful tool for distinguishing targets of biologic importance. In summary, the main scientific objectives of the proposed XRD/XRF instrument, Mars-XRD, are: - In situ determination of the mineral paragenesis of rock samples; - The characterization of the origin of rock samples; - Determination of alteration processes; - Understanding the exobiological potential of the samples. The hardware is developed by the Thales Alenia Space Italia with an important contribution of the Univ. of Leicester for the detection system.

  15. A single-tilt TEM stereomicroscopy technique for crystalline materials.

    PubMed

    McCabe, Rodney J; Misra, Amit; Mitchell, Terence E; Alexander, Kathleen B

    2003-02-01

    A new single-tilt technique for performing TEM stereomicroscopy of strain fields in crystalline materials has been developed. The technique is a weak beam technique that involves changing the value of g and/or s g while tilting across a set of Kikuchi bands. The primary benefit of the technique is it can be used with single-tilt TEM specimen holders including many specialty holders such as in situ straining, heating, and cooling holders. Standard stereo-TEM techniques are almost always limited to holders allowing two degrees of rotational freedom (i.e., double-tilt or tilt/rotation holders). An additional benefit of the new technique is that it eliminates the need to focus with the specimen height control. These advantages make it useful for stereo viewing or for quantitative stereomicroscopy provided necessary consideration is given to errors that may result from the technique.

  16. Detecting flaws in Portland cement concrete using TEM horn antennae

    NASA Astrophysics Data System (ADS)

    Al-Qadi, Imad L.; Riad, Sedki M.; Su, Wansheng; Haddad, Rami H.

    1996-11-01

    To understand the dielectric properties of PCC and better correlate them with type and severity of PCC internal defects, a study was conducted to evaluate PCC complex permittivity and magnetic permeability over a wideband of frequencies using both time domain and frequency domain techniques. Three measuring devices were designed and fabricated: a parallel plate capacitor, a coaxial transmission line, and transverse electromagnetic (TEM) horn antennae. The TEM horn antenna covers the microwave frequencies. The measurement technique involves a time domain setup that was verified by a frequency domain measurement. Portland cement concrete slabs, 60 by 75 by 14 cm, were cast; defects include delamination, delamination filled with water, segregation, and chloride contamination. In this paper, measurements using the TEM horn antennae and the feasibility of detecting flaws at microwave frequency are presented.

  17. Chromium and aluminum biosorption on Chryseomonas luteola TEM05.

    PubMed

    Ozdemir, G; Baysal, S H

    2004-05-01

    Cr(VI) and Al(III) are environmental pollutants that are frequently encountered together in industrial wastewaters, e.g., from mining iron-steel, metal cleaning, plating, metal processing, automobile parts, and the manufacturing and dye industries. In this work, several variables that affect the capacity for chromium and aluminum biosorption by Chryseomonas luteola TEM05 were studied, particularly the effects of pH, metal concentration and contact time. Optimum adsorption pH values of Cr(VI) and Al(III) were determined as 4.0 and 5.0, respectively. The biosorption equilibrium was described by Freundlich and Langmuir adsorption isotherms. The value of Qo appears to be significantly higher for the Al(III) C. luteola TEM05 system. Langmuir parameters of C. luteola TEM05 also indicated a maximum adsorption capacity of 55.2 mg g(-1) for Al(III) and 3.0 mg g(-1) for Cr(VI).

  18. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  19. Investigating materials formation with liquid-phase and cryogenic TEM

    NASA Astrophysics Data System (ADS)

    de Yoreo, J. J.; N. A. J. M., Sommerdijk

    2016-08-01

    The recent advent of liquid-phase transmission electron microscopy (TEM) and advances in cryogenic TEM are transforming our understanding of the physical and chemical mechanisms underlying the formation of materials in synthetic, biological and geochemical systems. These techniques have been applied to study the dynamic processes of nucleation, self-assembly, crystal growth and coarsening for metallic and semiconductor nanoparticles, (bio)minerals, electrochemical systems, macromolecular complexes, and organic and inorganic self-assembling systems. New instrumentation and methodologies that are currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  20. 'How I do it': TEM for tumors of the rectum.

    PubMed

    Collinson, Rowan J; McC Mortensen, Neil J

    2009-02-01

    Transanal endoscopic microsurgery (TEM) has an established role in the management of benign rectal tumors. It also has an expanding role in the management of malignant tumors, which is more demanding for the clinician. It requires accurate histological and radiological assessment and draws on an expert understanding of the nature of local recurrence, metastasis, and the place of adjuvant therapies. A multidisciplinary approach is recommended. This paper discusses our institutional approach to TEM for benign and malignant tumors and covers some of the current management controversies.

  1. Below-Band-Gap Laser Ablation Of Diamond For TEM

    NASA Technical Reports Server (NTRS)

    George, Thomas; Foote, Marc C.; Vasquez, Richard P.; Fortier, Edward P.; Posthill, John B.

    1995-01-01

    Thin, electron-transparent layers of diamond for examination in transmission electron microscope (TEM) fabricated from thicker diamond substrates by using laser beam to ablate surface of substrate. Involves use of photon energy below band gap. Growing interest in use of diamond as bulk substrate and as coating material in variety of applications has given rise to increasing need for TEM for characterization of diamond-based materials. Below-band-gap laser ablation method helps to satisfy this need. Also applied in general to cutting and etching of diamonds.

  2. TEM derivative-producing Enterobacter aerogenes strains: dissemination of a prevalent clone.

    PubMed

    Dumarche, P; De Champs, C; Sirot, D; Chanal, C; Bonnet, R; Sirot, J

    2002-04-01

    TEM-24 (CAZ-6) extended-spectrum beta-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (bla(TEM-24)) and Enterobacter aerogenes (bla(TEM-24b)), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types).

  3. The thermal behaviour of cuprite: An XRD-EXAFS combined approach

    NASA Astrophysics Data System (ADS)

    Dapiaggi, M.; Tiano, W.; Artioli, G.; Sanson, A.; Fornasini, P.

    2003-01-01

    Cuprite (Cu 2O) is a low thermal expansion material with a negative thermal expansion coefficient below room temperature. Its peculiar thermal behaviour encompasses the increase of the shear modulus with increasing temperature, and the presence of rather intense symmetry-forbidden eeo reflections below room temperature. The thermal expansion of cuprite was studied at low temperature (between 5 and 298 K) by means of high-resolution (10 -5 Å) X-ray powder diffraction at European Synchrotron Radiation Facility (Grenoble, BM16) and extended X-ray absorption fine structure (EXAFS) (BM29). Negative thermal expansion is confirmed up to 200 K, by EXAFS as well as by XRD measurements, and no sign of transition was found in XRD data. The comparison between EXAFS and XRD results provides a valuable insight into vibrational behaviour of cuprite at low temperature.

  4. Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions.

    PubMed

    Han, Qiaofeng; Sun, Shanshan; Li, Jiansheng; Wang, Xin

    2011-04-15

    Copper sulfide dendrites and subsequent uniform nanowires up to tens of micrometers long can be grown on carbon-coated transmission electron microscopy (TEM) Cu grids from elemental sulfur at room temperature under ambient conditions without any solvent and surfactants. TEM and high-resolution TEM studies demonstrated the morphology evolution of Cu₂S from dendrites into ultra-long nanowires with increasing ageing time. The sulfur species influenced significantly the growth rate of Cu₂S dendrites and nanowires, but the final morphology remained the same. The native oxide on the surface of Cu grids played a critical role in the formation of Cu₂S dendrites and nanowires. The crystal structures and phase purity of Cu₂S samples were confirmed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDX). A solid-liquid-solid growth model may be considered a potential mechanism in Cu₂S morphology evolution on the basis of the experimental results. Most importantly, the present study provides a simple and environmentally friendly route for the growth of one-dimensional (1D) Cu₂S on Cu substrate.

  5. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    SciTech Connect

    J. Gan; B.D. Miller; D.D. Keiser Jr.; A.B. Robinson; J.W. Madden; P.G. Medvedev; D.M. Wachs

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.

  6. In situ TEM electromechanical testing of nanowires and nanotubes.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Filleter, Tobin

    2012-11-05

    The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic structure and defect characterization. A number of approaches have been recently developed to combine these capabilities with in-situ mechanical deformation and electrical characterization in the emerging field of in-situ TEM electromechanical testing. This has enabled researchers to establish unambiguous synthesis-structure-property relations for one-dimensional nanostructures. In this article, the development and latest advances of several in-situ TEM techniques to carry out mechanical and electromechanical testing of nanowires and nanotubes are reviewed. Through discussion of specific examples, it is shown how the merging of several microsystems and TEM has led to significant insights into the behavior of nanowires and nanotubes, underscoring the significant role in-situ techniques play in the development of novel nanoscale systems and materials.

  7. Dopant profiling in the TEM, progress towards quantitative electron holography

    SciTech Connect

    Cooper, David; Truche, Robert; Chabli, Amal; Twitchett-Harrison, Alison C.; Midgley, Paul A.; Dunin-Borkowski, Rafal E.

    2007-09-26

    Off-axis electron holography has been used to characterise the dopant potential in GaAs p-n junctions. We show that the measured potential across the junctions is affected by both FIB specimen preparation and by charging in the TEM and suggest methods that can be used to minimise these problems.

  8. Data acquisition and control software for XRD beamline at Indus-2

    SciTech Connect

    Kane, Sanjeev R.; Garg, C. K.; Sinha, A. K.

    2010-06-23

    X-ray diffraction (XRD) beamline is under commissioning on Indus-2 synchrotron radiation facility. The experimental setup of XRD beamline consists of a six-circle diffractometer and various detector systems such as scintillation detector, ionization chamber and image plate. The diffractometer can be controlled via EIA232 serial interface or Ethernet. Standard data acquisition software with a graphical user interface has been developed using LabVIEW. A firm safety and error handling scheme is implemented for failsafe operation of the experimental station. This paper describes in detail the data acquisition and control software for the experimental station.

  9. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Lazzarini, A.; Srabionyan, V. V.; Vitillo, J. G.; Piovano, A.; Groppo, E.; Bugaev, L. A.; Soldatov, A. V.; Dmitriev, V. P.; Pellegrini, R.; van Bokhoven, J. A.; Lamberti, C.

    2016-05-01

    In the current work we present a detailed analysis of the hydride phase formation in industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy (EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from - 10 to 50 °C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical fitting of the near-edge region of the absorption spectra (XANES) and compared with volumetric measurements.

  10. XRD measurement and EXAFS study using synchrotron radiation of Ni (II) complexes of macro cyclic ligand

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Ninama, Samrath

    2013-06-01

    Nickel (II) tetra-aza macro cyclic complexes compound were synthesis by chemical rout method. X-ray diffraction (XRD) and Extended X-ray absorption fine structure (EXAFS) measurement were carried out. XRD analysis shows that sample is crystalline in nature and having particle size in the range of few micrometers. The EXAFS technique used to determine the bond lengths by three different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The phase uncorrected bond lengths have also been obtained from Fourier transformation (F.T.) method and the results obtained have been compared with the results obtained from LSS method, which also gives phase uncorrected bond lengths.

  11. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study.

    PubMed

    Pollastri, Simone; Gualtieri, Alessandro F; Vigliaturo, Ruggero; Ignatyev, Konstantin; Strafella, Elisabetta; Pugnaloni, Armanda; Croce, Alessandro

    2016-12-01

    Relevant mineral fibres of social and economic importance (chrysotile UICC, crocidolite UICC and a fibrous erionite from Jersey, Nevada, USA) were put in contact with cultured diploid human non-tumorigenic bronchial epithelial (Beas2B) and pleural transformed mesothelial (MeT5A) cells to test their cytotoxicity. Slides of each sample at different contact times up to 96 h were studied in situ using synchrotron XRF, μ-XRD and μ-XAS (I18 beamline, Diamond Light Source, UK) and TEM investigations. XRF maps of samples treated for 96 h evidenced that iron is still present within the chrysotile and crocidolite fibres and retained at the surface of the erionite fibres, indicating its null to minor mobilization in contact with cell media; this picture was confirmed by the results of XANES pre-edge analyses. μ-XRD and TEM data indicate greater morphological and crystallinity modifications occurring in chrysotile, whereas crocidolite and erionite show to be resistant in the biological environment. The contact of chrysotile with the cell cultures seems to lead to earlier amorphization, interpreted as the first dissolution step of these fibres. The formation of such silica-rich fibre skeleton may prompt the production of HO in synergy with surface iron species and could indicate that chrysotile may be much more reactive and cytotoxic in vitro in the (very) short term whereas the activity of crocidolite and erionite would be much more sluggish but persistent in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In situ TEM studies of carbon and gold nanostructures

    NASA Astrophysics Data System (ADS)

    Casillas Garcia, Gilberto

    Properties of matter change as structures go down in size to the nanoscale, creating new possibilities for creating new functional materials with better properties than the bulk. In situ TEM techniques were used to probe the properties of two different materials: atomic carbon chains and gold nanoparticles. Carbon chains were synthesized by in situ TEM electron beam irradiation from few-layers-graphene (FLG) flakes. Several chains up to 5 nm long were observed. Aberration corrected TEM confirmed the dimerization of the linear chain as predicted by Peierls. Moreover, it was observed that two linear carbon chains can cross-bond every 9 atoms, and it was confirmed by DFT calculations. Five-fold nanoparticles are not supposed to be stable beyond 5 nm size. Here, decahedra with high index facets in the order of 300 nm were studied by TEM. It was found that the high index facets were only stable by adding a capping agent, otherwise, smooth edges were observed. In this case, a (5x1) hexagonal surface reconstruction was observed on the {001} surfaces, with the hexagonal strings along a [110] and a [410] direction. Additionally, mechanical properties of gold nanoparticles, with and without twin boundaries, under 100 nm were measured by in situ TEM compression experiments. All of the nanoparticles presented yield strengths in the order of GPa. Multi twinned nanoparticles were found to be more malleable, reaching real compressing strains of 100 %, while the single crystal nanoparticle presented less plastic flow. Molecular dynamics simulations revealed that the twin boundaries contribute to the malleability of the nanoparticles, at the same time it provides a mechanism to stop dislocations, hence, strain hardening the nanoparticle at later stages of compression. Finally, the behavior of a single grain boundary was studied by in situ TEM manipulation of nanoparticles. A liquid-like behavior of a grain boundary is observed after two 40 nm gold nanoparticles are brought to

  13. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  14. Raman and XRD Field Characterisation of Sulfate Efflorescences at Rio Tinto (Spain)

    NASA Astrophysics Data System (ADS)

    Rull, F.; Sansano, A.; Sobron, P.; Lafuente, B.; Sarrazin, P.; Gailhanou, M.; Blake, D.

    2009-03-01

    In this work a comparative in-situ analysis of evaporate minerals from Rio Tinto (Spain) is undertaken using two techniques selected for Mars exploration: Raman spectrometer and CheMin XRD both selected as part of the ExoMars and MSL missions respectively.

  15. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    SciTech Connect

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra; Moore, Andrew; Johnson, David K.; Park, Sunkyu; Kim, Seong H

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It is demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.

  16. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  17. TEM sample preparation by femtosecond laser machining and ion milling for high-rate TEM straining experiments.

    PubMed

    Voisin, Thomas; Grapes, Michael D; Zhang, Yong; Lorenzo, Nicholas; Ligda, Jonathan; Schuster, Brian; Weihs, Timothy P

    2016-12-05

    To model mechanical properties of metals at high strain rates, it is important to visualize and understand their deformation at the nanoscale. Unlike post mortem Transmission Electron Microscopy (TEM), which allows one to analyze defects within samples before or after deformation, in situ TEM is a powerful tool that enables imaging and recording of deformation and the associated defect motion during mechanical loading. Unfortunately, all current in situ TEM mechanical testing techniques are limited to quasi-static strain rates. In this context, we are developing a new test technique that utilizes a rapid straining stage and the Dynamic TEM (DTEM) at the Lawrence Livermore National Laboratory (LLNL). The new straining stage can load samples in tension at strain rates as high as 4×10(3)/s using two piezoelectric actuators operating in bending while the DTEM at LLNL can image in movie mode with a time resolution as short as 70ns. Given the piezoelectric actuators are limited in force, speed, and displacement, we have developed a method for fabricating TEM samples with small cross-sectional areas to increase the applied stresses and short gage lengths to raise the applied strain rates and to limit the areas of deformation. In this paper, we present our effort to fabricate such samples from bulk materials. The new sample preparation procedure combines femtosecond laser machining and ion milling to obtain 300µm wide samples with control of both the size and location of the electron transparent area, as well as the gage cross-section and length.

  18. Visualizing DNA Nanoparticle Motion under Graphene Liquid Cell TEM

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Smith, Jessica; Park, Jungwon; Lee, Somin; Zettl, Alex; Alivisatos, Paul

    2013-03-01

    We think of a simple colloidal nanocrystal as one type of artificial atoms. They mutually interact, cluster into artificial molecules, and further arrange into macroscopically functional artificial solids. The ``atomic'' resolution dynamics of this bottom-up strategy in materials design is studied here in a system of artificial molecules composed of DNA and nanoparticle. The observation of dynamics in their liquid environment is recently enabled by graphene liquid cell transmission electron microscopy (TEM). In comparison to conventional TEM, wherein the assembled 3D artificial structures are dried out during sample preparation and thus are collapsed, this graphene liquid cell introduces a special local liquid structure that retains the conformations as well as the dynamics of the assemblies. In situ imaging of correlated motions of DNA and nanoparticle provides insights into the design principles of artificial nanocrystal molecules and solids linked by DNA.

  19. Effects of diagnostic ionizing radiation on pregnancy via TEM

    NASA Astrophysics Data System (ADS)

    Mohammed, W. H.; Artoli, A. M.

    2008-08-01

    In Sudan, X-rays are routinely used at least once for measurements of pelvis during the gestation period, though this is highly prohibited worldwide, except for a few life threatening cases. To demonstrate the effect of diagnostic ionizing radiation on uterus, fetus and neighboring tissues to the ovaries, two independent experiments on pregnant rabbits were conducted. The first experiment was a proof of concept that diagnostic ionizing radiation is hazardous throughout the gestation period. The second experiment was done through Transmission Electron Microscopy (TEM) to elucidate the morphological changes in the ultra structure of samples taken from irradiated pregnant rabbits. This study uses TEM to test the effect of diagnostic radiation of less than 0.6 Gray on the cellular level. Morphological changes have been captured and the images were analyzed to quantify these effects.

  20. Comparing Time Domain Electromagnetics (TEM) and Early-Time TEM for Mapping Highly Conductive Groundwater in Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-05-01

    Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and

  1. SimulaTEM: multislice simulations for general objects.

    PubMed

    Gómez-Rodríguez, A; Beltrán-Del-Río, L M; Herrera-Becerra, R

    2010-01-01

    In this work we present the program SimulaTEM for the simulation of high resolution micrographs and diffraction patterns. This is a program based on the multislice approach that does not assume a periodic object. It can calculate images from finite objects, from amorphous samples, from crystals, quasicrystals, grain boundaries, nanoparticles or arbitrary objects provided the coordinates of all the atoms can be supplied. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Assessment of TEM Cells for Whole Aircraft EMV Testing

    DTIC Science & Technology

    2007-05-01

    known to be due to cavity resonances within the cell. A novel method of active mode cancellation has been developed through CEM modelling together with...TEM Cell, OATS and Free Space Comparison . . . . . . . . . . . . . . . . . . 19 2.3.1 FEKO Models...accredited EMC test houses. The EMC/EMI characteristics of a box forms the basis of analysis at the system level once installed in the aircraft. The intra

  3. Strain mapping in TEM using precession electron diffraction

    DOEpatents

    Taheri, Mitra Lenore; Leff, Asher Calvin

    2017-02-14

    A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.

  4. Design and Characterization of a Lens TEM Horn

    NASA Astrophysics Data System (ADS)

    Bigelow, W. S.; Farr, E. G.; Bowen, L. H.; Ellibee, D. E.; Lawry, D. I.

    We investigate an approach for obtaining smaller UWB antennas with lower sidelobes than those offered by current designs. In support of this, we built and tested a lens TEM horn employing a collimating polyethylene aperture lens. It was thought that the lens TEM horn, with a more uniformly illuminated aperture field, might lead to higher gain with lower sidelobes than a comparably sized reflector IRA. That hypothesis is tested here. The lens horn, with a 30-cm aperture, has a maximum realized gain on boresight of 23 dB at 10 GHz. The normalized antenna impulse response is a clean peak with a full-width-at-half-maximum (FWHM) of 35 ps. For comparison, a highly optimized reflector IRA with 46-cm diameter achieves a maximum realized gain of 28 dB at 19 GHz and an impulse response with a FWHM of 30 ps. From theory, we expected the lens horn to exhibit lower sidelobes than the IRA. However, we did not observe that behavior in our experimental model. We suggest refinements which might lead to reduced sidelobes and increased gain in lens TEM horns.

  5. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  6. Observations from TEM Analysis of Swift Creek Samples

    NASA Astrophysics Data System (ADS)

    Harris, J. R.

    2012-12-01

    Samples analyzed by transmission electron microscopy (TEM) from suspended sediments in Swift Creek have unique characteristics compared to other naturally occurring asbestos (NOA) sites across the country. Our first introduction to the uniqueness of the Swift Creek site came about when we analyzed soil sediments by polarized light microscopy (PLM) and found relatively low or nonexistent levels of chrysotile asbestos. Upon submission of these samples for TEM analysis, we found that the samples were literally filled with small chrysotile fibers and bundles. We also notice a high number of dark, rounded particles which were not asbestiform. Out of curiosity, we viewed the surface features of one of these particles using scanning electron microscopy to find compacted chrysotile fibers bundled inside these particles. These particles contained the vast majority of chrysotile in the sample. This finding began our approach to provide more advanced TEM/SEM methods for identifying and characterizing complex arrangements of asbestos from NOA sites. We will present some of our experiences and methods for characterizing these types of particles common to NOA sites.

  7. A Raman, IR and XRD analysis of the deterioration on historical monuments: Case study from Mexico

    NASA Astrophysics Data System (ADS)

    Ostrooumov, Mikhail

    2009-08-01

    Raman, infrared and XRD analysis have been applied to the examination of deterioration on historical monuments (Morelia, Mexico). Forty-three samples pyroclastic volcanic rocks (ignimbrites) have been studied, all originating from two ex-convents San Francisco and San Agustin, which were the first architectonic complexes in the city of Morelia. Several new mineral neoformation such as sulfates, carbonates, halides, and phosphates were identified in these samples with spectrometric and XRD technique. The observed Raman and infrared spectra are reported and some mineral compound assignments in unaltered and deteriorated volcanic rocks have been made. This survey is the first Raman and infrared spectrometric examination of the environmental mineralogy in Mexico under conditions of urban weathering that are characterized mainly by one secondary alteration formations of low scale.

  8. Applying high resolution SyXRD analysis on sulfate attacked concrete field samples

    SciTech Connect

    Stroh, J.; Schlegel, M.-C.; Irassar, E.F.; Meng, B.; Emmerling, F.

    2014-12-15

    High resolution synchrotron X-ray diffraction (SyXRD) was applied for a microstructural profile analysis of concrete deterioration after sulfate attack. The cement matrices consist of ordinary Portland cement and different amounts of supplementary cementitious materials, such as fly ash, natural pozzolana and granulated blast furnace slag. The changes of the phase composition were determined along the direction of sulfate ingress. This approach allows the identification of reaction fronts and zones of different phase compositions and conclusions about the mechanisms of sulfate attack. Two reaction fronts were localized in the initial 4 mm from the sample surface. The mechanism of deterioration caused by the exposition in the sulfate-bearing soil is discussed. SyXRD is shown to be a reliable method for investigation of cementitious materials with aggregates embedded in natural environments.

  9. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Hua; Wang, Xingquan; Zhang, Guling; Chen, Huan; Lv, Guohua; Yang, Size

    2010-08-01

    Diamond-like carbon films were deposited by electrolysis of a water-ethanol solution on Cu at low voltages (60-100 V) at 2 mm interelectrode separation. The films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy. The films were found to be continuous and compact with uniform grain distribution. Raman spectroscopy analysis revealed two broad bands at ˜1350 and ˜1580 cm -1. The downshift of the G band of graphite is indicative of the presence of DLC. For XRD analysis, the three strong peaks located at 2 θ values of 43.2°, 74.06° and 89.9° can be identified with reflections form (1 1 1), (2 2 0) and (3 1 1) plane of diamond.

  10. Mössbauer and XRD study of Al-Sn linished steel bimetal alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Silva, L. da; Stichleutner, S.; El-Sharif, M.; Homonnay, Z.; Klencsár, Z.; Sziráki, L.; Chisholm, C. U.; Lak, B.

    2016-12-01

    Aluminium alloy free CS1 type steel (0.06 wt% C, 0.45 wt% Mn) and samples of cold roll bonded steel bimetal alloys (MAS15 and MAS16) were fabricated and investigated by X-ray diffraction (XRD), 57Fe conversion electron Mössbauer spectroscopy (CEMS) at room temperature. XRD has revealed only the existence of the alpha iron solid solution (steel) phase in the steel only sample, while identified steel and metallic Al and Sn constituent phases in the bimetallic alloys. 57Fe Mössbauer spectroscopy revealed the presence of 4 % secondary iron-bearing phase attributed mainly to iron oxide/ oxyhydroxides (ferrihydrite) besides the steel matrix on the surface of the steel sample. A significant difference between the occurrences of the secondary phase of differently prepared bimetal alloys found in their 57Fe CEM spectra allowed to identify the main phase of debris as different iron oxide/ oxyhydroxides.

  11. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    PubMed

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration.

  12. A Raman, IR and XRD analysis of the deterioration on historical monuments: case study from Mexico.

    PubMed

    Ostrooumov, Mikhail

    2009-08-01

    Raman, infrared and XRD analysis have been applied to the examination of deterioration on historical monuments (Morelia, Mexico). Forty-three samples pyroclastic volcanic rocks (ignimbrites) have been studied, all originating from two ex-convents San Francisco and San Agustin, which were the first architectonic complexes in the city of Morelia. Several new mineral neoformation such as sulfates, carbonates, halides, and phosphates were identified in these samples with spectrometric and XRD technique. The observed Raman and infrared spectra are reported and some mineral compound assignments in unaltered and deteriorated volcanic rocks have been made. This survey is the first Raman and infrared spectrometric examination of the environmental mineralogy in Mexico under conditions of urban weathering that are characterized mainly by one secondary alteration formations of low scale.

  13. Phase analysis of aluminium modified GeSbTe bulk prepared from XRD of samples

    NASA Astrophysics Data System (ADS)

    Sandhu, Sharanjit; Singh, D.; Kumar, S.; Thangaraj, R.

    2016-05-01

    Various compositions of Aluminium modified GST as Alx(Ge2Sb2Te5)1-x x= 0, 0.15, 0.20, 0.25, 0.30 are prepared to study as a phase change material. Bulk prepared is studied with XRD scans for various phases formed. Phases other than Ge2Sb2Te5 do come in but dominated one is Ge2Sb2Te5 hexagonal phase.

  14. Lattice Expansion of LSCF-6428 Cathodes Measured by In-situ XRD during SOFC Operation

    SciTech Connect

    Hardy, John S.; Templeton, Jared W.; Edwards, Danny J.; Lu, Zigui; Stevenson, Jeffry W.

    2012-01-03

    A new capability has been developed for analyzing solid oxide fuel cells (SOFCs). This paper describes the initial results of in-situ x-ray diffraction (XRD) of the cathode on an operating anode-supported solid oxide fuel cell. It has been demonstrated that XRD measurements of the cathode can be performed simultaneously with electrochemical measurements of cell performance or electrochemical impedance spectroscopy (EIS). While improvements to the technique are still to be made, the XRD pattern of a lanthanum strontium cobalt ferrite (LSCF) cathode with the composition La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF-6428) was found to continually but gradually change over the course of more than 60 hours of operation in air under typical SOFC operating conditions. It was determined that the most significant change was a gradual increase in the cubic lattice parameters of the LSCF from 3.92502 Å (as determined from the integration of the first 20 hours of XRD patterns) to 3.92650 Å (from the integration of the last 20 hours). This analysis also revealed that there were several peaks from unidentified minor phases that increased in intensity over this timeframe. After a temporary loss of airflow early in the test, the cell generated between 225 and 250 mW/cm2 for the remainder of the test. A large low frequency arc in the impedance spectra suggests the cell performance was gas diffusion limited and that there is room for improvement in air delivery to the cell.

  15. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    PubMed

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  16. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  17. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    PubMed

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene.

  18. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  19. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  20. Mineralogical composition of the meteorite El Pozo (Mexico): A Raman, infrared and XRD study

    NASA Astrophysics Data System (ADS)

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm -1 revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine + orthopyroxene; and orthopyroxene.

  1. XRD, Photoluminescence and Optical Absorption Investigations of Cobalt-doped ZnO

    SciTech Connect

    Sujinnapram, Supphadate; Onreabroy, Wandee; Nantawisarakul, Tuangrak

    2009-07-07

    Zn{sub 1-x}Co{sub x}O(with x = 0, 0.01, 0.10 and 0.20) were synthesized by solid-state reaction method sintered at 600 deg. C for 12 hours. The samples were studied by X-ray diffraction (XRD), optical absorption (UV-Vis) and Photoluminescence (PL). Structural analysis by Rietveld method using XRD showed that the peaks of secondary phase Co{sub 3}O{sub 4} with a cubic structure were visible in the high-doped sample (x = 0.1, 0.2), besides the main peaks of wurtzite-like structure the same as that of ZnO. Shift of the XRD peaks proved the incorporation of Co{sup 2+} into the ZnO lattice. The band gap energy decreased from 3.18 to 3.14 eV with the increasing of cobalt concentration. PL spectra at room temperature showed the blue emission with the peak around 412 nm. In addition, the intensity of the blue emission decreased upon increasing the Co concentration, which indicated their high structural, defects and optical quality in the ZnO.

  2. Automated S/TEM metrology on advanced semiconductor gate structures

    NASA Astrophysics Data System (ADS)

    Strauss, M.; Arjavac, J.; Horspool, D. N.; Nakahara, K.; Deeb, C.; Hobbs, C.

    2012-03-01

    Alternate techniques for obatining metrology data from advanced semiconductor device structures may be required. Automated STEM-based dimensional metrology (CD-STEM) was developed for complex 3D geometries in read/write head metrology in teh hard disk drive industry. It has been widely adopted, and is the process of record for metrology. Fully automated S/TEM metrology on advanced semiconductor gate structures is viable, with good repeatability and robustness. Consistent automated throughput of 10 samples per hour was achieved. Automated sample preparation was developed with sufficient throughput and quality to support the automated CD-STEM.

  3. TEM studies of calcium phosphates for the understanding of biomineralization

    NASA Astrophysics Data System (ADS)

    Xin, Renlong

    Calcium phosphate (Ca-P) formation and bone minerals have been the focus of research for several decades because achievements in these areas could provide valuable insights into the understanding of biomineralization. In this thesis work, Ca-P formation, octacalcium phosphate (OCP) to hydroxyapatite (HA) transformation and bone minerals were systematically studied by transmission electron microscopy (TEM) techniques. Ca-P formations on various bioceramics in simulated body fluid and in rabbit muscle sites were investigated. The bioceramics included sintered bioglass RTM, A-W glass-ceramics, HA, alpha-tricalcium phosphate (TCP), beta-TCP and HA-TCP. The comparative studies showed that OCP formation occurred on all types of bioceramic surfaces in vitro and in vivo, except on beta-TCP; however HA formation did not occur on every type of bioceramics; it less likely occurred on the surfaces of HA and alpha-TCP. These findings were contradicted to the common statements in literatures. OCP to HA transformations in vitro and in vivo were observed by high-resolution TEM (HRTEM). The in vitro transformation was induced by electron beam irradiations of in situ TEM on synthetic OCP crystals. The in vivo transformation was revealed on rod-like HA precipitates formed in dog muscle sites. Based on HRTEM examinations and image simulations, OCP/HA crystallographic orientations were determined to be OCP (010) // HA (01¯0) and OCP (001) // HA (001¯), which differed from a well known model proposed by Brown et al. The minerals of cortical bone were extracted from human tibiae and rat femurs using 10% neutral ethylenediamine tetraacetic acid (EDTA) solution. TEM examinations showed that the dominance of bone minerals was plate-like and a few were needle-like. The length of most plate-like minerals ranged from 50 to 150 nm but could be up to 200 nm. To the author's knowledge, OCP structure was for the first time, identified in a number of plate-like bone minerals by selected area

  4. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  5. Modeling of planar quasi-TEM superconducting transmission lines

    NASA Technical Reports Server (NTRS)

    Antsos, Dimitrios; Chew, Wilbert; Riley, A. L.; Hunt, Brian D.; Foote, Marc C.; Bajuk, Louis J.; Rascoe, Daniel L.; Cooley, Thomas W.

    1992-01-01

    An application of the phenomenological loss equivalence method (Lee and Itoh, 1989) in modeling the microwave behavior of planar quasi-TEM superconducting transmission lines is presented. For validation of the model, data are used from measurements of a YBCO superconducting thin-film coplanar-waveguide lowpass filter on a lanthanum aluminate substrate. Measured and modeled S-parameters of an existing superconducting coplanar waveguide lowpass filter agree to within 0.3 dB in magnitude and 0.5 radians in phase. Extracted values for penetration depth and real part of the conductivity of the superconducting film are within 10 percent of other researchers' findings.

  6. Low voltage TEM: influences on electron energy loss spectrometry experiments.

    PubMed

    Stöger-Pollach, M

    2010-08-01

    We discuss the advantages and disadvantages of electron energy loss spectrometry (EELS) a transmission electron microscope (TEM) at different high tensions. Instrumental effects such as energy resolution, spatial resolution, and point spread function of the detecting system, as well as physical effects like inelastic (Coloumb) delocalization and Cerenkov losses are dealt with. It is found that the actually available equipment is suitable for performing low voltage experiments. The energy resolution of a thermo-ionic emitter can be tremendously improved at lower energies, and the detector also has advantageous behaviour. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Production of defects in metals by collision cascades: TEM experiments

    SciTech Connect

    Kirk, M.A.

    1996-01-01

    This paper reviews experimental TEM data on production of dislocation loops by low energy ion bombardment to low doses, as simulations of similar collision cascades produced by fast neutrons, in various metals and alloys. Dependence of vacancy dislocation loop formation on recoil energy, temperature and metal/alloy is examined. Emphasis is placed on effects on dilute alloy additions. A model for cascade melting is used to understand these effects; this will require an examination of the role of electron-phonon coupling in cascade cooling and recrystallization. Formation of interstitial dislocation loops as cascade defects and the effect of nearby surfaces are briefly discussed.

  8. A Fast 4-D TEM System for UXO Characterization

    DTIC Science & Technology

    2004-11-01

    eliminates the need to transport all gear back and forth between the field site and the hotel . At Aberdeen, the only piece of gear we transported back to...the hotel after work was the NT-32II transceiver. We had a problem with getting our GPS system operational and lost a few hours while we troubleshot...Orleans Mariott : U.S. Dept. of Defense. 9. Carlson, N.E., and Kenneth L. Zonge. The utility of horizontal component measurements in random-walk TEM

  9. TEM Pump With External Heat Source And Sink

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  10. Structural characterization of TiN/NbN multilayers: X-ray diffraction, energy-filtered TEM and Fresnel contrast techniques compared.

    PubMed

    Lloyd, S J; Molina-Aldareguia, J M; Clegg, W J

    2005-03-01

    Two TiN/NbN multilayers with wavelength 13.6 and 6.15 nm have been characterized by X-ray diffraction (XRD), Fresnel contrast analysis (FCA) and energy-filtered transmission electron microscopy (EFTEM). Good agreement between the composition profile obtained by FCA and EFTEM is obtained if the lower resolution of the EFTEM images is taken into account. The relative advantages and disadvantages of the techniques are discussed. Used together the two TEM techniques provide a quantitative characterization that is consistent with, and for some parameters provides more precise values than, that from XRD. The analysis shows that the multilayers have narrow interfaces (< 1 nm) and a composition amplitude close to 95% for the longer wavelength.

  11. TEM transmission line coil with double nuclear capability.

    PubMed

    Erickson, Matthew G; Kurpad, Krishna N; Holmes, James H; Fain, Sean B

    2007-10-01

    MR imaging and spectroscopy requires RF fields of high homogeneity. Quadrature volume coils meeting this requirement include the birdcage coil and the TEM resonator. We describe here a quadrature volume coil designed around a modified coaxial transmission line in which multiple inner conductors are arrayed on a circular perimeter and surrounded by a common shield. Current antinodes are established at appropriate points on the inner conductors by series transmission line stubs, either open circuit or short circuit, which terminate the line. Quadrature phasing is generated by a novel circuit constructed from a pair of high-performance current baluns and a commercial quadrature hybrid. The coil is a "pure" TEM coil as it is simply a resonant transmission line. There is no mode structure to consider. The construction of a prototype quadrature four-element coil is described and preliminary test results from this coil in a 4.7T horizontal bore magnet are reported. A related double nuclear coil design for (3)He and (1)H in which two linear transmission line coils are arrayed on a circular perimeter and simultaneously tuned and matched to their respective frequencies is also described. Preliminary tests from this coil in a 1.5T clinical scanner are reported.

  12. A modified relativistic magnetron with TEM output mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Ju, Jin-Chuan; Du, Guang-Xing

    2017-01-01

    A modified relativistic magnetron (RM) with TEM output mode is proposed. By setting the coupling slots at the bottom of the resonant cavities in the transmission region rather than in the interaction region, besides possessing the original RM's advantages of high power conversion efficiency and radiating the lowest order mode, the modified RM not only improves the compactness and miniaturization of the magnetic field system, which is beneficial to realize the RMs packed by a permanent magnet, but also improves the robustness of operating frequency to structural perturbations of the coupling slots, which contributes to optimize the RM performance by adjusting the coupling slot dimensions with a relatively stable operating frequency. In the three-dimensional particle-in-cell (PIC) simulation, the modified RM with a reduction of 27.2% in the weight of the coils, 35.8% in the occupied space of the coils, and 18.6% in the operating current, can output a relatively pure TEM mode, which has been demonstrated as the dominant output mode by simulation, corresponding to an output power of 495.0 MW and a power conversion efficiency of 56.4%, at the resonant frequency of 4.30 GHz. In addition, an output power of above 2 GW can also be obtained from the RM in simulations.

  13. Studying dynamic processes in liquids by TEM/STEM/DTEM

    NASA Astrophysics Data System (ADS)

    Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration

    2013-03-01

    In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.

  14. TEM investigations on the local microstructure of electrodeposited galfenol nanowires

    NASA Astrophysics Data System (ADS)

    Pohl, D.; Damm, C.; Pohl, D.; Schultz, L.; Schlörb, H.

    2016-01-01

    The local microstructure of Fe-Ga nanowires is investigated considering dependence on the deposition technique. Using a complexed electrolyte, smooth and homogeneous Fe80Ga20 nanowires are deposited into anodic aluminum oxide templates by either applying pulse potential or potentiostatic deposition technique. At optimized deposition conditions the wires show the desired composition of Fe80±2Ga20±2 without a gradient along the growth direction. Composition distribution, structure and microstructure are examined in detail and reveal only minor differences. Line EELS and crystal lattice measurements reveal a negligible oxygen content for both preparation routines. Neither Fe/Ga oxides nor hydroxides were found. Both potentiostatically deposited as well as pulse deposited nanowires exhibit a preferred <110> orientation, the latter with slightly larger crystals. Different contrast patterns were found by TEM that appear more pronounced in the case of pulse deposited wires. High resolution transmission electron microscopy analysis and comparison of differently prepared focused ion beam lamellas reveal that these contrasts are caused by defects in the alternating potential deposition itself and are not induced during the TEM preparation process. The alternating potential mode causes periodic growth thereby inducing different layers with reduced wire thickness/defects at the layer interfaces.

  15. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    PubMed

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  16. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    PubMed

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  17. A Raman, infrared and XRD analysis of the instability in volcanic opals from Mexico

    NASA Astrophysics Data System (ADS)

    Ostrooumov, Mikhail

    2007-12-01

    A series of natural volcanic opal samples with the destabilization phenomena from Mexican deposits (states of Queretaro and Jalisco) was investigated by Raman microprobe (RMP), infrared spectrometry and XRD analysis. These techniques show that at low and room temperatures the unaltered transparent opals may be transformed into destabilized white opals, which are a mixture of different polymorphs of tridymite and α-cristobalite with various degrees of crystallinity. We found systematic changes in frequencies of both the Raman and the infrared bands, caused by increasing regularities of bond-lengths and bond-angles Si-O-Si groups under the effect of stability. Micro-Raman spectrometry confirms that in the destabilized opal the principal mineral phases are MC (monoclinic ordered)- and MX (incommensurate monoclinic)-tridymites that are characterized by more structural order in comparison with other structural modification of this phase in unaltered opal (POn pseudo-orthorhombic disordered tridymite). XRD investigations show that in the sequence from unaltered to destabilized opal the position of principal maximum (4.30, 4.10 and 2.50 Å) shifts towards higher d-spacing. This XRD shifting to higher d-spacing can largely be explained by an increasing amount of tridymite stacking and unresolved superposition of cristobalite and tridymite reflections. The destabilization phenomena in volcanic opals is due to the structural ordering/disordering that is characterized mainly by the formation of the different tridymite polymorphs (MC and MX) in the destabilized opal-CT as well as the decreasing content of molecular water in the structure.

  18. Quantitative XRD HW-IR plot for clay mineral domain size and lattice strain analyses

    NASA Astrophysics Data System (ADS)

    Wang, H. J.; Chen, D. Z.; Zhou, J.; Chen, T.; Wang, H.; Zhang, Z. Q.

    2003-04-01

    Based on integral-breadth method, the one of three basic XRD methods (Klug &Alexander, 1974), authors (2000) proposed a qualitative half width (HW)-intensity ratio (IR) plot for clay mineral domain size and lattice strain analyses. In this study, the quantitative HW-IR plot is further developed on the basis of i) the curve relation between the Voigt function and the Pearson VII function; ii) the relationship between the Kübler index and the Weaver index. By numerical simulating, it is derived a curve relation between shape indexes k of the Voigt function and u of the Pearson VII function. With this curve relation, k and u can be converted each other in an accuracy of ten thousandth and therefore the domain size and the lattice strain contributions can be precisely separated from an XRD peak according to Langford's (1978) formula. For micaceous minerals, the HW-IR plot requires only a pair of values of the Kübler index and the Weaver index from 1nm reflection. For other clay minerals, the plot needs a pair of values of the (00l) peak's half width and intensity ratio IR. IR is a ratio of peak maximum to the intensity at the position of maximum minus 0.422oΔ2Θ in CuKα radiation. This quantitative plot renders a mean dimension of clay particles perpendicular to the reflection plane (00l) and an approximate upper limit strain normal to d001. The accuracy for domain size analysis reaches one tenth of nanometre and that for the lattice strain analysis is in ten thousandth respectively. This plot method can be widely used with any digital X-ray diffractometer, whose XRD data can be converted into text format. Excel 5.0 or latter versions in both English and Chinese can well support the HW-IR plot. This study was supported by NNSFC (Grant No 40272022)

  19. A Raman, infrared and XRD analysis of the instability in volcanic opals from Mexico.

    PubMed

    Ostrooumov, Mikhail

    2007-12-15

    A series of natural volcanic opal samples with the destabilization phenomena from Mexican deposits (states of Queretaro and Jalisco) was investigated by Raman microprobe (RMP), infrared spectrometry and XRD analysis. These techniques show that at low and room temperatures the unaltered transparent opals may be transformed into destabilized white opals, which are a mixture of different polymorphs of tridymite and alpha-cristobalite with various degrees of crystallinity. We found systematic changes in frequencies of both the Raman and the infrared bands, caused by increasing regularities of bond-lengths and bond-angles Si-O-Si groups under the effect of stability. Micro-Raman spectrometry confirms that in the destabilized opal the principal mineral phases are MC (monoclinic ordered)- and MX (incommensurate monoclinic)-tridymites that are characterized by more structural order in comparison with other structural modification of this phase in unaltered opal (POn pseudo-orthorhombic disordered tridymite). XRD investigations show that in the sequence from unaltered to destabilized opal the position of principal maximum (4.30, 4.10 and 2.50 A) shifts towards higher d-spacing. This XRD shifting to higher d-spacing can largely be explained by an increasing amount of tridymite stacking and unresolved superposition of cristobalite and tridymite reflections. The destabilization phenomena in volcanic opals is due to the structural ordering/disordering that is characterized mainly by the formation of the different tridymite polymorphs (MC and MX) in the destabilized opal-CT as well as the decreasing content of molecular water in the structure.

  20. (S)TEM analysis of functional transition metal oxides

    NASA Astrophysics Data System (ADS)

    Chi, Miaofang

    Perovskite vanadates (AVO3) form an ideal family to study the structure-property relationships in transition metal oxides because their physical properties can easily be tailored by varying the A-site cations. (S)TEM is an ideal tool for this type of study due to its capacity for simultaneous imaging and chemical analysis. Determination of the oxidation state of vanadium in complex oxides have been carried out by electron energy loss spectroscopy. SrVO3/LaAlO3 is then studied both experimentally and theoretically as a prototype system. Extra electrons have been detected on the interface layer, and further proven to originate mainly from a change in the local bonding configuration of V at the La-O terminated substrate surface. Cr-containing stainless steel deposited with a LaCrO3 thin-film layer is a promising interconnect material of Solid Oxide Fuel Cells (SOFC). Our investigation on its microstructural evolution reveals that the LaCrO 3 thin film plays a role in inhibiting the growth of an oxide layer on the metal surface and thus protects the surface of the stainless steel. Ca-doped LaCoO3 is a promising SOFC cathode material. The domain structures and the oxidation state of Co in Ca-doped LaCoO3, which are directly related to its mechanical properties and electronic conductivity, are investigated by in-situ TEM and EELS. The formation of microcracks is observed during thermal cycles. Ca-doping in LaCoO3 is shown to not only improve the electronic conductivity of the material, but is also likely to strengthen the grain boundaries. The realization of its application in SOFCs depends on depressing the ferroelastisity to reduce strain formation during thermal cycles. The application of the (S)TEM techniques used for studying the perovskite systems are further extended to other compounds containing transition metal elements. The refractory minerals from Comet 81 P/Wild-2 are studied to investigate the formation of the early solar system. A relatively high Ti3+/Ti 4

  1. Application of quantitative XRD on the precipitation of struvite from Brine Water

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Rahmawati, F.; Heryanto; Putra, D. P.

    2017-02-01

    The present studies have been conducted to quantify the varied phases in struvite formation from brine water as the magnesium source. The quantitative X-ray Diffraction (QXRD) method was performed to quantitatively determine the crystal phases and amorphous content of struvite samples. Substantial phase samples were employed quantitative analysis to calibrate against known phase composition information by Rietveld refinement on powder XRD data. The results showed that brine water could be considered as magnesium source the formation of struvite products. The study demonstrated that in general, the high N:P molar ratio (both pH 9 and 10) might lead to the significant formation of struvite.

  2. IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY

    SciTech Connect

    Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

    2012-11-19

    A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tool’s development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

  3. A mathematical method for XRD pattern interpretation in clay containing nano composites

    NASA Astrophysics Data System (ADS)

    Khederlou, Kh.; Bagheri, R.; Shojaei, A.

    2014-11-01

    X-ray diffraction and rheological measurements were used to characterize nanoparticle dispersion in LDPE/LLDPE/nanoclay hybrid nanocomposites. XRD patterns were interpreted with a novel distribution formula and rheological measurements were used to confirm the results. Results of these two methods indicated that increasing clay in all the prepared nanocomposites exhibited a significant improvement in filler-matrix interaction because of increasing the probability of polymer diffusion but further exfoliation need more compatibilizing situations. It seems that this mathematical method could be used for predicting the overall change in clay gallery d-spacing and the extent of intercalation-exfoliation of nanoclay in these systems.

  4. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    SciTech Connect

    Alias, Nor Hayati Abdullah, Wan Shafie Wan Isa, Norriza Mohd Isa, Muhammad Jamal Md Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-02-12

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  5. Hydration Characteristics of Metakaolin Admixtured Cement using DTA, XRD and SEM Techniques

    NASA Astrophysics Data System (ADS)

    Govindarajan, D.; Gopalakrishnan, R.

    2008-04-01

    The paper aims to investigate hydration and pozzolanic reaction in Portland cement paste with different replacement percentages (0%, 10%, 20% and 30%) of metakaolin. The compressive strength of the metakaolin admixtured cement was measured at 1 day, 1 week and 4 weeks. The compressive strength developments of the metakaolin admixtured cement are compared with Portland cement. It is found that metakaolin contributes significantly to strength development as an accelerating admixture for Portland cement. The pozzolanic reactions and the reaction products were determined by DTA, XRD and SEM.

  6. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because

  7. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morris, R. V.; Ming, D. W.; Blake, D.; Vaniman, D.; Bish, D. L.; Chipera, S.; Downs, R.; Morrison, S.; Gellert, R.; Campbell, I.; Treiman, A. H.; Achilles, C.; Bristow, T.; Crisp, J. A.; McAdam, A.; Archer, P. D.; Sutter, B.; Rampe, E. B.; Team, M.

    2013-12-01

    Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyrox-ene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was cal-culated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiome-try (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (~71 wt.% of bulk sample) and bulk chemical compositon are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be~0 wt.% in the amporphous component. Griffithite is the preferred smectite because the position

  8. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    NASA Technical Reports Server (NTRS)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  9. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    NASA Astrophysics Data System (ADS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Muhammad, Azali; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee

    2014-02-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  10. PIXE, SR-XRD and EXAFS analysis of Cu-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Yang, C.; Wang, J. Z.; Shi, L. Q.; Cheng, H. S.

    2014-08-01

    Cu-doped ZnO films were prepared by rf magnetron sputtering on sapphire substrate at different atmosphere. Microstructure of these films and Cu occupation sites were investigated using PIXE, SR-XRD and EXAFS. Only 2.9 at.% Cu, no other magnetic impurities (e.g., Fe, Co and Ni) were detected. The ZnO:Cu films possessed the wurtzite ZnO structures and no precipitates (e.g., CuO and Cu2O or Cu cluster) were found. Cu atoms were incorporated into ZnO crystal lattice by occupying Zn atomic sites.

  11. XRD studies of cement embedding matrices containing complexing reagents from decontamination practices

    SciTech Connect

    Ionascu, L.; Nicu, M.; Turcanu, M.; Dragolici, F.; Rotarescu, Ghe.

    2013-07-01

    The study of embedding matrix of radioactive waste is an important issue concerning the need to assure the radiological safety requirements for final disposal. The conditioning of the radioactive wastes by cementation process involves also a structural investigation by X-ray diffraction (XRD) of the samples prepared with cement and complexing agents at different concentration. This paper gives useful information about the influence of complexing agents related to damages produced in concrete microstructures. The experimental data obtained on samples kept in real repository environment for a period up to 15 years, offer structural information regarding the interaction between the different decontamination agents with the major components of the matrix. (authors)

  12. Investigation of Mg and Zn doped 45S5 bioactive materials by XRD, FTIR and SEM techniques

    NASA Astrophysics Data System (ADS)

    Anand, Vikas; Singh, K. J.; Kaur, Kulwinder

    2014-04-01

    Magnesium and zinc doped 45S5 samples were prepared in the laboratory by sol gel technique., Structural properties of the samples have been studied by XRD, FTIR and SEM techniques. Both FTIR and XRD data indicate the primary bioactive behavior of the samples. Presented results may be useful to improve the antibacterial as well as osteoblast properties of the currently available bioactive materials.

  13. Transmission Electron Microscopy (TEM) investigations of ancient Egyptian cosmetic powders

    NASA Astrophysics Data System (ADS)

    Deeb, C.; Walter, P.; Castaing, J.; Penhoud, P.; Veyssière, P.

    The processing technologies available during the time of ancient Egypt are of present concern to the field of Archaeology and Egyptology. Materials characterization is the best tool for establishing the processing history of archaeological objects. In this study, transmission electron microscopy (TEM) is used, in addition to other techniques, for phase identification and study of the microstructure and characteristic defect structures in ancient Egyptian cosmetic powders. These powders generally consist of a mix of Pb-containing mineral phases: galena (PbS), cerussite (PbCO3), and phosgenite (Pb2Cl2CO3), among others. Modern materials are fabricated according to recipes found in ancient texts to mimic the processing of ancient times and to compare with the archaeological specimens. In particular, a comparison between the dislocation structures of PbS crystals deformed in the laboratory and PbS from archaeological specimens from the collections of the Louvre Museum is presented .

  14. Correlation Analysis of TEM Images of Nanocrystal Molecules

    SciTech Connect

    Micheel, Christine; Zanchet, Daniele; Alivisatos, A. Paul

    2008-05-21

    Quantitative characterizataion of images of naocrystals and nanostructures is a challenging but important task. The development and optimization of methods for the construction of complex nanostructures rely on imaging techniques. Computer programs were developed to quantify TEM images of nanocrystal/DNA nanostructures, and results are presented for heterodimers annd trimers of gold nanocrystals. The programs presented here have also been used to analyze more complex trimers and tetramers linked by branched DNA, as well as for structures made from attaching gold nanocrystals to CdSe/ZnS core-shell quantum dots. This work has the additional goal of enabling others to quickly and easily adapt the methods for their own use.

  15. AFM, SEM and TEM Studies on Porous Anodic Alumina

    PubMed Central

    2010-01-01

    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure. PMID:20672104

  16. Identification of cooked bone using TEM imaging of bone collagen.

    PubMed

    Koon, Hannah E C

    2012-01-01

    Mild heating (≤100° C, 1 h)-typical of cooking-does not lead to detectable changes in any biochemical parameter yet measured; consequently bones that have been cooked, but which have not reached a temperature that will induce charring go undetected. We have used a microscopy based approach to investigate changes in the organization of the bone protein, collagen, as it is heated, using bone from heating experiments, short term burials, and archaeological sites. The work has revealed that the presence of a mineral matrix stabilizes the collagen enabling the damage to accumulate, but preventing it from causing immediate gelatinization. Once the mineral is removed, the damage can be observed using appropriate visualization methods. This chapter describes the transmission electron microscopy (TEM) technique that has been used to detect cooked bone by visualizing minor heat-induced damage at the level of the collagen fibril.

  17. TSAR modeling of a TEM horn and surrounding structure

    SciTech Connect

    Ng, W.C.; Pennock, S.T.

    1993-11-01

    Modeling of a TEM horn was performed with the TSAR FDTD electromagnetics code. The modeling was done in stages, beginning with the simplest case, the bare antenna itself. Complexity was added in the form of a dielectric lens, an enclosing cylinder, a layer of absorber inside the cylinder, resistive terminations between the horn and cylinder, and a flat plate over all, electrically separate from the cylinder. The final configuration included all of the above, plus a ring of ferrite inside the cylinder, just ahead of the horn. Predictions of the far-field were made at roughly ten degree increments, more closely spaced near boresight, in both vertical and horizontal planes, through the antenna`s centerline. Time histories at those points were evaluated, and from the time histories power densities were calculated. Both time histories and power densities will be presented for the configurations modeled.

  18. Analysis of the Tem Mode Linearly Tapered Slot Antenna

    NASA Technical Reports Server (NTRS)

    Janaswamy, R.; Schaubert, D. H.; Pozar, D. M.

    1985-01-01

    The theoretical analysis of the radiation characteristics of the TEM mode Linearly Tapered Slot Antenna (LTSA) is presented. The theory presented is valid for antennas with air dielectric and forms the basis for analysis of the more popular dielectric-supported antennas. The method of analysis involves two steps. In the first step, the aperture distribution in the flared slot is determined. In the second step, the equivalent magnetic current in the slot is treated as radiating in the presence of a conducting half-plane and the far-field components are obtained. Detailed comparison with experiment is made and excellent agreement is obtained. Design curves for the variation of the 3 dB and 10 dB beamwidths as a function of the antenna length, with the flare angle as a parameter, are presented.

  19. A TEM analysis of nanoparticulates in a Polar ice core

    SciTech Connect

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar with some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.

  20. Production of defects in metals by collision cascades: TEM experiments

    SciTech Connect

    Kirk, M.A.

    1995-03-01

    This paper reviews experimental TEM data on production of dislocation loops by low energy ion bombardment to low doses, as simulations of similar collision cascades produced by fast neutron irradiation, in various metals and alloys. The dependence of vacancy dislocation loop formation on recoil energy, sample temperature, and specific metal or alloy will be examined. Special emphasis will be placed on the effects of dilute alloy additions. A model for cascade melting will be employed to understand these effects, and will require an examination of the role of electron-phonon coupling in cascade cooling and recrystallization. The formation of interstitial dislocation loops as cascade defects, and the influence of the nearby surfaces in these experiments is briefly discussed.

  1. Examination of subaerially altered basaltic glass with TEM and EELS

    SciTech Connect

    Luo, J.-S.

    1998-06-17

    We have examined the weathered surfaces of 720 year old Hawaiian basalt glasses that were recovered from a subaerial environment with high-resolution transmission electron microscopy (TEM) and energy filtered imaging and electron energy loss spectroscopy (EELS) techniques. Whereas the alteration products (palagonite) were physically detached from the underlying glass in most samples, a gel-like amorphous layer was observed adjacent to the glass in a few samples. To our knowledge, this is the first time a gel layer has been observed on weathered basalt. This is significant because analogous gel layers have been observed on nuclear waste glasses reacted in laboratory tests, and this demonstrates an important similarity in the mechanisms of the weathering of basalt and the corrosion of waste glasses.

  2. Wideband TEM-TE11 mode convertor for HPM applications.

    NASA Astrophysics Data System (ADS)

    Bykov, D. N.; Bykov, N. M.; Kurkan, I. K.

    2017-05-01

    The mode convertor design of fundamental coaxial TEM to the lowest asymmetric TE11-mode of a circular waveguide was proposed and optimized with ANSYS HFSS software. It includes axially aligned parts: the input coaxial line with the high voltage insulator, conical coaxial matching line, wave-coax transition section and output circular waveguide. The most losses in this type of convertor caused by the wave of coaxial TE11-mode running back to the microwave source. To minimize these losses, there is the matching conical coaxial line with the cut-off insertion for coaxial TE11-mode. Characteristics of the convertor are as follows: the maximum input peak power - 3GW, the input impedance - 28Ohm, the central operating frequency - 1.14GHz. The power conversion efficiency to the output mode is from 90% upto 100% in the frequency band of 20%.

  3. Enabling direct nanoscale observations of biological reactions with dynamic TEM

    SciTech Connect

    Evans, James E.; Browning, Nigel D.

    2013-02-18

    Biological processes can occur over a wide range of spatial and temporal scales; from femtoseconds to hours and from angstroms to meters. Although no single experimental method can fully cover this entire phase space, many new biological insights can be expected from a better understanding of the processes that occur on the very fast timescales and very small length scales. In this regard, new instruments that use fast x-ray or electron pulses are now available that are expected to reveal new mechanistic insights for macromolecular protein dynamics. To ensure that any observed conformational change is physiologically relevant and not constrained by three-dimensional crystal packing, it would be preferable for experiments to utilize smaller protein samples such as single particles or two-dimensional crystals that mimic the target protein’s native environment. These samples aren’t typically amenable to x-ray analysis, but transmission electron microscopy has successfully imaged such sample geometries for over 40 years and permits data acquisition using both direct imaging and diffraction modes. While conventional transmission electron microscopes (TEM) have only visualized biological samples with atomic resolution in an arrested or frozen state, the recent development of the dynamic TEM (DTEM) extends electron microscopy capabilities into dynamics. A new 2nd generation DTEM that is currently being constructed has the potential to observe live biological processes with unprecedented spatiotemporal resolution by using pulsed electron packets to probe the sample on the micro- and nanosecond timescale. In addition to the enhanced temporal resolution, the DTEM also operates in the pump-probe regime that can permit visualizing reactions propagating in real-time. This article reviews the experimental parameters necessary for coupling DTEM with in situ liquid microscopy to allow direct imaging of protein conformational dynamics in a fully hydrated environment.

  4. Enabling direct nanoscale observations of biological reactions with dynamic TEM

    PubMed Central

    Evans, James E.; Browning, Nigel D.

    2013-01-01

    Biological processes occur on a wide range of spatial and temporal scales: from femtoseconds to hours and from angstroms to meters. Many new biological insights can be expected from a better understanding of the processes that occur on these very fast and very small scales. In this regard, new instruments that use fast X-ray or electron pulses are expected to reveal novel mechanistic details for macromolecular protein dynamics. To ensure that any observed conformational change is physiologically relevant and not constrained by 3D crystal packing, it would be preferable for experiments to utilize small protein samples such as single particles or 2D crystals that mimic the target protein's native environment. These samples are not typically amenable to X-ray analysis, but transmission electron microscopy has imaged such sample geometries for over 40 years using both direct imaging and diffraction modes. While conventional transmission electron microscopes (TEM) have visualized biological samples with atomic resolution in an arrested or frozen state, the recent development of the dynamic TEM (DTEM) extends electron microscopy into a dynamic regime using pump-probe imaging. A new second-generation DTEM, which is currently being constructed, has the potential to observe live biological processes with unprecedented spatiotemporal resolution by using pulsed electron packets to probe the sample on micro- and nanosecond timescales. This article reviews the experimental parameters necessary for coupling DTEM with in situ liquid microscopy to enable direct imaging of protein conformational dynamics in a fully hydrated environment and visualize reactions propagating in real time. PMID:23315566

  5. TEM-EDS study of metals' partition at particle level after their sorption in soil

    NASA Astrophysics Data System (ADS)

    Sipos, Peter; Kovács Kis, Viktória; Németh, Tibor; Balázs, Réka

    2016-04-01

    Association of soil mineral particles could significantly modify the sorption capacity of the individual soil components. We studied this phenomena using single element and competitive batch Cd, Cu, Pb and Zn sorption experiments on six soil samples with contrasting characteristics. Their sorption properties were characterized by XRD and FTIRS analyses, as well as sorption curve evaluation. TEM-EDS analyses were used to characterize the soil mineral particle associations and their metal sorption capacities. Submicron sized smectite particles were found to be associated to tiny ferryhidrite and goethite patches in the acidic forest soil samples, whereas the alkaline meadow soils could be characterized by goethite and smectite particles attached to large carbonate grains. Point chemical analyses carried out on such associations showed that significant metal separation may occur at particle level within the mineral associations observed. This is primarily obvious for Cu and Pb, which are preferentially sorbed by iron oxides over clay mineral particles. This phenomenon is more pronounced in competitive situation. Highest affinity to clay minerals was found for Zn and it may be also characteristic for Cd in acid conditions. However, decrease in available sorption sites and increase in pH may result in enhanced precipitation for the studied metals. Our results suggest that estimation of the role of soil components in metals' sorption can not be adequate enough when the sorption properties of a set of bulk soils are studied exclusively. Direct observation of metals' partition at particle level may result in a deeper insight into soil-metal interaction. This study was financially supported by the Hungarian Scientific Research Fund (OTKA K105009).

  6. Investigation of NaCl deliquescence in porous substrates using RH-XRD

    NASA Astrophysics Data System (ADS)

    Linnow, Kirsten; Juling, Herbert; Steiger, Michael

    2007-03-01

    We report on the use of X-ray diffractometry under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of NaCl deliquescence in the pore space of glass filter frits, which were used as model substrates. The study confirms that RH-XRD is an appropriate experimental technique for the in situ observation of phase transformation in porous materials. It is used for an investigation of both the deliquescence kinetics and the deliquescence humidity within pores of different median pore diameter. Several major influences affecting deliquescence rates in the pore space close to the surface of a porous material are discussed. It appears that quite short-term variation of ambient relative humidity, e.g., typical daily fluctuations, might induce damaging deliquescence-crystallization cycles within the pore space of building materials. In agreement with theoretical considerations it was found that confinement of NaCl crystals in pores with median diameters in the range 1.4-70 μm does not affect the deliquescence humidity of the salt.

  7. Mössbauer and XRD study of hot dip galvanized alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Speakman, R.; El-Sharif, M.; Stichleutner, S.; Homonnay, Z.; Klencsár, Z.; Sziráki, L.; Chisholm, C. U.; Lak, Gy. B.

    2016-12-01

    Mössbauer spectroscopy has been used to investigate the nature of the Zinc-Iron alloys present within the Hot Dip Galvanized (HDG) layers of steel with a silicon content of 0.35 %. The investigation also studied the impact of the powder coating pretreatment on the nature of the alloy layers. The acid etching process within the pretreatment process in particular would be expected to have a significant impact on the HDG layer. This study utilized 57Fe Mössbauer spectroscopy to examine identically processed samples prior to and post pre treatment. XRD and 57Fe CEMS measurements were performed on hot galvanized S355J2 + N samples, forming sandwiched structure. Both XRD and CEMS reveal the presence of dominant steel phase in accordance with its estimated occurrence on the surface of the sandwiched samples. Minor Γ-Fe3Zn10, ζ-FeZn15 and solid solution Fe-Zn as well as minor Fe-Si phases could also be identified.

  8. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  9. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    SciTech Connect

    Borodi, G.; Pascuta, P.; Dan, V.; Pop, V.; Stefan, R.; Radulescu, D.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and the quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.

  10. The use of micro-XRD for the study of glaze color decorations

    NASA Astrophysics Data System (ADS)

    Pradell, T.; Molina, G.; Molera, J.; Pla, J.; Labrador, A.

    2013-04-01

    The compounds responsible for the colors and decorations in glass and glazed ceramics include: coloring agents (transition-metal ions), pigments (micro- and nanoprecipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron radiation micro-X-ray diffraction (SR-micro-XRD) has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth-dependent composition and crystal structure. Their nature and distribution across the glass/glaze decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro-XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and Renaissance tin-glazed ceramics from the 10th to the 17th century AD.

  11. The chaotic points and XRD analysis of Hg-based superconductors

    NASA Astrophysics Data System (ADS)

    Aslan, Ö.; Güven Özdemir, Z.; Keskin, S. S.; Onbaşli, Ü.

    2009-03-01

    In this article, high Tc mercury based cuprate superconductors with different oxygen doping rates have been examined by means of magnetic susceptibility (magnetization) versus temperature data and X-ray diffraction pattern analysis. The under, optimally and over oxygen doping procedures have been defined from the magnetic susceptibility versus temperature data of the superconducting sample by extracting the Meissner critical transition temperature, Tc and the paramagnetic Meissner temperature, TPME, so called as the critical quantum chaos points. Moreover, the optimally oxygen doped samples have been investigated under both a.c. and d.c. magnetic fields. The related a.c. data for virgin(uncut) and cut samples with optimal doping have been obtained under a.c. magnetic field of 1 Gauss. For the cut sample with the rectangular shape, the chaotic points have been found to occur at 122 and 140 K, respectively. The Meissner critical temperature of 140 K is the new world record for the high temperature oxide superconductors under normal atmospheric pressure. Moreover, the crystallographic lattice parameters of superconducting samples have a crucial importance in calculating Josephson penetration depth determined by the XRD patterns. From the XRD data obtained for under and optimally doped samples, the crystal symmetries have been found in tetragonal structure.

  12. Hydrometallurgical Extraction of Zinc and Copper A 57Fe-Mössbauer and XRD Approach

    NASA Astrophysics Data System (ADS)

    Mulaba-Bafubiandi, A. F.; Waanders, F. B.

    2005-02-01

    The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate roast leach electro winning process. In the present investigation a zinc copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Mössbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900°C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Mössbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.

  13. Crystal growth in Se70Te30 thin films followed by SEM and in situ XRD

    NASA Astrophysics Data System (ADS)

    Martinková, Simona; Barták, Jaroslav; Málek, Jiri; Segawa, Hiroyo

    2016-10-01

    The isothermal crystal growth kinetics in Se70Te30 thin films was investigated using the microscopy and in situ X-ray diffraction (XRD) measurements. Plate-like crystals grew linearly with time which is the sign of liquid-crystal interface kinetics. In the studied temperature range, from 68 °C to 88 °C, crystal growth rates exhibit simple exponential behavior with an activation energy of crystal growth EG = 168 ± 12 kJ mol-1. The growth data obtained from the microscopy measurements were combined with viscosity data, melting parameters and the appropriate crystal growth model was assessed. The relation between the kinetic coefficient of crystal growth and viscosity (u∝η-ξ) is described in detail, and a correction of the standard growth model is suggested. The crystal growth data obtained from the in situ XRD measurements were described using the Johnson-Mehl-Avrami nucleation-growth model with the Avrami exponent m = 2.2 ± 0.2. The activation energy of the overall crystallization process EA was estimated and its value is 171 ± 11 kJ mol-1.

  14. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD).

    PubMed

    Linnow, Kirsten; Steiger, Michael

    2007-01-30

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4+/-0.5% RH) and Ca(NO3)2 x 4 H2O (50.8+/-0.7% RH) at 25 degrees C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO3)2 to form Ca(NO3)2 x 2 H2O revealed an equilibrium humidity of 10.2+/-0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications.

  15. Using Simultaneous SHG and XRD Capabilities to Examine Phase Transitions of HMX and TATB

    SciTech Connect

    Saw, C K; Zaug, J; Farber, D; Ruddle, C

    2001-06-19

    Simultaneous SHG (second harmonic generation) and XRD (x-ray diffraction) capabilities have been developed at SSRL (Stanford Synchrotron Radiation laboratory) to examine the phase behavior of energetic materials, for example, HMX (octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrmcine) and TATB (1,3,5-triamino-2,4,6 trinitrobenzene). This unique capability provides information on the evolution at the molecular level (centro and non-centrosymmetric) on material stability, phase transformation or decomposition reactions, which are important to continue refinement of computational predictions of material properties. This paper reports x-ray diffraction experiments on both HMX and TATB with increasing temperature and on simultaneous SHG and XRD experiments at fixed temperature. Our results indicate that, for HMX, the {beta} to {delta} transformation occurs over a range of temperature which do not correlate to the previously reported fast rise in SHG signal close to 17OOC as a phase transformation. No phase transition is observed for TATB, even though, previous paper shows an increase in the SHG signal.

  16. Effect of relative humidity constraint on the metal exchanged montmorillonite performance: An XRD profile modeling approach

    NASA Astrophysics Data System (ADS)

    Oueslati, Walid; Ben Rhaiem, Hafsia; Ben Haj Amara, Abdesslem

    2012-11-01

    This work aims at examining the effect of an applied hydrous strain on the cation exchange process of a dioctahedral smectite by quantitative XRD analysis. The hydrous constraint is created by a continuous, in situ, hydration-dehydration cycles using variation of %RH (relative humidity) rate. In order to examine the effect of the retained materials stress on the cation exchange capacity of the host materials, the starting, the intermediate and the final stressed samples are deposed in contact with saturated Cd(II), Co(II), Zn(II) and Ni(II) chloride solutions. To characterize structural changes, an XRD profile modeling approach is used. This investigation allowed us to determine parameters related to the nature, abundance, size, position, organization of exchangeable cation and water molecule in the interlamellar space, along the c* axis. Qualitatively, the hydration behavior is affected by the number of hydration-dehydration cycle, and an interstratified hydration phases due probably to a new organization of the interlamellar space content is observed. Quantitatively, the theoretical mixed layer structure (MLS) suggests the coexistence of more one "crystallite" specie which are saturated by more than one exchangeable cations indicating a partial saturation of all exchangeable sites. Using optimum structural parameter values, deduced from the theoritecals models, some equations which described the evolution of exchangeable cation amount versus the applied hydrous strain were derived.

  17. XPS and XRD studies of samples from the natural fission reactors in the Oklo uranium deposits

    SciTech Connect

    Sunder, S.; Miller, N.H.; Duclos, A.M.

    1994-12-31

    Mineral samples from the natural fission reactors 10 and 13 in the Oklo uranium deposits were studied using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to gain information about the long-term behaviour of UO{sub 2} fuel in a geological disposal vault. Two samples from reactor zone 10 (samples No. D81N-190292 and D73-88) and one sample from reactor zone 13 (sample No. SD37-S2/CD) were analysed. Low-resolution XPS spectra were recorded to determine the major elements present in the ore. High-resolution spectra were recorded to gain information about the chemical state of the elements present in the mineral samples. The samples show low values for the U{sup 6+}/U{sup 4+} ratio. The oxidation state of uranium in these samples is even lower than that in U{sub 4}O{sub 9}.The binding energies of the Pb 4f bands indicate most of the Pb is in the +2 oxidation state in these samples. The C ls band indicates the presence of organic carbon. XRD analysis shows that the main uranium-bearing phase is uraninite and lead is present mainly as galena. The significance of the results for nuclear fuel waste management is discussed.

  18. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    PubMed

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  19. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    PubMed

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  20. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    PubMed

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-03-29

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (Tg) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility.

  1. TEM-E1: a novel beta-lactamase conferring resistance to ceftazidime.

    PubMed

    Payne, D J; Marriott, M S; Amyes, S G

    1989-05-01

    A novel beta-lactamase, conferring resistance to ceftazidime, has been identified to be encoded by a 31 kb plasmid (pUK720) in a clinical E. coli strain isolated in Belgium. The beta-lactamase, new designated TEM-E1, has a pI of approximately 5.4 and lies in between the iso-electric focused bands of the beta-lactamases TEM-1 and TEM-7. The TEM-E1 beta-lactamase has a similar molecular weight of 22,000 to the TEM-1 and it is also inhibited by clavulanic acid. However, the TEM-E1 enzyme differs from TEM-1 by its low rates and efficiency of hydrolysis for ceftazidime and cefotaxime, TEM-E1 has similar efficiency of hydrolysis values for ceftazidime and cefotaxime, but only confers resistance to ceftazidime.

  2. The high - low-p clinoenstatite transition: in situ xrd and ultrasonic study

    NASA Astrophysics Data System (ADS)

    Müller, H. J.; Wunder, B.; Lathe, C.; Schilling, F. R.

    2003-04-01

    Using single-crystal X-ray diffraction analyses in a diamond anvil cell Angel et al. (1992) published the transformation of MgSiO_3 from LCEn to a C2/c-polymorph (HCEn) at around 5.5 - 8.0 GPa and room-T (RT)conditions. This LCEn - HCEn-transition is not quenchable. However, the knowledge of the exact phase boundary positions for the MgSiO_3-transitions is essential as pyroxene is an important component of the Earth's mantle and will significantly influence elastic properties (e.g. v_p, v_s) of the mantle. We determined the HCEn - LCEn-transition by in-situ XRD experiments under high P, T using the multi-anvil appar atus MAX80 at the synchrotron facility HASYLAB, Hamburg. Our preliminary results only represent the minimum P-conditions of the HCEn - LCEn phase boundary, which is approximated by equation P (GPa) = 0.0021T (/C) + 6.06. Nevertheless, our results are in good agreement to data published by Angel & Hugh-Jones (1994). The invariant point defined by the intersection of the HCEn - LCEn equilibrium determined within this study and the OEn - LCEn reaction after Angel &Hugh-Jones (1994) lies at about 7.9 GPa and 875/C. This is in contrast to earlier experimental results of Kanzaki (1991) and Ulmer &Stalder (2001). The samples for the ultrasonic interferometry experiments were prepared by hot-isostatic pressing also using the MAX80. Adjacent XRD ruled out any phase transition during the hip-process. For the ultrasonic measurements one of the six anvils of MAX80 were exchanged by an anvil equipped with lithium niobate p- and s-wave transducers of 33.3 MHz natural frequency (Mueller et al., 2002). Corresponding to the XRD experiments HCEn was formed by increasing the pressure at RT. The velocities of elastic compressional and shear waves were measured under in situ conditions using the classical digital sweep technique. After the phase transition to LCEn as a result of rising the temperature at given pressure the measurements were repeated. The newly developed

  3. Quantitative chemical analysis of ocular melanosomes in the TEM.

    PubMed

    Eibl, O; Schultheiss, S; Blitgen-Heinecke, P; Schraermeyer, U

    2006-01-01

    Melanosomes in retinal tissues of a human, monkey and rat were analyzed by EDX in the TEM. Samples were prepared by ultramicrotomy at different thicknesses. The material was mounted on Al grids and samples were analyzed in a Zeiss 912 TEM equipped with an Omega filter and EDX detector with ultrathin window. Melanosomes consist of C and O as main components, mole fractions are about 90 and 3-10 at.%, respectively, and small mole fraction ratios, between 2 and 0.1 at.%, of Na, Mg, K, Si, P, S, Cl, Ca. All elements were measured quantitatively by standardless EDX with high precision. Mole fractions of transition metals Fe, Cu and Zn were also measured. For Fe a mole fraction ratio of less than 0.1at.% was found and gives the melanin its paramagnetic properties. Its mole fraction is however close to or below the minimum detectable mass fraction of the used equipment. Only in the human eye and only in the retinal pigment epitelium (rpe) the mole fractions of Zn (0.1 at.% or 5000 microg/g) and Cu were clearly beyond the minimum detectable mass fraction. In the rat and monkey eye the mole fraction of Zn was at or below the minimum detectable mass fraction and could not be measured quantitatively. The obtained results yielded the chemical composition of the melanosomes in the choroidal tissue and the retinal pigment epitelium (rpe) of the three different species. The results of the chemical analysis are discussed by mole fraction correlation diagrams. Similarities and differences between the different species are outlined. Correlation behavior was found to hold over species, e.g. the Ca-O correlation. It indicates that Ca is bound to oxygen rich sites in the melanin. These are the first quantitative analyses of melanosomes by EDX reported so far. The quantitative chemical analysis should open a deeper understanding of the metabolic processes in the eye that are of central importance for the understanding of a large number of eye-related diseases. The chemical analysis also

  4. Evaluation of rock powdering methods to obtain fine-grained samples for CHEMIN, a combined XRD/XRF instrument

    SciTech Connect

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D.; Bearman, G. H.; Bar-Cohen, Yoseph

    2004-01-01

    A miniature XRD/XRD (X-ray diffraction/X-ray fluorescence) instrument, CHEMIN, is currently being developed for definite mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument produces good results even with poorly prepared powder, the quality of the data improves and the time required for data collection is reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD reuslts from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, they compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRD instrument such as CHEMIN.

  5. EXAFS and XRD characterization of palladium sorbents for high temperature mercury capture from fuel gas.

    PubMed

    Poulston, Stephen; Hyde, Timothy I; Hamilton, Hugh; Mathon, Olivier; Prestipino, Carmelo; Sankar, Gopinathan; Smith, Andrew W J

    2010-01-14

    Removal of pollutants such as mercury at elevated temperatures provides improvements in the overall thermal efficiency during the process of coal gasification. The two high temperature sorbents studied were 5 wt% Pd/Al(2)O(3) and 5 wt% Pd/SiO(2): materials shown to have significantly different Hg adsorption capacities. A combination of XRD and EXAFS has been used to characterize the Pd-Hg alloy formed when these Pd-based sorbents were exposed to fuel gas (CO, CO(2), H(2)) containing Hg vapour at 204 degrees C. Significant differences were found in the nature of the alloy formed on the two sorbents following Hg exposure. The Pd/Al(2)O(3) sorbent produced a single homogeneous solid solution of Pd-Hg whilst the silica-supported Pd produced an alloy of varying composition.

  6. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Zhang, Z. Conrad; Brown, Heather M.; Arey, Bruce W.; Holladay, John E.

    2007-03-21

    Cotton linters were partially hydrolyzed in dilute acid and the morphology of remaining macrofibrils studied with Scanning Electron Microscopy (SEM) under various magnifications. The crystal region (microfibril bundles) in the macrofibrils was not altered by hydrolysis, and only amorphous cellulose was hydrolyzed and leached out from the macrofibrils. The diameter of microfibril bundles was 20-30 nm after the amorphous cellulose was removed by hydrolysis. XRD experiments confirm the unaltered diameter of the microfibrils after hydrolysis. The strong stability of these microfibril bundles in hydrolysis limits both the total sugar monomer yield and the size of nano particles or rods produced in hydrolysis. The large surface potential on the remaining microfibril bundles drives the agglomeration of macrofibrils.

  7. High temperature XRD of Cu{sub 2}GeSe{sub 3}

    SciTech Connect

    Premkumar, D. S.; Malar, P.; Chetty, Raju; Mallik, Ramesh Chandra

    2015-06-24

    The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  8. Temperature effects on egg shells investigated by XRD, IR and ESR techniques

    NASA Astrophysics Data System (ADS)

    Engin, Birol; Demirtaş, Hayrünnisa; Eken, Mahmut

    2006-02-01

    Samples of egg shell powder were annealed in air in the temperature range 298-1173 K. Samples were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis and electron spin resonance (ESR). ESR measurements were made on annealed egg shells before and after gamma irradiation at 4 kGy. Annealing egg shells produced a range of organic radical with g-values from g=2.005 to 2.002. The thermal dependence of this signal may provide valuable information about the extent of the thermal treatment that the sample was subjected to. Samples irradiated from 3Gy to 10 kGy were analyzed by ESR in order to obtain the response curve and to show ESR signal behavior.

  9. SHI Induced Modifications in CdS/CuInSe{sub 2} Thin Film: XRD Analysis

    SciTech Connect

    Joshi, Rajesh A.; Taur, Vidya S.; Sharma, Ramphal; Ghule, Anil V.

    2011-07-15

    CuInSe{sub 2}(CIS nanostructured) thin films were prepared by ion exchange method at room temperature on ITO coated glass substrates in an alkaline medium. The as prepared thin films were irradiated by 120 MeV Au{sup 9+} swift heavy ion (SHI) at 5x10{sup 11} and 5x10{sup 12} ions/cm{sup 2} fluence respectively. To study the effect of irradiation, the pristine and irradiated nanostructured thin films were characterized by X ray Diffraction (XRD) and analyzed the improvement in crystalline quality and crystallite size. The observed structural modifications discussed considering the high electronic energy deposition by 120 MeV gold heavy (Au{sup 9+}) ions in CuInSe{sub 2} thin films.

  10. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  11. Formation of nickel-manganese oxide thermistors studied by XRD, SEM and auger spectroscopy

    NASA Astrophysics Data System (ADS)

    Azimi-Nam, S.; Golestani-Fard, F.; Hashemi, T.

    1987-03-01

    This paper describes the formation of nickel-manganeses oxide thermistor bodies at 1000 1340° C, employing analytical techniques of XRD, SEM/EPMA and AES. The micro-structural studies revealed that the main phase of nickel manganite coexists with a solid solution of NiO in Mn3O4 in the final product. The optimum firing conditions to achieve the necessary electrical properties as well as the development of the desired microstructure could be selected around 1200° C, for 4 hrs in an ambient atmosphere. Above this temperature, the density begins to decrease while the resistivity increases. These anomalous electrical resistivity variations could be partly attributed to the trapped oxygen which was evolved from the decomposition of the unreacted α-Mn2O3. At-lower temperatures, unreacted nickel oxide residuals as well as a high porosity of the samples would yield specimens with high resistivity.

  12. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    NASA Technical Reports Server (NTRS)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  13. Synthesis, XRD and spectroscopic characterization of pharmacologically active Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Gull, Parveez; Hashmi, Athar Adil

    2017-07-01

    The present contribution accounts for the synthesis and structural elucidation of a newly synthesised copper and zinc containing schiff base compounds obtained by the condensation of 1, 2-diphenylethane-1, 2-dione and dinitrophenyl hydrazine as main ligand and benzene-1,2-diamine as co-ligand respectively. The synthesised compounds were characterized by several techniques, including elemental analysis, molar conductance and electronic, FT-IR, XRD, mass and 1H NMR spectral studies. The analytical and molar conductance values indicated that the complexes have square planar and tetrahedral geometry respectively. X-ray powder diffraction illustrates that they are crystalline in nature. The copper and zinc complexes were screened for their antimicrobial potential against some bacterial and fungi strains and the assay indicate that these complexes are good antimicrobial agents against these tested pathogens.

  14. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  15. XRD and VCD: a marriage of love or convenience? Honeymoon around a cyclic urea derivative.

    PubMed

    Gherase, Dragos; Naubron, Jean-Valère; Roussel, Christian; Giorgi, Michel

    2012-07-01

    The structures and absolute configurations of the enantiomers (3aR,8aR)-2,2-dimethyl-4,4,8,8-tetraphenyl-4,5,6,7,8,8a-hexahydro-3aH-1,3-dioxolo[4,5-e][1,3]diazepin-6-one 0.33-hydrate, C(32)H(30)N(2)O(3)·0.33H(2)O, (Ia), and (3aS,8aS)-2,2-dimethyl-4,4,8,8-tetraphenyl-4,5,6,7,8,8a-hexahydro-3aH-1,3-dioxolo[4,5-e][1,3]diazepin-6-one 0.39-hydrate, C(32)H(30)N(2)O(3)·0.39H(2)O, (Ib), have been elucidated unambiguously using the complementary power of single-crystal X-ray diffraction (XRD) and vibrational circular dichroism (VCD). The enantiomers crystallize in the Sohncke space group P2(1)2(1)2 and pack as dimers stabilized by two symmetric hydrogen bonds involving one amide group each of the cyclic urea moiety. This double interaction is capped by a water molecule that partially occupies a site lying on the twofold axis and forms an uncommon hydrogen bond between the two monomers. A comparison between the solid-state VCD characterizations and the Bayesian statistics on Bijvoet differences determined from the XRD measurements reveals a tendency towards the correct determination of the absolute configuration by this latter method.

  16. Synchrotron-based XRD from rat bone of different age groups.

    PubMed

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A(0)). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P63/m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution.

  17. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N-unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide (ABB) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer (A) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  18. Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

    NASA Astrophysics Data System (ADS)

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    2017-02-01

    As an accessory mineral in marine evaporites, polyhalite, K2MgCa2(SO4)4·2H2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this work, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. To determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO4) and two langbeinite-type phases, K2Ca x Mg2- x (SO4)3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K2CaMg(SO4)3, at 919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. From the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.

  19. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    PubMed

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  20. Thermal behavior of polyhalite: a high-temperature synchrotron XRD study

    NASA Astrophysics Data System (ADS)

    Xu, Hongwu; Guo, Xiaofeng; Bai, Jianming

    2016-09-01

    As an accessory mineral in marine evaporites, polyhalite, K2MgCa2(SO4)4·2H2O, coexists with halite (NaCl) in salt formations, which have been considered as potential repositories for permanent storage of high-level nuclear wastes. However, because of the heat generated by radioactive decays in the wastes, polyhalite may dehydrate, and the released water will dissolve its neighboring salt, potentially affecting the repository integrity. Thus, studying the thermal behavior of polyhalite is important. In this work, a polyhalite sample containing a small amount of halite was collected from the Salado formation at the WIPP site in Carlsbad, New Mexico. To determine its thermal behavior, in situ high-temperature synchrotron X-ray diffraction was conducted from room temperature to 1066 K with the sample powders sealed in a silica-glass capillary. At about 506 K, polyhalite started to decompose into water vapor, anhydrite (CaSO4) and two langbeinite-type phases, K2Ca x Mg2-x (SO4)3, with different Ca/Mg ratios. XRD peaks of the minor halite disappeared, presumably due to its dissolution by water vapor. With further increasing temperature, the two langbeinite solid solution phases displayed complex variations in crystallinity, composition and their molar ratio and then were combined into the single-phase triple salt, K2CaMg(SO4)3, at ~919 K. Rietveld analyses of the XRD data allowed determination of structural parameters of polyhalite and its decomposed anhydrite and langbeinite phases as a function of temperature. From the results, the thermal expansion coefficients of these phases have been derived, and the structural mechanisms of their thermal behavior been discussed.

  1. TEM study of impurity segregations in beryllium pebbles

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  2. Quantitative TEM analysis of the barn owl basilar papilla.

    PubMed

    Fischer, F P

    1994-02-01

    The morphology of the barn owl's basilar papilla was quantitatively analyzed using TEM methods. The hair-cell (HC) parameters studied in the basal two-thirds of the papilla are remarkably constant. This large portion represents an extended high frequency area, or fovea [Köppl et al. (1993) J. Comp. Physiol. A 171, 695-704]. In the apical third of the papilla, in contrast, these parameters change regularly, as they do in other avian species. The HC in the most neural position remain morphologically more similar along the entire length of the papilla than do neighbouring cell rows. In the behaviourally most important frequency range (4-9 kHz), the afferent innervation of these neural HC is very dense and is reminiscent of the situation in mammals. Differences in HC morphology also indicate a specialization of the extreme apex of the papilla in the barn owl. Avian HC morphology is not correlated with a specific place along the basilar papilla but rather with the best frequency. Based on the body of recent quantitative morphological data on avian HC structure, a modified definition of HC types in birds is suggested (while keeping introduced terms): THC (tall hair cells) are defined as all those HC with afferent (and normally also efferent) innervation. SHC (short hair cells) are the (more specialized) HC without afferent innervation; obviously their function is restricted to the papilla itself.

  3. TEM in situ lithiation of tin nanoneedles for battery applications

    SciTech Connect

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; Jungjohann, Katherine L.; Carter, C. Barry; Norton, M. Grant

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature with no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.

  4. TEM in situ lithiation of tin nanoneedles for battery applications

    DOE PAGES

    Janish, Matthew T.; Mackay, David T.; Liu, Yang; ...

    2015-08-12

    Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature withmore » no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.« less

  5. Advanced TEM Sample Preparation Using Low Energy (Preprint)

    DTIC Science & Technology

    2007-11-01

    1.69 C - O 288.95 2.00 C - O - C (=O) - C O 1s 47.99 531.01 2.33 Al2O3 • 0.30 Ga2O3 • 2.68 H2O 532.55 45.66 SiO2 • 0.35 H2O, C - O - C (=O) - C, C - O...Si 2p 24.43 99.09 7.39 Si 103.29 17.04 SiO2 • 0.35 H2O Al 2p 0.67 72.68 0.29 Al 75.59 0.71 Al2O3 • 0.30 Ga2O3 • 2.68 H2O Ga 3d 0.50 18.72 0.29 Ga...21.22 0.21 Al2O3 • 0.30 Ga2O3 • 2.68 H2O Results of subsequent imaging and TEM-EDS analyses before and after low energy Ar milling are shown below

  6. Aquifer characterisation in East Timor, with ground TEM

    NASA Astrophysics Data System (ADS)

    Ley-Cooper, A.

    2011-12-01

    An assessment of Climate Change Impacts on Groundwater Resources in East Timor led by Geosciences Australia is aimed at assisting East Timor's government to better understand and manage their groundwater resources. Form the current known information most aquifers in Timor-Leste are recharged by rainfall during the wet season. There is a concern that without a regular recharge, the stored groundwater capacity will decrease. Timor's population increase has caused a higher demand for groundwater which is currently been met by regulated pumping bores which are taped into deep aquifers, plus the sprouting of unregulated spear point bores in the shallow aquifers . Both groundwater recharge and the aquifers morphology need to be better understood in order to ensure supply and so groundwater can be managed for the future. Current weather patterns are expected to change and this could cause longer periods of drought or more intense rainfall, which in turn, would affect the availability and quality of groundwater. Salt water intrusions pose a threat on the low-lying aquifers as sea level rises. Australia's CSIRO has undertaken a series hydrogeophysical investigations employing ground TEM to assist in the characterisation of three aquifers near Dili, Timor Leste's capital. Interpreting ground water chemistry and dating; jointly with EM data has enhanced the understanding of the aquifers architecture, groundwater quality and helped identify potential risks of seawater intrusions.

  7. TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803

    SciTech Connect

    Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.

    2006-09-01

    The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorption in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in

  8. Three Dimensional TEM Forward Modeling Using FDTD Accelerated by GPU

    NASA Astrophysics Data System (ADS)

    Li, Z.; Huang, Q.

    2015-12-01

    Three dimensional inversion of transient electromagnetic (TEM) data is still challenging. The inversion speed mostly depends on the forward modeling. Finite-difference time-domain (FDTD) method is one of the popular forward modeling scheme. In an explicit type, which is based on the Du Fort-Frankel scheme, the time step is under the constraint of quasi-static approximation. Often an upward-continuation boundary condition (UCBC) is applied on the earth-air surface to avoid time stepping in the model air. However, UCBC is not suitable for models with topography and has a low parallel efficiency. Modeling without UCBC may cause a much smaller time step because of the resistive attribute of the air and the quasi-static constraint, which may also low the efficiency greatly. Our recent research shows that the time step in the model air is not needed to be constrained by the quasi-static approximation, which can let the time step without UCBC much closer to that with UCBC. The parallel performance of FDTD is then largely released. On a computer with a 4-core CPU, this newly developed method is obviously faster than the method using UCBC. Besides, without UCBC, this method can be easily accelerated by Graphics Processing Unit (GPU). On a computer with a CPU of 4790k@4.4GHz and a GPU of GTX 970, the speed accelerated by CUDA is almost 10 times of that using CPU only. For a model with a grid size of 140×140×130, if the conductivity of the model earth is 0.02S/m, and the minimal space interval is 15m, it takes only 80 seconds to evolve the field from excitation to 0.032s.

  9. In-situ TEM characterization of Copper Growth

    NASA Astrophysics Data System (ADS)

    Shelberg, Daniel T.

    In-situ liquid experiments in the transmission electron microscope (TEM) allow dynamic phenomena to be imaged at the nanoscale. This opens the opportunity to view electrochemical depositions at the nano scale in real time. However, there are a number of issues regarding in situ imaging that prevent a straightforward approach. This thesis addresses two issues regarding in-situ experiments; the fabrication of electron transparent windows and the nucleation of a metal from an electrolyte as a result of beam damage. Silicon chips that were 2.6mm x 2.6mm with 50mum x 50mum windows consisting of 50nm S3N 4 were fabricated with the goal of minimizing fabrication complexity at a cost significantly below commercial prices. These silicon nitride windows were used to sandwich a small volume of CuSO4 solution and observe copper nucleation as a result of the radiolysis damage of water due to the electron beam. Scanning transmission electron microscopy (STEM) was used to image growth, and reducing species are shown to diffuse on the order of hundreds of nanometers in solution. Copper nanoparticle growth was compared to Oswald ripening, and diffusion limited growth was observed at high electron dose rates. The diffusion limited growth was suppressed and led to a slower growth rate, with a calculated diffusion coefficient for Cu 2+ of 2 x 10--10 m2/s. Low electron dose rates corresponding to low magnifications in STEM yielded kinetic limited or mixed growth and yielded faceted nanoparticles. Atomic resolution was achieved in copper film deposited at low magnifications, and lattice fringes corresponding to the copper <111> were observed.

  10. Tumor endothelial marker 7 (TEM-7): a novel target for antiangiogenic therapy.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; Weber, William; Mehraein, Khodadad; Smale, Robert; Curiel, Maritza; Callahan, Michelle; Roy, Andre; Boutin, Paula; St Martin, Thia; Nacht, Mariana; Teicher, Beverly A

    2011-11-01

    Antiangiogenesis has been validated as a therapeutic strategy to treat cancer, however, a need remains to identify new targets and therapies for specific diseases and to improve clinical benefit from antiangiogenic agents. Tumor endothelial marker 7 (TEM-7) was investigated as a possible target for therapeutic antiangiogenic intervention in cancer. TEM-7 expression was assessed by in situ hybridization or by immunohistochemistry (IHC) in 130 formalin-fixed paraffin-embedded (FFPE) and 410 frozen human clinical specimens of cancer plus 301 normal tissue samples. In vitro TEM-7 expression was evaluated in 4 human endothelial cell models and in 32 human cancer cell lines by RT-PCR and flow cytometry. An anti-TEM-7 antibody was tested in vitro on human SKOV3 ovarian and MDA-MB-231 breast carcinoma cells that expressed TEM-7 in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. In frozen tumor tissues, TEM-7 mRNA and protein was detected in all but one of the cancer types tested and was infrequently expressed in normal frozen tissues. In FFPE tumor tissues, TEM-7 protein was detected by IHC in colon, breast, lung, bladder, ovarian and endometrial cancers and in sarcomas. TEM-7 protein was not detected in head and neck, prostate or liver cancers. TEM-7 expression was restricted to the vasculature and was absent from tumor cells. In vitro, TEM-7 was not detected in human microvascular endothelial cells (HMVEC) or human umbilical vein endothelial cells (HUVEC) but was induced in endothelial precursor/progenitor cells (EPC) in the presence of the mitogen phorbol ester PMA. An anti-TEM-7 antibody mediated ADCC and phagocytosis in SKOV3 and MDA-MB-231 cell lines infected with an adenovirus expressing TEM-7. These data demonstrate that TEM-7 is a vascular protein associated with angiogenic states. TEM-7 is a novel and attractive target for antiangiogenic therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  12. The proposed icy mineralogy package (XRD/XRF) for TandEM

    NASA Astrophysics Data System (ADS)

    Fortes, Andrew Dominic; Wood, Ian G.; Dobson, David P.; Fewster, Paul F.; Coustenis, Athena; Lebreton, Jean-Pierre

    Introduction: Understanding the geology of Titan's crust, and its interaction with the atmosphere, requires determination of the chemistry and mineralogy of surface materials which can only be achieved unambiguously using a combination of X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD). Here we describe an icy mineralogy package (IMP) consisting of a miniaturised XRD/XRF instrument designed primarily with Titan (and the TandEM ESA Cosmic Vision proposal [1]) in mind; however, the instrument is not predicated upon an a priori knowledge of surface mineralogy and consequently is applicable with little modification to any solar system body (rocky or icy). The proposed instrument is well suited to integration with other analytical tools, such as IR and UV Raman spectrometers. Instrument design: Two design concepts are currently under study, which differ in the complexity of the sample handling system, and the range of Bragg angles which may be observed. Both are focusing cameras, one (IMP senior) working in transmission, and the other (IMP junior) working in back-reflection. IMP jnr is intended for deployment on a static surface probe with no sample acquisition capability, collecting a single diffraction pattern through a window in the probe's underside. IMP snr is intended for deployment on a balloon with a sample collection arm able to deliver scoops of surface material to a rotating specimen stage. The latter may therefore be used to analyse many samples at geographically dispersed points. In each case we will use X-rays generated by high specific-activity radioisotope sources, 55 Fe and 241 Am. Our paper will present the results of the following activities: (a) compilation of a crystallographic database of materials expected on Titan's surface; (b) simulation of single-phase and polyphase diffraction data to illustrate the ease with which substances may be distinguished (even in complex mixtures); (c) blind tests of peak-matching software against

  13. Modal mineralogy of CV3 chondrites by X-ray diffraction (PSD-XRD)

    NASA Astrophysics Data System (ADS)

    Howard, K. T.; Benedix, G. K.; Bland, P. A.; Cressey, G.

    2010-09-01

    Using position sensitive detector X-ray diffraction (PSD-XRD) we determine a complete modal mineralogy for all phases present in abundances greater than 1 wt% in Vigarano, Efremovka, Mokoia, Grosnaja, Kaba and Allende. Reduced CV3 samples are comprised of (vol%): olivine (83-85%); enstatite (6.5-8.1%); anorthite (1.1-1.2%); magnetite (1.4-1.8%); sulphide (2.4-5.1%); Fe, Ni metal (2-2.2%). The oxidized samples are comprised of: olivine (76.3-83.9%); enstatite (4.8-7.8%); anorthite (1.1-1.7%); magnetite (0.3-6.1%); sulphide (2.9-8.1%); Fe, Ni metal (0.2-1.1%); Fe-oxide (0-2.7%) and phyllosilicate (1.9-4.2%). When our modal data is used to calculate a bulk chemistry that is compared to literature data a near 1:1 correlation is observed. PSD-XRD data indicates that olivine compositions may span almost the entire Fe-Mg solid solution series in all CV samples and that these contain a component (4-13%) of fine-grained olivine that is more Fe-rich (>Fa 60) than is typically reported. Modal mineralogy shows that there are mineralogic differences between CV3 samples classified as oxidized and reduced but that these sub-classes are most clearly distinguished by the relative abundance of metal and Ni content of sulphide, rather than abundance of magnetite. The most significant difference in modal mineralogy observed is the relative absence of phyllosilicate in reduced CV that essentially escaped aqueous alteration. Fayalite, ferrous olivine and magnetite are typically considered secondary alteration products. The abundances of these minerals overlap in oxidized and reduced samples and correlate positively supporting common conditions of formation in a relatively oxidizing environment. The abundances of fayalite, ferrous olivine and magnetite show no relationship to petrographic type and if these abundances were used as a proxy for alteration, Allende would be the least altered CV - contrary to all previous data. The implication is that thermal metamorphism on the parent body

  14. Data from the Mars Science Laboratory CheMin XRD/XRF instrument

    NASA Astrophysics Data System (ADS)

    Vaniman, David; Bristow, , David Blake, Tom; Des Marais, David; Achilles, Cherie; Spanovich, Ashwin Vasavada, , Robert Anderson, Joy Crisp, John Michael Morookian, Nicole; Yen, Albert; Bish, David; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Farmer, Jack; Grotzinger, John; Stolper, Edward; Morris, , Douglas Ming, Richard; Rampe, Elizabeth; Treiman, Allan; Sarrazin, Philippe; MSL Science Team

    2013-04-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (~An50), forsteritic olivine (~Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at ~27° 2θ (Co Kα) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2θ may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 µm, and delivered to

  15. XRD Analysis of Cement Paste Samples Exposed to the Simulated Environment of a Deep Repository - 12239

    SciTech Connect

    Ferreira, Eduardo G.A.; Marumo, Julio T.; Vicente, Roberto; Gobbo, Luciano

    2012-07-01

    Portland cement materials are widely used as engineered barriers in repositories for radioactive waste. The capacity of such barriers to avoid the disposed of radionuclides to entering the biosphere in the long-term depends on the service life of those materials. Thus, the performance assessment of structural materials under a series of environmental conditions prevailing at the environs of repositories is a matter of interest. The durability of cement paste foreseen as backfill in a deep borehole for disposal of disused sealed radioactive sources is investigated in the development of the repository concept. Results are intended to be part of the body of evidence in the safety case of the proposed disposal technology. This paper presents the results of X-Ray Diffraction (XRD) Analysis of cement paste exposed to varying temperatures and simulated groundwater after samples received the radiation dose that the cement paste will accumulate until complete decay of the radioactive sources. The XRD analysis of cement paste samples realized in this work allowed observing some differences in the results of cement paste specimens that were submitted to different treatments. The cluster analysis of results was able to group tested samples according to the applied treatments. Mineralogical differences, however, are tenuous and, apart from ettringite, are hardly observed. The absence of ettringite in all the seven specimens that were kept in dry storage at high temperature had hardly occurred by natural variations in the composition of hydrated cement paste because ettringite is observed in all tested except the seven specimens. Therefore this absence is certainly the result of the treatments and could be explained by the decomposition of ettringite. Although the temperature of decomposition is about 110-120 deg. C, it may be initially decomposed to meta-ettringite, an amorphous compound, above 50 deg. C in the absence of water. Influence of irradiation on the mineralogical

  16. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; Yen, Albert; Bish, David; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Farmer, Jack; Grotzinger, John; Stolper, Edward; Ming, Douglas; Morris, Richard; Rampe, Elizabeth; Treiman, Allan; Sarrazin, Philippe

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  17. XRD monitoring of α self-irradiation in uranium-americium mixed oxides.

    PubMed

    Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud

    2013-12-16

    The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with

  18. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane.

    PubMed

    Adebajo, Moses O; Long, Mervyn A; Frost, Ray L

    2004-03-01

    The benzene methylation with methane over zeolite catalysts was previously shown in our laboratory to require the presence of oxygen. Thus, a two-step mechanism involving the intermediate formation of methanol by partial oxidation of methane followed by the methylation of benzene with methanol in the second step, was postulated. This paper now reports the results of the characterisation of the zeolite catalysts used for the oxidative benzene methylation reaction in order to provide some information about their composition, structure, properties and their behaviour before and after the reaction. The catalysts were characterised by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), FT-IR and solid state NMR. XRD results indicate that the crystalline structures of all the ZSM-5 and H-beta catalysts remained unchanged after batch reaction of benzene with methane over the catalysts in agreement with the observation that the catalysts recovered from the reactor could be reused without loss of activity. Elemental analyses and FT-IR data show that as the level of metal ion exchange increases, the Brönsted acid concentration decreases but this metal ion exchange does not totally remove Brönsted acidity. FT-IR results further show that only a small amount of acid sites is actually necessary for a catalyst to be active since used catalysts containing highly reduced Brönsted acidity are found to be reusable without any loss of their activity. 29Si and 27Al magic angle spinning (MAS) NMR together with FT-IR spectra also show that all the active zeolites catalysts contain some extra-framework octahedral aluminium in addition to the normal tetrahedral framework aluminium. The presence of this extra-lattice aluminium does not, however, have any adverse effect on the crystallinity of the catalysts both before and after oxidative benzene methylation reaction. There appears also to be no significant dealumination

  19. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane

    NASA Astrophysics Data System (ADS)

    Adebajo, Moses O.; Long, Mervyn A.; Frost, Ray L.

    2004-03-01

    The benzene methylation with methane over zeolite catalysts was previously shown in our laboratory to require the presence of oxygen. Thus, a two-step mechanism involving the intermediate formation of methanol by partial oxidation of methane followed by the methylation of benzene with methanol in the second step, was postulated. This paper now reports the results of the characterisation of the zeolite catalysts used for the oxidative benzene methylation reaction in order to provide some information about their composition, structure, properties and their behaviour before and after the reaction. The catalysts were characterised by X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray fluorescence (XRF), FT-IR and solid state NMR. XRD results indicate that the crystalline structures of all the ZSM-5 and H-beta catalysts remained unchanged after batch reaction of benzene with methane over the catalysts in agreement with the observation that the catalysts recovered from the reactor could be reused without loss of activity. Elemental analyses and FT-IR data show that as the level of metal ion exchange increases, the Brönsted acid concentration decreases but this metal ion exchange does not totally remove Brönsted acidity. FT-IR results further show that only a small amount of acid sites is actually necessary for a catalyst to be active since used catalysts containing highly reduced Brönsted acidity are found to be reusable without any loss of their activity. 29Si and 27Al magic angle spinning (MAS) NMR together with FT-IR spectra also show that all the active zeolites catalysts contain some extra-framework octahedral aluminium in addition to the normal tetrahedral framework aluminium. The presence of this extra-lattice aluminium does not, however, have any adverse effect on the crystallinity of the catalysts both before and after oxidative benzene methylation reaction. There appears also to be no significant dealumination

  20. Gonococcal Antimicrobial Susceptibility and the Prevalence of blaTEM-1 and blaTEM-135 Genes in Neisseria gonorrhoeae Isolates from Thailand.

    PubMed

    Tribuddharat, Chanwit; Pongpech, Pintip; Charoenwatanachokchai, Angkana; Lokpichart, Somchai; Srifuengfung, Somporn; Sonprasert, Suthatta

    2017-03-24

    We studied the antimicrobial susceptibility and prevalence of the blaTEM-1 and blaTEM-135 genes in Neisseria gonorrhoeae isolates obtained in Thailand. The isolates were tested using the disk diffusion method, and 100% of 370 isolates were found susceptible to cefixime, ceftriaxone, cefotaxime, ceftazidime, cefepime, spectinomycin, and azithromycin. Some of the isolates were resistant to penicillin (85.7%), ciprofloxacin (88.0%), ofloxacin (97.4%), or tetracycline (89.1%). Penicillinase-producing N. gonorrhoeae accounted for 83.8% of isolates, with 70.0% of these further identified as penicillinase-producing plus tetracycline resistant N. gonorrhoeae. Penicillin, tetracycline, and ciprofloxacin are not recommended for treatment because of the high prevalence (89.7%) of multidrug resistant gonococci. A study of genes controlling enzyme of beta-lactamase production (blaTEM-1 and blaTEM-135) was performed using mismatch amplification mutation assay PCR method and DNA sequencing. Beta-lactamase positive N. gonorrhoeae carried blaTEM-1 (69.6%) and blaTEM-135 (30.4%), indicating that there is a significant increase and spread of blaTEM-135 among gonococci in Thailand.

  1. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    NASA Astrophysics Data System (ADS)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  2. [XRD and FTIR spectra characteristics of nacreous layer in perna viridis].

    PubMed

    Jia, Tai-Xuan; Liu, Zi-Li; Zhang, Gang-Sheng

    2009-01-01

    The XRD and FTIR of aragonites in nacreous and prismatic layer of perna viridis were systematically measured, and the frequency variations of v1, v2 and v4 band of aragonites were especially analyzed. The results showed that both of them were aragonite and the frequency of v2 band differed in them, but the frequencies of other two bands were not altered and had the same values with cavernous aragonite. In the same specie of shell, the frequency of v2 band in nacreous layers was greater than that in prismatic layers, and there was a frequency shift of v2 band between them. For the first time, the phase transformation of biogenic aragonite was detected. After nacreous aragonite was heated at 300 degrees C, the frequency shift of v2 band was found. So it is concluded that the biogenic aragonite is related to the thermal effects in crystallizing process, meanwhile it stores excess energy. All of these can provide experiential basis for studying biomineralization theory.

  3. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  4. Void-species nanostructure of chalcogenide glasses studied with FSDP-related XRD

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T. S.; Shpotyuk, O. I.; Boyko, V. T.

    2007-05-01

    Void-species nanostructure is studied in glassy arsenic selenide g-As2Se3 and sulphide g-As2S3 using X-ray diffraction in respect to the first sharp diffraction peak (FSDP-related XRD) treated within Elliott's void-based model. It is shown that the previously established analytical relationship between the FSDP position Q1 and nanovoid diameter D in the form of Q1=2.3·π/D seems to be close to ones reported by Gaskell [Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data, J. Non-Cryst. Solids 351 (2005) 1003 1013] and Rachek [X-ray diffraction study of amorphous alloys Al Ni Ce Sc with using Ehrenfest's formula, J. Non-Cryst. Solids 352 (2006) 3781 3786]. Following to this correlation, it is concluded that internal nanostructural voids in chalcogenide glasses are responsible for low-Q structure observed in X-ray scattering.

  5. [Spectroscopic analysis of the crystallization mechanism of synthesized zeolite with XRD and FTIR approaches].

    PubMed

    Fan, Chun-hui; Ma, Hong-rui; Hua, Li

    2012-04-01

    Zeolites were synthesized from fly ash using modified one-stage method. The changes in cation exchange capacity (CEC) and chemical elements of zeolite were investigated during the synthesis process to reveal the materials and elements transformation in solid-liquid system. The approaches of XRD, SEM and FTIR were used to indicate the crystallization characteristics and mechanism. The zeolite NaP1 was synthesized, and the CEC value reached to the maximum of 135 mmol/100g at 24 h. After the hydrothermal reaction for 12 h, the characteristic peak and metastable crystalline structure of zeolite NaP1 appeared, then the hydroxy sodalite products formed at 48 h. The crystallization process was the result of materials transformation: the elements of fly ash released into the liquid system for the melting effect of alkali solution, and the solid system played the role of skeleton in crystallization process, being the "source" and the "sink" of the reaction, respectively, and the achievements presented the crystallization mechanism of liquid-phase and solid-phase transformation.

  6. XRD Technique: A way to disseminate structural changes in iron-based amorphous materials

    SciTech Connect

    Saw, C K; Lian, T; Day, D; Farmer, J

    2007-05-24

    Prevention of corrosion is a vital goal for the Department of Defense when billions of dollars are spent every year. Corrosion resistant materials have applications in all sort of military vehicles, and more importantly in naval vessels and submarines which come in contact with the seawater. It is known that corrosion resistance property can be improved by the used of structurally designed materials in the amorphous state where the atoms are arranged in a non-periodic fashion and specific atoms, tailored to the required properties can be interjected into the matrix for specific application. The XRD techniques reported here is to demonstrate the optimal conditions for characterization of these materials. The samples, which normally contain different compositions of Fe, Cr, B, Mo, Y, Mn, Si and W, are in the form of powders, ribbons and coatings. These results will be compared for the different forms of the sample which appears to correlate to the cooling rate during sample processing. In most cases, the materials are amorphous or amorphous with very small amount of crystallinity. In the ribbon samples for different compositions we observed that the materials are essentially amorphous. In most cases, starting from an amorphous powder sample, the coatings are also observed to be amorphous with a small amount of iron oxide on the surface, probably due to exposure to air.

  7. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.

  8. μ-XRF/μ-RS vs. SR μ-XRD for pigment identification in illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    van der Snickt, G.; de Nolf, W.; Vekemans, B.; Janssens, K.

    2008-07-01

    For the non-destructive identification of pigments and colorants in works of art, in archaeological and in forensic materials, a wide range of analytical techniques can be used. Bearing in mind that every method holds particular limitations, two complementary spectroscopic techniques, namely confocal μ-Raman spectroscopy (μ-RS) and μ-X-ray fluorescence spectroscopy (μ-XRF), were joined in one instrument. The combined μ-XRF and μ-RS device, called PRAXIS unites both complementary techniques in one mobile setup, which allows μ- and in situ analysis. μ-XRF allows one to collect elemental and spatially-resolved information in a non-destructive way on major and minor constituents of a variety of materials. However, the main disadvantages of μ-XRF are the penetration depth of the X-rays and the fact that only elements and not specific molecular combinations of elements can be detected. As a result μ-XRF is often not specific enough to identify the pigments within complex mixtures. Confocal Raman microscopy (μ-RS) can offer a surplus as molecular information can be obtained from single pigment grains. However, in some cases the presence of a strong fluorescence background limits the applicability. In this paper, the concrete analytical possibilities of the combined PRAXIS device are evaluated by comparing the results on an illuminated sheet of parchment with the analytical information supplied by synchrotron radiation μ-X-ray diffraction (SR μ-XRD), a highly specific technique.

  9. XRD, Electron Microscopy and Vibrational Spectroscopy Characterization of Simulated SB6 HLW Glasses - 13028

    SciTech Connect

    Stefanovsky, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Choi, A.; Marra, J.C.

    2013-07-01

    Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (∼1 μm) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen and iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)

  10. IR and XRD Study of the Tribochemical Reactions of Copper Sulfate with Alkali Halides

    NASA Astrophysics Data System (ADS)

    Fernández, J.; González, E.; de Oñate, J.; López, R.; Navarro, E.

    1993-12-01

    Tribochemical reactions of CuSO 4 · 5H 2O and CuSO 4 during milling with KCl, KBr, and KI have been studied by IR and XRD techniques. The reactions are rather similar for the hydrated and anhydrous salts, but proceed faster with the former. With KCl, the reaction leads directly to CuK 2SO 4Cl 2 also known as the mineral chlorothionite. With KBr, the mixed salts CuK 2(SO 4) 2 · 2H 2O and CuK 2 (SO 4) 2 · 6H 2O are first obtained which transform to a new compound upon further milling, that we postulate as CuK 2SO 4Br 2. With KI, there is a fast reaction to a mixture of CuK 2(SO 4) 2 · 6H 2O, γ-CuI, and I 2, later proceeding to K 2SO 4, γ-CuI, and I 2.

  11. Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Marriappan, S. S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K.

    2008-11-01

    Metal complexes of o-vanillidene-2-aminobenzothiazole have been prepared and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as magnetic susceptibility measurements and thermo gravimetric analysis (TG/DTA). The low molar conductance values reveal the non-electrolytic nature of these complexes. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand). Magnetic susceptibility data coupled with electronic spectra suggest that two ligands coordinate to each metal atom by phenolic oxygen and imino nitrogen to form high spin octahedral complex with Co(II), Mn(II) and Ni(II). The fifth and sixth position of metal ion is satisfied with water molecules. The thermal behaviour (TG/DTA) of the synthesised complexes shows that the complexes loss water molecules in the first step followed by decomposition of the ligand. Spin Hamiltonian parameters predict a distorted tetrahedral geometry for the copper complex. XRD and SEM analysis provide the crystalline nature and the morphology of the metal complexes. The in vitro biological activity of the metal chelates is tested against the Gram positive bacteria ( Bacillus amyloliquifacians) and gram negative bacteria ( Pseudomonas species), fungus ( Aspergillus niger) and yeast ( Sacchromyces cereviaceae). Most of the metal chelates exhibited higher biological activities.

  12. XRD and XANES study of some Cu-doped MnBi materials

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Patil, Harsha

    2016-10-01

    High purity MnBi low temperature phase has been prepared and analyzed using X- ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements. The X-ray diffraction measurements were carried out using Bruker D8 Advance X-ray diffractometer. The X-rays were produced using a sealed tube and the wavelength of X-ray was 154 nm (Cu K-alpha). and X-rays were detected using a fast counting detector based on Silicon strip technology (Bruker LynxEye detector)[1]. and the X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of two Cu-doped MnBi alloys have been performed at the recently developed BL-8 Dispersive EXAFS beam line at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India[2]. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the alloys have been determined.

  13. Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study

    NASA Astrophysics Data System (ADS)

    Arinicheva, Yulia; Popa, Karin; Scheinost, Andreas C.; Rossberg, André; Dieste-Blanco, Oliver; Raison, Philippe; Cambriani, Andrea; Somers, Joseph; Bosbach, Dirk; Neumeier, Stefan

    2017-09-01

    A solid state method was used to synthesize La1-xPuxPO4 (x = 0.01, 0.05, 0.10, 0.15, (0.5)) solid solutions with monazite structure. XRD measurements of the compounds with x = 0.50 revealed the formation of two phases: (La,Pu)PO4-monazite and a cubic phase (PuO2). Pure-phase La1-xPuxPO4-monazite solid solutions were obtained for materials with x = 0.00-0.15 and confirmed by a linear dependence of the lattice parameters on composition according to Vegard's law. X-ray absorption spectroscopy (XAS) analysis at the Pu-LIII and La-LIII edges confirmed the +III valence state of plutonium in the monazite solid solutions. The local environment of Pu is PuPO4-like along the solid solution series, except for the longest fitted cation-cation distance, which may be an indication of cluster formation consisting of a few Pu-atoms in the La-Pu-monazite lattice.

  14. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Modeling the PbI2 formation in perovskite solar cells using XRD/XPS patterns

    NASA Astrophysics Data System (ADS)

    Sohrabpoor, Hamed; Elyasi, Majid; Aldosari, Marouf; Gorji, Nima E.

    2016-09-01

    The impact of prolonged irradiation and air humidity on the stability of perovskite solar cells is modeled using X-ray diffraction and X-ray photoelectron spectroscopy patterns reported in the literature. Light or air-moisture causes the formation of a thin PbI2 or oxide defective layers (in nanoscale) at the interface of perovskite/hole-transport-layer or at the junction with metallic back contact. This thin layer blocks the carrier transport/passivation at the interfaces and cause degradation of device parameters. Variation in thickness of defective layers, changes the XRD and XPS peaks. This allows detection and estimation of the type, crystallinity and thickness of the defective layer. A simple model is developed here to extract the thickness of such thin defective layers formed in nanometer scale at the back region of several perovskite devices. Based on this information, corrected energy band diagram of every device before and after degradation/aging is drawn and discussed in order to obtain insight into the carrier transport and charge collection at the barrier region. In addition, graphene contacted perovskite devices are investigated showing that honey-comb network of graphene contact reduces the effect of aging leading to formation of a thinner defective layer at the perovskite surface compared to perovskite devices with conventional inorganic contacts i.e. Au, Al.

  16. Evolution of the Mobile Information SysTem (MIST)

    NASA Technical Reports Server (NTRS)

    Litaker, Harry L., Jr.; Thompson, Shelby; Archer, Ronald D.

    2008-01-01

    The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to

  17. Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications

    NASA Astrophysics Data System (ADS)

    Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.

    2014-12-01

    Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non

  18. Evolution of the Mobile Information SysTem (MIST)

    NASA Technical Reports Server (NTRS)

    Litaker, Harry L., Jr.; Thompson, Shelby; Archer, Ronald D.

    2008-01-01

    The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to

  19. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications.

    PubMed

    Lange, Sara E S; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J; Lapi, Suzanne E; Van Tine, Brian A

    2016-03-15

    The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy.

  20. Direct observation of liquid crystals using cryo-TEM: specimen preparation and low-dose imaging.

    PubMed

    Gao, Min; Kim, Young-Ki; Zhang, Cuiyu; Borshch, Volodymyr; Zhou, Shuang; Park, Heung-Shik; Jákli, Antal; Lavrentovich, Oleg D; Tamba, Maria-Gabriela; Kohlmeier, Alexandra; Mehl, Georg H; Weissflog, Wolfgang; Studer, Daniel; Zuber, Benoît; Gnägi, Helmut; Lin, Fang

    2014-10-01

    Liquid crystals (LCs) represent a challenging group of materials for direct transmission electron microscopy (TEM) studies due to the complications in specimen preparation and the severe radiation damage. In this paper, we summarize a series of specimen preparation methods, including thin film and cryo-sectioning approaches, as a comprehensive toolset enabling high-resolution direct cryo-TEM observation of a broad range of LCs. We also present comparative analysis using cryo-TEM and replica freeze-fracture TEM on both thermotropic and lyotropic LCs. In addition to the revisits of previous practices, some new concepts are introduced, e.g., suspended thermotropic LC thin films, combined high-pressure freezing and cryo-sectioning of lyotropic LCs, and the complementary applications of direct TEM and indirect replica TEM techniques. The significance of subnanometer resolution cryo-TEM observation is demonstrated in a few important issues in LC studies, including providing direct evidences for the existence of nanoscale smectic domains in nematic bent-core thermotropic LCs, comprehensive understanding of the twist-bend nematic phase, and probing the packing of columnar aggregates in lyotropic chromonic LCs. Direct TEM observation opens ways to a variety of TEM techniques, suggesting that TEM (replica, cryo, and in situ techniques), in general, may be a promising part of the solution to the lack of effective structural probe at the molecular scale in LC studies. © 2014 Wiley Periodicals, Inc.

  1. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  2. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  3. The Lactamase Engineering Database: a critical survey of TEM sequences in public databases

    PubMed Central

    Thai, Quan Ke; Bös, Fabian; Pleiss, Jürgen

    2009-01-01

    Background TEM β-lactamases are the main cause for resistance against β-lactam antibiotics. Sequence information about TEM β-lactamases is mainly found in the NCBI peptide database and TEM mutation table at . While the TEM mutation table is manually curated by experts in the lactamase field, who guarantee reliable and consistent information, the rapidly growing sequence and annotation information from the NCBI peptide database is sometimes inconsistent. Therefore, the Lactamase Engineering Database has been developed to collect the TEM β-lactamase sequences from the NCBI peptide database and the TEM mutation table, systematically compare sequence information and naming, identify inconsistencies, and thus provide a versatile tool for reconciliation of data and for an investigation of the sequence-function relationship. Description The LacED currently provides 2399 sequence entries and 37 structure entries. Sequence information on 150 different TEM β-lactamases was derived from the TEM mutation table which provides a unique number to each protein classified as TEM β-lactamase. 293 TEM-like proteins were found in the NCBI protein database, but only 113 TEM β-lactamase were common to both data sets. The 180 TEM β-lactamases from the NCBI protein database which have not yet been assigned to a TEM number fall in three classes: (1) 89 proteins from microbial organisms and 35 proteins from cloning or expression vectors had a new mutation profile; (2) 55 proteins had inconsistent annotation in terms of TEM assignment or reported mutation profile; (3) 39 proteins are fragments. The LacED is web accessible at and contains multisequence alignments, structure information and reconciled annotation of TEM β-lactamases. The LacED is weekly updated and supplies all data for download. Conclusion The Lactamase Engineering Database enables a systematic analysis of TEM β-lactamase sequence and annotation data from different data sources, and thus provides a valuable tool to

  4. Transient Measurements Under Simulated Mantle Conditions - Simultaneous DTF-Ultrasonic Interferometry, X-Radiography, XRD

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.; Wunder, B.

    2004-12-01

    The interpretation of seismic data from the Earth's deep interior requires measurements of the physical properties of Earth materials under experimental simulated mantle conditions. Elastic wave velocity measurement by ultrasonic interferometry is an important tool for the determination of the elastic properties in multi-anvil devices. Whereas the classical sweep method is very time-consuming, the ultrasonic data transfer function technique (DTF), simultaneously generating all the frequencies used in the experiment, first described by Li et al. (2002), requires just few seconds to save the response of the system. The success of the technique substantially depends on the excitation function and the resolution used for saving the DTF (Mueller et al., 2004a). Background discussion as well as high pressure AƒA_A,A¿A,A 1/2 high temperature results demonstrate how to optimize the technique. All Ultrasonic interferometry allows highly precise travel time measurement at a sample enclosed in a high-pressure multi-anvil device. But under high pressure conditions the influence of sample deformation on the frequencies for destructive and constructive interference used for the evaluation of the elastic properties might be stronger than that from the shift of the elastic moduli. Consequently ultrasonic interferometry requires the exact sample length measurement under in situ conditions. X-ray imaging using brillant synchrotron radiation, called X-radiography, produces grey-scale images of the sample under in situ conditions by converting the X-ray image to an optical one by a CE-YAG-crystal. Saving the optical image by a CCD-camera after redirection by a mirrow, also requires few seconds. To derive the sample length, the different brightness of sample, buffer rod and reflector at the electronic image is evaluated (Mueller et al., 2004b). Contrary to XRD measurements, imaging the sample by X-rays requires a beam diameter larger than the sample length. Therefore the fixed

  5. Contribution of PBP3 Substitutions and TEM-1, TEM-15, and ROB-1 Beta-Lactamases to Cefotaxime Resistance in Haemophilus influenzae and Haemophilus parainfluenzae.

    PubMed

    Søndergaard, Annette; Nørskov-Lauritsen, Niels

    2016-06-01

    To investigate the relative contributions of naturally occurring penicillin-binding protein 3 (PBP3) substitutions, and TEM-1, TEM-15, and ROB-1 beta-lactamases on resistance to a third-generation cephalosporin in Haemophilus influenzae and Haemophilus parainfluenzae. The minimum inhibitory concentration (MIC) of cefotaxime (CTX) was assessed after transformation with PCR-amplified ftsI genes expressing altered PBP3 and/or small plasmids encoding beta-lactamases into an isogenic environment of H. influenzae and H. parainfluenzae. Group III PBP3, comprising substitutions N526K, S385T, and L389F, conferred CTX resistance to H. influenzae according to EUCAST interpretative criteria. Group III-like PBP3, comprising substitutions N526H and S385T, increased the CTX MIC of H. parainfluenzae ninefold, but the level did not transgress the resistance breakpoint. Production of TEM-15 beta-lactamase conferred CTX resistance on both H. influenzae and H. parainfluenzae. A nitrocefin hydrolysis assay showed TEM-15 to be a less efficient enzyme compared to TEM-1. TEM-15 and PBP3 substitutions impose an additive effect on resistance to third-generation cephalosporins in both H. influenzae and H. parainfluenzae. The effect of PBP3 substitutions on beta-lactam resistance in H. parainfluenzae can be addressed by transfer of ftsI genes in vitro.

  6. Annealing dynamics of WO{sub 3} by in situ XRD

    SciTech Connect

    Righettoni, Marco; Pratsinis, Sotiris E.

    2014-11-15

    Highlights: • Flame-made WO{sub 3} nanoparticles with closely controlled crystal and grain size. • Dynamic phase transition of annealing of pure and Si-doped WO{sub 3} by in situ XRD. • Irreversible evolution of WO{sub 3} crystallinity by heating/cooling during its annealing. • Si-doping alters the WO{sub 3} crystallinity dynamics and stabilizes nanosized WO{sub 3}. • Flame-made nano-WO{sub 3} can sense NO at the ppb level. - Abstract: Tungsten trioxide is a semiconductor with distinct applications in gas sensors, catalysis, batteries and pigments. As such the transition between its different crystal structures during its annealing are of interest, especially for sensor applications. Here, WO{sub 3} nanoparticles with closely controlled crystal and grain size (9–15 nm) and phase composition are made by flame spray pyrolysis and the formation of different WO{sub 3} phases during annealing is investigated. Most notably, the dynamic phase transition and crystal size evolution of WO{sub 3} during heating and cooling is monitored by in situ X-ray diffraction revealing how metastable WO{sub 3} phases can be captured stably. The effect of Si-doping is studied since it is used in practise to control crystal growth and phase transition during metal oxide synthesis and processing. Finally the influence of annealing on the WO{sub 3} sensing performance of NO, a lung inflammation tracer in the human breath, is explored at the ppb-level.

  7. TEM and conventional rectal surgery for T1 rectal cancer: a meta-analysis.

    PubMed

    Wu, Yong; Wu, Yong-You; Li, Shan; Zhu, Bao-Song; Zhao, Kui; Yang, Xiao-Dong; Xing, Chun Gen

    2011-01-01

    To compare transanal endoscopic microsurgery (TEM) with conventional radical surgery (CRS) for T1 rectal cancer focusing on safety, feasibility and efficacy of both procedures. An online search of Ovid, Medline, Embase, Pubmed and Cochrane Controlled Trials Register was undertaken to identify studies comparing TEM with CRS published in English between 1984 and March 2010. Only studies comparing TEM with CRS for T1 rectal cancer treatment and with a minimum of 20 cases were included. The parameters compared were postoperative complications, hospital mortality, recurrence rate and 5-year survival. Five studies met screening criteria and 397 patients were enrolled in the meta-analysis; 216 were treated with TEM and the rest received CRS. Complications were observed in 16/196 in the TEM group and 77/163 in the CRS group. The difference was significant (p=0.01). The rate of mortality was 3.68% in CRS group, and 0 in TEM group (p=0.01). The 5-year survival was similar (p=0.84), the TEM group was 80.1% and the CRS group was 81.0%. However, there was more recurrence in the TEM group compared to CRS group (p=0.0004). TEM group was 12.0%, while CRS group was 0.5%. Compared with CRS, TEM had significant shorter hospital stay and fewer postoperative complications. TEM is a safe, feasible and effective option for T1 rectal cancer. Though TEM had a slightly higher rate of recurrence than CRS, no significant difference on 5-year survival was observed.

  8. OSCE vs. TEM: Different Approaches to Assess Clinical Skills of Nursing Students.

    PubMed

    Jelly, Prasuna; Sharma, Rakesh

    2017-01-01

    Nurses are trained with specific clinical skills, and objective structured clinical examination (OSCE) could be a better approach to assess clinical skills of nursing students. A comparative study was conducted by observational checklist regarding antenatal care and opinionnaire on the usefulness of OSCE and tradition evaluation method (TEM) was used to assess the clinical skills and to get opinion. The mean score of OSCE was more than TEM and the difference was statistically significant (P < 0.001). The opinion of students regarding the usefulness of OSCE was higher than TEM. The study concluded that implementing OSCE will overweigh the advantages of the TEM.

  9. [Video-assisted transanal endoscopic microsurgery of rectal tumours - V-TEM].

    PubMed

    Huschitt, S; Strauß, P; Plaksin, A; Siech, M

    2014-12-01

    Transanal endoscopic microsurgery (TEM) has become increasingly established as the method of choice for the local resection of endoscopically unresectable rectal adenomas and early-stage, low-risk rectal carcinomas. Multiple studies have shown that the single port-technique TEM results in significantly less trauma with comparable overall treatment outcome as compared to conventional radical surgical techniques. However, TEM is not widely used due to high initial set-up costs, the need for highly complex equipment and demanding surgical skill requirements. To mitigate these challenges we have successfully developed a video-assisted TEM (V-TEM) method, which resulted in approximately 50 % lower initial set-up costs through the introduction of simplified original TEM surgical equipment. Between October 2003 and September 2011 we have completed 103 resections using the V-TEM method. The observed rates of complications and local recurrences are comparable to reported rates. We were able to mitigate the challenges of TEM through the establishment of the technically less demanding V-TEM method, which resulted in approximately 50 % lower initial set-up costs while maintaining overall treatment outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  10. Retrofit implementation of Zernike phase plate imaging for cryo-TEM

    PubMed Central

    Marko, Michael; Leith, ArDean; Hsieh, Chyongere; Danev, Radostin

    2011-01-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. PMID:21272647

  11. A comparison of TEM data from different near-source systems

    NASA Astrophysics Data System (ADS)

    Zhou, Nannan; Xue, Guoqiang; Chen, Weiying; Cui, Jiangwei; Chen, Kang

    2017-06-01

    Loop-source transient electromagnetic (TEM) is one of the most popular near-source TEM systems with wide applications, such as the traditional approach of prospecting metalliferous and hydrogeological targets in the subsurface. Recent efforts have been focused on the implementation of short-offset grounded-wire TEM (SOTEM), which is a newly proposed and more helpful technique for performing near-source TEM surveys. However, configurations for applying near-source TEM are complicated and have not been well investigated and tested; therefore no applicable principles can be followed and recommended for optimizing near-source TEM configuration for anomaly detection. To resolve such limitations, this study conducts a comparison of the vertical magnetic field or the electric field generated from various near-source TEM systems regarding the characteristics of their response distribution, investigation depth, as well as sensitivity to geo-electric structure, through both forward modeling and a field survey in China. It is concluded that the electric field from SOTEM has a better detection capability to resistive anomaly and higher sensitivity to the resistivity of anomaly, while the vertical magnetic fields from SOTEM and loop TEM have better detection capability to conductive anomaly and higher sensitivity to the thickness of an anomaly. From the view of detection depth, the SOTEM system performs better than the loop-TEM system, and the electric field demonstrates an even larger detection depth than the vertical magnetic field in the same SOTEM survey for commonly used parameters.

  12. OSCE vs. TEM: Different Approaches to Assess Clinical Skills of Nursing Students

    PubMed Central

    Jelly, Prasuna; Sharma, Rakesh

    2017-01-01

    Introduction: Nurses are trained with specific clinical skills, and objective structured clinical examination (OSCE) could be a better approach to assess clinical skills of nursing students. Materials and Methods: A comparative study was conducted by observational checklist regarding antenatal care and opinionnaire on the usefulness of OSCE and tradition evaluation method (TEM) was used to assess the clinical skills and to get opinion. Results: The mean score of OSCE was more than TEM and the difference was statistically significant (P < 0.001). The opinion of students regarding the usefulness of OSCE was higher than TEM. Conclusions: The study concluded that implementing OSCE will overweigh the advantages of the TEM.

  13. Spectral studies on a series of metal ion complexes derived from pyrimidine nucleus, TEM, biological and γ-irradiation effect

    NASA Astrophysics Data System (ADS)

    Al-Ashqer, Sawsan; Abou-Melha, Khlood S.; Al-Hazmi, G. A. A.; Saad, Fawaz A.; El-Metwaly, Nashwa M.

    2014-11-01

    A series of thiouracil complexes was prepared, all the prepared compounds are investigated by all possible tools. The ligand coordinates towards two central atoms as a neutral hexadentate mode. The octahedral structure was proposed with Ni(II), Pt(IV) and UO2(II) complexes. Square-pyramidal and square planar with VO(II) and Pd(II) complexes, respectively. VO(II) complex was irradiated by using Gamma radiation to through a light on the probability of geometry changes with the effect of radiation. The parameters calculated from ESR spectra before and after γ-irradiation reflect the rigidity of the complex towards the effect. Such may discuss the unaffected biological behavior before and after irradiation. XRD patterns were carried out to emphasis on the nature of the particles and the purity of products. The ligand, Pt(IV) and Pd(II) are found in nanometer range. TEM is a sensitive tool used to justify on the microstructure and surface morphology. All the investigated compounds are in nanorange. TG curves reflect a lower thermal stability of all investigated complexes due to the presence of water of crystallization. Finally, a toxic effect was observed with all investigated complexes towards Gram positive bacterium as well as a resistant behavior was observed with Gram negative bacteria.

  14. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite

    NASA Astrophysics Data System (ADS)

    Zhirong, Liu; Azhar Uddin, Md.; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  15. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite.

    PubMed

    Zhirong, Liu; Azhar Uddin, Md; Zhanxue, Sun

    2011-09-01

    Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability. In this work, surface area, total pore volume, mean pore diameter, TG, DTA, FT-IR and XRD were carried out in order to reveal the characteristics of natural Na-bentonite. XRD and FT-IR of natural Na-bentonite (China) and Cu-loaded Na-bentonite as a function of Na-bentonite dosage and temperature using batch technique were characterized in detail, respectively.

  16. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.

    PubMed

    Finck, Nicolas; Dardenne, Kathy

    2016-05-01

    In this study, we investigated the interaction between selenite and either Fe((II))aq or S((-II))aq in solution, and the results were used to investigate the interaction between Se((IV))aq and FeS in suspension. The reaction products were characterized by a combination of methods (SEM, XRD and XAS) and the reaction mechanisms were identified. In a first experiment, Se((IV))aq was reduced to Se((0)) by interaction with Fe((II))aq which was oxidized to Fe((III)), but the reaction was only partial. Subsequently, some Fe((III)) produced akaganeite (β-FeOOH) and the release of proton during that reaction decreased the pH. The pH decrease changed the Se speciation in solution which hindered further Se((IV)) reduction by Fe((II))aq. In a second experiment, Se((IV))aq was quantitatively reduced to Se((0)) by S((-II))aq and the reaction was fast. Two sulfide species were needed to reduce one Se((IV)), and the observed pH increase was due to a proton consumption. For both experiments, experimental results are consistent with expectations based on the oxidation reduction potential of the various species. Upon interaction with FeS, Se((IV))aq was reduced to Se((0)) and minute amounts of pyrite were detected, a consequence of partial mackinawite oxidation at surface sulfur sites. These results are of prime importance with respect to safe deep disposal of nuclear waste which contains the long-lived radionuclide (79)Se. This study shows that after release of (79)Se((IV)) upon nuclear waste matrix corrosion, selenite can be reduced in the near field to low soluble Se((0)) by interaction with Fe((II))aq and/or S((-II))aq species. Because the solubility of Se((0)) species is significantly lower than that of Se((IV)), selenium will become much less (bio)available and its migration out of deep HLW repositories may be drastically hindered.

  17. Replica extraction method on nanostructured gold coatings and orientation determination combining SEM and TEM techniques.

    PubMed

    Bocker, Christian; Kracker, Michael; Rüssel, Christian

    2014-12-01

    In the field of electron microscopy the replica technique is known as an indirect method and also as an extraction method that is usually applied on metallurgical samples. This contribution describes a fast and simple transmission electron microscopic (TEM) sample preparation by complete removal of nanoparticles from a substrate surface that allows the study of growth mechanisms of nanostructured coatings. The comparison and combination of advanced diffraction techniques in the TEM and scanning electron microscopy (SEM) provide possibilities for operators with access to both facilities. The analysis of TEM-derived diffraction patterns (convergent beam electron diffraction) in the SEM/electron backscatter diffraction software simplifies the application, especially when the patterns are not aligned along a distinct zone axis. The study of the TEM sample directly by SEM and transmission Kikuchi diffraction allows cross-correlation with the TEM results.

  18. Towards an integrative structural biology approach: combining Cryo-TEM, X-ray crystallography, and NMR.

    PubMed

    Lengyel, Jeffrey; Hnath, Eric; Storms, Marc; Wohlfarth, Thomas

    2014-09-01

    Cryo-transmission electron microscopy (Cryo-TEM) and particularly single particle analysis is rapidly becoming the premier method for determining the three-dimensional structure of protein complexes, and viruses. In the last several years there have been dramatic technological improvements in Cryo-TEM, such as advancements in automation and use of improved detectors, as well as improved image processing techniques. While Cryo-TEM was once thought of as a low resolution structural technique, the method is currently capable of generating nearly atomic resolution structures on a routine basis. Moreover, the combination of Cryo-TEM and other methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and molecular dynamics modeling are allowing researchers to address scientific questions previously thought intractable. Future technological developments are widely believed to further enhance the method and it is not inconceivable that Cryo-TEM could become as routine as X-ray crystallography for protein structure determination.

  19. Molecular Characterization and In Silico Analysis of Naturally Occurring TEM Beta-Lactamase Variants among Pathogenic Enterobacteriaceae Infecting Indian Patients

    PubMed Central

    2013-01-01

    Cephalosporin resistance, particularly due to bla TEM encoded β-lactamases, among Enterobacteriaceae is, though, an increasing public health problem in India; their circulating genetic variants remain unknown. The present study deals with determination of bla TEM variants among 134 pathogenic Enterobacteriaceae of Indian origin. Their resistance profile against 3rd generation cephalosporins was determined. The presence of bla TEM variants among the bacterial plasmids was characterized by PCR followed by sequencing. Intergenic relations among the variants was determined by phylogenetic analysis. bla TEM protein were modeled by Modeller9v5 and verified. The catalytic pockets were characterized, and their interaction with cephalosporins was analyzed using AutoDock tools. More than 87% of isolates showed cephalosporin resistance with ESBL production among 57.8% of Escherichia coli and 50.6% of klebsiella pneumoniae. bla TEM-1 (84.21%), bla TEM-1 like (3.94%), bla TEM-33 (3.94%), bla TEM-116 (3.94%), bla TEM-169 (3.94%), and bla TEM-190 (7.89%) were detected in 76 isolates. Four variants, namely, bla TEM-1like, bla TEM-33, bla TEM-169, and bla TEM-190, coexisted in 3 isolates. The largest catalytic pocket of bla TEM-33 explained its expanded activity towards β-lactam-β-lactamase inhibitor combinations. Molecular docking indicated differential resistance pattern of bla TEM variants. PMID:24286084

  20. Molecular characterization and in silico analysis of naturally occurring TEM beta-lactamase variants among pathogenic Enterobacteriaceae infecting Indian patients.

    PubMed

    Dhara, Lena; Tripathi, Anusri; Pal, Arijit

    2013-01-01

    Cephalosporin resistance, particularly due to bla(TEM) encoded β-lactamases, among Enterobacteriaceae is, though, an increasing public health problem in India; their circulating genetic variants remain unknown. The present study deals with determination of bla(TEM) variants among 134 pathogenic Enterobacteriaceae of Indian origin. Their resistance profile against 3rd generation cephalosporins was determined. The presence of bla(TEM) variants among the bacterial plasmids was characterized by PCR followed by sequencing. Intergenic relations among the variants was determined by phylogenetic analysis. bla(TEM) protein were modeled by Modeller9v5 and verified. The catalytic pockets were characterized, and their interaction with cephalosporins was analyzed using AutoDock tools. More than 87% of isolates showed cephalosporin resistance with ESBL production among 57.8% of Escherichia coli and 50.6% of klebsiella pneumoniae. bla(TEM-1) (84.21%), bla(TEM-1) like (3.94%), bla(TEM-33) (3.94%), bla(TEM-116) (3.94%), bla(TEM-169) (3.94%), and bla(TEM-190) (7.89%) were detected in 76 isolates. Four variants, namely, bla(TEM-1) like, bla(TEM-33), bla(TEM-169), and bla(TEM-190), coexisted in 3 isolates. The largest catalytic pocket of bla(TEM-33) explained its expanded activity towards β-lactam-β-lactamase inhibitor combinations. Molecular docking indicated differential resistance pattern of bla(TEM) variants.

  1. Combined Raman-LIBS, Moessbauer and XRD In-Situ Mineral Analysis of Evaporite Minerals at Rio Tinto (Spain)

    NASA Astrophysics Data System (ADS)

    Rull, F.; Klingelhöfer, G.; Sarrazin, P.; Medina, J.; Fleischer, I.; Blake, D.; Martin Ramos, J. D.

    2010-04-01

    In this study a combination of Raman, LIBS, Mössbauer and XRD portable instruments has been used to undertake a common in-situ analysis of sulphate minerals at Rio Tinto area within the CAREX Field Procedure Inter-comparison Exercise 2009.

  2. Virulence factors and TEM-type β-lactamases produced by two isolates of an epidemic Klebsiella pneumoniae strain.

    PubMed

    Robin, Frédéric; Hennequin, Claire; Gniadkowski, Marek; Beyrouthy, Racha; Empel, Joanna; Gibold, Lucie; Bonnet, Richard

    2012-02-01

    Two Klebsiella pneumoniae isolates of the same strain, identified in Poland, produced either TEM-47 or TEM-68, which differed by the Arg275Leu substitution. They harbored a few virulence factors, including an iron-chelating factor and capsule overproduction, suggesting that these factors were sufficient to enhance their nosocomial potency. TEM-68 and TEM-47 had similar enzymatic activities, but TEM-68 was less susceptible to inhibitors than TEM-47. These results confirm the role of the Arg275Leu substitution in the evolution of TEM enzymes.

  3. Virulence Factors and TEM-Type β-Lactamases Produced by Two Isolates of an Epidemic Klebsiella pneumoniae Strain

    PubMed Central

    Hennequin, Claire; Gniadkowski, Marek; Beyrouthy, Racha; Empel, Joanna; Gibold, Lucie; Bonnet, Richard

    2012-01-01

    Two Klebsiella pneumoniae isolates of the same strain, identified in Poland, produced either TEM-47 or TEM-68, which differed by the Arg275Leu substitution. They harbored a few virulence factors, including an iron-chelating factor and capsule overproduction, suggesting that these factors were sufficient to enhance their nosocomial potency. TEM-68 and TEM-47 had similar enzymatic activities, but TEM-68 was less susceptible to inhibitors than TEM-47. These results confirm the role of the Arg275Leu substitution in the evolution of TEM enzymes. PMID:22106220

  4. Ceftazidime and aztreonam resistance in Providencia stuartii: characterization of a natural TEM-derived extended-spectrum beta-lactamase, TEM-60.

    PubMed

    Franceschini, N; Perilli, M; Segatore, B; Setacci, D; Amicosante, G; Mazzariol, A; Cornaglia, G

    1998-06-01

    A plasmid-encoded beta-lactamase produced from a clinical strain of Providencia stuartii has been purified and characterized. The gene coding for the beta-lactamase was cloned and sequenced. It appears to be a new natural TEM-derived enzyme, named TEM-60. Point mutations (Q39K, L51P, E104K, and R164S) are present with respect to the TEM-1 enzyme; the mutation L51P has never been previously reported, with the exception of the chromosomally encoded extended-spectrum beta-lactamase PER-1. Kinetic parameters relative to penicillins, cephalosporins, and monobactams other than mechanism-based inactivators were related to the in vitro susceptibility phenotype.

  5. Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS.

    PubMed

    Penen, Florent; Malherbe, Julien; Isaure, Marie-Pierre; Dobritzsch, Dirk; Bertalan, Ivo; Gontier, Etienne; Le Coustumer, Philippe; Schaumlöffel, Dirk

    2016-09-01

    Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10μm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1μm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. The analysis on IP signals in TEM response based on SVD

    NASA Astrophysics Data System (ADS)

    Yu, Chuan-Tao; Liu, Hong-Fu; Zhang, Xin-Jun; Yang, De-Yi; Li, Zi-Hong

    2013-03-01

    During transient electromagnetic method (TEM) exploration of a copper mine, we detected the late-channel TEM signal reversal phenomenon (a voltage change from positive to negative) caused by the influence of the induced polarization (IP) effect, which affects the depth and precision of the TEM detection. The conventional inversion method is inefficient because it is difficult to process the data. In this paper, the Cole-Cole model is adopted to analyze the effect of Dc resistivity, chargeability, time constant, and frequency exponent on the TEM response in an homogeneous half space model. Singular Value Decomposition (SVD) is used to invert the measured TEM data, and the Dc resistivity, chargeability, time constant and frequency exponent were extracted from the measured TEM data in the mine area. The extracted parameters are used for interpreting the detection result as a supplement. This reveals why the TEM data acquired in the area has a low resolution. It was found that the DC resistivity and time constant do not significantly change the results, however, the chargeability and frequency exponent have a significant effect. Because of these influences, the SVD method is more accurate than the conventional method in the apparent resistivity profile. The area of the copper mine is confined accurately based on the SVD inverted data. The conclusion has been verified by drill and is identical to the practical geological situation.

  7. An Alternative Approach for Sample Preparation with Low Cell Number for TEM Analysis.

    PubMed

    Kumar, Sachin; Filippi, Marie-Dominique

    2016-10-12

    Transmission electron microscopy (TEM) provides details of the cellular organization and ultrastructure. However, TEM analysis of rare cell populations, especially cells in suspension such as hematopoietic stem cells (HSCs), remains limited due to the requirement of a high cell number during sample preparation. There are a few cytospin or monolayer approaches for TEM analysis from scarce samples, but these approaches fail to get significant quantitative data from the limited number of cells. Here, an alternative and novel approach for sample preparation in TEM studies is described for rare cell populations that enables quantitative analysis. A relatively low cell number, i.e., 10,000 HSCs, was successfully used for TEM analysis compared to the millions of cells typically used for TEM studies. In particular, Evans blue staining was performed after paraformaldehyde-glutaraldehyde (PFA-GA) fixation to visualize the tiny cell pellet, which facilitated embedding in agarose. Clusters of numerous cells were observed in ultra-thin sections. The cells had a well preserved morphology, and the ultra-structural details of the Golgi complex and several mitochondria were visible. This efficient, easy and reproducible protocol allows sample preparation from a low cell number and can be used for qualitative and quantitative TEM analysis on rare cell populations from limited biological samples.

  8. Unexpected rectal cancer after TEM: outcome of completion surgery compared with primary TME.

    PubMed

    van Gijn, W; Brehm, V; de Graaf, E; Neijenhuis, P A; Stassen, L P S; Leijtens, J W A; Van De Velde, C J H; Doornebosch, P G

    2013-11-01

    Transanal endoscopic microsurgery (TEM) has gained wide-spread acceptance as a safe and useful technique for the resection of rectal adenomas and selected T1 malignant lesions. If the lesion appears >T1 rectal cancer after resection with TEM, a completion TME resection is recommended. The aim of this study was to investigate the results of TME surgery after TEM for rectal cancer. In four tertiary referral hospitals for TEM, all patients with completion TME surgery after initial TEM were selected. All eligible patients who were treated with 5 × 5 Gy radiotherapy followed by TME surgery from the Dutch TME trial were selected as reference group. A multivariate logistic regression model was used to calculate odds ratio's (OR) for colostomies and for colo- and ileostomies combined. Local recurrence and survival rates were compared in hazard ratio's (HR) using the multivariate Cox proportional hazard model. Fifty-nine patients were included in the TEM-COMPLETION group and 881 patients from the TME trial. In the TEM-COMPLETION group, 50.8% of the patients had a colostomy compared to 45.9% in the TME trial, OR 2.51 (p < 0.006). There is no significant difference when ileo- and colostomies are analyzed together. In the TEM-COMPLETION group, 10.2% developed a local recurrence compared to 5.2% in the TME trial, HR 6.8 (p < 0.0001). Completion TME surgery after TEM for unexpected rectal adenocarcinoma results in more colostomies and higher local recurrence rates compared to one stage TME surgery preceded with preoperative 5 × 5 Gy radiotherapy. Pre-operative investigations must be optimized to distinguish malignant and benign lesions and prevent avoidable local recurrence and colostomies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Thermal Analysis of SRF Cavity Couplers Using Parallel Multiphysics Tool TEM3P

    SciTech Connect

    Akcelik, V; Lee, L.-Q.; Li, Z.; Ng, C.-K.; Ko, K.; Cheng, G.; Rimmer, R.; Wang, H.; /Jefferson Lab

    2009-05-20

    SLAC has developed a multi-physics simulation code TEM3P for simulating integrated effects of electromagnetic, thermal and structural loads. TEM3P shares the same software infrastructure with SLAC's parallel finite element electromagnetic codes, thus enabling all physics simulations within a single framework. The finite-element approach allows high-fidelity, high-accuracy simulations and the parallel implementation facilitates large-scale computation with fast turnaround times. In this paper, TEM3P is used to analyze thermal loading at coupler end of the JLAB SRF cavity.

  10. Thermal Analysis of SRF Cavity Couplers Using Parallel Multiphysics Tool TEM3P

    SciTech Connect

    Akcelik, V, Lee, L.-Q., Li, Z., Ng, C.-K., Ko, K.,Cheng, G., Rimmer, R., Wang, H.

    2009-05-01

    SLAC has developed a multi-physics simulation code TEM3P for simulating integrated effects of electromagnetic, thermal and structural loads. TEM3P shares the same software infrastructure with SLAC’s paralell finite element electromagnetic codes, thus enabling all physics simulations within a single framework. The finite-element approach allows high fidelity, high-accuracy simulations and the parallel implementation facilitates large-scale computation with fast turnaround times. In this paper, TEM3P is used to analyze thermal loading at coupler end of the JLAB SRF cavity.

  11. Quantitative analysis of a complex metal carbide formed during furnace cooling of cast duplex stainless steel using EELS and EDS in the TEM.

    PubMed

    Kuimalee, Surasak; Chairuangsri, Torranin; Pearce, John T H; Edmonds, David V; Brown, Andrew P; Brydson, Rik M D

    2010-07-01

    In this work, a method to determine the atomic ratio of Mo and C within complex metal carbides using EELS in the TEM has been developed. The method is based on the determination of k-factors for given experimental conditions from the EEL spectra of Mo(2)C and MoO(3) standards, which had been independently checked by XRD and EPMA. Factors affecting the k(Mo/C) value of the Mo(2)C standard were also investigated and the value was shown to be insensitive to background subtraction window width but sensitive to prolonged irradiation and specimen thicknesses above a critical value. The method and k-factor obtained from the Mo(2)C standard was applied to spectra from a complex metal carbide precipitate formed during furnace cooling of a cast duplex stainless steel. Using EELS and EDS in the TEM, the composition was estimated to be (Cr(1.52)Fe(2.33)Mo(1.25)Ni(0.17)Si(0.46))C, which is close to M(6)C stoichiometry, and the structure was confirmed by electron diffraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  13. Investigation on the sulfur state and phase transformation of spent and regenerated S zorb sorbents using XPS and XRD

    NASA Astrophysics Data System (ADS)

    Qiu, Limei; Zou, Kang; Xu, Guangtong

    2013-02-01

    A series of industrial S zorb sorbents extracted from production line were characterized by XPS and XRD. The formation of ZnAl2O4 and Zn2SiO4 is the major reason for the deactivation of spent sorbent. The stability of the Zn-containing spinel species leads to the decrease of the desulfurization efficiency of regenerated sorbent. The chemical states of sulfur atom were examined by XPS. The depth distribution of sulfur species and the reductive behavior of sulfate in H2 atmosphere were explored using Ar+ etching XPS and in situ XPS. The formation of sulfate species in the regeneration process decreases the content of ZnO in the surface significantly and should be avoided. XPS and XRD are excellent tools to follow the sulfur chemical states and phase evolution of S zorb sorbent, respectively, which provide important information for the investigation of deactivation pathways and regenerated mechanisms for S zorb sorbent.

  14. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    PubMed

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  15. An exploratory method to detect tephras from quantitative XRD scans: Examples from Iceland and east Greenland marine sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.

    2006-01-01

    Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.

  16. Combined use of SEM-EDS, OM and XRD for the characterization of corrosion products grown on silver roman coins

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Balbi, S.; de Caro, T.; Fragalà, I.; Angelini, E.; Bultrini, G.

    2006-06-01

    In the framework of the PROMET project (European Commission contract No. 509126) aimed to develop new analytical techniques and materials for monitoring and protecting metal artefacts and monuments from the Mediterranean region, the corrosion products grown on silver Roman coins during archaeological burial is studied by means of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD) and optical microscopy (OM) techniques.

  17. Genomic sequence of temperate phage TEM126 isolated from wild type S. aureus.

    PubMed

    Lee, Young-Duck; Chang, Hyo-Ihl; Park, Jong-Hyun

    2011-04-01

    Bacteriophage TEM126, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild-type Staphylococcus aureus isolated from food, has an isometric head, a noncontractile tail, and a double-stranded DNA genome with a length of 33,540 bp and a G+C content of 33.94%. Bioinformatics analysis of the phage genome revealed 44 putative open reading frames (ORFs). Predicted protein products of the ORFs were determined and described. Temperate phage TEM126 can be classified as a member of the family Siphoviridae by morphology and genome structure. Temperate phage TEM126 showed 84% similarity with Staphylococcus phage phiNM1. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage TEM126 from a wild-type S. aureus isolated from foods in Korea.

  18. MEMS sensor for in situ TEM-nanoindentation with simultaneous force and current measurements

    NASA Astrophysics Data System (ADS)

    Nafari, A.; Angenete, J.; Svensson, K.; Sanz-Velasco, A.; Enoksson, P.

    2010-06-01

    A capacitive force sensor for in situ transmission electron microscope (TEM)-nanoindentation with simultaneous force and current measurement has been developed. The sensor was fabricated using bulk micro machining methods such as deep reactive ion etch, thermal oxidation, metal deposition and anodic bonding. Two different geometries of the sensor were designed to allow in situ TEM electromechanical experiments in the most common TEM instruments. Electrical probing is enabled by an on-chip insulator, electrically separating the indenter tip and the capacitor used for force measurements. The sensor was designed for the force range of 0 to 4.5 mN. Finally, we demonstrate for the first time in situ TEM-nanoindentation with simultaneous force and current measurements.

  19. Preparation of GaN-based cross-sectional TEM specimens by laser lift-off.

    PubMed

    Zilan, Li; Xiaodong, Hu; Ke, Chen; Ruijuan, Nie; Xuhui, Luo; Xiaoping, Zhang; Tongjun, Yu; Bei, Zhang; Song, Chen; Zhijian, Yang; Zhizhong, Chen; Guoyi, Zhang

    2005-01-01

    Laser lift-off (LLO) technology is successfully used to prepare GaN-based TEM cross-sectional specimens. Detailed procedures of the method to prepare the specimens are demonstrated. Large thin areas suitable for TEM analysis were obtained. TEM images of the resulting GaN interface are studied, and the changes in structural quality are confined to approximately the first 250 nm of the epilayer. Clear TEM images of the whole epilayer and the InGaN quantum wells and the HRTEM images of the superlattice layer are demonstrated, showing that LLO is a quick and ideal method to study the crystal structure of the epilayer, especially if only the upper layers are of interest.

  20. TEM00 mode Nd:YAG solar laser by side-pumping a grooved rod

    NASA Astrophysics Data System (ADS)

    Vistas, Cláudia R.; Liang, Dawei; Almeida, Joana; Guillot, Emmanuel

    2016-05-01

    A simple TEM00 mode solar laser system with a grooved Nd:YAG rod pumped through a heliostat-parabolic mirror system is reported here. The radiation coupling capacity of a fused silica tube lens was combined with the multipass pumping ability of a 2 V-shaped cavity to provide efficient side-pumping along a 4.0 mm diameter grooved Nd:YAG single-crystal rod. TEM00 mode solar laser power of 3.4 W was measured by adopting an asymmetric large-mode laser resonant cavity. Record TEM00 mode solar laser collection efficiency of 3.4 W/m2and slope efficiency of 1.9% was achieved, which corresponds to 1.8 and 2.4 times more than the previous TEM00 mode Nd:YAG solar laser using the PROMES-CNRS heliostat-parabolic mirror system, respectively.

  1. TEM Study of Alteration Assemblages in the Nakhlites: Variation with Burial Depth on Mars

    NASA Astrophysics Data System (ADS)

    Changela, H. C.; Bridges, J. C.

    2009-03-01

    TEM study of nakhlites shows a variation in secondary minerals between different meteorites. Lafayette from the greatest depth on Mars shows coarse crystalline Ca-Mn-Mg siderite and phyllosilicate whereas Y-000593 veins are amorphous silicate gel.

  2. Development of 124I-Immuno-PET Targeting Tumor Vascular TEM1/Endosialin

    PubMed Central

    Nayak, Madhura; Mikitsh, John L.; Hu, Jia; Hou, Catherine; Grasso, Luigi; Nicolaides, Nicholas C.; Muzykantov, Vladimir R.; Divgi, Chaitanya R.; Coukos, George

    2014-01-01

    Tumor endothelial marker 1 (TEM1/endosialin) is a tumor vascular marker highly overexpressed in multiple human cancers with minimal expression in normal adult tissue. In this study, we report the preparation and evaluation of 124I-MORAb-004, a 124I-labeled humanized monoclonal antibody targeting an extracellular epitope of human TEM1 (hTEM1), for its ability to specifically and sensitively detect vascular cells expressing hTEM1 in vivo. Methods MAb MORAb-004 was directly iodinated with 125I and 124I, and in vitro binding and internalization parameters were characterized. The in vivo behavior of radioiodinated-MORAb-004 was characterized in mice bearing subcutaneous ID8 tumors enriched with mouse endothelial cells expressing hTEM1, or control tumors, by biodistribution studies and small animal immuno-PET studies. Results MORAb-004 was radiolabeled with high efficiency and isolated in high purity. In vitro studies demonstrated specific and sensitive binding of MORAb-004 to MS1 mouse endothelial cells expressing hTEM1, with no binding to control MS1 cells. 125I-MORAb-004 and 124I MORAb-004 both had an immunoreactivity of approximately 90%. In vivo biodistribution experiments revealed rapid, highly specific and sensitive uptake of MORAb-004 in MS1-TEM1 tumors at 4 h (153.2 ± 22.2 percent of injected dose per gram [%ID/g]), 24 h (127.1 ± 42.9 %ID/g), 48 h (130.3 ± 32.4 %ID/g), 72 h (160.9 ± 32.1 %ID/g), and 6 d (10.7 ± 1.8 %ID/g). Excellent image contrast was observed with 124I-immuno-PET. MORAb-004 uptake was statistically higher in TEM1-positive tumors versus control tumors, as measured by biodistribution and immuno-PET studies. Binding specificity was confirmed by blocking studies using excess nonlabeled MORAb-004. Conclusion In our preclinical model, with hTEM1 exclusively expressed on engineered murine endothelial cells that integrate into the tumor vasculature, 124I-MORAb-004 displays high tumor–to–background tissue contrast fordetection of hTEM1 in

  3. Binding of TEM-1 beta-lactamase to beta-lactam antibiotics by frontal affinity chromatography.

    PubMed

    Chen, Xiu; Li, Yuhua; Zhang, Yan; Yang, Jianting; Bian, Liujiao

    2017-04-15

    TEM-1 beta-lactamases can accurately catalyze the hydrolysis of the beta-lactam rings in beta-lactam antibiotics, which make beta-lactam antibiotics lose its activity, and the prerequisite for the hydrolysis procedure in the binding interaction of TEM-1 beta-lactamases with beta-lactam antibiotics is the beta-lactam rings in beta-lactam antibiotics. Therefore, the binding of TEM-1 beta-lactamase to three beta-lactam antibiotics including penicillin G, cefalexin as well as cefoxitin was explored here by frontal affinity chromatography in combination with fluorescence spectra, adsorption and thermodynamic data in the temperature range of 278-288K under simulated physiological conditions. The results showed that all the binding of TEM-1 beta-lactamase to the three antibiotics were spontaneously exothermic processes with the binding constants of 8.718×10(3), 6.624×10(3) and 2.244×10(3) (mol/L), respectively at 288K. All the TEM-1 beta-lactamases were immobilized on the surface of the stationary phase in the mode of monolayer and there existed only one type of binding sites on them. Each TEM-1 beta-lactamase bound with only one beta-lactam antibiotic and hydrogen bond interaction and Van der Waals force were the main forces between them. This work provided an insight into the binding interactions between TEM-1 beta-lactamases and beta-lactam antibiotics, which may be beneficial for the designing and developing of new substrates resistant to TEM-1 beta-lactamases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The role of Poisson's binomial distribution in the analysis of TEM images.

    PubMed

    Tejada, Arturo; den Dekker, Arnold J

    2011-11-01

    Frank's observation that a TEM bright-field image acquired under non-stationary conditions can be modeled by the time integral of the standard TEM image model [J. Frank, Nachweis von objektbewegungen im lichtoptis- chen diffraktogramm von elektronenmikroskopischen auf- nahmen, Optik 30 (2) (1969) 171-180.] is re-derived here using counting statistics based on Poisson's binomial distribution. The approach yields a statistical image model that is suitable for image analysis and simulation.

  5. Kinetic study of the effect of histidines 240 and 164 on TEM-149 enzyme probed by β-lactam inhibitors.

    PubMed

    Perilli, Mariagrazia; Mancini, Alisia; Celenza, Giuseppe; Bottoni, Carlo; Bellio, Pierangelo; Sabatini, Alessia; Di Pietro, Letizia; Brisdelli, Fabrizia; Segatore, Bernardetta; Amicosante, Gianfranco

    2014-10-01

    In the present study, we performed a detailed kinetic analysis of the enzymes TEM-149, TEM-149(H240), and TEM-149(H164-H240) versus a large panel of inhibitors/inactivators, including penicillins, penems, carbapenems, monobactams, cephamycin, and carbacephem. These compounds behaved as poor substrates versus TEM-149, TEM-149(H240), and TEM-149(H164-H240) β-lactamases, and the Ki (inhibition constant), K (dissociation constant of the Henri-Michaelis complex), k+2 and k+3 (first-order acylation and deacylation constants, respectively), and k+2/K values were calculated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Identification of TEM-135 β-Lactamase in Neisseria gonorrhoeae Strains Carrying African and Toronto Plasmids in Argentina

    PubMed Central

    Gianecini, R.; Oviedo, C.; Littvik, A.; Mendez, E.; Piccoli, L.; Montibello, S.

    2014-01-01

    One hundred forty-three penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates obtained in Argentina from 2008 and 2012 were examined to detect blaTEM-135 genes and to investigate plasmid profiles and multiantigen sequence types. Forty-two PPNG isolates were found to carry TEM-135, and two contained a new TEM derivative characterized as TEM-220. The blaTEM-135 allele was carried by the Toronto/Rio and African plasmids. Molecular epidemiology revealed that two blaTEM-135 isolates were related to previously described isolates from Thailand and China, indicating a common evolutionary origin. PMID:25367903

  7. Identification of TEM-135 β-lactamase in Neisseria gonorrhoeae strains carrying African and Toronto plasmids in Argentina.

    PubMed

    Gianecini, R; Oviedo, C; Littvik, A; Mendez, E; Piccoli, L; Montibello, S; Galarza, P

    2015-01-01

    One hundred forty-three penicillinase-producing Neisseria gonorrhoeae (PPNG) isolates obtained in Argentina from 2008 and 2012 were examined to detect blaTEM-135 genes and to investigate plasmid profiles and multiantigen sequence types. Forty-two PPNG isolates were found to carry TEM-135, and two contained a new TEM derivative characterized as TEM-220. The blaTEM-135 allele was carried by the Toronto/Rio and African plasmids. Molecular epidemiology revealed that two blaTEM-135 isolates were related to previously described isolates from Thailand and China, indicating a common evolutionary origin.

  8. Joint use of TEM and MRS methods in a complex geological setting

    NASA Astrophysics Data System (ADS)

    Legchenko, Anatoly; Ezersky, Michael; Camerlynck, Christian; Al-Zoubi, Abdallah; Chalikakis, Konstantinos

    2009-10-01

    Transient Electromagnetic (TEM), known also as Time Domain Electromagnetic (TDEM) and Magnetic Resonance Sounding (MRS) methods were applied jointly to investigate variations in lithology and groundwater salinity in the Nahal Hever South area (Dead Sea coast of Israel). The subsurface in this area is highly heterogeneous and composed of intercalated sand and clay layers over a salt formation, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100-225 g/l. TEM is known as an efficient tool for investigating electrically conductive targets like saline water, but it is sensitive to both the salinity of groundwater and the porosity of rocks. MRS, however, is sensitive primarily to groundwater volume, but it also allows delineating of lithological variations in water-saturated formations. MRS is much less sensitive to variations in groundwater salinity in comparison with TEM. We show that MRS enables us to resolve the fundamental uncertainty in TEM interpretation caused by the equivalence between groundwater resistivity and lithology. Combining TEM and MRS, we found that the sandy Dead Sea aquifer filled with Dead Sea brine is characterized by a bulk resistivity of ρx > 0.4 Ωm, whereas zones with silt and clay in the subsurface are characterized by a bulk resistivity of ρx < 0.4 Ωm. These observations are confirmed by calibration of the TEM method performed near 18 boreholes.

  9. Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production.

    PubMed

    Kolotuev, Irina

    2014-10-01

    Transmission electron microscopy (TEM) is an important tool for studies in cell biology, and is essential to address research questions from bacteria to animals. Recent technological innovations have advanced the entire field of TEM, yet classical techniques still prevail for most present-day studies. Indeed, the majority of cell and developmental biology studies that use TEM do not require cutting-edge methodologies, but rather fast and efficient data generation. Although access to state-of-the-art equipment is frequently problematic, standard TEM microscopes are typically available, even in modest research facilities. However, a major unmet need in standard TEM is the ability to quickly prepare and orient a sample to identify a region of interest. Here, I provide a detailed step-by-step method for a positional correlative anatomy approach to flat-embedded samples. These modifications make the TEM preparation and analytic procedures faster and more straightforward, supporting a higher sampling rate. To illustrate the modified procedures, I provide numerous examples addressing research questions in Caenorhabditis elegans and Drosophila. This method can be equally applied to address questions of cell and developmental biology in other small multicellular model organisms.

  10. Applications of the FIB lift-out technique for TEM specimen preparation.

    PubMed

    Giannuzzi, L A; Drown, J L; Brown, S R; Irwin, R B; Stevie, F A

    1998-05-15

    A site-specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. A focused ion beam was used to slice an electron transparent membrane from a specific area of interest within a bulk sample. Micromanipulation lift-out procedures were then used to transport the electron-transparent specimen to a carbon-coated copper grid for subsequent TEM analysis. The FIB (focused ion beam) lift-out technique is a fast method for the preparation of site-specific TEM specimens. The versatility of this technique is demonstrated by presenting cross-sectioned TEM specimens from several types of materials systems, including a multi-layered integrated circuit on a Si substrate, a galvanized steel, a polycrystalline SiC ceramic fiber, and a ZnSe optical ceramic. These specimens have both complex surface geometry and interfaces with complex chemistry. FIB milling was performed sequentially through different layers of cross-sectioned materials so that preferential sputtering was not a factor in preparing TEM specimens. The FIB lift-out method for TEM analysis is a useful technique for the study of complex materials systems for TEM analysis.

  11. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  12. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations.

    PubMed

    Kumar, Sachin; Ciraolo, Georgianne; Hinge, Ashwini; Filippi, Marie-Dominique

    2014-02-01

    Transmission electron microscopy (TEM) provides ultra-structural details of cells at the sub-organelle level. However, details of the cellular ultrastructure, and the cellular organization and content of various organelles in rare populations, particularly in the suspension, like hematopoietic stem cells (HSCs) remained elusive. This is mainly due to the requirement of millions of cells for TEM studies. Thus, there is a vital requirement of a method that will allow TEM studies with low cell numbers of such rare populations. We describe an alternative and novel approach for TEM studies for rare cell populations. Here we performed a TEM study from 10,000 HSC cells with relative ease. In particular, tiny cell pellets were identified by Evans blue staining after PFA-GA fixation. The cell pellet was pre-embedded in agarose in a small microcentrifuge tube and processed for dehydration, infiltration and embedding. Semi-thin and ultra-thin sections identified clusters of numerous cells per sections with well preserved morphology and ultrastructural details of golgi complex and mitochondria. Together, this method provides an efficient, easy and reproducible process to perform qualitative and quantitative TEM analysis from limited biological samples including cells in suspension. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    NASA Technical Reports Server (NTRS)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  14. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  15. Improvement of microtome cutting process of carbon nanotube composite sample preparation for TEM analysis

    NASA Astrophysics Data System (ADS)

    Trayner, Sarah

    As research progresses towards nanoscale materials, there has become a need for a more efficient and effective way to obtain ultra-thin samples for imaging under transmission electron microscope (TEM) for atomic resolution analysis. There are various methods used to obtain thin samples (<50 nm in thickness). However, most of the resultant TEM images of soft materials, such as CNT/epoxy composites, are of poor quality due to the sample cutting difficulties. Such poor quality samples are characterized by uneven sample thicknesses, objective overlapping, overall darkness due to large thickness, and defects such as cutting scratches. This research is a continuous effort to study and improve the ultra-microtome cutting technique to provide an effective and reliable approach of obtaining an ultra-thin (25-50 nm) cross section of a CNT/polymer composite for high resolution TEM analysis. Improvements were achieved by studying the relationships between the chosen cutting parameters, sample characteristics and TEM image quality. From this information, a cutting protocol was established so that ultra-thin sample slices can be achieved by different microtome operators for high resolution TEM analysis. In addition, a custom tool was created to aid in the sample collection process. In this research, three composite samples were studied for both microtome cutting and TEM analysis: 1) Unidirectional (UD) IM7/BMI composite; 2) Single-layer CNT buckypaper (BP)/epoxy nanocomposite; 3) 3-layer CNT BP/BMI nanocomposite. The resultant TEM images revealed a clear microstructure consisting of amorphous resin and graphite crystalline packing. UD IM7/BMI composite TEM results did not reveal an interfacial region resulting in a need for even thinner sliced cross sections. TEM results for the single-layer CNT BP/epoxy nanocomposite revealed the alignment direction of the nanotubes and numerous stacks of CNT bundles. In addition, there was visible flattening of CNT packing into dumbbell shapes

  16. Coexistence of SHV-4- and TEM-24-Producing Enterobacter aerogenes Strains before a Large Outbreak of TEM-24-Producing Strains in a French Hospital

    PubMed Central

    Mammeri, H.; Laurans, G.; Eveillard, M.; Castelain, S.; Eb, F.

    2001-01-01

    In 1996, a monitoring program was initiated at the teaching hospital of Amiens, France, and carried out for 3 years. All extended-spectrum β-lactamase (ESBL)-producing Enterobacter aerogenes isolates recovered from clinical specimens were collected for investigation of their epidemiological relatedness by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and determination of the type of ESBL harbored by isoelectric focusing and DNA sequencing. Molecular typing revealed the endemic coexistence, during the first 2 years, of two clones expressing, respectively, SHV-4 and TEM-24 ESBLs, while an outbreak of the TEM-24-producing strain raged in the hospital during the third year, causing the infection or colonization of 165 patients. Furthermore, this strain was identified as the prevalent clone responsible for outbreaks in many French hospitals since 1996. This study shows that TEM-24-producing E. aerogenes is an epidemic clone that is well established in the hospital's ecology and able to spread throughout wards. The management of the outbreak at the teaching hospital of Amiens, which included the reinforcement of infection control measures, failed to obtain complete eradication of the clone, which has become an endemic pathogen. PMID:11376055

  17. Coexistence of SHV-4- and TEM-24-producing Enterobacter aerogenes strains before a large outbreak of TEM-24-producing strains in a French hospital.

    PubMed

    Mammeri, H; Laurans, G; Eveillard, M; Castelain, S; Eb, F

    2001-06-01

    In 1996, a monitoring program was initiated at the teaching hospital of Amiens, France, and carried out for 3 years. All extended-spectrum beta-lactamase (ESBL)-producing Enterobacter aerogenes isolates recovered from clinical specimens were collected for investigation of their epidemiological relatedness by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and determination of the type of ESBL harbored by isoelectric focusing and DNA sequencing. Molecular typing revealed the endemic coexistence, during the first 2 years, of two clones expressing, respectively, SHV-4 and TEM-24 ESBLs, while an outbreak of the TEM-24-producing strain raged in the hospital during the third year, causing the infection or colonization of 165 patients. Furthermore, this strain was identified as the prevalent clone responsible for outbreaks in many French hospitals since 1996. This study shows that TEM-24-producing E. aerogenes is an epidemic clone that is well established in the hospital's ecology and able to spread throughout wards. The management of the outbreak at the teaching hospital of Amiens, which included the reinforcement of infection control measures, failed to obtain complete eradication of the clone, which has become an endemic pathogen.

  18. In-line TEM sample preparation and wafer return strategy for rapid yield learning

    NASA Astrophysics Data System (ADS)

    Bicaïs-Lépinay, N.; André, F.; Brevers, S.; Guyader, P.; Trouiller, C.; Kwakman, L. F. Tz.; Pokrant, S.; Verkleij, D.; Schampers, R.; Ithier, L.; Sicurani, E.; Wyon, C.

    2006-03-01

    Full wafer dual beam FIB-SEM systems have received a lot of industrial interest in the last years and by now are operational in several 200mm and 300mm fabs. These tools offer a 3D-physical characterization capability of defects and device structures and as such allow for more rapid yield learning and increased process control. Moreover, if SEM resolution is insufficient to reveal defect origin or the necessary process details, it is now also possible to prepare TEM samples using a controlled, easy to learn in-situ process and to efficiently continue the characterization with a high resolution TEM inspection. Thanks to latest hardware developments and the high degree of automation of this TEM sample preparation process, wafers no longer need to be broken and remain essentially free from contamination. Hence, the TEM lamella process can be considered as non-destructive and wafers may continue the fabrication process flow. In this paper we examine the SEM and TEM application capabilities offered by in-line dual beam systems. To qualify the wafer return strategy, the particle contamination generated by the system hardware as well as the process-induced contamination have been investigated. The particle levels measured are fully acceptable to adopt the wafer return strategy. Ga-contamination does exist but is sufficiently low and localized so that the wafer return strategy can be applied safely in the back-end of line process. Yield analysis has confirmed that there is no measurable impact on device yield. Although yet to be proven for the frond-end of line processes, the wafer return strategy has been demonstrated as a valuable one already in the backend of line processes. The as developed non-destructive 3-D SEM-TEM characterization capability does offer value added data that allow to determine the root cause of critical process defects in almost real-time and this for both standard (SEM) and more advanced (TEM) technologies.

  19. TEM-1-encoding small plasmids impose dissimilar fitness costs on Haemophilus influenzae and Haemophilus parainfluenzae.

    PubMed

    Søndergaard, Annette; Lund, Marianne; Nørskov-Lauritsen, Niels

    2015-12-01

    Only two beta-lactamases, TEM-1 and ROB-1, have been observed in Haemophilus influenzae, while four different TEM but no ROB enzymes have been found in Haemophilus parainfluenzae. In order to investigate the mechanisms behind the dissemination of small beta-lactamase-encoding plasmids in H. influenzae and H. parainfluenzae, we assessed the fitness cost of three TEM-1- (pPN223, pA1209, pA1606), one TEM-15- (pSF3) and one ROB-1-bearing (pB1000) plasmid when expressed in either bacterial species. All plasmids were stable in H. influenzae and H. parainfluenzae except pB1000, which showed on average (sample mean) 76% curing in H. parainfluenzae after 5  days of subculture. Competition assays between isogenic strains with and without plasmid showed no competitive disadvantage of pPN223 and pA1606 in H. influenzae, or of pA1209 in H. parainfluenzae. In contrast, pSF3 and pB1000 were associated with significant competitive disadvantages in both species. Some of the competitive disadvantages may be related to differences in plasmid copy number and mRNA expression of the beta-lactamase genes, as revealed by quantitative PCR analysis. In conclusion, plasmids encoding TEM beta-lactamases isolated from H. influenzae and H. parainfluenzae can be stably transferred between species. The fast curing of pB1000 in H. parainfluenzae observed in this study correlates to the fact that ROB-1 has never been reported for this species. TEM-1-encoding plasmids are associated with the lowest level of fitness cost, but different TEM-1 plasmids confer different levels of fitness cost on the two hosts.

  20. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  1. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  2. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb(2+), Cd(2+) and Zn(2+) cations.

    PubMed

    Castaldi, Paola; Santona, Laura; Enzo, Stefano; Melis, Pietro

    2008-08-15

    In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.

  3. Rapid characterisation of archaeological midden components using FT-IR spectroscopy, SEM-EDX and micro-XRD.

    PubMed

    Shillito, Lisa-Marie; Almond, Matthew J; Nicholson, James; Pantos, Manolis; Matthews, Wendy

    2009-07-01

    Samples taken from middens at the Neolithic site of Catalhöyük in Turkey have been analysed using IR spectroscopy backed up by powder XRD and SEM-EDX. Microcomponents studied include fossil hackberries (providing evidence of ancient diet and seasonality), mineral nodules (providing evidence of post-depositional change) and phytoliths (mineralised plant cells, providing evidence of usage of plant species). Finely laminated ashy deposits have also been investigated allowing chemical and mineralogical variations to be explored. It is found that many layers which appear visually to be quite distinctive have, in fact, very similar mineralogy.

  4. A comprehensive review of the XRD data of the primary and secondary phases present in the BSCCO superconductor system

    SciTech Connect

    Reardon, B.J.; Hubbard, C.R.

    1992-02-01

    X-ray powder patterns for the phases in the CaO-SrO-PbO ternary system, along with the corresponding crystal structures, were obtained from the literature and from the Powder Diffraction File (PDF). Available X-ray diffraction (XRD) patterns were compared with each other and, when possible, with a calculated pattern for each phase, yielding a recommended reference pattern. The simulated powder patterns presented here deal with the phases found within the (Ca,Sr){sub 2}PbO{sub 4} solid solution series and are recommended for the PDF.

  5. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  6. Novel techniques of preparing TEM samples for characterization of irradiation damage.

    PubMed

    Zhang, H K; Long, F; Yao, Z; Daymond, M R

    2013-12-01

    Focus ion beam preparation of transmission electron microscopy (TEM) samples has become increasingly popular due to the relative ease of extraction of TEM foils from specific locations within a larger sample. However the sputtering damage induced by Ga ion bombardment in focus ion beam means that traditional electropolishing may be a preferable method. First, we describe a special electropolishing method for the preparation of irregular TEM samples from ex-service nuclear reactor components, spring-shaped spacers. This method has also been used to prepare samples from a nonirradiated component for a TEM in situ heavy ion irradiation study. Because the specimen size is small (0.7 × 0.7 × 3 mm), a sandwich installation is adopted to obtain high quality polishing. Second, we describe some modifications to a conventional TEM cross-section sample preparation method that employs Ni electroplating. There are limitations to this method when preparing cross-section samples from either (1) metals which are difficult to activate for electroplating, or (2) a heavy ion irradiated foil with a very shallow damage layer close to the surface, which may be affected by the electroplating process. As a consequence, a novel technique for preparing cross-section samples was developed and is described.

  7. 1D Cole-Cole inversion of TEM transients influenced by induced polarization

    NASA Astrophysics Data System (ADS)

    Seidel, Marc; Tezkan, Bülent

    2017-03-01

    Effects of induced polarization (IP) can have an impact on time-domain electromagnetic measurements (TEM) and may lead to sign reversals in the recorded transients. To study these IP effects on TEM data, a new 1D inversion algorithm was developed for both, the central-loop and the separate-loop TEM configurations using the Cole-Cole relaxation model. 1D forward calculations for a homogeneous half-space were conducted with the aim of analyzing the impacts of the Cole-Cole parameters on TEM transients with respect to possible sign reversals. The forward modelings showed that the variation of different parameters have comparable effects on the TEM transients. This leads to an increasing number of equivalent models as a result of inversion calculations. Subsequently, 1D inversions of synthetic data were performed to study the potentials and limitations of the algorithm regarding the resolution of the Cole-Cole parameters. In order to achieve optimal inversion results, it was essential to error-weight the data points in the direct vicinity of sign reversals. The obtained findings were eventually adopted on the inversion of real field data which contained considerable IP signatures such as sign reversals. One field data set was recorded at the Nakyn kimberlite field in Western Yakutiya, Russia, in the central-loop configuration. Another field data set originates from a waste site in Cologne, Germany, and was measured utilizing the separate-loop configuration.

  8. Developing of an environmental cell TEM holder for dynamic in situ observation

    NASA Astrophysics Data System (ADS)

    Bataineh, Khaled M.

    2016-02-01

    This paper deals with the subject of "in situ" development of environmental-transmission electron microscope (E-TEM) holder assemblies. In E-TEM, the sample is continuously subjected to gases as opposed to conventional TEM where the sample is under high vacuum. E-TEM offers the possibility of achieving a new level of material analysis. E-TEM allows obtaining information about chemical information during the reaction at atomic level. Rarefied gas dynamics analysis is used to assess the proposed design. The analysis is focused on determining the molecular distribution inside the vacuum chamber and calculating the impingement rate on the target surface of the specimen. Simulations are performed to predict the molecular interaction with the specimen at given pressures to determine the proper position of a specimen within a vacuum chamber to optimize and predict reaction characteristics. Results of direct simulation Monte Carlo show that the two sides of the sample operate at different temperatures due to the gas flow and experience different molecular distributions.

  9. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-10-27

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice.

  10. Structure and Output Characteristics of a TEM Array Fitted to a Fin Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Chen, L. N.; Chen, Z. J.; Xiao, G. Q.; Liu, Z. J.

    2015-06-01

    In the design of a thermoelectric generator, both the heat transfer area and the number of thermoelectric modules (TEMs) should be increased accordingly as the generator power increases; crucially, both aspects need to be coordinated. A kilowatt thermoelectric generator with a fin heat exchanger is proposed for use in a constant-speed diesel generator unit. Interior fins enhance convective heat transfer, whereas an exterior fin segment increases the heat transfer area. The heat transfer surface is double that of a plane heat exchanger, and the temperature field over the exterior fins is constrained to a one-dimensional distribution. Between adjoining exterior fins, there is a cooling water channel with trapezoid cross-section, enabling compact TEMs and cooling them. Hence, more TEMs are built as a series-parallel array of TEMs with lower resistance and more stable output current. Under nonuniform conditions, to prevent circulation and energy loss, bypass diodes and antidiodes are added. Experiments and numerical calculations show that, with matching and optimization of the heat exchanger and TEM array, a stable maximum output power is obtainable from the interior of the thermoelectric generator system, which can be connected to an external maximum power point tracking system.

  11. Extracting the Virtual Reflected Wavelet from TEM Data Based on Regularizing Method

    NASA Astrophysics Data System (ADS)

    Xue, Guo-qiang; Bai, Chao-ying; Li, Xiu

    2012-07-01

    A pseudo-seismic interpretation method is an alternative way to process and explain transient electromagnetic (TEM) data, and has become a popular research field in recent years. TEM signals which satisfy the diffusion equation can be converted by means of a mathematical transformation into ones which obey the wave equation. For an ill-posed problem of this kind of transformation, a sub-regularization algorithm is developed in this paper to extract a virtual wavelet of the TEM field. According to the conventional designation of TEM recordings, the entire integration period is divided into seven time intervals. In order to avoid low accuracy in the calculations, high-density wavefield data has been calculated based on the former sub-division. Therefore, the virtual wavelet can be extracted successfully by using an optimized algorithm to obtain high-density integral coefficients for all time windows, and a satisfactory condition number of the coefficient matrix while taking a different channel number in each time period. The Tikhonov regularization inversion scheme is used to determine the optimal parameters based on minimizing a least squares misfit, and the Newton iterative formula is used to obtain optimal regularization parameters. Both synthetic model simulations and a real data interpretation example indicate that the proposed pseudo-seismic wavefield method is a suitable alternative way to interpret TEM data.

  12. The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis.

    PubMed

    Lippincott, J; Shannon, K B; Shou, W; Deshaies, R J; Li, R

    2001-04-01

    Cytokinesis in budding yeast involves an actomyosin-based ring which assembles in a multistepped fashion during the cell cycle and constricts during cytokinesis. In this report, we have investigated the structural and regulatory events that occur at the onset of cytokinesis. The septins, which form an hour-glass like structure during early stages of the cell cycle, undergo dynamic rearrangements prior to cell division: the hourglass structure splits into two separate rings. The contractile ring, localized between the septin double rings, immediately undergoes contraction. Septin ring splitting is independent of actomyosin ring contraction as it still occurs in mutants where contraction fails. We hypothesize that septin ring splitting may remove a structural barrier for actomyosin ring to contract. Because the Tem1 small GTPase (Tem1p) is required for the completion of mitosis, we investigated its role in regulating septin and actomyosin ring dynamics in the background of the net1-1 mutation, which bypasses the anaphase cell cycle arrest in Tem1-deficient cells. We show that Tem1p plays a specific role in cytokinesis in addition to its function in cell cycle progression. Tem1p is not required for the assembly of the actomyosin ring but controls actomyosin and septin dynamics during cytokinesis.

  13. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  14. Novel antibody probes for the characterization of endosialin/TEM-1

    PubMed Central

    O'shannessy, Daniel J.; Smith, Michael F.; Somers, Elizabeth B.; Jackson, Stephen M.; Albone, Earl; Tomkowicz, Brian; Cheng, Xin; Park, Young; Fernando, Danielle; Milinichik, Andrew; Kline, Brad; Fulton, Regan; Oberoi, Pankaj; Nicolaides, Nicholas C.

    2016-01-01

    Endosialin (Tumor Endothelial Marker-1 (TEM-1), CD248) is primarily expressed on pericytes of tumor-associated microvasculature, tumor-associated stromal cells and directly on tumors of mesenchymal origin, including sarcoma and melanoma. While the function of endosialin/TEM-1 is incompletely understood, studies have suggested a role in supporting tumor growth and invasion thus making it an attractive therapeutic target. In an effort to further understand its role in cancer, we previously developed a humanized anti-endosialin/TEM-1 monoclonal antibody (mAb), called ontuxizumab (MORAb-004) for testing in preclinical and clinical studies. We herein report on the generation of an extensive panel of recombinant endosialin/TEM-1 protein extracellular domain (ECD) fragments and novel mAbs against ECD motifs. The domain-specific epitopes were mapped against ECD sub-domains to identify those that can detect distinct structural motifs and can be potentially formatted as probes suitable for diagnostic and functional studies. A number of mAbS were shown to cross-react with the murine and human protein, potentially allowing their use in human animal models and corresponding clinical trials. In addition, pairing of several mAbs supported their use in immunoassays that can detect soluble endosialin/TEM-1 (sEND) in the serum of healthy subjects and cancer patients. PMID:27494870

  15. Novel antibody probes for the characterization of endosialin/TEM-1.

    PubMed

    O'Shannessy, Daniel J; Smith, Michael F; Somers, Elizabeth B; Jackson, Stephen M; Albone, Earl; Tomkowicz, Brian; Cheng, Xin; Park, Young; Fernando, Danielle; Milinichik, Andrew; Kline, Brad; Fulton, Regan; Oberoi, Pankaj; Nicolaides, Nicholas C

    2016-10-25

    Endosialin (Tumor Endothelial Marker-1 (TEM-1), CD248) is primarily expressed on pericytes of tumor-associated microvasculature, tumor-associated stromal cells and directly on tumors of mesenchymal origin, including sarcoma and melanoma. While the function of endosialin/TEM-1 is incompletely understood, studies have suggested a role in supporting tumor growth and invasion thus making it an attractive therapeutic target. In an effort to further understand its role in cancer, we previously developed a humanized anti-endosialin/TEM-1 monoclonal antibody (mAb), called ontuxizumab (MORAb-004) for testing in preclinical and clinical studies. We herein report on the generation of an extensive panel of recombinant endosialin/TEM-1 protein extracellular domain (ECD) fragments and novel mAbs against ECD motifs. The domain-specific epitopes were mapped against ECD sub-domains to identify those that can detect distinct structural motifs and can be potentially formatted as probes suitable for diagnostic and functional studies. A number of mAbS were shown to cross-react with the murine and human protein, potentially allowing their use in human animal models and corresponding clinical trials. In addition, pairing of several mAbs supported their use in immunoassays that can detect soluble endosialin/TEM-1 (sEND) in the serum of healthy subjects and cancer patients.

  16. Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy

    PubMed Central

    Cryan, Lorna M.; Rogers, Michael S.

    2011-01-01

    The anthrax toxin receptors tumor endothelial marker-8 (TEM-8) and capillary morphogenesis gene-2 (CMG-2) are responsible for allowing entry of anthrax toxin into host cells. However, these receptors were first discovered due to their enhanced expression on endothelial cells undergoing blood vessel growth or angiogenesis in in vitro or in vivo model systems. Targeting and inhibiting angiogenesis is an important strategy for current anti-cancer therapies and treatment of retinal diseases. Structures, tissue expression, and interactions of the TEM-8 and CMG-2 proteins have been documented, and functional roles for these receptors in angiogenesis have recently emerged. TEM-8 appears to regulate endothelial cell migration and tubule formation whereas a role for CMG-2 in endothelial proliferation has been documented. TEM-8 and CMG-2 bind differentially to extracellular matrix proteins including collagen I, collagen IV and laminin and these properties may be responsible for their apparent roles in regulating endothelial cell behavior during angiogenesis. TEM-8-binding moieties have also been suggested to be useful in selectively targeting anti-angiogenic and anti-tumorigenic therapies to tumor endothelium. Additionally, studies of modified forms of lethal toxin (LeTx) have demonstrated that targeted inhibition of MAPKs within tumor vessels may represent an efficacious anti-angiogenic strategy. PMID:21196249

  17. Developing of an environmental cell TEM holder for dynamic in situ observation.

    PubMed

    Bataineh, Khaled M

    2016-02-01

    This paper deals with the subject of "in situ" development of environmental-transmission electron microscope (E-TEM) holder assemblies. In E-TEM, the sample is continuously subjected to gases as opposed to conventional TEM where the sample is under high vacuum. E-TEM offers the possibility of achieving a new level of material analysis. E-TEM allows obtaining information about chemical information during the reaction at atomic level. Rarefied gas dynamics analysis is used to assess the proposed design. The analysis is focused on determining the molecular distribution inside the vacuum chamber and calculating the impingement rate on the target surface of the specimen. Simulations are performed to predict the molecular interaction with the specimen at given pressures to determine the proper position of a specimen within a vacuum chamber to optimize and predict reaction characteristics. Results of direct simulation Monte Carlo show that the two sides of the sample operate at different temperatures due to the gas flow and experience different molecular distributions.

  18. TEM Observations of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electrochemical Conditions

    SciTech Connect

    Liu, Z.Y.; Zhang, J.L.; Yu, P.T.; Zhang, J.X.; Makharia, R.; More, Karren Leslie; Stach, Eric

    2010-01-01

    Carbon blacks such as Vulcan XC-72 are widely used to support platinum (Pt) or Pt alloy catalysts in proton exchange membrane fuel cells. Despite their widespread use, carbon blacks are susceptible to corrosion during fuel cell operations. In this work, the corrosion behaviors of platinized Vulcan XC-72 nanoparticles under thermal and electrochemical conditions were monitored by transmission electron microscopy (TEM). The thermal corrosion experiment was carried out in a gas-cell TEM, which allows for a direct observation of the thermal oxidation behavior of the nanoparticles. The electrochemical corrosion experiment was performed outside of the TEM by loading the nanoparticles on a TEM grid and then electrochemically corroding them step by step followed by taking TEM images from exactly the same nanoparticles after each step. This work revealed four types of structural changes: (i) total removal of structurally weak aggregates, (ii) breakdown of aggregates via neck-breaking, (iii) center-hollowed primary particles caused by an inside-out corrosion starting from the center to outer region, and (iv) gradual decrease in the size of primary particles caused by a uniform removal of material from the surface. These structural changes took place in sequence or simultaneously depending on the competition of carbon corrosion dynamical processes. The results obtained from this work provide insight on carbon corrosion and its effects on fuel cells' long-term performance and durability.

  19. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  20. Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity

    USDA-ARS?s Scientific Manuscript database

    Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...

  1. E240V substitution increases catalytic efficiency toward ceftazidime in a new natural TEM-type extended-spectrum beta-lactamase, TEM-149, from Enterobacter aerogenes and Serratia marcescens clinical isolates.

    PubMed

    Perilli, Mariagrazia; Celenza, Giuseppe; De Santis, Francesca; Pellegrini, Cristina; Forcella, Chiara; Rossolini, Gian Maria; Stefani, Stefania; Amicosante, Gianfranco

    2008-03-01

    The aim of this study was to characterize a novel extended-spectrum beta-lactamase that belongs to the TEM family, the TEM-149 enzyme, and that was isolated from the urine of two hospitalized patients from different hospitals in southern Italy. The peculiarity of this enzyme was the finding of a valine residue at position 240. The array of amino acid substitutions found in TEM-149 was as follows: E104K, R164S, M182T, and E240V. A reversion of a threonine residue at position 182 was also performed to create a new mutant, TEM-149 T182M, in order to assess the contribution of this substitution on the kinetic profile and the stability of TEM-149. The bla TEM-149 and bla TEM-149/T182M genes were cloned into pBC-SK, and the corresponding enzymes were purified from recombinant Escherichia coli HB101 by the same procedure. Both enzymes hydrolyzed all beta-lactams tested, with a preference for ceftazidime, which was found to be the best substrate. By comparison of the kinetic parameters of the TEM-149 and the TEM-149 T182M enzymes, a reduction of the catalytic efficiency for the TEM-149 T182M mutant was observed against all substrates tested except benzylpenicillin, cefotaxime, and aztreonam. Tazobactam, clavulanic acid, and sulbactam were good inhibitors of the TEM-149 beta-lactamase.

  2. Graphene oxide single sheets as substrates for high resolution cryoTEM.

    PubMed

    van de Put, Marcel W P; Patterson, Joseph P; Bomans, Paul H H; Wilson, Neil R; Friedrich, Heiner; van Benthem, Rolf A T M; de With, Gijsbertus; O'Reilly, Rachel K; Sommerdijk, Nico A J M

    2015-02-04

    CryoTEM is an important tool in the analysis of soft matter, where generally defocus conditions are used to enhance the contrast in the images, but this is at the expense of the maximum resolution that can be obtained. Here, we demonstrate the use of graphene oxide single sheets as support for the formation of 10 nm thin films for high resolution cryoTEM imaging, using DNA as an example. With this procedure, the overlap of objects in the vitrified film is avoided. Moreover, in these thin films less background scattering occurs and as a direct result, an increased contrast can be observed in the images. Hence, imaging closer to focus as compared with conventional cryoTEM procedures is achieved, without losing contrast. In addition, we demonstrate an ~1.8 fold increase in resolution, which is crucial for accurate size analysis of nanostructures.

  3. An automatic algorithm for determination of the nanoparticles from TEM images using circular hough transform.

    PubMed

    Mirzaei, Mohsen; Rafsanjani, Hossein Khodabakhshi

    2017-02-28

    Nanoparticles have a wide range of applications in science and technology, and the size distribution of nanoparticles is one of the most important statistical properties. Transmission electron microscopy (TEM) or X-ray diffraction is commonly used for the characterization and measuring particle size distributions, but manual analysis of the micrographs is extremely labor-intensive. Here, we have developed an image processing algorithm for measuring particle size distributions from TEM images in the presence of overlapped particles and uneven background. The approach is based on the modified circular Hough transform, and pre and post processing techniques on TEM image to improve the accuracy and increase the detection rate of the nano particles. Its application is presented through several images with different noises, uneven backgrounds and over lapped particles. The merits of this robust quantifying method are demonstrated by comparing the results with the data obtained through manual measurement. The algorithm allows particles to be detected and characterized with high accuracy.

  4. 4 T Split TEM Volume Head and Knee Coils for Improved Sensitivity and Patient Accessibility

    PubMed Central

    Avdievich, Nikolai I.; Bradshaw, Ken; Lee, Jing-Huei; Kuznetsov, Andrey M.; Hetherington, Hoby P.

    2009-01-01

    Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15–20 %. PMID:17533142

  5. TEM measurement in a low resistivity overburden performed by using low temperature SQUID

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Du, Shangyu; Xie, Lijun; Chang, Kai; Liu, Yang; Zhang, Yi; Xie, Xiaoming; Wang, Yuan; Lin, Jun; Rong, Liangliang

    2016-12-01

    Exploration of areas with thick low resistivity overburden is still a challenge for time domain transient electromagnetic method (TEM). We report modeling of a sandwich-layered earth by simulating the B field response with different conductive target layer thicknesses, thus obtaining a relationship between the resolution of the B field and the exploration depth. A low temperature Superconducting Quantum Interference Device (SQUID) is an ideal sensor for measuring the secondary magnetic field B in TEM measurements, because its sensitivity of several fT/√Hz is independent of frequency. In our TEM experiments, we utilized two different coils as receivers, a simple SQUID system, and a large transmitter loop of 200 × 200 m2 to compare the detected decay curves. At some measurement points, a decay signal of more than 300 ms duration was obtained by using the SQUID. Apparent resistivity profiles of about 9 km length are presented.

  6. Generation of entangled TEM01 modes with periodically poled KTiOPO4 crystal

    NASA Astrophysics Data System (ADS)

    Rong-Guo, Yang; Jing-jing, Wang; Jing, Zhang; Heng-Xin, Sun

    2016-07-01

    Spatial quantum optics based on the high-order transverse mode is important for the super-resolution measurement and quantum image beyond the shot noise level. Quantum entanglement of the transverse plane Hermite-Gauss TEM01 mode has been demonstrated experimentally in this paper. Two squeezed TEM01 modes, which are generated by a pair of degenerate optical parametric amplifiers (DOPA) with the nonlinear crystals of periodically poled KTiOPO4, have been combined to produce TEM01 mode entanglement using a beam splitter. The 1.5 dB for the sum of amplitude and 1.2 dB for the difference of phase below shot-noise level is achieved with the measurement system of a Bell state detection. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504218 and 61108003) and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021005-2).

  7. Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM.

    PubMed

    Wu, Jianbo; Gao, Wenpei; Wen, Jianguo; Miller, Dean J; Lu, Ping; Zuo, Jian-Min; Yang, Hong

    2015-04-08

    A growth mode was revealed by an in situ TEM study of nucleation and growth of Au on Pt icosahedral nanoparticles. Quantitative analysis of growth kinetics was carried out based on real-time TEM data, which shows the process involves: (1) deposition of Au on corner sites of Pt icosahedral nanoparticles, (2) diffusion of Au from corners to terraces and edges, and (3) subsequent layer-by-layer growth of Au on Au surfaces to form Pt@Au core-shell nanoparticles. The in situ TEM results indicate diffusion of Au from corner islands to terraces and edges is a kinetically controlled growth, as evidenced by a measurement of diffusion coefficients for these growth processes. We demonstrated that in situ electron microscopy is a valuable tool for quantitative study of nucleation and growth kinetics and can provide new insight into the design and precise control of heterogeneous nanostructures.

  8. Growth of Au on Pt Icosahedral Nanoparticles Revealed by Low-Dose in situ TEM

    SciTech Connect

    Wu, Jianbo; Gao, Wenpei; Wen, Jianguo; Miller, Dean J.; Lu, Ping; Zuo, Jian-Min; Yang, Hong

    2015-04-01

    A growth mode was revealed by an in situ TEM study of nucleation and growth of Au on Pt icosahedral nanoparticles. Quantitative analysis of growth kinetics was carried out based on real- time TEM data, which show the process involves: 1) deposition of Au on corner sites of Pt icosahedral nanoparticles, 2) diffusion of Au from corners to terraces and edges, and 3) subsequent layer-by-layer growth of Au on Au surfaces to form Pt@Au core-shell nanoparticles. The in situ TEM results indicate diffusion of Au from corner islands to terraces and edges is a kinetically controlled growth, as evidenced by a measurement of diffusion coefficients for these growth processes. We demonstrated that in situ electron microscopy is a valuable tool for quantitative study of nucleation and growth kinetics and can provide new insight into the design and precise control of heterogeneous nanostructures.

  9. A nonlinear filtering algorithm for denoising HR(S)TEM micrographs.

    PubMed

    Du, Hongchu

    2015-04-01

    Noise reduction of micrographs is often an essential task in high resolution (scanning) transmission electron microscopy (HR(S)TEM) either for a higher visual quality or for a more accurate quantification. Since HR(S)TEM studies are often aimed at resolving periodic atomistic columns and their non-periodic deviation at defects, it is important to develop a noise reduction algorithm that can simultaneously handle both periodic and non-periodic features properly. In this work, a nonlinear filtering algorithm is developed based on widely used techniques of low-pass filter and Wiener filter, which can efficiently reduce noise without noticeable artifacts even in HR(S)TEM micrographs with contrast of variation of background and defects. The developed nonlinear filtering algorithm is particularly suitable for quantitative electron microscopy, and is also of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. TEM CHARACTERIZATION OF IRRADIATED U3SI2/AL DISPERSION FUEL

    SciTech Connect

    J. Gan; B. Miller; D. Keiser; A. Robinson; P. Medvedev; D. Wachs

    2010-10-01

    The silicide dispersion fuel of U3Si2/Al has been recognized as a reasonably good performance fuel for nuclear research and test reactors except that it requires the use of high enrichment uranium. An irradiated U3Si2/Al dispersion fuel (~75% enrichment) from the high flux side of a RERTR-8 (U0R040) plate was characterized using transmission electron microscopy (TEM). The fuel plate was irradiated in the advanced test reactor (ATR) for 105 days. The average irradiation temperature and fission density of the fuel particles for the TEM sample are estimated to be approximately ~110 degrees C and 5.4 x 10-21 f/cm3. The characterization was performed using a 200KV TEM with a LaB6 filament. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of this silicide fuel are discussed.

  11. Two-in-one sample preparation for plan-view TEM.

    PubMed

    Sáfrán, György; Szász, Noémi; Sáfrán, Eszter

    2015-07-01

    Transmission electron microscopy (TEM) sample preparation requires special skills, it is time consuming and costly, hence, an increase of the efficiency is of primary importance. This article describes a method that duplicates the yield of the conventional mechanical and ion beam preparation of plan-view TEM samples. As a modification of the usual procedures, instead of one two different samples are comprised in a single specimen. The two pre-cut slabs, one from each samples, are embedded side by side in the window of a 3 mm dia Ti disk and the specimen is thinned mechanically and by ion milling until perforation that occurs at the interface of the two different slabs. That, with proper implementation, provides acceptable size thin area for the TEM study of both samples. The suitability of the two-in-one method has been confirmed through examples.

  12. Resolution Improvement in Aberration-Corrected Low- Voltage TEM with Monochromator at 60 kV

    NASA Astrophysics Data System (ADS)

    Morishita, S.; Mukai, M.; Sasaki, T.; Suenaga, K.; Sawada, H.

    2015-10-01

    We have developed a low-voltage electron microscope equipped with a monochromator and Delta-type Cs correctors, which shows atomic resolution at accelerating voltages of 60, 30 and 15 kV. In theory, resolution of TEM images at 60 kV is severely affected by chromatic aberration, which is proven by our calculations of contrast transfer functions and multi-slice image simulation taking chromatic aberration into account with experimental conditions. Experimentally, TEM images of gold nano-particles were observed with non-monochromated and monochromated electron sources at 60 kV. Detectable spatial frequency in the image with the monochromated source was higher than that with non- monochromated source. We have demonstrated that the TEM image resolution at the low- voltage is improved by using a monochromated electron source, which reduce the energy spread of the electron source.

  13. 4T split TEM volume head and knee coils for improved sensitivity and patient accessibility.

    PubMed

    Avdievich, Nikolai I; Bradshaw, Ken; Lee, Jing-Huei; Kuznetsov, Andrey M; Hetherington, Hoby P

    2007-08-01

    Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15-20%.

  14. XRD and FTIR study of the effect of ultra high molecular weight polyethylene (UHMWPE) as binder on kaolin geopolymer ceramics

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Abdullah, Mohd Mustafa Al Bakri; Hussin, K.; Sandu, A. V.

    2017-04-01

    The effect of addition of Ultra High Molecular Weight Polyethylene (UHMWPE) as binder on Kaolin Geopolymer Ceramics was study using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) method. UHMWPE is added to the optimum kaolin geopolymer ceramics that obtained by mechanical performance, phase and microstructure analysis with the concentration of NaOH, solid/liquid and Na2SiO3/NaOH ratio of 12 M, 1.0 and 0.24 respectively. Kaolin geopolymer powders with addition of Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) were pressed into pellets followed by sintering at 1200 °C. At this temperature, the amorphous phase of geopolymer were fully crystallized. The results obtained by the XRD testing confirm that amorphous geopolymer transform to crystalline nepheline ceramics upon heating. The phase analysis for Kaolin geopolymer ceramics with addition of UHMWPE are similar to the kaolin geopolymer ceramics without UHMWPE indicates that the incorporation of a little amount of UHMWPE does not affect the structure feature of geopolymer. The increasing in intensity of nepheline peak contribute to high strength. The FTIR spectra showed the disappearance of water band after sinter at high temperature.

  15. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  16. Lead Speciation in House Dust from Canadian Urban Homes Using EXAFS Micro-XRF and Micro-XRD

    SciTech Connect

    L MacLean; S Beauchemin; P Rasmussen

    2011-12-31

    X-ray absorption fine-structure (XAFS) spectroscopy, micro-X-ray fluorescence ({mu}XRF), and micro-X-ray diffraction ({mu}XRD) were used to determine the speciation of Pb in house dust samples from four Canadian urban homes having elevated Pb concentrations (>1000 mg Pb kg{sup -1}). Linear combination fitting of the XAFS data, supported by {mu}XRF and {mu}XRD, shows that Pb is complexed in a variety of molecular environments, associated with both the inorganic and organic fractions of the dust samples. The inorganic species of lead identified were as follows: Pb metal, Pb carbonate, Pb hydroxyl carbonate, Pb oxide, and Pb adsorbed to iron oxyhydroxides. Pb carbonate and/or Pb hydroxyl carbonate occurred in all four dust samples and accounted for 28 to 75% of total Pb. Pb citrate and Pb bound to humate were the organic species identified. The results of this study demonstrate the ability of XAFS to identify Pb speciation in house dust and show the potential to identify Pb sources from new homes versus older homes. Understanding Pb speciation and how it influences bioaccessibility is important for human health risk assessment and risk management decisions which aim to improve indoor environmental health.

  17. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  18. The phase relations in Earth's mid-lower mantle: constraints from in-situ XRD and quantitative chemical analysis

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Meng, Y.; Prakapenka, V.; Mao, W. L.

    2011-12-01

    Determining the phase relations in the system MgO-FeO-SiO2 at high pressure (P) and high temperature (T) is of fundamental importance for understanding the geochemical and geophysical properties of Earth's deep interior. The phase relations in the upper lower mantle have been investigated both in a diamond anvil cell (DAC) [1] and a multi-anvil apparatus [2]. In this study, we investigated the phase relations in (Mg0.6Fe0.4)SiO3 at elevated P-T conditions (up to 80 GPa and 3000 K) by in-situ X-ray diffraction (XRD) measurements in a DAC. Each sample was compressed to the P of interest and then heated to high T. In-situ XRD data were collected at high P-T and then the sample was quenched to preserve the high P-T chemical composition. Samples were recovered and phase chemistry was obtained by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. Fe solubility in Pv phase increases with increasing P up to 80 GPa. (Mg0.6Fe0.4)SiO3 Pv formed at 80 GPa and its unit-cell volume is 1.8 % larger than that of Fe-free Pv (Lundin et al., 1991). Our improved knowledge of the phase relations in the mid-lower mantle and related geophysical implications will be discussed.

  19. Copper Coordination in Cu-SSZ-13 and Cu-SSZ-16 Investigated by Variable-Temperature XRD

    SciTech Connect

    Fickel, D.; Lobo, R

    2010-01-01

    Nitrogen oxides (NO{sub x}) are a major atmospheric pollutant produced through the combustion of fossil fuels in internal combustion engines. Copper-exchanged zeolites are promising as selective catalytic reduction catalysts for the direct conversion of NO into N{sub 2} and O{sub 2}, and recent reports have shown the enhanced performance of Cu-CHA catalysts over other zeolite frameworks in the NO decomposition of exhaust gas streams. In the present study, Rietveld refinement of variable-temperature XRD synchrotron data obtained for Cu-SSZ-13 and Cu-SSZ-16 is used to investigate the location of copper cations in the zeolite pores and the effect of temperature on these sites and on framework stability. The XRD patterns show that the thermal stability of SSZ-13 is increased significantly when copper is exchanged into the framework compared with the acid form of the zeolite, H-SSZ-13. Cu-SSZ-13 is also more thermally stable than Cu-SSZ-16. From the refined diffraction patterns, the atomic positions of atoms, copper locations and occupancies, and thermal displacement parameters were determined as a function of temperature for both zeolites. Copper is found in the cages coordinated to three oxygen atoms of the six-membered rings.

  20. The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander

    2016-11-01

    The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

  1. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  2. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  3. Functional outcomes after TEM in patients with complete clinical response after neoadjuvant chemoradiotherapy.

    PubMed

    Ghiselli, Roberto; Ortenzi, Monica; Cardinali, Luca; Skrami, Edlira; Gesuita, Rosaria; Guerrieri, Mario

    2017-07-01

    In patients who exhibit a complete clinical response after radio-chemotherapy for rectal cancer, the standard surgical approach might constitute overtreatment. The aim of this study is to analyse the outcomes of anorectal function and quality of life after transanal endoscopic microsurgery (TEM) in irradiated patients with complete clinical response. Between 2007 and 2014, 84 patients who were diagnosed with stage T2-T3-T4 N0 rectal cancer before chemoradiotherapy showed a complete clinical response to neoadjuvant therapy and underwent TEM. All patients were evaluated before and 1 year after TEM using the Cleveland Clinic Florida Fecal Incontinence Score (CCF-FIS) questionnaire to determine the impact of this surgical technique on the degree of faecal continence. To assess the quality of life of patients after surgery, we administered the Fecal Incontinence Quality of Life Scale. Twenty-three patients exhibited a worse incontinence status after surgical intervention (27.4; 95% CI 18.2-38.2). These patients experienced a median positive absolute variation in the CCF-FIS of four points (95% CI 3.5-4.5; p < 0.001). Female sex and age showed a significant correlation with the worsening of continence status. Scores on the Fecal Incontinence Quality of Life Index Scale did not show a significant difference before and after TEM. TEM may be an alternative treatment for patients with rectal cancer who exhibit a complete clinical response to neoadjuvant chemoradiotherapy because it offers the possibility to achieve a full thickness excision of the rectal wall. TEM also allows the identification of any residual disease and provides optimal quality of life and functional results.

  4. TEM and SHV Genes in Klebsiella pneumoniae Isolated from Cockroaches and Their Antimicrobial Resistance Pattern.

    PubMed

    Doosti, Abbas; Pourabbas, Mohammad; Arshi, Asghar; Chehelgerdi, Mohammad; Kabiri, Hamidreza

    2015-02-01

    Klebsiella pneumoniae is a gram-negative rod bacterium, a known cause of community-acquired bacterial pneumonia and is an important hospital-acquired pathogen that causes severe morbidity and mortality. The aim of this study was to identify the TEM and SHV genes in K. pneumoniae isolated from cockroaches obtained from hospitals. In this study, 250 cockroaches were collected from different hospitals in the province of Chaharmahal Va Bakhtiari, which is located in southwest Iran. The samples were examined for the presence of K. pneumoniae by plating onto a combination of culture media, and the antimicrobial susceptibility patterns of isolated K. pneumoniae from samples were evaluated using the disk diffusion test. In addition, from the culture, genomic bacterial DNA was extracted, and sequence-specific targets (TEM and SHV genes) were amplified using the polymerase chain reaction (PCR) method. Out of 250 cockroach samples collected from various hospitals, 179 samples (71.60%) were positive for K. pneumoniae. PCR reaction was performed using specific oligonucleotide primers (TEM-F, TEM-R and SHV-F, SHV-R) for the amplification of each gene, and amplified products were visualized on 1% agarose gel electrophoresis. Of all the specimens amplified by PCR in this research, 32 samples (17.87%) were positive for TEM and 15 samples (8.37%) were positive for SHV. Detection of TEM and SHV genes using molecular methods and their pattern of antimicrobial resistance can provide useful information about the epidemiology of and risk factors associated with K. pneumoniae infection.

  5. 2.5D Modeling of TEM Data Applied to Hidrogeological Studies in PARANÁ Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Porsani, J. L.; Santos, F. M.

    2013-12-01

    The transient electromagnetic method (TEM) is used all over the world and has shown great potential in hydrological, hazardous waste site characterization, mineral exploration, general geological mapping, and geophysical reconnaissance. However, the behavior of TEM fields are very complex and is not yet fully understood. Forward modeling is one of the most common and effective methods to understand the physical behavior and significance of the electromagnetics responses of a TEM sounding. Until now, there are a limited number of solutions for the 2D forward problem for TEM. More rare are the descriptions of a three-component response of a 3D source over 2D earth, which is the so-called 2.5D. The 2.5D approach is more realistic than the conventional 2D source previous used, once normally the source cannot be realistic represented for a 2D approximation (normally source are square loops). At present the 2.5D model represents the only way of interpreting TEM data in terms of a complex earth, due to the prohibitive amount of computer time and storage required for a full 3D model. In this work we developed a TEM modeling program for understanding the different responses and how the magnetic and electric fields, produced by loop sources at air-earth interface, behave in different geoelectrical distributions. The models used in the examples are proposed focusing hydrogeological studies, once the main objective of this work is for detecting different kinds of aquifers in Paraná sedimentary basin, in São Paulo State - Brazil. The program was developed in MATLAB, a widespread language very common in the scientific community.

  6. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    NASA Astrophysics Data System (ADS)

    Ye, B.; Jamison, L.; Miao, Y.; Bhattacharya, S.; Hofman, G. L.; Yacout, A. M.

    2017-05-01

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Therefore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  7. Investigating Processes of Materials Formation via Liquid Phase and Cryogenic TEM

    SciTech Connect

    De Yoreo, James J.; Sommerdijk, Nico

    2016-06-14

    The formation of materials in solutions is a widespread phenomenon in synthetic, biological and geochemical systems, occurring through dynamic processes of nucleation, self-assembly, crystal growth, and coarsening. The recent advent of liquid phase TEM and advances in cryogenic TEM are transforming our understanding of these phenomena by providing new insights into the underlying physical and chemical mechanisms. The techniques have been applied to metallic and semiconductor nanoparticles, geochemical and biological minerals, electrochemical systems, macromolecular complexes, and selfassembling systems, both organic and inorganic. New instrumentation and methodologies currently on the horizon promise new opportunities for advancing the science of materials synthesis.

  8. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  9. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  10. SANS and TEM studies of carbide precipitation and creep damage in type 304 stainless steel

    SciTech Connect

    Yoo, M.H.; Ogle, J.C.; Schneibel, J.H.; Swindeman, R.W.

    1984-01-01

    Small-angle neutron scattering (SANS) and transmission electron microscopy (TEM) studies were performed to characterize the carbide (M/sub 23/C/sub 6/) precipitation and creep damage induced in type 304 stainless steel in the primary creep stage. The size distribution of matrix carbides evaluated from SANS analyses was consistent with TEM data, and the expected accelerated kinetics of precipitation under applied stress was confirmed. Additional SANS measurements after the postcreep solution annealing were made in order to differentiate cavities from the carbides. Potential advantages and difficulties associated with characterization of creep-induced cavitation by the SANS techniques are discussed.

  11. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  12. TEM10 homodyne detection as an optimal small-displacement and tilt-measurement scheme

    NASA Astrophysics Data System (ADS)

    Delaubert, V.; Treps, N.; Lassen, M.; Harb, C. C.; Fabre, C.; Lam, P. K.; Bachor, H.-A.

    2006-11-01

    We present a detailed description of small displacement and tilt measurements of a Gaussian beam using split detectors and TEM10 homodyne detectors. Theoretical analysis and an experimental demonstration of measurements of these two conjugate variables are given. A comparison between the experimental efficiency of each scheme proves that the standard split detection is only 64% efficient relative to the TEM10 homodyne detection, which is optimal for beam displacement and tilt. We also demonstrate experimentally that squeezed light in the appropriate spatial modes allows measurements beyond the quantum noise limit for both types of detectors. Finally, we explain how to choose the detection scheme best adapted to a given application.

  13. Composite fillings microleakage after TEM00 Er: YAG laser texturing of human tooth enamel surface

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Shatilova, K. V.; Skrypnik, A. V.; Fedotov, D. Y.

    2010-11-01

    The results of comparative investigation of methylene-blue microleakage between tooth enamel surface and light-cure composites various fluidity are presented. An enamel surface was treated by traditional methods or laser method (laser texturing). The role of adhesive systems is investigated at enamel texturing by the TEM00 Er: YAG radiation. It is shown, that microleakage was not observed when enamel was textured by the TEM00 Er: YAG laser radiation and covered with flowable composite "Revolution" (Kerr) without adhesive system. It is established, that for laser textured surfaces methylene-blue microleakage depends on distance between microcraters.

  14. On the structural affinity of macromolecules with different biological properties: molecular dynamics simulations of a series of TEM-1 mutants.

    PubMed

    Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano

    2013-07-12

    Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical-biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Landed XRD/XRF analysis of prime targets in the search for past or present Martian life.

    PubMed

    Vaniman, D; Bish, D; Blake, D; Elliott, S T; Sarrazin, P; Collins, S A; Chipera, S

    1998-12-25

    Mars landers seeking evidence for past or present life will be guided by information from orbital mapping and from previous surface exploration. Several target options have been proposed, including sites that may harbor extant life and sites most likely to preserve evidence of past life These sites have specific mineralogic characteristics. Extant life might be gathered around the sinters and associated mineral deposits of rare active fumaroles, or held within brine pockets and inclusions in a few evaporite-mineral deposits. Possibilities for fossilization include deltaic and lake-bottom sediments of once-flooded craters, sinters formed by ancient hot-spring deposits, and the carbonate deposits associated with some evaporite systems. However, the highly varied mineralogy of fossil occurrences on Earth leads to the inference that Mars, an equally complex planet, could host a broad variety of potential fossilizing deposits. The abundance of volcanic systems on Mars and evidence for close associations between volcanism and water release suggest possibilities of organism entrapment and mineralization in volcaniclastic deposits, as found in some instances on Earth. Thus the targets being considered for exploration include a wide variety of unique deposits that would be characterized by silica or various nonsilicate minerals. Beyond these "special" deposits and in the most general case, an ability to distinguish mineralized from uncemented volcanic detritus may be the key to success in finding possible fossil-bearing authigenic mineralogies. A prototype miniaturized X ray diffraction/X ray fluorescence (XRD/XRF) instrument has been evaluated with silica, carbonate, and sulfate minerals and with a basalt, to examine the capabilities of this tool in mineralogic and petrologic exploration for exobiological goals. This instrument. CHEMIN (chemical and mineralogical analyzer), is based on an innovative low-power X ray tube, transmission geometry, and CCD collection and

  16. Molecular dynamics simulations and morphology analysis of TEM imaged PVDF nanofibers

    NASA Astrophysics Data System (ADS)

    Miao, Jiayuan; Reneker, Darrell; Tsige, Mesfin; Taylor, Philip

    With the goal of elucidating the structure of polyvinylidene fluoride (PVDF) nanofibers, all-atom molecular dynamics simulations were performed, and the results compared with structures observed in high resolution transmission electron microscopy (TEM) at the molecular level. Simulation shows that the stability of the β-phase component in a PVDF nanofiber is influenced by its thickness and processing history. When exposed to irradiation, as in a TEM observation, the structure is then further modified by the effects of chain scission. The transformation from the β phase into a paraelectric phase can explain the spindle formation and serpentine motion of molecular segments observed by Zhong et al. (Polymer, 54, 2013, 3745-3756) in irradiated PVDF nanofibers. From a comparison between simulated and experimental TEM images it was possible to identify numerous features that are useful in unveiling the inherent structure of PVDF nanofibers. The experimental TEM images appear to match well with those predicted by a model based on α-phase PVDF, while also being consistent with an alternative model (Nanoscale 2015, DOI: 10.1039/c5nr01619c). Work supported by the Petroleum Research Fund of the ACS.

  17. Thinning of large mammalian cells for cryo-TEM characterization by cryo-FIB milling.

    PubMed

    Strunk, K M; Wang, K; Ke, D; Gray, J L; Zhang, P

    2012-09-01

    Focused ion beam milling at cryogenic temperatures (cryo-FIB) is a valuable tool that can be used to thin vitreous biological specimens for subsequent imaging and analysis by cryo-transmission electron microscopy (cryo-TEM) in a frozen-hydrated state. This technique offers the potential benefit of eliminating the mechanical artefacts that are typically found with cryo-ultramicrotomy. However, due to the additional complexity in transferring samples in and out of the FIB, contamination and devitrification of the amorphous ice is commonly encountered. To address these problems, we have designed a sample cryo-shuttle that directly and specifically accepts Polara TEM cartridges to simplify the transfer process between FIB and TEM. We optimized several parameters in the cryo-FIB and cryo-TEM processes using the quality of the samples' ice as an indicator and demonstrated high-quality milling with large mammalian cells. By comparing the results from HeLa cells to those from Escherichia coli cells, we discuss some of the artefacts and challenges we have encountered using this technique.

  18. Critical hydrogen bonding by serine 235 for cephalosporinase activity of TEM-1 beta-lactamase.

    PubMed Central

    Imtiaz, U; Manavathu, E K; Lerner, S A; Mobashery, S

    1993-01-01

    The role of Ser-235 in the catalytic mechanism of the TEM-1 beta-lactamase has been explored by the study of a mutant enzyme in which Ser-235 has been substituted by alanine (Ala-235 mutant enzyme). A comparative kinetic analysis of both the wild-type and the Ala-235 TEM-1 enzymes revealed little effect of this substitution of residue 235 on the turnover of penicillins but a greater effect on the turnover of cephalosporins. Susceptibility testing of Escherichia coli strains harboring the wild-type TEM-1 beta-lactamase and the Ala-235 mutant enzyme revealed an effect of the mutation similar to that observed in the enzymological studies. The MICs of two representative cephalosporins for the strain containing the mutant enzyme were much lower than those for the isogenic strain bearing the wild-type TEM-1 beta-lactamase. On the other hand, the strain with the mutant enzyme was still highly resistant to penicillins. PMID:8285630

  19. Occurrence of Siliceous Impact Melt in Netschaëvo IIE? A FIB-TEM Study

    NASA Astrophysics Data System (ADS)

    Hamann, C.; Van Roosbroek, N.; Greshake, A.; Pittarello, L.; Hecht, L.; Debaille, V.; Wirth, R.; Claeys, Ph.

    2015-07-01

    A silicate inclusion in a sample of the Netschaëvo IIE iron meteorite was studied with FIB-TEM. We present petrographic features indicating that this inclusion is quenched impact melt and suggest that Netschaëvo is an impact melt breccia.

  20. Simple and rapid methods for SEM observation and TEM immunolabeling of rubber particles.

    PubMed

    Singh, Adya P; Wi, Seung Gon; Kang, Hunseung; Chung, Gap Chae; Kim, Yoon Soo

    2003-08-01

    We developed a method involving air-drying of a rubber suspension after fixation in glutaraldehyde-tannic acid and postfixation in osmium tetroxide for SEM observation. For TEM immunolabeling the suspension was air-dried after osmium-only fixation. Whereas conventional methods failed to satisfactorily stabilize rubber particles, the methods described here proved successful in preserving their integrity.

  1. The ArrayGrid: a methodology for applying multiple samples to a single TEM specimen grid.

    PubMed

    Castro-Hartmann, Pablo; Heck, Gerard; Eltit, Jose M; Fawcett, Paul; Samsó, Montserrat

    2013-12-01

    High throughput transmission electron microscopy (TEM) is limited by the time that it takes to prepare each specimen and insert it on the microscope. It is further impeded by the deteriorating vacuum of the microscope upon frequent specimen cycling. Nevertheless, in most cases only a small fraction of the specimen is examined and sufficient to provide hundreds of images. Here we demonstrate that microarray technology can be used to accurately position picoliter quantities of different samples in a single TEM grid, with negligible cross-contamination. Key features are a contact-mode deposition on a robust formvar-carbon support. The TEM grid containing a microarray of different samples, the ArrayGrid, can also be negatively stained. The ArrayGrid increases the efficiency of TEM grid preparation and examination by at least by one order of magnitude, and is very suitable for screening and data collection especially in experiments that generate a multiplicity of samples. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM.

    PubMed

    Kobler, A; Kübel, C

    2017-02-01

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a '180° ambiguity problem'. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. Copyright © 2017. Published by Elsevier B.V.

  3. Mistranslation drives the evolution of robustness in TEM-1 β-lactamase

    PubMed Central

    Bratulic, Sinisa; Gerber, Florian; Wagner, Andreas

    2015-01-01

    How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous “high fidelity” codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves. PMID:26392536

  4. Beyond the job exposure matrix (JEM): the task exposure matrix (TEM).

    PubMed

    Benke, G; Sim, M; Fritschi, L; Aldred, G

    2000-09-01

    The job exposure matrix (JEM) has been employed to assign cumulative exposure to workers in many epidemiological studies. In these studies, where quantitative data are available, all workers with the same job title and duration are usually assigned similar cumulative exposures, expressed in mgm(-3)xyears. However, if the job is composed of multiple tasks, each with its own specific exposure profile, then assigning all workers within a job the same mean exposure can lead to misclassification of exposure. This variability of exposure within job titles is one of the major weaknesses of JEMs. A method is presented for reducing the variability in the JEM methodology, which has been called the task exposure matrix (TEM). By summing the cumulative exposures of a worker over all the tasks worked within a job title, it is possible to address the variability of exposure within the job title, and reduce possible exposure misclassification. The construction of a TEM is outlined and its application in the context of a study in the primary aluminium industry is described. The TEM was found to assign significantly different cumulative exposures to the majority of workers in the study, compared with the JEM and the degree of difference in cumulative exposure between the JEM and the TEM varied greatly between contaminants.

  5. XAS and HR-TEM Analyses of the Nakhlite Hydrothermal Minerals

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2012-09-01

    We use Fe-K XANES and EXAFS, with HR-TEM observations, to show that the phyllosilicate minerals found in the Lafayette nakhlite are saponite and serpentine. An increase in ferric/ferrous ratio is identified as part of the hydrothermal activity.

  6. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.

    PubMed

    Mathieu, Valéry; Fastrez, Jacques; Soumillion, Patrice

    2010-09-01

    In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.

  7. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  8. Mistranslation drives the evolution of robustness in TEM-1 β-lactamase.

    PubMed

    Bratulic, Sinisa; Gerber, Florian; Wagner, Andreas

    2015-10-13

    How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous "high fidelity" codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves.

  9. Aberration-corrected STEM/TEM imaging at 15kV.

    PubMed

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-10-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192nm, and the power spectrum of the image showed spots corresponding to distances of 0.111nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314nm and 0.192nm, respectively. At an accelerating voltage of 15kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase.

  10. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    SciTech Connect

    Pan, Xiaoqing

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structures of BiFeO3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.

  11. [Retrospective analysis of carcinomas of the rectum operated by TEM during one year at our institute].

    PubMed

    Jánó, Zoltán; Mohos, Elemér; Kovács, Tamás; Berki, Csaba; Nagy, Tibor; Réti, György; Nagy, Attila

    2016-12-01

    The very first TEM (transanal endoscopyc microsurgery) in Hungary was performed in our department by professor Attila Nagy in 1992. Up to August 2016, 1385 operation in total was performed with an average number of 60 per year., 992 operations were carried out for benign reasons and 393 cases for malignancies. We analyze the malignant cases operated by TEM in 2013. In 2013 we performed 121 TEM on 118 patients (in 3 cases twice). 70 patients had benign, 48 patients had malignant pathology. The average follow-up was 32 (12-39) month.We analyzed the cases retrospectively, presenting the history of each patient in detail. The pathological stages were the following: 8 in situ carcinomas, 14 T1, 12 T2, 9 T3 and 5 Tx. 17 patients received preoperative RCT, (4 ypT0, 2 ypT1, 3 ypT2, 8 ypT3). In the pTis group one patient was lost to follow up. Local recurrence was noted in 2 cases (14.28%), from which one was malignant. No distant metastasis was observed; DFS: 85.71%, OS: 100%. From the pT1 group one patient was lost to follow up after 4 month. Local recurrence was found in 2/13 cases (15.38%), distant metastases in 1 out of 13 (7.69%); DFS: 84.61%, OS: 84.61%. In the pT2 group 3 local recurrences was observed (27.2%). Distant metastases occurred in one patient (9.09%); DFS: 81.81%, OS: 81.81%. In the pT3 group 2/8 local recurrence (25%), and 3/8 (37.5%) distant metastasis was found, DFS: 62.5%,OS: 75%. 4 patient out of the 5 pTx cases showed complete pathological response after neoadjuvant RCT and one patient's histology turned out to be carcinoid. Downstaging was observed in 10 patients who received neoadjuvant RCT. By a thorough discussion of each individual patient's history we would like to draw attention on the complexity of treatment of rectal malignancies with TEM and the need of personalized care. Firm conclusions cannot be drawn from our series because of the small number of the patients and the heterogeneity of the therapies. The establishment of a precise

  12. Degradation of dental ZrO2-based materials after hydrothermal fatigue. Part I: XRD, XRF, and FESEM analyses.

    PubMed

    Perdigão, Jorge; Pinto, Ana M; Monteiro, Regina C C; Braz Fernandes, Francisco M; Laranjeira, Pedro; Veiga, João P

    2012-01-01

    The aim was to investigate the effect of simulated low-temperature degradation (s-LTD) and hydrothermal fatigue on the degradation of three ZrO(2)-based dental materials. Lava, IPS, and NanoZr discs were randomly assigned to (1) Control-Storage in distilled water at 37°C; (2) Aging at 134°C for 5 h (s-LTD); (3) Thermocycling in saliva for 30,000 cycles (TF). XRD revealed that ZrO(2) m phase was identified in all groups but TF increased the m phase only for Lava. Under the FESEM, Lava showed no alterations under s-LTD, but displayed corrosion areas up to 60 µm wide after TF. We conclude that TF accelerated the degradation of Lava through an increase in the m phase and grain pull-out from the material surface.

  13. Reciprocal space XRD mapping with varied incident angle as a probe of structure variation within surface depth

    SciTech Connect

    Yang, Qiguang; Williams, Frances; Zhao, Xin; Reece, Charles E.; Krishnan, Mahadevan

    2013-09-01

    In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed evolution the of materials microstructure after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surfaces top-layer; II. for a mechanically polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.

  14. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    SciTech Connect

    FEHL,DAVID LEE; BIGGS,F.; CHANDLER,GORDON A.; STYGAR,WILLIAM A.

    2000-01-17

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

  15. Structural study of an amorphous CuTi alloy produced by mechanical alloying using XRD, EXAFS and RMC simulations

    NASA Astrophysics Data System (ADS)

    Machado, K. D.; Maciel, G. A.; Sanchez, D. F.; de Lima, J. C.; Jóvári, P.

    2010-09-01

    The structure of an amorphous Cu 64Ti 36 alloy produced by mechanical alloying was studied by X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy techniques and modeled through reverse Monte Carlo simulations using the total structure factor S(K) and the EXAFS χ(k) oscillations on Cu K edge as input data. From the simulations the partial pair distribution functions g(r) and the bond-angle distribution functions Θ(cosθ) were determined and, from these functions, average coordination numbers and average interatomic distances for the first neighbors were calculated. We also obtained information about the three-dimensional structures present in the alloy.

  16. Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.

    PubMed

    Lim, Hyunseob; Yilmaz, Eda; Byon, Hye Ryung

    2012-11-01

    Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.

  17. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-ray Diffraction (XRD)

    DOE PAGES

    Zhang, Q.; Bock, D.; Takeuchi, K. J.; ...

    2017-03-01

    Development of Li-S batteries is hindered by sluggish kinetics resulting from the intrinsic poor conductivity of sulfur and capacity degradation due to solubility of intermediate lithium polysulfides (LiPS). A strategy for overcoming these issues is to use TiS2, which is a good electrical conductor and LiPS absorbant, as an additive to sulfur electrodes. Furthemore, from a structural perspective, we probed TiS2-S composite materials during electrochemical discharge and charge reactions in propylene-oxide based glyme (DPGDME) electrolyte using in-situ XRD, revealing the synergistic effects of TiS2 and S in the composites. TiS2 was found to function effectively as a conductive additive andmore » improve the utilization of sulfur. Intercalation of Li+ into TiS2 takes place simultaneously with the sulfur-lithium reaction, and contributes favorably to the total realized capacity.« less

  18. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, R.; Rajkumar, P.

    2014-11-01

    The abstract of this paper explains the presence of minerals in air which causes great concern regarding public health issues. The spectroscopic investigation of air dust particles of several samples in various locations in the state of Tamilnadu, India is reported. Qualitative analyses were carried out to determine the major and minor constituent minerals present in the samples based on the FTIR, XRD absorption peaks. This study also identified the minerals like quartz, asbestos, kaolinite, calcite, hematite, montmorillonite, nacrite and several other trace minerals in the air dust particles. The presents of quartz is mainly found in all the samples invariably. Hence the percentage of quartz and its crystalline nature were determined with the help of extinction co-efficient and crystallinity index respectively. The shape and size of the particulates are studied with SEM analysis.

  19. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes

    NASA Astrophysics Data System (ADS)

    Rapacz-Kmita, A.; Paluszkiewicz, C.; Ślósarczyk, A.; Paszkiewicz, Z.

    2005-06-01

    Performance of hydroxyapatite material in a living body depends on a number of factors. Stability of hydroxyapatite structure, which is influenced by both, preparation conditions of the starting precursor powders and fabrication method of the implant materials, is an important one. Inappropriate preparation conditions of synthesis, calcination of powder and sintering of formed samples result in dehydroxylation and even in decomposition of HAp which lead to the change in the physicochemical properties of implants. In the work samples of hydroxyapatite ceramics have been obtained by two methods, i.e. by hot pressing and by pressureless sintering in the temperature range of 1150-1300 °C. The materials prepared have been studied using FTIR and XRD in order to identify the dehydroxylation processes and the possible hydroxyapatite decomposition during thermal treatment. The usefulness of both methods in identification of thermal stability of hydroxyapatite was confirmed.

  20. [XRD, FTIR and XPS analysis of oxidized particles from Dongshengmiao pyrite-polymetallic sulfide deposit, inner Mongolia].

    PubMed

    Yuan, Xue-Ling; Cao, Jian-Jin; Xie, Fang-Yan; Yang, Xiao-Jie; Yan, Hong-Bin; Lai, Pei-Xin; Wang, Zheng-Hai; Zeng, Jian-Nian

    2013-01-01

    In the present paper, characteristics of material compositions, phase structures, surface element states, and transformation mechanism of oxidized particles from Dongshengmiao pyrite-polymetallic sulfide deposit were studied using modern analytical testing technology including XRD, FTIR and XPS. The results show that the samples consist of gypsum, calcite, quartz, muscovite, goethite, organic matter, etc. Primary ore in deep oxidation zone mainly under went such processes as oxidization, hydrolysis, dehydration and carbonation. Compared to the surface oxidation zone of arid and extremely arid regions in the northwestern China, the oxidation process and oxidizing condition of the deep oxidation zone were less complex. New mineral type was also not found, and extensively developed sulfate minerals were rare to be seen. The research results can not only be applied to mineral identification of oxidized particles from this type of ore deposit but also play an important role in ore exploration, mining, mineral processing, etc.

  1. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR.

    PubMed

    Salvadó, Nati; Butí, Salvador; Nicholson, James; Emerich, Hermann; Labrador, Ana; Pradell, Trinitat

    2009-07-15

    Synchrotron radiation X-ray diffraction (micro-SR-XRD) and Fourier transform infrared spectroscopy (micro-SR-FTIR) are used in the non-destructive identification of reaction and aging compounds from micrometric ancient painting layers. The combination of the micrometer size and non-destructive nature of the techniques together with the high resolution and brilliance of the synchrotron radiation has proved to be a procedure most advantageous for the study of reaction, aging and degradation processes. Copper, lead and calcium carboxylates and oxalates are determined in the chromatic, preparation and alteration layers from 15th century egg tempera and oil paintings. Their nature and crystallinity have been assessed. Some hypothesis about the mechanisms of development of both carboxylates and oxalates are presented.

  2. Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin Kyle

    Operando transmission electron microscopy (TEM) is an extension of in-situ TEM in which the performance of the material being observed is measured simultaneously. This is of great value, since structure-performance relationships lie at the heart of materials science. For catalyst materials, like the SiO2-supported Ru nanoparticles studied, the important performance metric, catalyst activity, is measured inside the microscope by determining the gas composition during imaging. This is accomplished by acquisition of electron energy loss spectra (EELS) of the gas in the environmental TEM while catalysis is taking place. In this work, automated methods for rapidly quantifying low-loss and core-loss EELS of gases were developed. A new sample preparation method was also established to increase catalytic conversion inside a differentially-pumped environmental TEM, and the maximum CO conversion observed was about 80%. A system for mixing gases and delivering them to the environmental TEM was designed and built, and a method for locating and imaging nanoparticles in zone axis orientations while minimizing electron dose rate was determined. After atomic resolution images of Ru nanoparticles observed during CO oxidation were obtained, the shape and surface structures of these particles was investigated. A Wulff model structure for Ru particles was compared to experimental images both by manually rotating the model, and by automatically determining a matching orientation using cross-correlation of shape signatures. From this analysis, it was determined that most Ru particles are close to Wulff-shaped during CO oxidation. While thick oxide layers were not observed to form on Ru during CO oxidation, thin RuO2 layers on the surface of Ru nanoparticles were imaged with atomic resolution for the first time. The activity of these layers is discussed in the context of the literature on the subject, which has thus far been inconclusive. We conclude that disordered oxidized ruthenium

  3. Operator Training and TEMS Support: A Survey of Unit Leaders in Northern and Central California.

    PubMed

    Young, Jason B; Galante, Joseph M; Sena, Matthew J

    2013-01-01

    Members of Special Weapons and Tactics (SWAT) teams routinely work in high-risk tactical situations. Awareness of the benefit of Tactical Emergency Medical Support (TEMS) is increasing but not uniformly emphasized. To characterize the current regional state of tactical medicine and identify potential barriers to more widespread implementation. A multiple-choice survey was administered to SWAT team leaders of 22 regional agencies in northern and central California. Questions focused on individual officer self-aid and buddy care training, the use and content of individual first aid kits (IFAKs), and the operational inclusion of a dedicated TEMS provider. Respondents included city police (54%), local county sheriff (36%), state law enforcement (5%), and federal law enforcement (5%). RESULTS showed that 100% of respondents thought it was ?Very Important? for SWAT officers to understand the basics of self-aid and buddy care and to carry an IFAK, while only 71% of respondents indicated that team members actually carried an IFAK. In addition, 67% indicated that tourniquets were part of the IFAK, and 91% of surveyed team leaders thought it was ?Very Important? for teams to have a trained medic available onsite at callouts or high-risk warrant searches. Also, 59% of teams used an organic TEMS element. The majority of SWAT team leaders recognize the benefit of basic Operator medical training and the importance of a TEMS program. Despite near 100% endorsement by unit-level leadership, a significant proportion of teams are lacking one of the key components including Operator IFAKs and/or tourniquets. Tactical team leaders, administrators, and providers should continue to promote adequate Operator training and equipment as well as formal TEMS support. 2013.

  4. Synthesis of NiGa layered double hydroxides. A combined EXAFS, SAXS, and TEM study. 2. Hydrolysis of a Ni2+/Ga3+ solution.

    PubMed

    Defontaine, Guillaume; Michot, Laurent J; Bihannic, Isabelle; Ghanbaja, Jaafar; Briois, Valérie

    2004-10-26

    Takovites are nickel-based layered double hydroxides (LDH) with a general formula that can be written as Ni(1-x)Al(x)(OH)2, A(z-)(x/z), yH(2)O, where A is a compensating interlayer anion. As in some other LDH samples, the positive charge of the layer can be adjusted upon synthesis and various anions can be exchanged in the interlayer region. It is then important to understand the synthesis pathway of these materials. We then undertook a study on the hydrolytic behavior of pure Ni salts and mixtures of Ni and Ga salts. This paper focuses on the hydrolysis of Ni(2+) and Ga(3+) ions, together in solution, carried out by base addition. The samples will be defined by their hydrolysis ratio R = [OH(-)]/([Ni(2+)] + [Ga(3+)]). Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used to obtain information on the colloidal species size and shape on a large scale. Each hydrolyzed sample was also studied by Ni K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS) to obtain information on the local structure of the species in suspension. SAXS curves reveal the presence of bidimensional objects whatever the R values. The platelets formed for R values >/=1.1 are slightly thicker and smaller in size, which may be linked to their different natures. Complementary information is provided by TEM analysis: the first colloids formed have a structure very close to that of alpha-GaOOH, as shown by electronic diffraction. Those structures are progressively replaced by Ni-Ga LDH platelets with increasing hydrolysis ratio, which are the only species in suspension for R = 2.0, as shown by XRD. EXAFS results confirm the complete hydrolysis of gallium before the formation of Ni-Ga LDH phases.

  5. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    PubMed

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  6. The importance of XRD analysis in provenance and palaeoenvironmental studies of the Piedras de Afilar Formation, Neoproterozoic of Uruguay

    NASA Astrophysics Data System (ADS)

    Pamoukaghlian, K.; Poiré, D. G.; Gaucher, C.; Uriz, N.; Cingolani, C.; Frigeiro, P.

    2009-04-01

    The Piedras de Afilar Formation crops out in the southeast part of Uruguay, forming part of the Tandilia Terrane (sensu Bossi et al. 2005). Pamoukaghlian et al. (2006) and Gaucher et al. (2008) have published δ13C, δ18O and U/Pb SHRIMP results, which indicate a Neoproterozoic age for this formation. The palaeoenvironment has been defined as a shallow marine platform based on the presence of interference ripples, hummocky and mega-hummocky cross-stratification. X-ray diffraction (XRD) analyses help to better constrain the palaeoenvironment: the presence of chlorite/smectite found in black shales, suggest a reducing environment, and abundant illite indicates a cold to temperate climate. Provenance studies have been undertaken that utilise a combination of detailed palaeocurrent measurements, petrographic descriptions, XRD analyses, and geochemical isotopic analyses, including U/Pb SHRIMP determinations. Mineral compositional diagrams for sandstones suggest a stable cratonic provenance. Palaeocurrents are mainly from the NNE, indicating a provenance from the cratonic areas of the Tandilia Terrane. The illite crystal index indicates diagenetic to low-metamorphic conditions for the sequence; this is important to confirm that the identified minerals are authigenic. Clay minerals identified by XRD analysis of sandstones from the siliciclastic member are illite (80 - 90%), kaolinite (5 - 10%), and chlorite (5 - 10%). This is consistent with a provenance from the cratonic areas (quartz-feldspar dominated rock types). Isotopic analyses have been undertaken to provide better constraints on the tectonic setting. U/Pb SHRIMP ages for the youngest zircons are 990 Ma (Gaucher et al. 2008), and the basal granite (Granito de la Paz) is 2056 ± 11 Ma (Hartmann et al. 2001), suggesting a provenance from the Archaean basement for the Piedras de Afilar Formation, like its counterparts in the Rio de la Plata Craton. References Bossi, J., Piñeyro, D., Cingolani, C. (2005). El l

  7. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  8. TEM identification of subsurface phases in ternary U-Pu-Zr fuel

    NASA Astrophysics Data System (ADS)

    Aitkaliyeva, Assel; Madden, James W.; Papesch, Cynthia A.; Cole, James I.

    2016-05-01

    Phases and microstructure in as-cast, annealed at 850 °C, and subsequently cooled U-23Pu-9Zr fuel were characterized using scanning and transmission electron microscopy techniques. SEM examination shows formation of three phases in the alloy that were identified in TEM using selective area diffraction pattern analysis: α-Zr globular and elongated δ-UZr2 inclusions and a thick oxide layer formed on top of β-Pu phase, which has been initially assumed to be ζ-(U, Pu). However, further examination of the cross-sectional TEM specimens identified the matrix phases as δ-UZr2, β-Pu, and (U, Zr)ht. Two types of inclusions were observed in the immediate vicinity of the specimen surface and they were consistent with α-Zr and ζ-(U, Pu).

  9. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    PubMed

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  10. Direct observation of catalytic oxidation of particulate matter using in situ TEM

    PubMed Central

    Kamatani, Kohei; Higuchi, Kimitaka; Yamamoto, Yuta; Arai, Shigeo; Tanaka, Nobuo; Ogura, Masaru

    2015-01-01

    The ability to observe chemical reactions at the molecular level convincingly demonstrates the physical and chemical phenomena occurring throughout a reaction mechanism. Videos obtained through in situ transmission electron microscopy (TEM) revealed the oxidation of catalytic soot under practical reaction conditions. Carbon oxidation reactions using Ag/SiO2 or Cs2CO3/nepheline catalysts were performed at 330 °C under an O2 flow of 0.5 Pa in the TEM measurement chamber. Ag/SiO2 catalyzed the reaction at the interface of the mobile Ag species and carbon, while the Cs species was fixed on the nepheline surface during the reaction. In the latter case, carbon particles moved, remained attached to the Cs2CO3/nepheline surface, and were consumed at the interface by the oxidation reaction. Using this technique, we were able to visualize such mobile and immobile catalysis according to different mechanisms. PMID:26154580

  11. Probing the active site of beta-lactamase R-TEM1 by informational suppression.

    PubMed

    Lenfant, F; Labia, R; Masson, J M

    1990-01-01

    Using a new extended set of 13 amber suppressors in E coli, systematic amino-acid replacements were performed at positions 104(E) and 238(G) of TEM-1 beta-lactamase from PUC19. The enzyme is tolerant to most substitutions tested at position 104. Missense revertants E104K, E104S or E104Y exhibited only minor changes in enzyme activity with respect to wild-type TEM-1. Several substitutions at position 238 resulted in a new cefotaxime hydrolysing capacity, but to an extent that did not confer cefotaxime resistance for the bacteria producing the mutated enzymes. Only when the mutations at codons 104 and 238 were combined on the same gene, did a true cefotaxime resistant phenotype appear, mimicking the situation encountered with 3rd generation cephalosporins resistant clinical isolates.

  12. Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM

    SciTech Connect

    Lu, Xiaotang; He, Yang; Mao, Scott X.; Wang, Chong-min; Korgel, Brian A.

    2016-12-22

    Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to the nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.

  13. Nanofluidic chip for liquid TEM cell fabricated by parylene and silicon nitride direct bonding.

    PubMed

    Jang, Heejun; Kang, Il-Suk; Kim, Jihye; Kim, Jonghyun; Cha, Yun Jeong; Yoon, Dong Ki; Lee, Wonhee

    2017-09-15

    Despite the importance of nanofluidic transmission electron microscope (TEM) chips, a simple fabrication method has yet to be developed due to the difficulty of wafer bonding techniques using a nanoscale thick bonding layer. We present a simple and robust wafer scale bonding technique using parylene as a bonding layer. A nanoscale thick parylene layer was deposited on a silicon nitride (SiN) wafer and patterned to construct nanofluidic channels. The patterned parylene layer was directly bonded to another SiN wafer by thermal surface activation and bonding, with a bonding strength of ∼3 MPa. Fourier transform infrared spectroscopy showed that carbon-oxygen bonds were generated by thermal activation. We demonstrated TEM imaging of gold nanoparticles suspended in liquid using the fabricated nanofluidic chip.

  14. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    The chemical and physical transformation between gaseous fuel pyrolysis products and solid carbonaceous soot represents a critical step in soot formation. In this paper, simultaneous two-dimensional LIF-LII (laser-induced fluorescence - laser-induced incandescence) images identify the spatial location where the earliest identifiable chemical and physical transformation of material towards solid carbonaceous soot occurs along the axial streamline in a normal diffusion flame. The identification of the individual LIF and LII signals is achieved by examining both the excitation wavelength dependence and characteristic temporal decay of each signal. Spatially precise thermophoretic sampling measurements are guided by the LIF-LII images with characterization of the sampled material accomplished via both bright and dark field TEM. Both bright and dark field TEM measurements support the observed changes in photophysical properties which account for conversion of fluorescence to incandescence as fuel pyrolysis products evolve towards solid carbonaceous soot.

  16. Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging.

    PubMed

    Wiggins, G C; Potthast, A; Triantafyllou, C; Wiggins, C J; Wald, L L

    2005-07-01

    An eight-channel receive-only brain coil and table-top detunable volume transmit coil were developed and tested at 7 T for human imaging. Optimization of this device required attention to sources of interaction between the array elements, between the transmit and receive coils and minimization of common mode currents on the coaxial cables. Circular receive coils (85 mm dia.) were designed on a flexible former to fit tightly around the head and within a 270-mm diameter TEM transmit volume coil. In the near cortex, the array provided a fivefold increase in SNR compared to a TEM transmit-receive coil, a gain larger than that seen in comparable coils at 3 T. The higher SNR gain is likely due to strong dielectric effects, which cause the volume coil to perform poorly in the cortex compared to centrally. The sensitivity and coverage of the array is demonstrated with high-resolution images of the brain cortex.

  17. Analytical study of raw Swarna Makshika (Chalcopyrite) and its Bhasma through TEM and EDAX

    PubMed Central

    Mohapatra, Sudhaldev; Jha, Chandra Bhushan

    2013-01-01

    Ayurveda, the Indian System of Medicine deals with a number of metals and minerals. Swarna Makshika (SM), a chalcopyrite one such minerals has iron (Fe), copper (Cu), and sulphur (S) as major ingredients along with other trace elements of therapeutic importance. Studies related with characterization of SM are very few. In the current study SM and SM Bhasma were analysed through Transmission Electron Microscope (TEM) and Energy Dispersive X-Ray Analysis (EDAX). Analysis reveals the presence of iron, copper, and sulphur in SM. In addition to these elements, SM Bhasma found to contain Potassium, Magnesium, Aluminum, and Silicon in trace amount. TEM study reveals that, grain size of the SM (5-10 microns) is significantly reduced in SM Bhasma to 50-200 nm. PMID:24250132

  18. Analytical study of raw Swarna Makshika (Chalcopyrite) and its Bhasma through TEM and EDAX.

    PubMed

    Mohapatra, Sudhaldev; Jha, Chandra Bhushan

    2013-04-01

    Ayurveda, the Indian System of Medicine deals with a number of metals and minerals. Swarna Makshika (SM), a chalcopyrite one such minerals has iron (Fe), copper (Cu), and sulphur (S) as major ingredients along with other trace elements of therapeutic importance. Studies related with characterization of SM are very few. In the current study SM and SM Bhasma were analysed through Transmission Electron Microscope (TEM) and Energy Dispersive X-Ray Analysis (EDAX). Analysis reveals the presence of iron, copper, and sulphur in SM. In addition to these elements, SM Bhasma found to contain Potassium, Magnesium, Aluminum, and Silicon in trace amount. TEM study reveals that, grain size of the SM (5-10 microns) is significantly reduced in SM Bhasma to 50-200 nm.

  19. Chaperone-substrate interactions monitored via a robust TEM-1 β-lactamase fragment complementation assay.

    PubMed

    Bai, Ling; He, Wei; Li, Tianpeng; Yang, Cuiting; Zhuang, Yingping; Quan, Shu

    2017-08-01

    To investigate the application of the TEM-1 β-lactamase protein fragment complementation assay (PCA) in detecting weak and unstable protein-protein interactions as typically observed during chaperone-assisted protein folding in the periplasm of Escherichia coli. The TEM-1 β-lactamase PCA system effectively captured the interactions of three pairs of chaperones and substrates. Moreover, the strength of the interactions can be quantitatively analyzed by comparing different levels of penicillin resistance, and the assay can be performed under 0.5% butanol, a stress condition thought to be physiologically relevant. The β-lactamase PCA system faithfully reports chaperone-substrate interactions in the bacterial cell envelope, and therefore this system has the potential to map the complex protein homeostasis network under a fluctuating environment.

  20. A flexible multi-stimuli in situ (S)TEM: concept, optical performance, and outlook.

    PubMed

    Börrnert, Felix; Müller, Heiko; Riedel, Thomas; Linck, Martin; Kirkland, Angus I; Haider, Max; Büchner, Bernd; Lichte, Hannes

    2015-04-01

    The progress in (scanning) transmission electron microscopy development had led to an unprecedented knowledge of the microscopic structure of functional materials at the atomic level. Additionally, although not widely used yet, electron holography is capable to map the electric and magnetic potential distributions at the sub-nanometer scale. Nevertheless, in situ studies inside a (scanning) transmission electron microscope ((S)TEM) are extremely challenging because of the much restricted size and accessibility of the sample space. Here, we introduce a concept for a dedicated in situ (S)TEM with a large sample chamber for flexible multi-stimuli experimental setups and report about the electron optical performance of the instrument. We demonstrate a maximum resolving power of about 1 nm in conventional imaging mode and substantially better than 5 nm in scanning mode while providing an effectively usable "pole piece gap" of 70 mm. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument.

    PubMed

    Geelen, Daniël; Thete, Aniket; Schaff, Oliver; Kaiser, Alexander; van der Molen, Sense Jan; Tromp, Rudolf

    2015-12-01

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. Copyright © 2015. Published by Elsevier B.V.

  2. A High-Power Reflector Impulse Antenna with Dual-Tem Source

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Zhang, An-Xue; Wu, Hui; Jiang, Yan-Sheng; Wang, Wen-Bing

    2008-09-01

    There are different demands on radiation efficiency and direction pattern according to various ultra-wideband (UWB) antennas and high power applications. To obtain more radiating gain on bore-sight of paraboloidal reflector and centralized radiating direction, a novel feeding structure called dual-TEM source has been designed and applied in half-paraboloidal reflector impulse radiating antenna (IRA) applications. Simulation results proved that this proposed half-paraboloidal reflector IRA with dual-TEM source provided greater radiation performance on bore-sight as a result of the synthesized power in the aperture space of paraboloid. Moreover, lots of simulation work and comparison have been done in different feeding models to summarize a relative optimal feeding structure.

  3. Electrochemical loading of TEM grids used for the study of potential dependent morphology of polyaniline nanofibres.

    PubMed

    Bhadu, Gopala Ram; Paul, Anirban; Perween, Mosarrat; Gupta, Rajeev; Chaudhari, Jayesh C; Srivastava, Divesh N

    2016-03-01

    An electrochemical method for loading electroactive materials over the TEM grid is reported. The protocol has been demonstrated using polyaniline as an example. The electroactive polymer was directly deposited over the Au TEM grid, used as working electrode in a 3 electrode electrochemical cell. The undisturbed as-deposited morphologies under the influence of various counter ions and ex situ electrochemical states have been studied and compared. Contrary to behaviour in bulk the individual polyaniline fibre was found thinner at anodic potentials. The movement of counter ions as a function of the electrochemical state of the polymer was studied using STEM-EDX elemental mapping. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  4. Imaging atomic structure in metal nanoparticles using high-resolution cryo-TEM.

    PubMed

    Balmes, Olivier; Malm, Jan-Olle; Pettersson, Niklas; Karlsson, Gunnel; Bovin, Jan-Olov

    2006-04-01

    It has been shown, by imaging gold (200) planes, that it is possible to achieve better than 0.20-nm structural resolution in cryo-transmission electron microscopy (cryo-TEM). This has been done using commercially available cryo equipment and using a 300-kV field emission gun (FEG) TEM. The images of 15-nm gold particles embedded in amorphous frozen water clearly show the (111) planes (separated by 0.235 nm) in gold. Fourier transform demonstrates the presence of (200) planes in the image, proving a resolution of better than 0.20 nm. The experimental results are supported by image simulations using the multislice method. These simulations suggest that it should be possible to achieve the same resolution even in smaller particles and particles of lighter elements. The crucial experimental problem to overcome is keeping the thickness of the amorphous film low and to work at low electron dose conditions.

  5. Watching the dehydrogenation of alane (AlH3) in a TEM

    NASA Astrophysics Data System (ADS)

    Beattie, Shane; Humphries, Terry; Weaver, Louise; McGrady, Sean

    2008-03-01

    Alane (AlH3) is a promising candidate for on-board hydrogen storage applications. Its theoretical gravimetric capacity is 10.1 percent and decomposition is achieved with modest heating (60-200 deg C). We studied the dehydrogenation of alane, insitu, in a TEM. Alane powder was loaded into the TEM and heated at 80 deg C. We were able to `watch' the dehydrogenation of the alane to aluminum. Electron diffraction and dark fiend images are used to show how and where the aluminum crystallites grow. Although crystalline aluminum phases were successfully identified, some of the sample remained amorphous. We will discuss the nature of the amorphous material and present images clearly identifying the nature of the aluminum crystallites.

  6. Nanofluidic chip for liquid TEM cell fabricated by parylene and silicon nitride direct bonding

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Kang, Il-Suk; Kim, Jihye; Kim, Jonghyun; Cha, Yun Jeong; Yoon, Dong Ki; Lee, Wonhee

    2017-09-01

    Despite the importance of nanofluidic transmission electron microscope (TEM) chips, a simple fabrication method has yet to be developed due to the difficulty of wafer bonding techniques using a nanoscale thick bonding layer. We present a simple and robust wafer scale bonding technique using parylene as a bonding layer. A nanoscale thick parylene layer was deposited on a silicon nitride (SiN) wafer and patterned to construct nanofluidic channels. The patterned parylene layer was directly bonded to another SiN wafer by thermal surface activation and bonding, with a bonding strength of ˜3 MPa. Fourier transform infrared spectroscopy showed that carbon-oxygen bonds were generated by thermal activation. We demonstrated TEM imaging of gold nanoparticles suspended in liquid using the fabricated nanofluidic chip.

  7. Diagnosis of the heating effect on the electrical resistivity of Ouargla (Algeria) dunes sand using XRD patterns and FTIR spectra

    NASA Astrophysics Data System (ADS)

    Mechri, Mohammed Laïd; Chihi, Smaïl; Mahdadi, Naouia; Beddiaf, Samiha

    2017-01-01

    XRD patterns and FTIR spectra have shown that dunes sand of Ouargla's region, in its natural state, is formed of a high percentage of quartz, gypsum and very low percentage of kaolinite and hematite, in addition to some organic compounds. The electrical resistivity of the natural sand has been measured, it was 6 × 1014 Ω cm. Six samples of the sand were heated separately at 200, 400, 600, 800, 1000 and 1200 °C. The XRD patterns and FTIR spectra of these samples were carried out. On the other hand, the electrical resistivities of these samples have been measured. The change of the electrical resistivity with heat shows a nonlinear behavior. The heated sample of sand at 200 °C has lost some water. Most of the gypsum in the 200 °C heated sample has transformed into anhydrite, and the rest has transformed into bassanite, and its electrical resistivity has fallen down to 3.5 × 1014 Ω cm. By heating at 400 °C, the gypsum has lost all its water and it has transformed entirely to anhydrite, and its electrical resistivity became 6.75 × 1012 Ω cm, it has the lowest measured resistivity. At 600 °C and 800 °C, in addition to anhydrite, the kaolinite transformed to meta-kaolin due to the continuous breaking of OH bond and formation of water vapor, and the electrical resistivity increased to (1.5-1.9) × 1014 Ω cm. Heating at 1000 °C leads to the initiation of the interaction between anhydrite and quartz, the wollastonite appears, and the meta-kaolin transforms to aluminum-silicon and cristobalite. The wollastonite is a good electrical insulator. It raises the electrical resistivity of sand to 2.6 × 1014 Ω cm. The heating at 1200 °C makes all anhydrite to interact with quartz due to the increasing of volume of wollastonite, the anhydrite disappears completely, the quartz transforms into cristobalite. The cristobalite increases due to the dissociation of aluminium-silicon into mullite and cristobalite, as well as the transformation of quartz into cristobalite at

  8. Weathering and hydrothermal alteration of basalts in Iceland: mineralogy from VNIR, TIR, XRD, and implications for Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Mustard, J. F.; Bish, D. L.

    2009-12-01

    thomsonite, basalts with silica/quartz-bearing veins, basalts bearing celadonite, and basalts partially altered to montmorillonite, Fe/Mg smectite, or mixed smectite-chlorite. Analyses included: (1) measurement of reflectance spectra of the whole rock by the ASD; (2) measurement of VNIR and TIR spectra in RELAB of particle-size separates (<25um and <125um) derived from the bulk rock and from precipitated minerals extracted from the vesicles; (3) measurement of X-ray diffraction (XRD) patterns, including quantitative XRD; and (4) electron microprobe chemical analyses. These data emulate orbital data from CRISM, OMEGA, and TES, which detect the infrared active components, linked to in-situ data on whole rock modal mineralogy such as will be measured by the ChemMin instrument on the MSL rover.

  9. Structural (XRD) and thermal (DSC, TGA) and BET analysis of materials derived from non-metal cation pentaborate salts.

    PubMed

    Beckett, Michael A; Horton, Peter N; Hursthouse, Michael B; Knox, David A; Timmis, James L

    2010-04-28

    The synthesis, structural characterization (XRD), and thermal properties of nine non-metal cation (NMC) pentaborate anion salts, [NMC][B(5)O(6)(OH)(4)] (1a-1i) is described (NMC = [NH(3)CMe(2)(CH(2)OH)](+) (a), [O(CH(2)CH(2))(2)NH(2)](+) (b), [NH(3)CMe(CH(2)OH)(2)](+) (c), [2-(2-CH(2)CH(2)OH)PyH](+) (d), [(CH(2))(4)NH(CH(2)CH(2)OH)](+) (e), [(CH(2))(5)NH(CH(2)CH(2)OH)](+) (f), [2-MeImid](+) (g), [Me(3)NCMe(2)(CH(2)OH)](+) (h), [O(CH(2)CH(2))(2)NMe(2)](+) (i). Single-crystal X-ray diffraction studies on all compounds show that they contain isolated pentaborate anions, H-bonded together in a supramolecular array, with the cations occupying the cavities within the network. Compound 1c was obtained as a partial hydrate (0.16H(2)O). TGA and DSC analysis (in air, 25-1000 degrees C) indicate that compounds 1a-1i thermally decompose via a 2 stage process to B(2)O(3). The first stage (<250 degrees C) is dehydration to condensed polymeric pentaborates {approximate composition: [NMC][B(5)O(8)] (2a-2i)}. Five condensed pentaborates (2a-c, 2e, 2g) were synthesised and characterized by powder XRD and BET analysis. These condensed pentaborates were amorphous. The isolated pentaborates intumesced at approximately 600 degrees C (occupying approximately 10 times their original volume), and then contracted back to black glassy B(2)O(3) solids at 1000 degrees C. The intumescent materials (3a), (3b), (3e), (3g), and a final B(2)O(3) sample (4b) were synthesised and isolated and their porosities determined. BET surface area analysis on the isolated pentaborates (1a-c, 1e, 1g), the condensed pentaborates (2a-c, 2e, 2g), intumesced materials (3a, 3b, 3e, 3g), and B(2)O(3) (4b) showed that they were all 'non-porous' (<1.59 m(2) g(-1)).

  10. 2D TEM Modeling and Inversion by Adaptive Born Forward Mapping

    NASA Astrophysics Data System (ADS)

    Lee, T.; Seo, M.; Cho, I. K.; Ko, K. B.; You, Y. J.

    2014-12-01

    In the airborne electromagnetic survey, vast data are acquired with the development of precise measuring equipment and the automation of data acquisition. In this study we developed fast and accurate two-dimensional (2D) modeling and inversion algorithm based on the adaptive born forward mapping (ABFM) method, which is recently emerging for fast time-domain electromagnetic (TEM) modeling. The ABFM method is an approximation method that takes into consideration the true electrical conductivity distribution of subsurface media and is different from the conventional Born approximation that uses the constant electric conductivity. One of the most important points of the ABFM method is how to set a suitable sensitivity function. In this study, the known 1D sensitivity function was expanded into 2D sensitivity function to effectively approximate the dispersive behavior of electromagnetic field. By comparing the analytic solution and approximate ABFM solution for layered earth models, we found that the two solutions correspond to each other well. This implies that the 2D sensitivity function suggested in this study is suitable and that the ABFM method has very excellent accuracy in 2D TEM modeling even though it is an approximation method. Furthermore, a 2D inversion algorithm was developed with respect to the apparent conductivity data of TEM based on ABFM. To enhance the resolution and stability, the smoothness-constrained least-squares method with ACB constraint was employed. The inversion of calculated data for various models produced a reasonable model close to the true model. It is expected that the method will be extensively applicable to TEM modeling and inversion without difficulty in the future.

  11. Experimental Space Weathering of Ordinary Chondrites by Nanopulse Laser: TEM Results

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Hiroi, T.; Keller, L. P.; Pieters, C. M.

    2011-01-01

    A set of ordinary chondrite meteorites has been subjected to artificial space weathering by nanopulse laser to simulate the effects of micrometeorite bombardment. Three meteorites, an H (Ehole), L (Chateau Renard - CR), and LL (Appley Bridge - AB) were lasered following the method of Sasaki et al [1]. Near IR spectra were taken before and after exposure to examine the optical changes induced and the samples were examined by scanning and transmission electron microscopy (SEM and TEM) to understand the physical changes.

  12. Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM

    PubMed Central

    Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.

    2012-01-01

    Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522

  13. Highly efficient 60-W TEM00 CW diode-end-pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Tidwell, S. C.; Seamans, J. F.; Bowers, M. S.

    1993-01-01

    We have demonstrated a diode-end-pumped Nd:YAG laser that produces an output power of 60 W in a near-diffraction-limited beam (i.e., M exp 2 is less than 1.3). In multimode operation, the laser produces an output power of 92 W. The optical-to-optical efficiency (i.e., the ratio of laser power to diode power) is 26 percent for TEM00 operation and 44 percent for multimode operation.

  14. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  15. Optimized Ar(+)-ion milling procedure for TEM cross-section sample preparation.

    PubMed

    Dieterle, Levin; Butz, Benjamin; Müller, Erich

    2011-11-01

    High-quality samples are indispensable for every reliable transmission electron microscopy (TEM) investigation. In order to predict optimized parameters for the final Ar(+)-ion milling preparation step, topographical changes of symmetrical cross-section samples by the sputtering process were modeled by two-dimensional Monte-Carlo simulations. Due to its well-known sputtering yield of Ar(+)-ions and its easiness in mechanical preparation Si was used as model system. The simulations are based on a modified parameterized description of the sputtering yield of Ar(+)-ions on Si summarized from literature. The formation of a wedge-shaped profile, as commonly observed during double-sector ion milling of cross-section samples, was reproduced by the simulations, independent of the sputtering angle. Moreover, the preparation of wide, plane parallel sample areas by alternating single-sector ion milling is predicted by the simulations. These findings were validated by a systematic ion-milling study (single-sector vs. double-sector milling at various sputtering angles) using Si cross-section samples as well as two other material-science examples. The presented systematic single-sector ion-milling procedure is applicable for most Ar(+)-ion mills, which allow simultaneous milling from both sides of a TEM sample (top and bottom) in an azimuthally restricted sector perpendicular to the central epoxy line of that cross-sectional TEM sample. The procedure is based on the alternating milling of the two halves of the TEM sample instead of double-sector milling of the whole sample. Furthermore, various other practical aspects are issued like the dependency of the topographical quality of the final sample on parameters like epoxy thickness and incident angle.

  16. TEM and HRXRD Analysis of LP MOVPE Grown InGaP/GaAs epilayers

    SciTech Connect

    Pelosi, Claudio; Bosi, Matteo; Attolini, Giovanni; Germini, Fabrizio; Frigeri, Cesare; Prutskij, Tatiana

    2007-04-10

    The diffusion phenomena at interfaces between GaAs/InGaP layers grown by low pressure MOVPE have been studied by dark field (DF) transmission Electron Microscopy (TEM) and High resolution X-ray Diffractometry (HRXRD). By comparing the results of the two techniques a mismatched layer containing P or P and In has been evidenced. The causes of this behavior are briefly discussed.

  17. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    NASA Astrophysics Data System (ADS)

    Sears, Jasmine; Gibson, Ricky; Gehl, Michael; Zandbergen, Sander; Keiffer, Patrick; Nader, Nima; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2017-05-01

    Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM) Energy Dispersive Spectroscopy (EDS). Several sizes of islands are examined, with larger islands exhibiting high (>94%) average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  18. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  19. Direct evidence of chemical ordering in the FePt nanostructured alloy by HR-TEM

    NASA Astrophysics Data System (ADS)

    Gupta, Rekha; Medwal, Rohit; Annapoorni, S.

    2015-07-01

    The iron-platinum (FePt) alloy exhibits structural and magnetic phase transformation even at a low temperature of 300 °C with an insignificant grain growth. These transformation studies were understood nano-scopically using high resolution-transmission electron microscopy (HR-TEM). The FePt grains show strain induced structural transformation and adopts polycrystalline behaviour. The chemical ordering of FePt grains is explained using Fast Fourier Transform (FFT) analysis of the TEM image. HR-TEM image shows the hexagonal arrangement of Pt atoms in the [0 0 1] direction in the FePt unit cell which gives the direct evidence of chemical ordering in FePt nanostructured alloy. The filtration and reconstruction method has been employed with the help of inverse Fast Fourier Transformation tool, confirming the formation of L10 FePt phase. The chemical ordering is also confirmed by structural and magnetic measurements revealing an order parameter of 0.875 and coercivity 3 kOe respectively at a low annealing temperature of 300 °C. The chemical ordering at low annealing temperature makes it suitable for media storage applications.

  20. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects.

    PubMed

    Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid Mikhiel

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia's in situ ion irradiation TEM (I³TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO₂.

  1. Validation of the gyrokinetic model in ITG and TEM dominated L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Howard, N. T.; White, A. E.; Reinke, M. L.; Greenwald, M.; Holland, C.; Candy, J.; Walk, J. R.

    2013-12-01

    A rigorous validation of the gyrokinetic model was performed in both ion temperature gradient (ITG) and trapped electron mode (TEM) dominated Alcator C-Mod plasmas at (normalized midplane minor radius) r/a = 0.5 and 0.8. Analysis focuses on two L-mode discharges operated with 1.2 and 3.5 MW of ion cyclotron resonance heating. In depth investigation into the experimental uncertainties and simulation sensitivities in these discharges allows for a stringent test of the gyrokinetic model implemented by the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) in both the centre of the stiff gradient region (r/a = 0.5) and the middle of the region often associated with the transport ‘shortfall’(r/a = 0.8). To identify the nature of the plasma turbulence and to ensure a robust evaluation of the model's ability to reproduce experiment, the sensitivity of the simulation results to experimental uncertainty in turbulence drive and suppression terms were determined at both radial locations. When significant TEM activity is present, nonlinear gyrokinetic simulations are found to reproduce both electron and ion experimental heat fluxes within their diagnosed uncertainties. In contrast, in the absence of TEM, electron heat fluxes are robustly under predicted by low-k, gyrokinetic simulation.

  2. Cross-sectional TEM analysis of porcelain fused to gold-coated titanium.

    PubMed

    Tanaka, Yasuhiro; Watanabe, Ikuya; Okabe, Toru

    2007-01-01

    This study investigated the interfacial microstructure between gold-coated titanium and low-fusing porcelain. The square surfaces of cast titanium split rods were sputter-coated with gold using a sputter coater at 40 mA for 1,000 seconds. Specimens were prepared for transmission electron microscopy (TEM) by cutting and polishing two pieces of the gold-coated split-rod specimens, which were glued and embedded in Cu tubes with an epoxy adhesive. TEM observation was also conducted for the gold-coated specimens after degassing and porcelain fusing. Due to the gold coating, intermetallic compounds of Au-Ti formed under the sputtered gold layer after degassing and porcelain fusing. Ti3Au and Ti3Al layers were also observed beneath the Au-Ti intermetallic compound layer. There was good adhesion of porcelain to the Au-Ti compound and Ti oxides without any gaps or formation of a Ti-deficient intermediate layer, which is normally observed at the titanium-porcelain interface. The results of this TEM study suggested that gold-sputter-coating the cast titanium surface produced a Ti-Au intermetallic compound and suppressed the formation of a Ti-deficient intermediate layer, resulting in improved adherence between porcelain and titanium.

  3. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    PubMed Central

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-01-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires. PMID:27571919

  4. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    NASA Astrophysics Data System (ADS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  5. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    SciTech Connect

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-30

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  6. Method for semiautomated serial section reconstruction and visualization of neural tissue from TEM images

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.; Ross, Muriel D.

    1993-07-01

    A simple method to reconstruct details of neural tissue architectures from transmission electron microscope (TEM) images will help us to increase our knowledge of the functional organization of neural systems in general. To be useful, the reconstruction method should provide high resolution, quantitative measurement, and quick turnaround. In pursuit of these goals, we developed a modern, semiautomated system for reconstruction of neural tissue from TEM serial sections. Images are acquired by a video camera mounted on TEM (Zeiss 902) equipped with an automated stage control. The images are reassembled automatically as a mosaicked section using a crosscorrelation algorithm on a Connection Machine-2 (CM-2) parallel supercomputer. An object detection algorithm on a Silicon Graphics workstation is employed to aid contour extraction. An estimated registration between sections is computed and verified by the user. The contours are then tessellated into a triangle-based mesh. At this point the data can be visualized as a wireframe or solid object, volume rendered, or used as a basis for simulations of functional activity.

  7. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    NASA Astrophysics Data System (ADS)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren; Skoglundh, Magnus; Helveg, Stig

    2016-06-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical air at 650 °C. Time-resolved TEM image series reveal that the Pd nanoparticles were immobile and that a few percent of the nanoparticles grew or shrank, indicating a coarsening process mediated by the Ostwald ripening mechanism. The TEM image contrast suggests that the largest nanoparticles tended to wet the Al2O3 support to a higher degree than the smaller nanoparticles and that the distribution of projected particle sizes consequently broadens by the appearance of an asymmetric tail toward the larger particle sizes. A comparison with computer simulations based on a simple mean-field model for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles.

  8. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research.

    PubMed

    Wu, Jianbo; Shan, Hao; Chen, Wenlong; Gu, Xin; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2016-11-01

    Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures.

    PubMed

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-30

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  10. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    NASA Astrophysics Data System (ADS)

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-01

    In this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  11. Differential Dependence on N-Glycosylation of Anthrax Toxin Receptors CMG2 and TEM8

    PubMed Central

    Friebe, Sarah; Deuquet, Julie; van der Goot, F. Gisou

    2015-01-01

    ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen. PMID:25781883

  12. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    DOE PAGES

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; ...

    2016-08-30

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform tomore » amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.« less

  13. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  14. 2.5 D Transrotational Microcrystals and Nanostructures Revealed by TEM in Crystallizing Amorphous Films

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir

    2015-03-01

    Unexpected transrotational microcrystals can be grown in thin 10-100 nm amorphous films. Crystals of different morphology (from nanowhiskers to spherulites, complex textures) and chemical nature (oxides, chalcogenides, metals and alloys) grown in thin films prepared by various methods are studied by transmission electron microscopy (TEM). We use primarily our TEM bend-contour method and SAED (HREM, AFM are also performed). The phenomenon resides in strong (up to 300 degrees/ μm) regular internal bending of crystal lattice planes in a growing crystal. It can be traced inside TEM in situ. Usual translation is complicated by slight regular rotation of the crystal unit cell (transrotation) most prominent at the mesoscale. Different geometries of transrotation of positive and negative curvature are revealed. Transrotational crystal resembles ideal single crystal enclosed in a curved space. It can be also considered similar to hypothetical endless 2.5 D analogy of MW nanotube/nano-onion halves. Transrotation is strongly increasing as the film gets thinner in the range 100-15 nm. Transrotations supplement dislocations and disclinations. New transrotational nanocrystalline model of amorphous state is proposed. Support of Ministry of Higher Education and Science is acknowledged.

  15. AFM-TEM observations of effect of ``melt'' time on polytetrafluoroethylene morphology.

    NASA Astrophysics Data System (ADS)

    Kalish, J. P.; Williams, R. A.; Wang, J.; Geil, P. H.; Long, T.-C.; Xu, P.

    2006-03-01

    TEM observations of PTFE dispersion particles dispersed on glass and held at 350 C or above for various times indicates that individual, > 0.1 mm long molecules wander individually on the substrate and can, with time in the ``melt,'' aggregate and form either flat-on or on-edge, folded chain single crystals. If ``trapped'' by cooling before aggregation, on-edge, single molecule, single crystals can form. All on-edge crystals, both individually and as the shish of shish-kebabs, have a ``double-striation'' appearance, suggested to arise from nucleation of the Pt/C shadowing material, used for the TEM image, on the folds at the top edge of the crystals. AFM observations have confirmed these suggestions and, furthermore, indicate the nascent, rod-like dispersion particles of a ``nano-emulsion,'' with a volume corresponding to a single molecule, have faceted ends. Combined with the TEM and ED observations that the molecular axis is parallel with the rod axis, not only must chain-folding occur during polymerization but the chain folds must be staggered on the end surfaces. P. H. Geil, et al., Adv. Polym. Sci., 180, 89 (2005).

  16. In Situ and Ex Situ TEM Study of Lithiation Behaviours of Porous Silicon Nanostructures

    SciTech Connect

    Shen, Chenfei; Ge, Mingyuan; Luo, Langli; Fang, Xin; Liu, Yihang; Zhang, Anyi; Rong, Jiepeng; Wang, Chongmin; Zhou, Chongwu

    2016-08-30

    Here in this work, we study the lithiation behaviours of both porous silicon (Si) nanoparticles and porous Si nanowires by in situ and ex situ transmission electron microscopy (TEM) and compare them with solid Si nanoparticles and nanowires. The in situ TEM observation reveals that the critical fracture diameter of porous Si particles reaches up to 1.52 μm, which is much larger than the previously reported 150 nm for crystalline Si nanoparticles and 870 nm for amorphous Si nanoparticles. After full lithiation, solid Si nanoparticles and nanowires transform to crystalline Li15Si4 phase while porous Si nanoparticles and nanowires transform to amorphous LixSi phase, which is due to the effect of domain size on the stability of Li15Si4 as revealed by the first-principle molecular dynamic simulation. Ex situ TEM characterization is conducted to further investigate the structural evolution of porous and solid Si nanoparticles during the cycling process, which confirms that the porous Si nanoparticles exhibit better capability to suppress pore evolution than solid Si nanoparticles. The investigation of structural evolution and phase transition of porous Si nanoparticles and nanowires during the lithiation process reveal that they are more desirable as lithium-ion battery anode materials than solid Si nanoparticles and nanowires.

  17. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    NASA Astrophysics Data System (ADS)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  18. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    PubMed

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials.

  20. Retrieving overlapping crystals information from TEM nano-beam electron diffraction patterns.

    PubMed

    Valery, A; Rauch, E F; Clément, L; Lorut, F

    2017-07-04

    The diffraction patterns acquired with a transmission electron microscope (TEM) contain Bragg reflections related to all the crystals superimposed in the thin foil and crossed by the electron beam. Regarding TEM-based orientation and phase characterisation techniques, the nondissociation of these signals is usually considered as the main limitation for the indexation of diffraction patterns. A new method to identify the information related to the distinct but overlapped grains is presented. It consists in subtracting the signature of the dominant crystal before reindexing the diffraction pattern. The method is coupled to the template matching algorithm used in a standard automated crystal orientation mapping tool (ACOM-TEM). The capabilities of the approach are illustrated with the characterisation of a NiSi thin film stacked on a monocrystalline Si layer. Then, a subtracting-indexing cycle applied to a 70 nm thick thin foil containing polycrystalline tungsten electrical contacts shows the capability of the technique to recognise small nondominant grains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Preparation of micro-foils for TEM/STEM analysis from metallic powders.

    PubMed

    Dawson, Karl; Tatlock, Gordon J

    2015-07-01

    A technique has been developed which facilitates the preparation of electro-polished micro-foil transmission electron microscopy (TEM) specimens, which have previously been machined out of ≈100 μm diameter metallic powder particles using a Focussed Ion Beam (FIB) instrument. The technique can be used to create small volume TEM specimens from most metallic powder particles and bulk metal samples. This is especially useful when the matrices are ferritic steels, which are often difficult to image in the electron microscope, since the necessary aberration corrections change as the sample is tilted in the magnetic field of the objective lens. Small samples, such as powder particles, were attached to gold support grids using deposited platinum and were then ion milled to approximately 2 μm thickness in a focussed ion beam (FIB) instrument. Subsequently, the specimen assemblies were electropolished for short durations under standard conditions, to produce large (5 μm×5 μm) electron transparent regions of material. The specimens produced by this technique were free from FIB related artefacts and facilitated atomic resolution scanning-TEM (STEM) imaging of ferritic and nickel matrices containing, for example, yttrium rich oxide nano-dispersoids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. TEM illumination settings study for optimum spatial resolution and indexing reliability in crystal orientation mappings.

    PubMed

    Valery, A; Pofelski, A; Clément, L; Lorut, F; Rauch, E F

    2017-01-01

    The spatial resolution and the indexing quality obtained with an automated orientation and phase mapping tool are analyzed for different Transmission Electron Microscope (TEM) illumination settings. The electron probe size and convergence angle are studied for two TEM configuration modes referred as microprobe and nanoprobe modes. Using a 10μmC2 aperture in a FEI Tecnai F20 (S)TEM, the nanoprobe mode is used to get a small convergent electron beam while the microprobe mode provides a nearly parallel illumination at the cost of a larger probe size. The nanoprobe configuration enables to increase the spatial resolution (∼1nm vs 3nm) but also affects the fraction of mis-indexed points (15% vs 1%). Indexing errors are attributed to the increase by a factor of three of the convergence angle with respect to the microprobe mode. While intermediate optimum settings may be found and are potentially achievable on electron microscopes providing a 'free lens' control or a larger choice of C2 apertures, it is emphasized that the spatial resolution cannot be considered without reference to the indexing quality and, consequently to the convergence angle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Chan, Qing N.; Zhang, Renlin; Kook, Sanghoon; Hawkes, Evatt R.; Yeoh, Guan H.; Medwell, Paul R.

    2016-05-01

    The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.

  4. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    SciTech Connect

    Iturrondobeitia, M. Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  5. Post Irradiation TEM Investigation of ZrN Coated U(Mo) Particles Prepared with FIB

    SciTech Connect

    Van Renterghem, W.; Leenaers, A.; Van den Berghe, S.; Miller, B. D.; Gan, J.; Madden, J. W.; Keiser, D. D.; Palancher, H.; Hofman, G. L.; Breitkreuz, H.

    2015-10-01

    In the framework of the Selenium project, two dispersion fuel plates were fabricated with Si and ZrN coated fuel particles and irradiated in the Br2 reactor of SCK•CEN to high burn-up. The first analysis of the irradiated plate proved the reduced swelling of the fuel plate and interaction layer growth up to 70% burn-up. The question was raised how the structure of the interaction layer had been affected by the irradiation and how the structure of the fuel particles had evolved. Hereto, samples from the ZrN coated UMo particles were prepared for transmission electron microscopy (TEM) using focused ion beam milling (FIB) at INL. The FIB technique allowed to precisely select the area of the interaction layer and/or fuel to produce a sample that is TEM transparent over an area of 20 by 20 µm. In this contribution, the first TEM results will be presented from the 66% burn-up sample.

  6. Molecular dynamics simulations of the TEM-1 beta-lactamase complexed with cephalothin.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Merz, Kenneth M; Sordo, Tomás L

    2005-02-10

    Herein, we present theoretical results aimed at elucidating the origin of the kinetic preference for penicillins over cephalosporins characteristic of the TEM/SHV subgroup of class A beta-lactamases. First, we study the conformational properties of cephalothin showing that the C2-down conformer of the dihydrothiazine ring is preferred over the C2-up one by approximately 2 kcal/mol in solution (0.4-1.4 kcal/mol in the gas phase). Second, the TEM-1 beta-lactamase complexed with cephalothin is investigated by carrying out a molecular dynamics simulation. The DeltaG(binding) energy is then estimated using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and quantum chemical PBSA (QM-PBSA) computational schemes. The preferential binding of benzylpenicillin over cephalothin is reproduced by the different energetic calculations, which predict relative DeltaDeltaG(binding) energies ranging from 1.8 to 5.7 kcal/mol. The benzylpenicillin/cephalothin DeltaDeltaG(binding) energy is most likely due to the lower efficacy of cephalosporins than that of penicillins in order to simultaneously bind the "carboxylate pocket" and the "oxyanion hole" in the TEM-1 active site.

  7. Use of DNA Microarrays for Rapid Genotyping of TEM Beta-Lactamases That Confer Resistance

    PubMed Central

    Grimm, Verena; Ezaki, Satoshi; Susa, Milorad; Knabbe, Cornelius; Schmid, Rolf. D.; Bachmann, Till T.

    2004-01-01

    Standard clinical procedures for pathogen resistance identification are laborious and usually require 2 days of cultivation before the resistance can be determined unequivocally. In contrast, clinicians and patients face increasing threats from antibiotic-resistant pathogenic bacteria in terms of their frequencies and levels of resistance. A major class of microbial resistance stems from the occurrence of beta-lactamases, which, if mutated, can cause the severe extended-spectrum beta-lactamase (ESBL) or inhibitor-resistant TEM (IRT) phenotype, which cause resistance to extended-spectrum cephalosporins, monobactams, and beta-lactamase inhibitors. We describe an oligonucleotide microarray for identification of the single nucleotide polymorphisms (SNPs) of 96% of the TEM beta-lactamase variants described to date which are related to the ESBL and/or IRT phenotype. The target DNA, originating from Escherichia coli, Enterobacter cloacae, and Klebsiella pneumoniae cells isolated from clinical samples, was amplified and fluorescently labeled by PCR with consensus primers in the presence of cyanine 5-labeled nucleotides. The total assay, including PCR, hybridization, and image analysis, could be performed in 3.5 h. The microarray results were validated by standard clinical procedures. The microarray outperformed the standard procedures in terms of assay time and the depth of information provided. In conclusion, this array offers an attractive option for the identification and epidemiologic monitoring of TEM beta-lactamases in the routine clinical diagnostic laboratory. PMID:15297528

  8. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8.

    PubMed

    Friebe, Sarah; Deuquet, Julie; van der Goot, F Gisou

    2015-01-01

    ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.

  9. Correlating Observations of Deformation Microstructures by TEM and Automated EBSD Techniques

    SciTech Connect

    Schwartz, A.J.; King, W.E.

    2000-06-05

    The evolution of the deformed microstructure as a function of imposed plastic strain is of interest as it provides information on the material hardening characteristics and mechanism(s) by which cold work energy is stored. This has been extensively studied using transmission electron microscopy (TEM), where the high spatial and orientational resolution of the technique is used to advantage to study local phenomenon such as dislocation core structures and interactions of dislocations. With the recent emergence of scanning electron microscope (SEM) based automated electron backscatter diffraction (EBSD) techniques, it has now become possible to make mesoscale observations that are statistical in nature and complement the detailed TEM observations. Correlations of such observations will be demonstrated for the case of Ni-base alloys, which are typically non-cell forming solid solution alloys when deformed at ambient temperatures. For instance, planar slip is dominant at low strain levels but evolves into a microstructure where distinct crystallographic dislocation-rich walls form as a function of strain and grain orientation. Observations recorded using both TEM and EBSD techniques are presented and analyzed for their implication on subsequent annealing characteristics.

  10. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  11. Simplified Procedure for Estimating Epitaxy of La2Zr2O7-Buffered NiW RABITS Using XRD

    SciTech Connect

    Rikel, Mark O.; Isfort, Dirk; Klein, Marcel; Ehrenberg, Jurgen; Bock, Joachim; Specht, Eliot D; Sun-Wagener, Ming; Weber, Oxana; Sporn, Dieter; Engel, Sebastian; de Haas, Oliver; Semerad, Robert; Schubert, Margitta; Holzapfel, Bernhard

    2009-01-01

    Abstract A procedure is developed for assessing the epitaxy of La(2-x)Zr(2+x)O(7) (LZO) layers on NiW RABITS. Comparing XRD patterns (theta / 2-theta scans and 2D rocking curves) of LZO films of known thickness (ellipsometry or reflectometry measurements) with those of standard samples (100% epitaxial LZO film and an isotropic LZO pellet of known density), we estimate the epitaxial (EF), and polycrystalline (PF) fractions of LZO within the layer. The procedure was tested using MOD-LZO(100 nm)/NiW tape samples with varied from 3 to 90% (reproducibly prepared by varying the humidity of Ar-5%H2 gas during heat treatment). A qualitative agreement with RHEED and quantitative (within 10%) agreement with the EBSD results was shown. Correlation between EF and Jc in 600 nm thick YBCO layer deposited on MOD-LZO/NiW using thermal coevaporation enables us to impose the EF=80% margin on the quality of LZO layer for the particular conductor architecture.

  12. Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels

    NASA Astrophysics Data System (ADS)

    Jablonska, Magdalena Barbara

    2014-04-01

    New high-strength austenitic and austenitic-ferritic manganese steels represent a significant potential in applications for structural components in the automotive and railway industry due to the excellent combination of high mechanical properties and good plasticity. They belong to the group of steels called AHSS (Advanced High Strength Steels) and UHSS (Ultra High Strength Steels). Application of this combination of properties allows a reduction in the weight of vehicles by the use of reduced cross-section components, and thus to reduce fuel consumption. The development and implementation of industrial production of such interesting and promising steel and its use as construction material requires an improvement of their casting properties and susceptibility to deformation in plastic working conditions. In this work, XRD, Transmission Mössbauer Spectroscopy and Conversion Electron Mössbauer Spectroscopy were employed in a study of the new high-manganese steels with a austenite and austenite-ferrite structure. The influence of the plastic deformation parameters on the changes in the structure, distribution of ferrite and disclosure of the presence of carbides was determined. The analysis of phase transformations in various times using CEMS method made possible to reveal their fine details.

  13. Investigation of the electrocatalysis for oxygen reduction reaction by Pt and binary Pt alloys: an XRD, XAS and electrochemical study

    SciTech Connect

    Mukerjee, S.; McBreen, J.; Srinivasan, S.

    1995-12-31

    Electrocatalysis for the oxygen reduction reaction (ORR) on five binary Pt alloy electrocatalysts (PtCr/C, PtMn/C, PtFe/C, PtCo/C and PtNi/C) supported on carbon have been investigated. The electrochemical characteristics for ORR in a proton conducting fuel cell environment has been correlated with the electronic and structural parameters determined under in situ conditions using XANES and EXAFS technique respectively. Results indicate that all the alloys possess higher Pt 5d band vacancies as compared to Pt/C. There is also evidence of lattice contraction in the alloys (supported by XRD results). Further, the Pt/C shows increase in Pt 5 d band vacancies during potential transitions from 0.54 to 0.84 V vs. RHE, which has been ration@ on the basis of OH type adsorption. In contrast to this, the alloys do not exhibit such an enhancement. Detailed EXAFS analysis supports the presence of OH species on Pt/C and its relative absence in the alloys. Correlation of the electrochemical results with bond distances and d-band vacancies show a volcano type behavior with the PtCr/C on top of the curve.

  14. XRD analysis of undoped and Fe doped TiO{sub 2} nanoparticles by Williamson Hall method

    SciTech Connect

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-08-28

    Undoped and Fe doped titanium dioxide (TiO{sub 2}) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO{sub 2} and Fe doped TiO{sub 2} nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO{sub 2} with Fe doping was observed. The anatase phase of Fe-doped TiO{sub 2} nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO{sub 2} and tensile strain for Fe-TiO{sub 2} nanoparticles annealed at 500°C.

  15. Mechanical properties and XRD studies of silicon carbide inert matrix fuel fabricated by a low temperature polymer precursor route

    NASA Astrophysics Data System (ADS)

    Shih, Chunghao; Rohbeck, Nadia; Gopalakrishnan, Karthik; Tulenko, James S.; Baney, Ronald H.

    2013-01-01

    The mechanical properties of silicon carbide (SiC) inert matrix fuel (IMF) pellets fabricated by a low temperature (1050 °C) polymer precursor route were evaluated at room temperature. The Vickers hardness was mainly related to the chemical bonding strength between the amorphous SiC phase and the β-SiC particles. The biaxial fracture strength with pre-notch and fracture toughness were found to be mostly controlled by the pellet density. The maximum Vickers hardness, biaxial fracture strength with pre-notch and fracture toughness achieved were 5.6 GPa, 201 MPa and 2.9 MPa m1/2 respectively. These values appear to be superior to the reference MOX or UO2 fuels. Excellent thermal shock resistance for the fabricated SiC IMF was proven and the values were compared to conventional UO2 pellets. XRD studies showed that ceria (PuO2 surrogate) chemically reacted with the polymer precursor during sintering, forming cerium oxysilicate. Whether PuO2 will chemically react in a similar manner remains unclear.

  16. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  17. In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region

    SciTech Connect

    McBreen, J.; Mukerjee, S.; Yang, X. Q.; Sun, X.; Ein-Eli, Y.

    1998-11-01

    Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observed in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.

  18. Investigation of structural resorption behavior of biphasic bioceramics with help of gravimetry, μCT, SEM, and XRD.

    PubMed

    de Wild, Michael; Amacher, Fabienne; Bradbury, Christopher R; Molenberg, Aart

    2016-04-01

    Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (β-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry. It was found that always complete 2-3 µm sized grains were removed from the structure and that the β-TCP is dissolved more rapidly. This selective dissolution of the β-TCP grains was confirmed by XRD measurements. The blocks were eroded from the outside toward the center. The structure remained mechanically stable because the central part showed a delayed degradation and because the slower dissolving HA grains preserved the integrity of the structure. © 2015 Wiley Periodicals, Inc.

  19. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster.

    PubMed

    Crasto, David; Malola, Sami; Brosofsky, Grace; Dass, Amala; Häkkinen, Hannu

    2014-04-02

    Au30S(S-t-Bu)18 cluster, related closely to the recently isolated "green gold" compound Au30(S-t-Bu)18, has been structurally solved via single-crystal XRD and analyzed by density functional theory calculations. The molecular protecting layer shows a combination of monomeric (RS-Au-SR) and trimeric (RS-Au-SR-Au-SR-Au-SR) gold-thiolate units, bridging thiolates, and a single sulfur (sulfide) in a novel μ3-coordinating position. The chiral gold core has a geometrical component that is identical to the core of the recently reported Au28(SPh-t-Bu)20. Both enantiomers of Au30S(S-t-Bu)18 are found in the crystal unit cell. The calculated CD spectrum bears a close resemblance to that of Au28(SPh-t-Bu)20. This is the first time when two structurally characterized thiol-stabilized gold clusters are found to have such closely related metal core structures and the results may increase understanding of the formation of gold clusters when stabilized by bulky thiolates.

  20. Influence of temperature on layer growth as measured by in situ XRD observation of nitriding of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Manova, D.; Günther, C.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2013-07-01

    Investigating the formation of expanded austenite has resulted in several, different models trying to explain the particular diffusion and phase formation behaviour. However, only ex situ information, influenced by cooling and annealing processes of the samples after ion implantation has been available until now. Here, the time and temperature dependent layer growth is reported using in situ XRD measurements obtained from low energy broadbeam nitrogen ion implantation into polycrystalline austenitic stainless steel 304 in the temperature range from 300 to 500 °C for a process time of up to 1 h. Expanded austenite was observed at all temperatures without any CrN, in agreement with already published lifetime data for this metastable phase. The layer growth was derived from the time evolution of the substrate peak intensity. Using the temperature dependence of the layer growth, an activation energy of nearly 0.8 eV was estimated for the nitrogen diffusion. In contrast, a complex behaviour was observed for the lattice expansion and peak width of the expanded peak, indicating additional dynamic annealing during implantation.

  1. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.

    PubMed

    Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M

    2017-07-03

    In the frame of minor actinide transmutation, americium can be diluted in UO2 and (U, Pu)O2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO2-x-AmO1.61+x-Am2O3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO2-x. We showed the presence of a hyperstoichiometric existence domain for the bcc AmO1.61+x phase and the absence of a miscibility gap in the fcc AmO2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.

  2. Drill Core Mineral Analysis by Means of the Hyperspectral Imaging Spectrometer HySpex, XRD and Asd in Proximity of the MÝTINA Maar, Czech Republic

    NASA Astrophysics Data System (ADS)

    Koerting, F.; Rogass, C.; Kaempf, H.; Lubitz, C.; Harms, U.; Schudack, M.; Kokaly, R.; Mielke, C.; Boesche, N.; Altenberger, U.

    2015-12-01

    Imaging spectroscopy is increasingly used for surface mapping. Therefore different expert systems are being utilized to identify surface cover materials. Those expert systems mainly rely on the spectral comparison between unknown and library spectra, but their performances were only limited qualified. This study aims on the comparative analysis of drill core samples from the recently discovered maar system in the Czech Republic. Drill core samples from the surrounding area of the Mýtina maar were analyzed by X-Ray diffraction (XRD) and the hyperspectral spectrometer HySpex. Additionally, soil samples were measured in-situ by the ASD FieldSpec4 and in the laboratory by the HySpex VNIR/SWIR spectrometer system. The data was then analyzed by the MICA-algorithm and the results were compared to the results of the XRD -analysis. The XRD-analysis served here as validation basis. The results of the hyperspectral and the XRD analyses were used to densify a volcanic map that also integrates in-situ soil measurements in the surrounding area of Mýtina. The comparison of the XRD- and solaroptical remote sensing results showed a good correlation of qualified minerals if the soil organic carbon content was significantly low. Contrary to XRD, smectites and muscovites were also straightforward identified that underlines the overall performance of the approach to identify minerals. Basically, in this work an operable approach is proposed that enables the fast, repeatable and detailed analysis of drill cores, drill core samples and soil samples and, hence, provides a higher performance than state-of-the-art XRD-analyses.

  3. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities.

    PubMed

    Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter

    2007-03-28

    MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.

  4. Transanal Endoscopic Microsurgery (TEM) for Rectal Cancer: University Hospital of North Tees Experience.

    PubMed

    Osman, Khalid A; Ryan, Daniel; Afshar, Sorena; Mohamed, Zakir K; Garg, Dharmendra; Gill, Talvinder

    2015-12-01

    Transanal endoscopic microsurgery (TEM) is a minimally invasive technique that is increasingly being used to treat early rectal cancer (T1/T2). We studied the outcomes of TEM for rectal cancer at our institution looking at the indication, recurrence rate, need for further radical surgery, 30-day and 12-month mortality and complication rate. We performed a retrospective analysis of prospectively collected data of cases between 2008 and 2012: 110 TEM procedures were performed during this period: 40 were confirmed rectal cancers and 70 were benign. We analysed the data for the 40 patients with confirmed rectal cancer. Thirty (75 %) of the subjects were male with a mean age of 71 ± 10 years (range 49-90 years) and 19 (48 %) patients were ASA 3 and 4. Nineteen (48 %) of cancers were pT1, eighteen (45 %) were pT2, two (5 %) were pT3 and one was yPT0. Mean specimen size was 66 ± 20 mm (range 33-120 mm) with a mean polyp size of 41 ± 24 mm (range 18-110 mm). The mean cancer size was 24 ± 13 mm (range 2-50 mm). Average distance from the anal verge was 70 ± 37 mm (range 10-150 mm), and the mean operating time was 72 ± 22 min (range 40-120 min), with an average blood loss of 28 ± 15 ml (range 10-50ml). Median hospital stay was 2 ± 1 days (range 1-7 days). Complete excision (R0) was achieved in 37 (93 %) patients. Minor post-operative complications included urinary retention in two and pyrexia in three patients. There were no 30-day or 12-month mortalities. Mean follow-up was 13 ± 11 months, range (3-40 months) Local recurrence occurred in two (5 %) patients, both underwent redo TEM. Twelve (30 %) patients underwent laparoscopic radical resections (seven AR and five APER) post-TEM. Post-operative histology confirmed pT0N0 in 7/12 patients. Three were lymph node-positive (T0N1), one was pT3N1 and the fifth was pT3N2. TEM is associated with quicker recovery, shorter hospital stay and fewer complications than

  5. Video. Transanal specimen retrieval using the transanal endoscopic microsurgery (TEM) system in minimally invasive colon resection.

    PubMed

    Makris, Konstantinos I; Rieder, Erwin; Kastenmeier, Andrew S; Swanström, Lee L

    2012-04-01

    During laparoscopic colectomy, the specimen is retrieved through substantial incisions, which increase postoperative pain, wound infections, and incisional hernias. In the era of natural orifice transluminal endoscopic surgery (NOTES), incisionless transrectal approaches for colon resections have been investigated with promising results [4-6]. Transanal retrieval of the colonic specimen in laparoscopic colectomy has been described but not widely adopted, although it seems to be an appealing step towards NOTES colectomy. We have used the TEM rectoscope (Richard Wolf Medical Instruments Corporation, Vernon Hills, IL, USA) as a retrieval conduit, which facilitates transanal extraction of the specimen, and protects the rectal edge and anal sphincter during laparoscopic left colectomy. After standard laparoscopic dissection and vascular control, the colon is divided distally, whereas the proximal colonic end is ligated to prevent fecal spillage. The TEM rectoscope is advanced through the rectal stump. The proximal colon is grasped and withdrawn through the rectoscope. The colon is stapled off proximally, and the specimen is removed transanally. An anvil is introduced into the pelvis through the rectoscope and inserted in the descending colon through a colotomy, which is subsequently sealed with an endo-loop. The rectoscope is withdrawn, and the rectal stump edge is stapled off. A circular stapler is introduced in the rectum, and end-to-end anastomosis is performed. The extraction incisions in laparoscopic colectomy increase invasiveness and compromise the "purity" of the laparoscopic approach. Retrieval of the specimen through natural orifices constitutes a stepping stone in the transition to future incisionless NOTES colectomy. These techniques have not been widely adopted because of technical difficulties and concerns regarding trauma. In our experience, transanal retrieval of the colonic specimen is hampered by friction between the specimen and the rectum, which

  6. On the structural affinity of macromolecules with different biological properties: Molecular dynamics simulations of a series of TEM-1 mutants

    SciTech Connect

    Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano

    2013-07-12

    Highlights: •We have performed molecular dynamics simulations of TEM-1 mutants. •Mutations effects on the mechanical properties are considered. •Mutants do not significantly alter the average enzymes structure. •Mutants produce sharp alterations in enzyme conformational repertoire. •Mutants also produce changes in the active site volume. -- Abstract: Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical–biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment.

  7. Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.

    PubMed

    Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I

    2014-04-01

    There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.

  8. Mercury in polluted soils: speciation using micro-XRF, micro-XRD, and micro- and bulk XAFS.

    NASA Astrophysics Data System (ADS)

    Terzano, R.; Santoro, A.; Spagnuolo, M.; Vekemans, B.; Medici, L.; Janssens, K.; Goettlicher, J.; Denecke, M. A.; Mangold, S.; Ruggiero, P.

    2009-04-01

    In this research, mercury speciation was assessed for soil samples collected inside and outside an industrial polluted area of National environmental interest located in "Val Basento" (Basilicata, Italy). Hg concentration in these soil samples ranged from 12 up to 240 mg/kg. Mercury chemical forms in these samples were identified by a combination of sequential extraction procedures, thermal desorption analyses, and different bulk- and micro-analytical techniques exploiting high intensity synchrotron generated X-rays. Bulk XANES (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray Absorption Fine Structure) spectra were collected for direct Hg-speciation in soil samples sieved at 2mm as well as in the clay fraction (<2um), where the highest amount of mercury was concentrated. The interpretation of the complex mixture of Hg-chemical forms in the soil samples was made simpler by performing, beside bulk XAS investigations, microanalyses on soil thin sections by combined u-XRF/u-XRD (micro X-ray Fluorescence/micro X-ray Diffraction) and u-XANES, with a resolution of 20 um. The information deriving from the micro-scale was then used to understand the bulk data. m-XRF maps were collected to localize microscopic Hg-containing particles in areas of several hundreds of mm2. Simultaneous to u-XRF spectra, microdiffraction patterns were collected in each point of the map, to identify possible crystalline Hg-mineral forms or mineral associations. Once points of interest were localized, u-XANES spectra were also collected. In general, two main representative XANES spectra (S1 and S2) were observed from Hg-rich spots at the microscopic level. Interestingly, all the bulk XANES spectra from all soil samples could be fitted by a linear combination of the microscopic S1 and S2 spectra. Therefore, by fitting the S1 and S2 spectra by means of known standard spectra it was then possible to decipher Hg-speciation for all the soil samples. In conclusion, the main constituents

  9. Characterizing the Phyllosilicate Component of the Sheepbed Mudstone in Gale Crater, Mars Using Laboratory XRD and EGA

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Blake, D. F.; Bristow, T. F.; Sutter, B.; hide

    2014-01-01

    The Curiosity rover investigated the mineralogy of the Sheepbed mudstone member of the Yellowknife Bay formation in Gale crater. Data from the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD) helped identify phyllosilicates in the two drilled samples, John Klein and Cumberland. These patterns showed peaks at low angles, consistent with (001) peaks in 2:1 swelling phyllosilicates [1]. Evolved gas analyses (EGA) by the Sample Analysis at Mars (SAM) instrument of these samples confirmed the presence of phyllosilicates through the release of H2O at high temperatures, consistent with dehydroxylation of octahedral OH in phyllosilicates [2]. CheMin data for the phyllosilicates at John Klein and Cumberland show that they are structurally similar in that their (02l) peaks are near 22.5 deg 2theta, suggesting both samples contain trioctahedral 2:1 phyllosilicates [1]. However, the positions of the (001) peaks differ: the phyllosilicate at John Klein has its (001) peak at 10 Angstroms, whereas the phyllosilicate at Cumberland has an (001) peak at 14 Angstroms. Such differences in (001) dspacings can be ascribed to the type of cation in the interlayer site [3]. For example, large monovalent cations (e.g., K(+)) have low hydration energies and readily lose their H2O of hydration, whereas small divalent cations (e.g., Mg(2+)) have high energies of hydration and retain H2O in the phyllosilicate interlayers [3,4]. The goal of this study is to determine whether differences in the interlayer cation composition can explain the CheMin data from John Klein and Cumberland and to use this knowledge to better understand phyllosilicate formation mechanisms.

  10. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  11. Synthesis, dynamic NMR characterization and XRD studies of novel N,N’-substituted piperazines for bioorthogonal labeling

    PubMed Central

    Pretze, Marc; Gott, Matthew; Köckerling, Martin

    2016-01-01

    Novel, functionalized piperazine derivatives were successfully synthesized and fully characterized by 1H/13C/19F NMR, MS, elemental analysis and lipophilicity. All piperazine compounds occur as conformers resulting from the partial amide double bond. Furthermore, a second conformational shape was observed for all nitro derivatives due to the limited change of the piperazine chair conformation. Therefore, two coalescence points were determined and their resulting activation energy barriers were calculated using 1H NMR. To support this result, single crystals of 1-(4-nitrobenzoyl)piperazine (3a, monoclinic, space group C2/c, a = 24.587(2), b = 7.0726(6), c = 14.171(1) Å, β = 119.257(8)°, V = 2149.9(4) Å3, Z = 4, D obs = 1.454 g/cm3) and the alkyne derivative 4-(but-3-yn-1-yl)-1-(4-fluorobenzoyl)piperazine (4b, monoclinic, space group P21/n, a = 10.5982(2), b = 8.4705(1), c = 14.8929(3) Å, β = 97.430(1)°, V = 1325.74(4) Å3, Z = 4, D obs = 1.304 g/cm3) were obtained from a saturated ethyl acetate solution. The rotational conformation of these compounds was also verified by XRD. As proof of concept for future labeling purposes, both nitropiperazines were reacted with [18F]F–. To test the applicability of these compounds as possible 18F-building blocks, two biomolecules were modified and chosen for conjugation either using the Huisgen-click reaction or the traceless Staudinger ligation. PMID:28144316

  12. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    PubMed Central

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  13. Structural Consequences of the Inhibitor-Resistant Ser130Gly Substitution in TEM β-Lactamase†‡

    PubMed Central

    Thomas, Veena L.; Golemi-Kotra, Dasantila; Kim, Choonkeun; Vakulenko, Sergei B.; Mobashery, Shahriar; Shoichet, Brian K.

    2006-01-01

    β-Lactamase confers resistance to penicillin-like antibiotics by hydrolyzing their β-lactam bond. To combat these enzymes, inhibitors covalently cross-linking the hydrolytic Ser70 to Ser130 were introduced. In turn, mutant β-lactamases have emerged with decreased susceptibility to these mechanism-based inhibitors. Substituting Ser130 with glycine in the inhibitor-resistant TEM (IRT) mutant TEM-76 (S130G) prevents the irreversible cross-linking step. Since the completely conserved Ser130 is thought to transfer a proton important for catalysis, its substitution might be hypothesized to result in a nonfunctional enzyme; this is clearly not the case. To investigate how TEM-76 remains active, its structure was determined by X-ray crystallography to 1.40 Å resolution. A new water molecule (Wat1023) is observed in the active site, with two configurations located 1.1 and 1.3 Å from the missing Ser130 Oγ; this water molecule likely replaces the Ser130 side-chain hydroxyl in substrate hydrolysis. Intriguingly, this same water molecule is seen in the IRT TEM-32 (M69I/M182T), where Ser130 has moved significantly. TEM-76 shares other structural similarities with various IRTs; like TEM-30 (R244S) and TEM-84 (N276D), the water molecule activating clavulanate for cross-linking (Wat1614) is disordered (in TEM-30 it is actually absent). As expected, TEM-76 has decreased kinetic activity, likely due to the replacement of the Ser130 side-chain hydroxyl with a water molecule. In contrast to the recently determined structure of the S130G mutant in the related SHV-1 β-lactamase, in TEM-76 the key hydrolytic water (Wat1561) is still present. The conservation of similar accommodations among IRT mutants suggests that resistance arises from common mechanisms, despite the disparate locations of the various substitutions. PMID:15981999

  14. Analysis of Induced Polarization effects in airborne TEM data - a case study from central East Greenland

    NASA Astrophysics Data System (ADS)

    Maack Rasmussen, Thorkild; Brethes, Anaïs; Pierpaolo Guarnieri, Pierpaolo; Bauer, Tobias

    2017-04-01

    Data from a high-resolution airborne SkyTEM time-domain electromagnetic survey conducted in central East Greenland were analysed. An analysis based on utilization of a Self Organizing Map procedure for response curve characterization and analyses based on data inversion and modelling are presented. The survey was flown in 2013 along the eastern margin of the Jameson Land basin with the purpose of base metal exploration and with sulphide mineralization as target. The survey area comprises crystalline basement to the East and layered Early Triassic to Jurassic sediments to the West. The layers are dipping a few degrees towards West. The Triassic sequence is 1 to 2 km thick and mostly of continental origin. The fluviatile Early Triassic arkoses and conglomerates, the Upper Triassic grey limestone and black shale beds and overlying gypsiferous sandstones and mudstones are known to host disseminated sulphides. E-W oriented lines were flown with an average terrain clearance of 30m and a separation of 300m. The data were initially processed and inverted by SkyTEM Aps. The conductivity models showed some conductive layers as well as induced polarization (IP) effects in the data. IP effects in TEM data reflect the relaxation of polarized charges in the ground which can be good indicators of the presence of metallic particles. Some of these locations were drilled during the following field season but unfortunately did not reveal the presence of mineralization. The aim of this study is therefore to understand the possible causes of these IP effects. Electrical charge accumulation in the ground can be related to the presence of sulphides, oxides or graphite or to the presence of clays or fibrous minerals. Permafrost may also cause IP effects and is then expected to be associated with a highly resistive subsurface. Several characteristics of the transient curves (IP indicators) of the SkyTEM survey were extracted and analysed by using the Kohonen Self-Organizing Map (SOM

  15. First application of time-domain electromagnetic technology (TEM) for permafrost mapping on the Arctic shelf.

    NASA Astrophysics Data System (ADS)

    Koshurnikov, A.; Gunar, A.; Tumskoy, V. E.; Shakhova, N. E.; Semiletov, I. P.; Valuyskiy, S.

    2015-12-01

    Different geophysical methods are used to study and map submarine permafrost on the Arctic Shelf. Due to specific features of submarine permafrost, none of geophysical methods can provide conclusive data when gas-charged sediments and taliks occur within permafrost. Experimental data show that electrical properties of frozen grounds change significantly. For example, depending on ground lithology and wetness, electrical resistivity can increase up to 103 times upon freezing. Thus, electromagnetic methods could be considered more informative and valuable tool for characterizing subsea permafrost. Investigation of submarine permafrost on the shallow Arctic Shelf requires modifications of electromagnetic methods to cover specific needs of working from the fast ice. Winter expeditions devoted to subsea permafrost investigations were performed in March-April of 2012-2015 in the near-shore area of the Laptev Sea. TEM was applied to predict permafrost down to 1 km depth. TEM systems are advantageous when many stations are required, because many short deployments can be performed in a single survey. Working from the fast ice allowed collection of few tens of stations to cover the entire polygon. Interpretation of data collected in 2012 allowed to predict position of the permafrost table near-shore near Muostakh Island, which was validated by followed up permafrost drilling. Surveys performed in 2013-2015 also confirmed good agreement between electromagnetic data and observational data obtained by drilling. Accuracy of the methods reached 3.5%. Note, that in March-April of 2014 and 2015, we used the modified TEM which allows obtaining continuous subsea permafrost table profiles.

  16. High Spatial Resolution Study of Microbe-Carbonate-Silicate Interfaces by FIB and TEM

    NASA Astrophysics Data System (ADS)

    Benzerara, K.; Menguy, N.; Guyot, F.; Vanni, C.; Gillet, P.

    2003-12-01

    High resolution transmission electron microscopy (HRTEM), chemical micro-analysis (EDX) and electron energy loss spectroscopy (EELS) are among the most powerful analytical techniques for studying microbe-mineral interactions, allowing to observe the microbe-mineral interface at almost the angstrom scale, to evidence transformations of the mineral structure and chemical alterations at the nanometer scale. However, the samples must be very thin and only a small area can be investigated. A key limitation for using this technique is thus to prepare natural geomicrobiological samples which combine hard minerals, preventing use of ultramicrotomy, with soft organic matter inadequate to ion milling procedures. Additionaly the areas of interest are usually restricted to few micrometer large areas which have to be selected from macroscopic samples. In this study we present two procedures : micromanipulation and FIB (Focused Ion Beam) which allow the study of microbe-mineral interfaces with TEM. The micromanipulation procedure has been presented in Benzerara et al (2003, PNAS). We have evidenced nannobacteria-like objects at the surface of the Tatahouine orthopyroxenite meteorite fallen in the tunisian desert in 1931. SEM observations suggest a complex interaction pattern between the nannobacteria-like objects, the pyroxene and microorganisms which have colonized the surface of the meteorite during its seventy years of residence on Earth. The TEM study on the very same area shows that the nannobacteria-like rods are actually well-crystallized nanometric calcite single crystals surrounded by an amorphous layer of carbonate composition. Those morphologies and structures are unusual for calcite single crystals. We discuss these observations in regard to the criteria of biogenicity i.e. biosignatures. Moreover, we examine the implications for carbonate production associated to silicate bio-weathering under aridic conditions. This work is relevant both to astrobiological and

  17. Systematic mutagenesis of the active site omega loop of TEM-1 beta-lactamase.

    PubMed Central

    Petrosino, J F; Palzkill, T

    1996-01-01

    Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants. PMID:8606154

  18. Microscopic imaging of resin-bonded dentin using Cryo-FIB/TEM system

    NASA Astrophysics Data System (ADS)

    Bakhsh, Turki A.

    2015-03-01

    Background and Objective: Introduction of focused ion beam (FIB) for transmission electron microscopy (TEM) preparation had enhanced the understanding of materials' interaction at nanoscale. However, this technique generates localized heat that may possibly have some effect on organic/vital structures during preparation of biological tissues. Therefore, the aim of this study was to investigate the effect of milling with Cryogenic-FIB on imaging the ultra-morphological features of dentin-resin interface bonded in a tooth and compare the findings to a room-temperature FIB prepared specimens. Methods: After cylindrical dentin cavities (3 mm diameter × 1.5 mm depth) were prepared on the occlusal surfaces of extracted, non-carious human premolar teeth, they were restored with Filtek P90 (Silorane) restorative system (3M ESPE, USA). To investigate the ultra-morphological features of resin-dentin interface, the bonded specimens were divided into 2 groups based on the preparation technique; (1) FIB preparation at room-temperature (RT), and (2) FIB preparation with cryogenic cooling (Cy). Later, each group was examined under TEM. Results: The obtained sections in RT group showed blurred scattered needle-like crystals above the resin-impregnated dentin. However, the orientation of these crisscross needle-like crystals and the ultramorphological features of the underlying dentin were more vivid and distinct in Cy group. Conclusion: Within the limitation of this in-vitro study, it could be concluded that combining FIB with cryogenic cooling had preserved the biological organic features of dentin due to minimized beam damage. The presented cryogenic technique should be considered in future FIB/TEM studies involving biological substrates. This research was supported by King Abdulaziz University.

  19. Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan

    2017-02-01

    Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.

  20. Geological Hypothesis Testing and Investigations of Coupling with Transient Electromagnetics (TEM)

    NASA Astrophysics Data System (ADS)

    Adams, A. C.; Moeller, M. M.; Snyder, E.; Workman, E. J.; Urquhart, S.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    Transient electromagnetic (TEM) data were acquired in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, central New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. TEM surveys were carried out in several regions both to investigate geologic structure and to illustrate the effects of coupling to anthropogenic structures. To determine an optimal survey configuration, 50, 100 and 200 m square transmitter loops were deployed; estimates of depth-of-investigation and logistical considerations determined that 50 m loops were sufficient for production-style measurements. A resistive (100s of ohm-m) layer was identified at a depth of 25-75 m at several locations, and interpreted as dismembered parts of one or more concealed volcanic flows, an interpretation consistent with Tertiary volcanic flows that cap the Santa Anna Mesa immediately to the south. TEM soundings were also made across an inferred fault to investigate whether fault offset is accompanied by lateral changes in electrical resistivity. Soundings within several hundred meters of the inferred fault strand were identical, indicating no resistivity contrast across the fault, and possibly an absence of recent activity. An old windmill and water tank, long-abandoned, offered an excellent laboratory to study the effect of coupling to metallic anthropogenic structures. The character of the measured data strongly suggests the water tank is in electrical contact with the earth (galvanic coupling), and an induced response was persistent to more than 1 second after current turn-off. Coupling effects could be identified at least 150 meters from the tank. Understanding the mechanism behind such coupling and the ability to identify coupled data are critical skills, as one-dimensional modeling of data is affected by such coupling producing artificial conductive layers at depth.